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Introduction

I A random recursive tree is a rooted nonplanar tree that grows by the successive
insertion of nodes labelled 1,2,3, . . . .

I A new node chooses any of the existing nodes at random as its parent.
I After n insertions there are (n − 1)! trees, which are equally likely.
I Motif: a specific nonplanar unlabelled rooted tree shape of finite size.
I A motif occurs on the fringe if the subtree rooted at the root of the motif is the

motif itself.
I Uncorrelated collection of motifs: For any two motif in the collection, neither

appears as a subtree on the fringe of the other.

Illustrations

Illustration-I: All motifs of size 4. When generating a recursive tree of size 4, these motifs occur
with probabilities 1
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Illustration-II:Example of a recursive tree of size 30 with three occurrences of a motif on the fringe.

Applications to data compression

I Instead of storing a relatively large motif many times in a tree, we can store the
content with only one nexus pointing to the motif to realize the shape in the
recursive tree.

I The content itself should be stored in an appropriate canonical order to fit its
original position in the recursive tree.

I In a plain practical implementation not utilizing data compression ideas, each of
these nodes would carry a number of pointers (equal to the number of its
children), that can be eliminated.

Research question

We want to characterize the asymptotic joint distribution of the counts of the
occurrences of the motifs on the fringe.

Theorem-I

Let I be a countable set (finite or infinite). Let C = {Γi | i ∈ I } be an
uncorrelated collection of nonplanar, unlabeled, rooted trees, each of a finite
size (motifs). Let Xn,Γ be the number of occurrences of the motif Γ, of size γ, on
the fringe of a random recursive tree of size n. Then, we have

Cov[Xn,C ] = ΣC n,

with

(ΣC )i,j =
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where Xn,C is the vector with components Xn,Γi , γ
∗
i,j = max {γi, γj}, W (., ., .)

is a function of the collection, and bi,j is a vector of |I | dimensions with all
entries being zero except positions i and j , where these entries are 1.

Theorem-II

Let I be a countable set (finite or infinite). Let C = {Γi | i ∈ I } be an
uncorrelated collection of nonplanar, unlabeled, rooted trees, each of finite size
(motifs). Let Xn,Γ be the number of occurrences of the motif Γ, of size γ, on the
fringe of a random recursive tree of size n. Then, we have

Xn,C − µC n
√

n
D−→ N|I |(0,ΣC ),

where Xn,C , is the vector with components Xn,Γi , and µC is the vector with
components

(µC )i =
C(Γi)

γi(γi + 1)
,

for i ∈ I , and C(Γi) is the shape functional of the motif Γi ,N|I |(0,ΣC ) is the
jointly multivariate normally distributed random vector in |I | dimensions with
mean vector 0 (of |I | components) and |I | × |I | covariance matrix ΣC .

Methodology

I We used the decomposition into special and nonspecial trees as in [3].
I As in [2] for n > γ

Xn,Γ
D
= XUn,Γ + X̃n−Un,Γ − 1{n−Un=γ} Ber

(
C(Γ)

)
;

where Un is the size of the subtree(special) rooted at node 2.
I We define Yn,C ,α = αXn,C =

∑
i∈I αiXn,Γi where α is any real vector of

|I | dimensions.
I Evaluate the expectation and variance of Yn,C ,α which are both Θ(n).
I Prove Yn,C ,α satisfies the criterions given by [5] for the application of the

contraction method.
I Hence under under the Maejimam-Rachev metric [4] Yn,C ,α, under appropriate

scaling, converges in distribution to the standard normal distribution.
I Invoke the Cramér-Wold device [1] to claim the asymptotic joint multivariate

normality of Xn,C from the asymptotic univariate normality of Yn,C ,α.

Example

Applying Theorem-II on Illustration I we have the following asymptotic result:

Xn,C −
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 .

Simulations

We simulated 10n samples of recursive trees for n = 100,1000,10000,100000
and counted the sum of occurrences of the motifs in Illustration I. We compared
them to the asymptotic normal probability predicted from Theorem-II.
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Plots showing sum of occurrences of the motifs in Illustration I converging to normality

Future work
I The same question could be extended to correlated motifs.
I Count the occurrences of a single motif everywhere in the recursive tree.
I Characterize the probability of forbidden motifs in the fringe and the interior.
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