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Abstract

We study two popular one-dimensional chains of classical anharmonic oscillators: the rotor chain

and a version of the discrete non-linear Schrödinger chain. We assume that the interaction between

neighboring oscillators, controlled by the parameter ǫ > 0, is small. We rigorously establish that

the thermal conductivity of the chains has a non-perturbative origin, with respect to the coupling

constant ǫ, and we provide strong evidence that it decays faster than any power law in ǫ as ǫ → 0. The

weak coupling regime also translates into a high temperature regime, suggesting that the conductivity

vanishes faster than any power of the inverse temperature. To our knowledge, it is the first time that

a clear connection is established between KAM-like phenomena and thermal conductivity.
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1 Introduction

The rigorous derivation of transport properties of solids from molecular dynamics is a big and inspiring

challenge in statistical mechanics out of equilibrium. It has been recognized since a long time that

the transfer of energy could be strongly reduced, or even suppressed, in some Hamiltonian systems.

Anderson localization provides probably the clearest example of this phenomenon. In the context of

thermal transport, it is realized in disordered harmonic crystals [5][24], which constitute however a

very untypical class of solids, since they are equivalent to an ideal gas of non-interacting phonons. For

interacting quantum systems, one expects that the phenomenon of Anderson localization can persist in

some regimes, giving rise to the so-called ‘many-body localization’ [2]. Recently, a mathematical approach

to this question was developed in [15]. We learned of this work shortly after starting the present project, updated

referenceand it was a source of inspiration for us, especially for the perturbative part in Section 3.

At finite volume, Nekhoroshev estimates [26] and the KAM theorem [27] furnish a whole class of

classical Hamiltonians that allow energy to be spread through the system only at very slow rates for

all initial condition, and not at all for some of them. These results partially extend to finite energy

excitations of Hamiltonians depending on infinitely many variables (see [4][11][25] among others). At

infinite volume, time-periodic and spatially localized solutions, called breathers, are also known to exist

for generic type of classical oscillators chains [22]. In [23], an extensive adiabatic invariant is shown to

exist for the Klein Gordon lattice at low but positive temperature (i.e. for initial conditions of infinite

energy), implying an asymptotically slow mixing rate of the system. As such however, all these results

are of little help to understand the thermal conductivity of solids.

In this paper, we analyze two classical chains of strongly anharmonic oscillators (without disorder),

and we show asymptotic localization of energy in a regime characterized by high thermal fluctuations, in

comparison with the coupling strength between near atoms. Let ǫ > 0 denote a parameter controlling

the strength of the coupling. We establish that energy can only diffuse through these systems at times

that are larger than any inverse power of ǫ as ǫ→ 0, except perhaps for a set of states, whose probability

is itself smaller than any inverse power in ǫ, with respect to the Gibbs state at a positive temperature T .

In that sense, our result could be thought of as an analog of Nekhoroshev estimates, at infinite volume

and positive temperature. We hope that these results also provide some complementary view on the slow

relaxation to equilibrium observed for chains with strong anharmonic on-site pinning [13].

The first system we consider is a chain of rotors, consisting of particles constrained to move on circles,

and weakly coupled through cosine interactions. Numerical studies indicate that this chain behaves as a

normal conductor [12], though the conductivity becomes divergent as temperature is sent to zero. The

defocusing discrete non-linear Schrödinger chain is the second system we look at. We study this chain in

the regime where the on-site anharmonic pining dominates the weak harmonic coupling. Here as well,

simulations show this chain to be a normal conductor [16]. It is known that, besides energy, these chains

preserve a second quantity (see Section 2 below). To stress that our results do not depend on this, we

allow for an extra interaction, that breaks the second conservation law.
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Our results ultimately rest on a phenomenon that is at the heart of all the results above: close

individual atoms typically oscillate each at different frequencies, so that resonances, that are responsible

for energy transfer in a perturbative regime, are rarely observed. To explain this a bit further, we find

it useful to introduce a comparison with weakly coupled disordered chains. Assuming there the on-

site potential to be harmonic, uncoupled atoms simply oscillate at a fixed but random eigenfrequency.

When a small interaction is turned on, only a few disconnected resonant spots are created here and

there, corresponding to places where the eigenfrequencies of near atoms are, in very good approximation,

in specific ratios with respect to each others. This observation has allowed to conclude to asymptotic

localization of energy for a wide class of interaction potentials [14], and, for harmonic interactions, to a

true localization [10] as long as the coupling is not too large.

Let us now move back to our non-disordered chains. Since the on-site interaction is strongly an-

harmonic, each uncoupled atom oscillates at a frequency that depends on its energy. Moreover, in the

absence of interaction, the Gibbs state is a product measure, so that the eigenfrequency of each oscillator

is here as well chosen randomly. So far, the comparison with inhomogeneous chains is thus perfect. When

the interaction is turned on, it is still so that rare resonant spots will appear here and there. However,

these resonant islands are no longer attached to a fixed place. Instead, as a bit of energy get transferred,

the eigenfrequencies are slightly modified, so that resonant sites can be destroyed here and recreated

there. This phenomenon a priori favors the transport of energy. In fact, our main difficulty compared

to [14], was to show that this process itself occurs so slowly that it is irrelevant at the time scales we

consider. Once this difficulty is overcome, the results of this paper resemble very closely the analogous

statements in [14]. Those results were in turn inspired by [21] where the weak coupling limit for oscillator

chains with energy-conserving dynamics was analyzed rigorously for the first time.

The paper is organized as follows. Our results are stated in Section 2. The rest of the paper is

devoted to the proofs. We have not been able to handle both chains in a unified way, though it is mainly

a question of details. As a consequence, Sections 3 to 5 exclusively deal with the rotor chain, while the

non-linear Schrödinger chain is considered in Section 6.

In Section 3, a KAM-like change of variables is constructed, that isolates from the rest the part of

the interaction giving rise to resonances. The stability of resonant islands is studied in Section 4. Our

main result is finally shown in Section 5 for the rotor chain. Adaptations needed to handle the non-linear

Schrödinger chain are explained in Section 6. The final Section 7 contains the proof of three corollaries.

2 Models and Results

We define precisely the chains under study as well as the thermal conductivity, and state our results

together with some comments.
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2.1 Models

Let N ≥ 1 be an odd integer and let ZN = {−(N − 1)/2, . . . , (N − 1)/2}. Let also γ ≥ 0. For γ = 0,

the two dynamics we study preserve both the total energy and a second quantity: the momentum for

the rotor chain, and the ℓ2-norm for the discrete non-linear Schrödinger chain. When γ > 0, these extra

conservation laws are broken, so that only energy remains conserved. We will assume free boundary

conditions, though that is only a matter of convenience: all our conclusions would still hold for other

choices of boundary conditions.

The rotor chain. The phase space consists of the points

(q, ω) = (qx, ωx)x∈ZN
∈ Ω = ΩN = (T× R)N with T = R/(2πZ).

The Hamiltonian is

H(q, ω) = D(ω) + ǫV (q, ω) =
∑

x∈ZN

Hx(q, ω) =
∑

x∈ZN

(
Dx(ω) + ǫVx(q)

)

=
1

2

∑

x∈ZN

ω2
x + ǫ

∑

x∈ZN

(
γ(1− cos qx) +

(
1− cos(qx − qx+1)

))
, (1)

with the convention q±(N+1)/2 = q±(N−1)/2 (free boundary conditions on both sides). The Hamilton

equations of motion are

q̇ = ∇ωH and ω̇ = −∇qH. (2)

The total momentum
∑
x ωx is a conserved quantity only at γ = 0. Given an initial condition (q, ω) ∈ Ω,

we denote the Hamiltonian flow by (Xt
ǫ(q, ω))t≥0 ⊂ Ω.

The discrete non-linear Schrödinger chain. The phase space consists of the points

ψ = (ψx)x∈ZN
∈ Ω = ΩN = C

N ≃ (R2)N .

The Hamiltonian is

H(ψ) = D(ψ) + ǫV (ψ) =
∑

x∈ZN

Hx(ψ) =
∑

x∈ZN

(
Dx(ψ) + ǫVx(ψ)

)

=
1

2

∑

x∈ZN

|ψx|4 + ǫ
∑

x∈ZN

(
γ(ψx + ψx)

2 + |ψx − ψx+1|2
)
, (3)

with again the convention ψ±(N+1)/2 = ψ±(N−1)/2. Writing H(ψ) as H(ψ,ψ), the Hamilton equations of

motion take the redundant form

iψ̇ = ∇ψH and iψ̇ = −∇ψH.

The total ℓ2-norm
∑
x |ψx|2 is a conserved quantity only at γ = 0. Given an initial condition ψ ∈ Ω, we

denote the Hamiltonian flow by (Xt
ǫ(ψ))t≥0 ⊂ Ω.

To see the analogy between this chain and the rotor chain, we could move to action-angle, or polar,

coordinates. Writing

ωx = |ψx|2 and tan qx = ℑψx/ℜψx,
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the Hamiltonian (3) is is recast as

H(q, ω) =
∑

x∈ZN

(ω2
x

2
+ 4γǫωx cos

2 qx + ǫ
(
ωx + ωx+1 − 2

√
ωxωx+1 cos(qx − qx+1)

))

while Hamilton equations now precisely take the form (2). Unfortunately, this change of variable is not

well defined if some frequency ωx vanishes, implying that the field ∇ωH becomes singular as ωx → 0.

We will, for this reason, not make explicitly use of it.

2.2 Heat current and thermal conductivity

Given two functions f, g ∈ C∞(Ω), we define, for rotors,

Lfg = {f, g} = ∇ωf · ∇qg −∇qf · ∇ωg = −{g, f} = −Lgf, (4)

and for the non-linear Schrödinger chain,

Lfg = {f, g} = −i
(
∇ψf · ∇ψg −∇ψf · ∇ψg

)
. (5)

Given a ∈ ZN , we define the energy current ǫJa,a+1 across the bond (a, a+ 1) by

ǫJa,a+1 = LH
∑

x>a

Hx =

{∑

y≤a

Hy ,
∑

x>a

Hx

}
= {Ha, Ha+1}. (6)

We then define the total, normalized, current ǫJ by

ǫJ =
ǫ

N1/2

∑

a∈ZN

Ja,a+1.

Let T > 0 be some fixed temperature. The Gibbs state is a measure on Ω defined, for the rotor chain,

by

f 7→ 〈f〉T =
1

Z(T )

∫

Ω

f(q, ω) e−H(q,ω)/T dqdω,

where Z(T ) is a normalization factor such that this measure is a probability measure. For the non-linear

Schrödinger chain, the expression is analogous: H(q, ω) is replaced by H(ψ), and dqdω is replaced by

dℜ(ψ)dℑ(ψ). The Green-Kubo conductivity of the system is defined, if the limits exist, as a space-time

variance [20]:

κ(T, ǫ) = lim
t→∞

lim
N→∞

1

T 2

〈( ǫ√
t

∫ t

0

JN (Xs
ǫ ) ds

)2〉
T

(7)

where we have written JN instead of J, to remind ourselves that this quantity depends on N , and we

have set JN (Xs
ǫ ) = JN ◦Xs

ǫ . We note that, thanks to good decorrelation properties of the Gibbs measure

(see Section 7), the limit N → ∞ is independent of the boundary conditions.

2.3 Results

We start by an abstract result expressing that, in all orders in perturbation in ǫ, only local oscillations

of the energy field (and hence no persistent currents) can be produced by the dynamics.
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Theorem 1. Let the Hamiltonian be given by (1) or (3). Let T > 0 be fixed. Choose any n ≥ 1 and let

then Cn < +∞ be large enough. For any N ≥ 1 and a ∈ ZN , the current across the bond (a, a+ 1) can

be decomposed as

ǫJa,a+1 = LHUa + ǫn+1Ga

The functions Ua and Ga are smooth, of zero average, 〈Ua〉T = 〈Ga〉T = 0, and they depend only on

variables labeled by z ∈ ZN with |z − a| ≤ Cn, and satisfy the bounds

〈U2
a 〉T ≤ Cnǫ

1/4, 〈(∂♯Ua)2〉T ≤ Cnǫ
−1/4, 〈G2

a〉T ≤ Cn, 〈(∂♯Ga)2〉T ≤ Cn (8)

where ♯ stands for any of the variables.

We deduce two results on the thermal conductivity from this abstract statement. The analysis of the

conductivity as defined by (7) is probably out of reach at the present time. We can however obtain some

conclusion by assuming that the true value of the integral in (7) is already attained at a time t that grows

as some inverse power in ǫ as ǫ → 0. One can argue (see e.g. Chapter 5 of [6]) that this is equivalent to

exciting the system locally, and observing the relaxation for a time t of this order. Our result is quite

similar in spirit to results about weak coupling limits in such systems, e.g. [17][9][21], where one describes

the dynamics in a scaling limit where coupling vanishes but time goes to infinity. However, in our case,

these scaling limits are trivial in the sense that we do not see any transport on the time scales that

we study. We would find it very interesting to push the analysis to longer time scales and to exhibit a

non-vanishing contribution to the conductivity.

So first, we follow the dynamics for a time of order ǫ−n, for an arbitrary large n, and let ǫ → 0. We

believe the next theorem to be a strong indication that κ(T, ǫ) = O(ǫm) for any m ≥ 1. To establish this

rigorously, one would need to exchange the limits t→ ∞ and ǫ→ 0.

Theorem 2. Let the Hamiltonian be given by (1) or (3). Let T > 0 be fixed. Let 1 ≤ m < n. Then

lim
t→∞

lim sup
ǫ→0

lim sup
N→∞

ǫ−m

T 2

〈( ǫ√
ǫ−nt

∫ ǫ−nt

0

JN (Xs
ǫ ) ds

)2〉
T

= 0.

One could speculate whether some non-perturbative effects could lead to a breakdown of the conjecture

κ(T, ǫ) = O(ǫm). We cannot exclude this, and in fact we do not even rigorously know whether the chains

we consider are normal conductors for some ǫ > 0, that is, whether κ(T, ǫ) <∞. It is however commonly

believed that, on sufficiently large time scales, the dynamics of such systems becomes chaotic. As in [14],

we can, for the rotor chain, mimic this hypothetic non-perturbative chaotic behavior by a stochastic noise

that conserves energy, and that becomes perceptible on very large time scales, namely ǫ−(n+1), for some

arbitrarily large n. We are then able to show that the conductivity is finite and not larger than ǫn, so that

it can be attributed to the noise. Instead, we do not know what could be the effect of non-perturbative

integrable structures, such as solitons traveling ballistically.

Let us consider the rotor chain. For n ≥ 1, we let

L = LH + ǫn+1S with Su(q, ω) =
∑

x∈ZN

(
u(q, . . . ,−ωx, . . . )− u(q, ω)

)
(9)
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be the generator of a Markov process on Ω. Let us denote by (Xtǫ(q, ω))t≥0 the Markov process generated

by L and started from the point (q, ω). We denote by E the expectation with respect to the realizations

of the noise S.

Theorem 3. Let the Hamiltonian be given by (1). Let T > 0 be fixed. For any n ≥ 1, it holds that there

is Cn <∞ such that, for sufficiently small ǫ > 0,

lim
t→∞

lim sup
N→∞

1

T 2

〈
E

( ǫ√
t

∫ t

0

JN (Xsǫ) ds
)2〉

T
≤ Cnǫ

n

From Theorem 1, we can also deduce a statement that mirrors the well-known Nekhorohsev theorem

for systems consisting of a finite number of degrees of freedom (see e.g. [26]). We recall that the latter

states that, for all initial conditions, the action coordinates of the uncoupled system remain Cǫb-close

to their original value for a time eC(1/ǫ)a , for some a, b > 0 and with ǫ the coupling strength. We can

reproduce this statement for arbitrary polynomial times, rather than exponential ones, and for a set of

configurations that has large probability with respect to the Gibbs state. In [8], a similar result was

obtained, limited however to much shorter time scales. Let I = {a1, a1 + 1, . . . , a2} ⊂ ZN be a discrete

interval, and let HI =
∑
xHx. Then

Theorem 4. Let the Hamiltonian be given by (1) or (3). Let T > 0 be fixed. For any n ≥ 1, there is very slightly

reformulatedCn <∞ such that, for sufficiently small ǫ > 0, and for any I as above,

〈(
HI(X

t
ǫ)−HI

)2〉
T
≤ Cnǫ

1/4, for any 0 ≤ t ≤ ǫ−n. (10)

2.4 Remarks

Temperature dependence. The behavior of the thermal conductivity κ(T, ǫ) defined by (7) as ǫ→ 0

for fixed T > 0, is directly connected to its behavior as T → ∞ for fixed ǫ > 0. Indeed, assuming that

(7) is well defined, we have as we will see that, for every σ > 0,

κ(ǫ, T ) =
1

σ
κ(σ2ǫ, σ2T ) for the rotor chain, (11)

κ(ǫ, T ) =
1

σ
κ(σǫ, σ2T ) for the non-linear Schrödinger chain. (12)

We therefore also conjecture for the two chains that κ(T, ǫ ∼ 1) = O(1/Tm) for every m ≥ 1 as T → ∞.

As one can check from the calculations below, we obtain also scaling relations like (11), (12) for the

finite-time approximations to the conductivity κ that figure in Theorem 2, so we could literally restate

this result for the high-temperature regime. An analogous scaling result was obtained in [1] for a different

chain.

Let us see how to obtain (11). Let σ > 0. Let us write Hǫ instead of H to explicitly keep track of the

coupling strength. It is computed that, if (q(t), ω(t))t≥0 is a solution to Hamilton’s equation (2) for the

Hamiltonian Hǫ given by (1), then (q′(t), ω′(t))t≥0 given by

q′(t) = q(σt), ω′(t) = σ ω(σt),
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solves Hamilton’s equations for the HamiltonianHσ2ǫ. It is then computed by means of (6) that ǫJa,a+1 =

ǫωa+1 sin(qa−qa+1), where ǫJa,a+1 denotes the current through (a, a+1) corresponding to the Hamiltonian

Hǫ. Let us denote by σ2ǫJ ′
a,a+1 the current corresponding to Hσ2ǫ(q

′, ω′). It holds that

ǫ√
t

∫ t

0

J(q(s), ω(s)) ds =
1

σ5/2
· σ

2ǫ√
t′

∫ t′

0

J′(q′(s′), ω′(s′)) ds′ with t′ = t/σ.

In the Gibbs measure, the change of variables implies the change T 7→ σ2T for the temperature:

∫
u(q, ω)e−Hǫ(q,ω)/T dqdω∫

e−Hǫ(q,ω)/T dqdω
=

∫
u(q′, ω′)e−Hσ2ǫ(q

′,ω′)/σ2T dq′dω′

∫
e−Hσ2ǫ(q

′,ω′)/σ2T dq′dω′
.

The scaling relation (11) then follows from the definition (7). The scaling relation (12) is obtained

analogously: it is here observed that, if (ψ(t))t≥0 is a solution to Hamilton’s equations for the hamiltonian

Hǫ given by (3), then (ψ′(t) =
√
σψ(σt))t≥0 solves Hamilton’s equations for the Hamiltonian Hσǫ.

Higher dimensions. We conjecture that our results extend to higher dimensional lattices. The argu-

ments in Sections 3 and 4 would indeed carry over straightforwardly. The evolution of energy appears

thus equally frozen for two or three-dimensional lattices as for a one-dimensional one. Unfortunately, the

proof of Theorem 1 that appears in Section 5, does not extend as such to higher dimensions. Although

the problem seems to us purely technical and we find it very plausible that one can adapt it to higher

dimensions, we have not pursued this here.

Other models. Rem. by W: Stylistic changes in this remark EOR Our results depend mainly

on three properties of the models: First, the dynamics of isolated oscillators is one-dimensional, and thus

integrable, so that the frequency of oscillation is a well defined concept. Second, the isolated isolators are

strongly anharmonic, implying that the frequencies depend on the energy in a non-trivial way. Third,

the coupling is weak, so that perturbation theory applies. It is thus natural to ask whether, for example,

our results would also hold for the Hamiltonian

H(q, p) =
∑

x∈ZN

(p2x
2

+
q4x
4

+
ǫ

2
(qx − qx+1)

2
)
, (13)

as it possesses the three listed properties, i.e. whether its conductivity is also non-perturbative as ǫ→ 0.

It turns out that we actually exploit a specific characteristic of the chains that we look at: the

perturbation only involves a finite number of combinations of the eigenfrequencies of neighboring oscilla-

tors, meaning technically that we may work with finite trigonometric polynomials (see Section 3). This

would not longer be true for the chain defined by (13), for which trigonometric polynomials should be

replaced by more generic analytic functions. While this extra difficulty can be overcome in usual KAM

or Nekhoroshev theorems, part of our proof would likely break down (see Section 4). The generalisation

of our theorems to the chain defined by (13) appears thus to us as an open question.

How optimal are our bounds ? It is numerically observed that the chains under study are normal

conductors [12][16], so that we expect localization of energy to be at best asymptotic. Still, the time scales
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at which energy starts diffusing could be much larger than any inverse power in ǫ. At finite volume for

example, Nekhoroshev estimates imply the absence of diffusion over exponentially long times. However,

in [3], the thermal conductivity of a classical non-linear disordered chain is studied, and it is argued

that the localization is broken at a scale that is roughly of the order of e−c ln
3(1/ǫ). Since we expect the

energy to travel more easily in the non-disordered chains thanks to the mobility of resonants spots, we

conjecture that, here as well, localization does not persist on longer times than that. In other words, we

do not think that one can obtain Nekhoroshev estimates in infinite volume for times as long as those in

finite volume.

3 Approximate change of variables

We introduce an auxiliary Hamiltonian H̃ = H̃n1
, defined for an arbitrary n1 ≥ 1, and give the needed

links between H̃ and the original Hamiltonian H. We first introduce some definitions, then state the

results, and finally prove them. The formulas introduced in the second part are probably best demystified

by first reading the beginning of the proof. It is seen there that we define a KAM-like formal change

of variable. In contrast to the KAM-scheme however, our expansion is only perturbative, and does not

involve any renormalization of the energy of individual atoms at each step.

3.1 Preliminary definitions

Throughout all this work, we will deal with functions f in a subspace S(Ω) of C∞(Ω). A function f

belongs to S(Ω) if the three following conditions are realized for some number

r = r(f) > 0. (14)

1. The function f is a sum of local terms:

f =
∑

x∈ZN

fx with
∂fx
∂qy

=
∂fx
∂ωy

= 0 if |x− y| > r(f). (15)

This decomposition is not unique. Obviously, this property will be helpful only when r(f) ≪ N .

Rem. by W: Just to avoid the suspicion that we have missed somehting here EOR

2. The function f depends on the variable q through a finite number of Fourier modes only:

f(q, ω) =
∑

k∈ZN

f̂(k, ω)eik·q with f̂(k, ω) = 0 if max
x

|kx| ≥ r(f). (16)

As a consequence of the spatial locality in 1., it also holds f̂(k, ω) = 0 as soon as supp(k) cannot

be included in a ball of radius r, where supp(k) = {x ∈ ZN : kx 6= 0}.

3. Given any m ≥ 1, and given any differential operator D, with either D = Id or D = ∂♯1 . . . ∂♯m , Made more

precisewhere ♯k stands for any of the variables, there is a polynomial pD on R
2r+1 so that, for every

x ∈ ZN , and (q, ω) ∈ Ω,

|Dfx(q, ω)| ≤ |pD(ωx−r, . . . , ωx+r)|. (17)
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Let ρ ∈ C∞(R, [0, 1]) be a smooth cut-off function: ρ(−x) = ρ(x) for every x ∈ R, ρ(x) = 1 for every

x ∈ [−1, 1] and ρ(x) = 0 for every x /∈ [−2, 2]. For any a > 0, we define also ρa by ρa(x) = ρ(x/a).

Let 0 < δ < 1. In this section, we assume this number to be independent of ǫ. We define an operator

R on S(Ω) that acts as

(Rf)(q, ω) =
∑

k∈ZN

ρδ(k · ω)f̂(k, ω)eik·q.

Let D be the function defined in (1). Given f ∈ S(Ω), the equation

LDu = (Id− R)f,

where LD = {D, ·} is defined in (4), can be solved in S(Ω). A solution u is given by

u(q, ω) =
∑

k∈ZN

1− ρδ(k · ω)
i k · ω f̂(k, ω)eik·q,

where the sum only goes over terms for which k · ω 6= 0. This is the only solution such that û(0, ω) = 0

for all ω ∈ R
N ; we will refer to it as the solution to the equation LDu = (Id− R)f .

Finally, we will find it convenient to work with formal power series in ǫ: given a vector space E, these

are expressions of the form Y =
∑
k≥0 ǫ

kY (k), where Y (k) ∈ E for every k ≥ 0. We naturally extend

algebraic operations in E to operations between formal series. Given l ≥ 0 and given a formal series Y ,

we define the truncation

Tl(Y ) =

l∑

k=0

ǫkY (k) ∈ E. (18)

If a formal power series Y is such that Y (k) = 0 for all k > l for some l ∈ N, we will allow ourselves to

identify Y with its truncation Tl(Y ) ∈ E.

3.2 Statement of the results

Given k ≥ 1, let π(k) ⊂ N
k be the collection of k-tupels j = (jl)l=1,...,k of nonnegative integers satisfying

the constraint
k∑

l=1

ljl = k,

in particular 0 ≤ jl ≤ k.

For k ≥ 0, we recursively define operatorsQ(k), R(k) and S(k) on S(Ω), as well as functions U (k) ∈ S(Ω).

Here and below, let us adopt the convention A0 = Id for an operator A. We first set Q(0) = R(0) = Id,

S(0) = 0 and U (0) = 0. Next, for k ≥ 1, we define U (k) as the solution to the equation

LDU
(k) = (Id− R)

(
S(k−1)D +Q(k−1)V

)
. (19)
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and then set

Q(k) =
∑

j∈π(k)

1

j1! . . . jk!
Ljk
U(k) . . . L

j1
U(1) , (20)

R(k) =
∑

j∈π(k)

(−1)j1+···+jk

j1! . . . jk!
Lj1
U(1) . . . L

jk
U(k) , (21)

S(k) =
∑

j∈π(k+1):
jk+1=0

1

j1! . . . jk!
Ljk
U(k) . . . L

j1
U(1) . (22)

For n1 ≥ 1, we define

H̃ = H̃n1
= D +

n1∑

k=1

ǫkR(S(k−1)D +Q(k−1)V ). (23)

The following Proposition is shown in Subsection 3.3 below.

Proposition 1. Let us consider the formal series R =
∑
k≥0 ǫ

kR(k) of operators on S(Ω).

1. H = Tn1

(
RH̃n1

)
.

2. For every f =
∑n1

k=0 ǫ
kf (k), it holds that

LH
(
Tn1

(Rf)
)
= Tn1

(
RLH̃n1

f
)
+ ǫn1+1LV

n1∑

k=0

R(n1−k)f (k).

3. The function H̃ is symmetric under the exchange ω 7→ −ω. Moreover, for any k ≥ 0, the operator

R(k) maps symmetric functions with respect to this operation, to symmetric functions.

The function H̃ and the formal operator R have several characteristic that are good to remember.

1. Both H̃ and R are expressed as power series in ǫ, as is seen from (23) and from the definition of R

given in Proposition 1. We introduce also the notation

H̃ =

n1∑

k=0

ǫkH̃(k) with H̃(0) = D, H̃(k) = R(S(k−1)D +Q(k−1)V ) for k ≥ 1.

2. For each k ≥ 0, H̃(k) is a function belonging to S(Ω), and R(k) an operator on S(Ω). Let f =
∑
x∈ZN

fx ∈ S(Ω) be given. The functions H̃(k) and R(k)f can be decomposed as a sum of local

terms, with for example, for k ≥ 1,

H̃(k)
x = R(S(k−1)Dx +Q(k−1)Vx) and (R(k)f)x = R(k)fx.

Moreover, we will show in Subsection 3.3 below, that there exists an integer rk such that

r
(
H̃(k)

)
≤ rk and r

(
R(k)f

)
≤ rk + r(f), (24)

where r is the parameter introduced in (14).
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3. The function H̃(k) and the operator R(k) depend on δ if k ≥ 1. Let thus k ≥ 1. In what follows, we

will use the symbol b to denote smooth, bounded functions on R
N × (0, 1) with bounded derivatives

of all order Rem. by W: reformulation to avoid the impression that there is a uniform

bound EOR , and the symbol f for functions in S(Ω). We will show the two following assertions in

Subsection 3.3 below. First, there is an integer mk such that, given x ∈ ZN , H̃
(k)
x can be expressed

as a sum of the type

H̃(k)
x (q, ω; δ) = δ−2(k−1)

mk∑

j=1

bj,x(ω/δ, δ) fj,x(q, ω). (25)

such that the functions bj,x and fj,x depend on the same variables and the same Fourier modes

as H̃
(k)
x and the bounds on them can be chosen uniformly in x. Second, consider a function

g( · ; δ) ∈ S(Ω) such that gx(q, ω; δ) = bx(ω/δ, δ)fx(q, ω). Then, there is an integer mk,g such that

(R(k)g)x can be expressed as a sum of the type

(R(k)g)x(q, ω; δ) = δ−2k

mk,g∑

j=1

b̃j,x(ω/δ, δ)f̃j,x(q, ω). (26)

and such that the functions b̃j,x and f̃j,x depend on the same variables and the same Fourier modes

as (R(k)g)x. Rem. by W: I changed the apostrophes into tildes because later on I used

the apostrophes for derivatives EOR

3.3 Proof of Proposition 1 and relations (24-26)

Proof of Proposition 1. Given a function U ∈ S(Ω), a formal change of variable, seen as an operator on

S(Ω), is defined through

eǫLU =
∑

k≥0

ǫk

k!
LkU .

Given now a sequence (U (k))k≥1 ⊂ S(Ω), that we later will identify with the sequence defined by (19),

we construct the formal change of variable

Q = . . . eǫ
nL

U(n) . . . eǫ
2L

U(2) eǫLU(1) =
∑

j1≥0,...,jn≥0,...

ǫj1+···+njn+...

j1! . . . jn! . . .

(
. . . Ljn

U(n) . . . L
j1
U(1)

)

= Id +
∑

k≥1

ǫk
∑

j∈π(k)

1

j1! . . . jk!
Ljk
U(k) . . . L

j1
U(1) =

∑

k≥0

ǫkQ(k).

The second line was obtained using the definition of j ∈ π(k) introduced at the beginning of Subsection

3.2. The formal inverse of Q is given by

R = e−ǫLU(1) e−ǫ
2L

U(2) . . . e−ǫ
nL

U(n) . . .

= Id +
∑

k≥1

ǫk
∑

j∈π(k)

(−1)j1+···+jn

j1! . . . jk!
Lj1
U(1) . . . L

jk
U(k) =

∑

k≥0

ǫkR(k).

Let us show the first part of Proposition 1. The operators Q and R are formal inverse of each others,

so that, for every f ∈ S(Ω) such that Tn1
f = f (see the remark after (18)), it holds that

f = Tn1

(
RTn1

(Qf)
)
,

12



as can be checked by a direct computations with formal series. We will thus be done if we show that

H̃n1
= Tn1

(QH) (27)

We compute

QH =
∑

k≥0

ǫkQ(k)(D + ǫV ) = D +
∑

k≥1

ǫk(Q(k)D +Q(k−1)V ).

It holds that

Q(k) = S(k−1) + LU(k) for k ≥ 1.

Since LU(k)D = −LDU (k) for every k ≥ 1, and taking now U (k) as defined by (19), we obtain

QH = D +
∑

k≥1

ǫk(S(k−1)D +Q(k−1)V − LDU
(k)) = D +

∑

k≥1

ǫkR(S(k−1)D +Q(k−1)V ).

From this, we derive (27).

Let us then show the second part of Proposition 1. The operators Q and R are formal canonical

transformations, inverse of each other. Therefore

LHR = RLQH , (28)

as a direct, but lengthy, computation with formal series can confirm. Let us next take f such that

f = Tn1
(f). By (27), we find that

Tn1

(
RLH̃n1

f
)

= Tn1

(
RLTn1

QHf
)

= Tn1

(
RLQHf

)
,

since higher order terms do not contributre thanks to the overall truncation Tn1
. Therefore, by (28),

LH
(
Tn1

(Rf)
)
− Tn1

(
RLH̃n1

f
)

= LH
(
Tn1

(Rf)
)
− Tn1

(
RLQHf

)
= LH

(
Tn1

(Rf)
)
− Tn1

(
LHRf

)
.

Since LH = LD + ǫLV , it is finally computed that

LH
(
Tn1

(Rf)
)
− Tn1

(
LHRf

)
= ǫn1+1LV

n1∑

k=0

Rn1−kfk.

Let us finally establish the last part of Proposition 1. A function will be said symmetric or antisym-

metric if it is symmetric or antisymmetric with respect to the operation ω 7→ −ω. We observe that, if a

function U is symmetric, then LU exchanges symmetric and antisymmetric functions, while LU preserves

the symmetry if U is antisymmetric. The action of R also preserves the symmetry. We deduce that the

operation L−1
D (Id − R) exchange symmetric and antisymmetric functions, since D is symmetric. It is

then recursively established from (19-22) that the functions Uk are antisymmetric for k ≥ 0, while the

operators Qk, Rk and Sk preserve the symmetry for k ≥ 0. Since D and V are symmetric, we conclude

from (23) that H̃ is symmetric. �

Proof of (24-26). Let us first establish (24). Given two functions f, g ∈ S(Ω), the function Lgf is

decomposed as a sum of local terms (Lgf)x, that we have chosen to be given by (Lgf)x = Lgfx. A direct

computations shows that r(Lgf) ≤ 2r(g) + r(f). Since r(L−1
D (Id− R)f) = r(f), we readily deduce (24)

from (19-22).
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Let us next show (25) and (26). Since we are only interested in tracking the dependence on δ, we

may simplify notations as much as possible in the following way. We use the symbols b and f with the

same meaning as in the paragraph where (25) and (26) are stated. Let n ≥ 0. First, if g ∈ S(Ω), we

just write g ∼ δ−n to express that g is of the following form: g =
∑
x gx as in (15) and gx take the

form gx(q, ω; δ) = δ−n
∑
j bj,x(ω/δ, δ)fj,x(ω, q) with all bounds on bj,x, fj,x uniform in x. Next, if A is an

operator on S(Ω), we just write A ∼ δ−n to express that, for any h ∈ S(Ω) such that h ∼ δ−m, we have

Ah ∼ δ−n−m.

We now observe that, if g ∼ δ−n and h ∼ δ−m, then Lgh ∼ δ−(n+m+1), and that if u solves the

equation LDu = (Id− R)g and if g ∼ δ−n, then u ∼ δ−(n+1). It is then established recursively that, for

k ≥ 1, we have

Q(k−1) ∼ δ−2(k−1), R(k−1) ∼ δ−2(k−1), S(k−1)D ∼ δ−2(k−1), U (k) ∼ δ−(2k−1), (29)

from which (25) and (26) are readily derived. By the definitions, the relations (29) hold for k = 1. Let

us see that the claim for 1, . . . , k ≥ 1 implies the claim for k + 1.

Let us start with Q(k). For j ∈ π(k), we get from the definition (20) that

Q(k) ∼ (δ−(2k−1)−1)jk . . . (δ−(2−1)−1)j1 = δ−2k.

The case of R(k) is handled in the same way. Let us then treat S(k)D. We decompose S(k)D =
∑
j S

(k)
j D

according to the definition (22), we pick one of the sequences j, and we let l ≥ 1 be the smallest integer

such that jl ≥ 1, such that the constraint on j is j1 +2j2 + · · ·+ kjk = k+1. Thanks to (19) and to our

inductive hypothesis, we get, for some constant C(j),

S(k)
π D = C(j)Ljk

U(k) . . . L
jl−1
U(l)

(
LU(l)D

)
= −C(j)Ljk

U(k) . . . L
jl−1
U(l)

(
(Id− R)(S(l−1))D +Q(l−1)V

)

∼ δ−2{l(jl−1)+···+kjk}δ−2(l−1) = δ−2(k+1)+2l−2(l−1) = δ−2k.

So we conclude that S(k)D ∼ δ−2k. The statement for U (k+1) is finally derived using (19). �

4 Resonant frequencies

Given a point x ∈ ZN , we construct a subset R(x) of the frequencies ω, seen as a subset of the full phase

space Ω that does not depend on the positions q, with the two following characteristics. First, if a state

does not belong to this set, then the energy current for the Hamiltonian H̃ vanishes through the bonds

near x. Second, it is approximately invariant under the dynamics generated by H̃, meaning that in a

small time interval, only the frequencies in a subset S(x), of small probability with respect to the Gibbs

measure, can leave or enter the set R(x).

In our opinion, the ideas of this Section are best understood visually. We hope that figure 1 will help

in that respect (see below for the definition of the set B(k1, k2)). We let

r = r(n1) = max
1≤k≤n1

rk, (30)

where the numbers rk are defined in (24). We let δ > 0 be as in Section 3.
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4.1 Preliminary definitions

We recall that, given k ∈ Z
N , we denote by supp(k) ⊂ Z

N the set of points x such that kx 6= 0. We define

the set Kr ⊂ Z
N of vectors k = (kx)x∈ZN

such that maxx∈ZN
|kx| ≤ r and supp(k) ⊂ B(r) for some ball

B(r) of radius r. We write |k|22 =
∑
x |kx|2. One easily checks that for any k ∈ Kr and r > 1, we have

|k|2 ≤ r2 and this will be used without further comment.

Given x ∈ Z
d, we say that a subset {k1, . . . , kp} ⊂ Kr is a cluster around x if

1. the vectors k1, . . . , kp are linearly independent, definition

made

independent

of

numeration

2. if p ≥ 2, for all 1 ≤ i 6= j ≤ p, there exist 1 ≤ i1, . . . , im ≤ p such that i1 = i, im = j and

supp(kis) ∩ supp(kis+1
) 6= ∅ for all 1 ≤ s ≤ m− 1,

3. supp(kj) ⊂ B(x, 4r) for some 1 ≤ j ≤ p.

Finally, given k ∈ Kr, we define

π(k) = {ω ∈ R
N : k · ω = 0}.

Given a subspace E ⊂ R
N , and given ω ∈ R

N , we denote by P (ω,E) the orthogonal projection of ω on

the subspace E.

4.2 Approximately invariant sets of resonant frequencies

Let L > 0, let n2 ≥ 1, and let x ∈ ZN . Let us define two subsets of RN : a set Rδ,n2(x) ⊂ R
N of resonant

frequencies, and a small set Sδ,n2
(x) ⊂ R

N of “multi-resonant” frequencies.

To define Rδ,n2
(x), let us first define the sets Bδ(k1, . . . , kp) ⊂ R

N , where {k1, . . . , kp} is a cluster

around x. We say that ω ∈ Bδ(k1, . . . , kp) if

∣∣ω − P
(
ω, π(k1) ∩ · · · ∩ π(kp)

)∣∣
2

≤ Lpδ (31)

and if, for every linearly independent k′1, . . . , k
′
p′ ∈ Kr ∩ span{k1, . . . , kp},

∣∣P
(
ω, π(k′1) ∩ · · · ∩ π(k′p′)

)
− P

(
ω, π(k1) ∩ · · · ∩ π(kp)

)∣∣
2

≤
(
Lp − Lp

′)
δ.

We next define Rδ,n2
(x) as the union of all the sets Bδ(k1, . . . , kp) ⊂ R

N with p ≤ n2.

We then define Sδ,n2
(x) as the set of points ω ∈ R

N for which there exists a cluster {k1, . . . , kn2
}

around x, such that |kj · ω| ≤ Ln2+1δ for every 1 ≤ j ≤ n2.

We finally define a smooth indicator function of the complement of Rδ,n2
(x) by means of a convolution:

θx,δ,n2
(ω) = 1− 1

( ∫
R
ρδ(z) dz

)N
∫

RN

χRδ,n2
(x)(ω + ω′)

( ∏

x∈ZN

ρδ(ω
′
x)
)
dω′. (32)

This naturally may be seen as a function on the full phase space Ω that is independent of the q−variable.

Proposition 2. Let n1 be given, and so r(n1) defined by (30) be fixed as well. Let then n2 ≥ 1 be fixed.

The following holds for L large enough.
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k1

k2

π(k1)

π(k2)

L2δ

(L2 − L)δ

Figure 1: The set Bδ(k1, k2). The plane is the subspace of points of the form ω−P (ω, π(k1)∩π(k2)),

for ω ∈ R
N . We have drawn a disk of radius L2δ that is ‘flattened’ by an amount Lδ at the

intersection of its boundary with the lines π(k1), π(k2). To simplify the figure, we have pretended

that k1 and k2 are the only vectors in span{k1, k2} ∩ Kr. This is not so in reality: the disk still

needs to be flattened by an amount Lδ at each intersection point of its boundary with a line π(k)

for all k ∈ span{k1, k2} ∩Kr. The set B(k1, k2, k3) could be similarly visualized as a ball of radius

L3δ, that is flattened by Lδ along the circles corresponding to the intersection of its boundary with

a plane π(k), and flattened by L2δ at the points where its boundary intersect a line π(k) ∩ π(k′),

for all k, k′ ∈ span{k1, k2, k3} ∩Kr.

1. If θx,δ,n2
(ω) > 0 then ρδ(ω · k) = 0 for all k ∈ Kr such that supp(k) ⊂ B(x, 4r).

2. LH̃n1
θx,δ,n2

(q, ω) = 0 for all (q, ω) ∈ Ω such that q ∈ T
N and ω /∈ Sn2

(x).

4.3 Proof of Proposition 2

We start by a series of lemmas. The first one simply expresses, in a particular case, that if a point is

close to two vector spaces, then it is also close to their intersection. The uniformity of the constant C

comes from the fact that we impose the vectors to sit in the set Kr.

Lemma 1. Let p ≥ 1. There exists a constant C = C(r, p) < +∞ such that, given linearly independent

vectors k1, . . . , kp, kp+1 ∈ Kr and given ω ∈ R
N , it holds that

∣∣ω − P
(
ω, π(k1) ∩ · · · ∩ π(kp) ∩ π(kp+1)

)∣∣
2

≤ C
(
|kp+1 · ω|+

∣∣ω − P
(
ω, π(k1) ∩ · · · ∩ π(kp)

)∣∣
2

)
.

Proof. First,

∣∣ω − P
(
ω, π(k1) ∩ · · · ∩ π(kp+1)

)∣∣
2

≤
∣∣ω − P

(
ω, π(k1) ∩ · · · ∩ π(kp)

)∣∣
2

+
∣∣P

(
ω, π(k1) ∩ · · · ∩ π(kp+1)

)
− P

(
ω, π(k1) ∩ · · · ∩ π(kp)

)∣∣
2
. (33)
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The lemma is already shown if the second term in the right hand side is zero. We further assume this

not to be the case. Next, since kp+1 · P
(
ω, π(k1) ∩ · · · ∩ π(kp+1)

)
= 0, we obtain

kp+1 · ω = kp+1 ·
(
ω − P

(
ω, π(k1) ∩ · · · ∩ π(kp)

))
+

kp+1 ·
(
P
(
ω, π(k1) ∩ · · · ∩ π(kp)

)
− P

(
ω, π(k1) ∩ · · · ∩ π(kp+1)

))
.

This implies

∣∣∣kp+1 ·
(
P
(
ω, π(k1) ∩ · · · ∩ π(kp)

)
− P

(
ω, π(k1) ∩ · · · ∩ π(kp+1)

))∣∣∣ ≤

|kp+1 · ω|+ |kp+1|2
∣∣∣ω − P

(
ω, π(k1) ∩ · · · ∩ π(kp)

)∣∣∣
2
. (34)

The vector

v =
P
(
ω, π(k1) ∩ · · · ∩ π(kp)

)
− P

(
ω, π(k1) ∩ · · · ∩ π(kp+1)

)
∣∣P

(
ω, π(k1) ∩ · · · ∩ π(kp)

)
− P

(
ω, π(k1) ∩ · · · ∩ π(kp+1)

)∣∣
2

(35)

is well defined since we have assumed that the denominator in this expression does not vanish. The

bound (34) is rewritten as

∣∣P
(
ω, π(k1) ∩ · · · ∩ π(kp)

)
− P

(
ω, π(k1) ∩ · · · ∩ π(kp+1)

)∣∣
2

≤

|kp+1 · ω|+ |kp+1|2
∣∣∣ω − P

(
ω, π(k1) ∩ · · · ∩ π(kp)

)∣∣∣
2

|kp+1 · v|

Inserting this last inequality in (33), we arrive at

∣∣ω − P
(
ω, π(k1) ∩ · · · ∩ π(kp+1)

)∣∣
2

≤ |kp+1 · ω|
|kp+1 · v|

+

(
1 +

|kp+1|2
|kp+1 · v|

)∣∣∣ω − P
(
ω, π(k1) ∩ · · · ∩ π(kp)

)∣∣∣
2
.

To finish the proof, it remains to establish that |kp+1 · v| can be bounded from below by some strictly

positive constant, where v is given by (35). Let us show that

v = ± P
(
kp+1, π(k1) ∩ · · · ∩ π(kp)

)
∣∣P

(
kp+1, π(k1) ∩ · · · ∩ π(kp)

)∣∣
2

. (36)

We can find vectors kp+2, . . . , kN so that {k1, . . . , kN} forms a basis of RN and so that every vector

kj with p + 2 ≤ j ≤ N is orthrogonal to span{k1, . . . , kp+1}. We express the vector ω in this basis,

ω =
∑N
j=1 ω

jkj , and, from (35), we deduce that, for some non-zero constant R, we have

v = R

N∑

j=1

ωj
{
P
(
kj , π(k1) ∩ · · · ∩ π(kp)

)
− P

(
kj , π(k1) ∩ · · · ∩ π(kp+1)

)}
.

All the terms corresponding to 1 ≤ j ≤ p vanish since kj ⊥ π(kj), the term P
(
kp+1, π(k1)∩· · ·∩π(kp+1)

)

vanishes for the same reason, and all the terms corresponding to j ≥ p + 2 vanish too, as they read in

fact kj − kj = 0. So, the only term left is Rωp+1P
(
kp+1, π(k1)∩ · · · ∩ π(kp)

)
and, since |v| = 1, we arrive

at (36).

From (36) we deduce that

|v · kp+1| =
∣∣P

(
kp+1, π(k1) ∩ · · · ∩ π(kp)

)∣∣
2
.
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If kp+1⊥span{k1, . . . , kp}, then the right hand side just becomes |kp+1|2. This quantity is bounded from

below by a strictly positive constant since so is the the norm of any nonzero vector in Kr. Otherwise, if

kp+1�⊥span{k1, . . . , kp}, we know however that the quantity cannot vanish since kp+1 /∈ span{k1, . . . , kp}.
Because they are only finitely many vectors k ∈ Kr with the property that k�⊥span{k1, . . . , kp}, we

conclude that the quantity is bounded from below by a strictly positive constant. �

The next Lemma describes the crucial geometrical properties of the sets Bδ(k1, . . . , kp) that allows to

establish the second assertion of Proposition 2.

Lemma 2. Let {k1, . . . , kp} be a cluster around x. If, given K < +∞, L is taken large enough, then, for

every k ∈ Kr ∩ span{k1, . . . , kp}, it holds that

ω ∈ Bδ(k1, . . . , kp) and |k · ω| ≤ Kδ ⇒ ω + tk ∈ Bδ(k1, . . . , kp) as long as |t| ≤ δ.

Proof of Lemma 2. To simplify some further expressions, let us define

ω′ = ω − P (ω, π(k1) ∩ · · · ∩ π(kp)) ∈ span(k1, . . . , kp).

The conditions ensuring that ω ∈ B(k1, . . . , kp) now simply read

|ω′|2 ≤ Lpδ and
∣∣P

(
ω′, π(k′1) ∩ · · · ∩ π(k′p′)

)∣∣
2

≤
(
Lp − Lp

′)
δ (p′ < p), (37)

for all linearly independent k′1, . . . , k
′
p′ ∈ k ∈ Kr ∩ span{k1, . . . , kp}. The condition |k · ω| ≤ Kδ implies precisions

added|k · ω′| ≤ Kδ. We need to show that

|ω′ + tk|2 ≤ Lpδ for |t| ≤ δ, (38)
∣∣P

(
ω′ + tk, π(k′1) ∩ · · · ∩ π(k′p′)

)∣∣
2

≤
(
Lp − Lp

′)
δ for |t| ≤ δ. (39)

Let us start with (38): expicit

proof of (38)

added
|ω′ + tk|2 ≤ |ω′ − P (ω′, π(k))|2 + |P (ω′, π(k))|2 + |t||k|2 ≤ |ω′ · k|+ |P (ω′, π(k))|2 + |t||k|2

≤ Kδ + (Lp − L)δ + r2δ ≤ Lpδ.

Here, to get the penultimate inequality, we have used (37) and the hypothesis k ∈ Kr ∩ span{k1, . . . , kp},
implying in particular |k|2 ≤ r2, while the last inequality is valid for large enough L.

Let us next move to (39). Let us fix k′1, . . . , k
′
p′ . It is seen that, if k ∈ span{k′1, . . . , k′p′}, then (39) is slightly

reformulatedactually satisfied for all t ∈ R. Let us therefore assume k /∈ span{k′1, . . . , k′p′}. We write also k = kp′+1.

We will show that, because |k · ω| ≤ Kδ, then in fact

∣∣P
(
ω′, π(k′1) ∩ · · · ∩ π(k′p′)

)∣∣
2

≤
(
Lp − Lp

′ − r2
)
δ. (40)

Since |k|2 ≤ r2, this will imply (39).

To establish (40), we start by writing the decompositions

|ω′|22 =
∣∣ω′ − P

(
ω′, π(k′1) ∩ · · · ∩ π(k′p′)

)∣∣2
2
+

∣∣P
(
ω′, π(k′1) ∩ · · · ∩ π(k′p′)

)∣∣2
2
, (41)

|ω′|22 =
∣∣ω′ − P

(
ω′, π(k′1) ∩ · · · ∩ π(k′p′+1)

)∣∣2
2
+
∣∣P

(
ω′, π(k′1) ∩ · · · ∩ π(k′p′+1)

)∣∣2
2
. (42)
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We bound the first term in the right hand side of (42) by applying Lemma 1 and then using (41): misprint

corrected∣∣ω′ − P
(
ω′, π(k′1) ∩ · · · ∩ π(k′p+1)

)∣∣2
2

≤ C
(
|k · ω′|2 +

∣∣ω′ − P
(
ω′, π(k′1) ∩ · · · ∩ π(k′p)

)∣∣2
2

)

≤ C
(
|k · ω′|2 + |ω′|22 −

∣∣P
(
ω′, π(k′1) ∩ · · · ∩ π(k′p)

)∣∣2
2

)
.

It may be assumed that C ≥ 1. Reinserting this bound in (42) yields

|ω′|22 ≤ C
(
|k · ω′|2 + |ω′|22 −

∣∣P
(
ω′, π(k′1) ∩ · · · ∩ π(k′p)

)∣∣2
2

)
+
∣∣P

(
ω′, π(k′1) ∩ · · · ∩ π(k′p′+1)

)∣∣2
2

≤ C
(
K2δ2 + |ω′|22 −

∣∣P
(
ω′, π(k′1) ∩ · · · ∩ π(k′p)

)∣∣2
2

)
+ (Lp − Lp

′+1)2δ2. (43)

where the hypotheses |k · ω′| ≤ Kδ and ω ∈ B(k1, . . . , kp) have been used to get the last line.

Let us now show that (43) implies (40) for L large enough. For this let us write

|ω′| = (1− µ)1/2Lpδ with 0 ≤ µ ≤ 1,

∣∣P
(
ω′, π(k′1) ∩ · · · ∩ π(k′p)

)∣∣
2

= (1− ν)1/2(Lp − Lp
′ − r2)δ with ν ≤ 1

(µ > 0 actually, thanks to the hypothesis |k · ω′| ≤ Kδ, see figure 1). Showing (40) amounts showing

ν ≥ 0. With these new notations, inequality (43) is rewritten as

1 + (C− 1)µ ≤ 1− 2

Lp−p′−1

+
1

L2(p−p′−1)
+C

(
K2

L2p
+

2

Lp−p′
+

2r2

Lp
− 1

L2(p−p′)
− r4

L2p
− 2r2

L2p−p′

)

+Cν

(
1− Lp

′

+ r2

Lp

)2

.

The left hand side is larger or equal to 1. But, when L becomes large, the right hand side is larger or

equal to 1 only if ν > 0. �

Lemma 3. Let {k1, . . . , kp} be a cluster around x, and let k ∈ Kr be such that k /∈ span{k1, . . . , kp}, but
such that {k1, . . . , kp, k} is a cluster. If, given K < +∞, L is taken large enough, then

ω ∈ B(k1, . . . , kp) and |k · ω| ≤ Kδ ⇒ ω ∈ B(k1, . . . , kp, k).

Proof of Lemma 3. Let us write k = kp+1. Let ω ∈ B(k1, . . . , kp). By Lemma 1 and by hypothesis, it

holds that
∣∣ω − P

(
ω, π(k1) ∩ · · · ∩ π(kp+1)

)∣∣
2

≤ C (Kδ + Lpδ) ≤ (L− 1)Lpδ

if L is large enough. Then

∣∣ω − P
(
ω, π(k1) ∩ · · · ∩ π(kp+1)

)∣∣
2

≤ Lp+1δ

and, for every k′1, . . . , k
′
p′ ∈ Kr ∩ span(k1, . . . , kp+1), with p

′ < p+ 1,

∣∣P
(
ω, π(k′1) ∩ · · · ∩ π(k′p′)

)
− P

(
ω, π(k1) ∩ · · · ∩ π(kp+1)

)∣∣
2

≤
∣∣ω − P

(
ω, π(k1) ∩ · · · ∩ π(kp+1)

)∣∣
2

≤
(
Lp+1 − Lp

)
δ ≤

(
Lp+1 − Lp

′)
δ.
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This shows ω ∈ B(k1, . . . , kp, k). �

Proof of Proposition 2. Let us start with the first claim. Let k ∈ Kr be such that supp(k) ⊂ B(x, 4r),

and let ω ∈ R
N be such that θx(ω) > 0. On the one hand, from the definition (32) of θx, it holds

that there exists ω′ ∈ R
N , with maxx |ω′

x| ≤ 2δ, such that ω + ω′ /∈ R(x). On another hand, since

supp(k) ⊂ B(x, 4r), we conclude that {k} alone is a cluster around x so that, if ω′′ ∈ R
N is such that

|k · ω′′|
|k|2

=
∣∣ω′′ − P (ω′′, π(k))

∣∣ ≤ Lδ,

then ω′′ ∈ R(x). We thus conclude that |(ω + ω′) · k| > |k|2Lδ ≥ Lδ, and so that

|ω · k| = |(ω + ω′) · k − ω′ · k| ≥ Lδ − 2δr2 > 2δ

if L is large enough. We conclude that ρδ(ω · k) = 0.

Let us then show the second part of the Proposition. Since, by (23) and (24), the Hamiltonian H̃

takes the form

H̃(q, ω) =
∑

k∈Kr

ρδ(k · ω)G(k, ω)eik·q,

for some function G on Z
N × R

N , and since the function θx is independent of the q−variable, it holds

that

LH̃n1
θx(q, ω) = −∇qH̃ · ∇ωθx(q, ω) = −i

∑

k∈Kr

(
k · ∇ωθx(ω)

)
ρδ(k · ω)G(k, ω)eik·q.

It is thus enough to show that

k · ∇ωθx(ω) = 0 for every k ∈ Kr and every ω /∈ Sn2
(x) such that |k · ω| ≤ 2δ.

Let us thus fix ω ∈ R
N and k ∈ Kr with these restrictions. By definition (32), we see that k ·∇ωθx(ω) = 0

if, for every ω′ ∈ R
N such that maxx |ω′

x| ≤ 4δ, it holds that

ω + ω′ ∈ Rn2
(x) ⇒ ω + ω′ + tk ∈ Rn2

(x) for all t such that |t| is small enough.

Here, the maximal value allowed for |t| may depend on ω but not on ω′. We distinguish three cases:

either at least one of the cases 1 and 2 is realized, or, if none of them is realized, than case 3 is.

1. There exists a cluster {k1, . . . , kp} around x, with p ≤ n2, such that ω + ω′ ∈ B(k1, . . . , kp) and

that k⊥ span{k1, . . . , kp}. It is then seen from the definition of B(k1, . . . , kp) that, for every t ∈ R,

ω + ω′ + tk ∈ B(k1, . . . , kp). Therefore ω + ω′ + tk ∈ Rn2
(x) for every t ∈ R.

2. There exists a cluster {k1, . . . , kp} around x, with p ≤ n2, such that ω+ω′ ∈ B(k1, . . . , kp) and that

k ∈ span{k1, . . . , kp}. Since |k ·ω| ≤ 2δ and since maxx |ωx| ≤ 4δ, it holds that |k · (ω+ω′)| ≤ (4r2 +2)δ.

Then, by Lemma 2, for |t| ≤ δ we still have ω + ω′ + tk ∈ B(k1, . . . , kp) if L was chosen large enough.

Therefore ω + ω′ + tk ∈ Rn2
(x) for |t| ≤ δ.

3. For any cluster {k1, . . . , kp} around x, with p ≤ n2, such that ω + ω′ ∈ B(k1, . . . , kp), it holds that

k /∈ span{k1, . . . , kp}, and that k�⊥ span{k1, . . . , kp}. Let us see that, since we assume that ω /∈ Sn2(x),

this case actually does not happen. First, for all these clusters, we should have p = n2. Indeed, otherwise

{k1, . . . , kp, k} would form a cluster around x containing p+1 ≤ n2 independent vectors. We would then
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conclude as in case 2 that |k · (ω + ω′)| ≤ (4r2 + 2)δ, so that, by Lemma 3, ω + ω′ ∈ B(k1, . . . , kp, k) if L

has been chosen large enough. This would contradict the assumption ensuring that we are in case 3. So

p = n2 should hold. Writing ω′′ = ω + ω′, we should then conclude from the definition of B(k1, . . . , kp)

that, for 1 ≤ j ≤ n2,

|kj · ω′′| = |kj |2
∣∣ω′′ − P (ω′′, π(kj))

∣∣
2

≤ |kj |2
∣∣ω′′ − P

(
ω′′, π(k1) ∩ · · · ∩ π(kn2

)
)∣∣

2
≤ |kj |2Ln2δ

But then

|kj · ω| = |kj · (ω + ω′)− kj · ω′| ≤ |kj · ω′′|+ |kj · ω′| ≤ |kj |2Ln2δ + 4r2δ ≤ Ln2+1δ

if L is large enough. This would contradict ω /∈ Sn2(x). �

5 Proof of Theorem 1: the rotor chain

Let a ∈ ZN be given by hypothesis. Let us assume that the dynamics is generated by Hamiltonian (1).

5.1 New decomposition of the Hamiltonian

The original decomposition of the Hamiltonian leading to the definition of the current ǫJa,a+1 is given by

H = HO
≤a +HO

>a =
∑

x≤a

Hx +
∑

x>a

Hx. (44)

We will now obtain a new decomposition of the Hamiltonian that is equivalent to the one above from the

point of view of the conductivity, but leading to an instantaneous current that vanishes for most of the

configurations in the Gibbs state at temperature T .

Let n3 ≥ 1. For x ∈ B(a, n3), we define

ϑa,x =
1

N

(( ∏

y∈B(a,n3)

θy

)
δa,x +

(
1−

∏

y∈B(a,n3)

θy

)
θx

)
, (45)

ϑa,∗ =
1

N

∏

y∈B(a,n3)

(1− θy). (46)

with the normalization factor

N =
( ∏

y∈B(a,n3)

θy

)
+

(
1−

∏

y∈B(a,n3)

θy

)( ∑

x∈B(a,n3)

θx

)
+

∏

y∈B(a,n3)

(1− θy) (47)

chosen so that
∑

x∈B(a,n3)

ϑa,x + ϑa,∗ = 1,

and satisfying N ≥ 1. We then define

H̃≤a =
∑

x∈B(a,n3)

ϑa,x
∑

y≤x

H̃y + ϑa,∗
∑

y≤a

H̃y, (48)

H̃>a =
∑

x∈B(a,n3)

ϑa,x
∑

y>x

H̃y + ϑa,∗
∑

y>a

H̃y. (49)
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It holds that

H̃ = H̃≤a + H̃>a.

By the first point of Proposition 1, we finally define a new decomposition

H = H≤a +H>a = Tn1
(RH̃≤a) + Tn1

(RH̃>a). (50)

5.2 Definition of Ua and Ga

With the definitions (44) and (50), and applying the second point of Proposition 1, we find that

ǫJa,a+1 = LHH
O
>a = LH(HO

>a −H>a) + LHH>a (51)

= LH(HO
>a −H>a) + Tn1

(RLH̃H̃>a) + ǫn1+1LV

n1∑

k=0

R(n1−k)H̃
(k)
>a . (52)

Let us call n0 the number n appearing in the statement of the Theorem. We define

Ua = HO
>a −H>a − 〈HO

>a −H>a〉T , (53)

ǫn0+1Ga = Tn1(RLH̃H̃>a) + ǫn1+1LV

n1∑

k=0

R(n1−k)H̃
(k)
>a . (54)

We notice that 〈Ga〉T = 0 since ǫn0+1〈Ga〉T = 〈LHH>a〉T = 0, by invariance of the Gibbs state.

5.3 Locality

Let us show that the functions Ua and Ga are local, meaning that they depend only on variables indexed

by z with |z − a| ≤ Cn0 , for some constant Cn0 < +∞. To study Ua we observe that

HO
>a −H>a = −(HO

≤a −H≤a).

Let us see that HO
>a −H>a depends only on variables indexed by z with z ≥ a− (n3 + (n2 + 5)r). The

function HO
>a only depends on variables indexed by z with z ≥ a. To analyze H>a defined by (50),

we first notice that the functions ϑa,x, with x ∈ B(a, n3), and ϑa,∗, defined by (45-46), only depend on

variables indexed by z with z ≥ a− (n3 +4r+n2r). By (49), the same holds true for H̃>a, since, for any

x ∈ ZN , the functions H̃x only depend on variables indexed by z with z ≥ x − r. By (24), we conclude

that RH̃>a, and so H>a, only depends on variables indexed by z with z ≥ a− (n3 + 4r + n2r + r). The

same holds thus for HO
>a − H>a. We could similarly show that HO

≤a − H≤a only depends on variables

indexed by z with z ≤ a + (n3 + (n2 + 5)r). We conclude that Ua defined by (53) only depends on

variables indexed by z with |z − a| ≤ (n3 + (n2 + 5)r).

We then readily conclude that Ga is local as well, since, going back to (51), we see that ǫn0+1Ga is

the sum of two local functions:

ǫn0+1Ga = LHH>a = ǫJa,a+1 − LH(HO
>a −H>a).
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5.4 An expression for L
H̃
H̃>a

We have

LH̃H̃>a =
∑

x∈B(a,n3)

ϑa,x ·
(
LH̃

∑

y>x

H̃y

)
+ ϑa,∗ ·

(
LH̃

∑

y>a

H̃y

)

+
∑

x∈B(a,n3)

(
LH̃ϑa,x

)∑

y>x

H̃y +
(
LH̃ϑa,∗

)∑

y>a

H̃y. (55)

Let us show that the terms in the first sum in the right hand side vanish, i.e.

ϑa,x ·
(
LH̃

∑

y>x

H̃y

)
= 0 for all x ∈ B(a, n3). (56)

Thanks to the presence of the operator R in (23), and thanks to (24), we decompose H̃ =
∑
x H̃x where

H̃x takes the form

H̃x(q, ω) =
∑

k∈Kr:
suppk⊂B(x,r)

ρδ(k · ω)Ṽx(k, ω)eik·q = D̃x(ω) +
∑

k∈Kr:k 6=0
suppk⊂B(x,r)

ρδ(k · ω)Ṽx(k, ω)eik·q, (57)

where we have singled out the k = 0 mode by setting D̃x(ω) = Ṽx(0, ω). We note that D̃x depends only

on variables indexed by z with z ∈ B(x, r).

Using the more handy notation Lfg = {f, g}, we compute misprint

corrected
LH̃

∑

y>x

H̃y =
{∑

z≤x

H̃z,
∑

y>x

H̃y

}
=

∑

z≤x<y:|z−y|≤2r

{
H̃z, H̃y

}
(58)

where we have used the fact that the Poisson bracket of two functions depending on variables indexed

by points belonging to different, non-intersecting, subsets of ZN , vanishes. Relation (56) surely holds if

ω is such that ϑa,x(ω) = 0. Let us thus take ω such that ϑa,x(ω) > 0, which implies θx(ω) > 0. It then

follows from the first point of Proposition 2 that all the factors ρδ(k · ω) appearing when the operators

H̃z, H̃y in (58) are written as in (57), vanish. Therefore, when ϑa,x(ω) > 0, the expression (58) equals misprint

corrected∑

z≤x<y:|z−y|≤2r

{
D̃z, D̃y

}

However, since D̃z, D̃y depend only on the ω-variables, their Poisson bracket vanishes. This establishes

(56).

Thanks to (56), the Poisson bracket (55) is rewritten as

LH̃H̃>a = ϑa,∗

{ ∑

a−r≤x≤a

H̃x ,
∑

a<y≤a+r

H̃y

}

+
∑

x∈B(a,n3)

(
LH̃ϑa,x

) ∑

x<y≤a+n3

H̃y +
(
LH̃ϑa,∗

) ∑

a<y≤a+n3

H̃y. (59)

5.5 Definition of an exceptional set Z ⊂ Ω

Let Z ⊂ Ω be such that (ω, q) ∈ Z if and only if theres exists n2 linearly independent vectors k1, . . . , kn2
∈

Kr such that (∪jsupp(kj)) ⊂ B(a, 2n3) and such that |kj · ω| ≤ Ln2+1δ for 1 ≤ j ≤ n2. The set Z is

closed.
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Lemma 4. If, given n1 and n2, the numbers L and n3 have been taken large enough, then

1. If LH̃H̃>a(ω, q) 6= 0, then (ω, q) ∈ Z.

2. There exists C = C(L, n1, n2, n3) < +∞ such that 〈χZ〉T ≤ Cδn2 .

Proof. Let us start with the first point. From (59), we conclude that, if LH̃H̃>a(ω, q) 6= 0, then at

least one of the following quantities needs to be non-zero: ϑa,∗(ω), or LH̃ϑa,∗(ω, q), or LH̃ϑa,x(ω, q) for

some x ∈ B(a, n3). In fact, since 0 ≤
∏
x∈B(a,n3)

(1 − θx) ≤ 1, and since LH̃ is a differential operator,

LH̃
∏
x∈B(a,n3)

(1 − θx)(ω, q) 6= 0 implies
∏
x∈B(a,n3)

(1 − θx)(ω) 6= 0. Therefore, by inspection of the

definitions (45) and (46), the condition LH̃H̃>a(ω, q) 6= 0 implies actually

∏

x∈B(a,n3)

(1− θx) 6= 0 or LH̃θx(ω, q) 6= 0 for some x ∈ B(a, n3).

If
∏
x∈B(a,n3)

(1− θx) 6= 0, then θx(ω) < 1 for all x ∈ B(a, n3). If θx(ω) < 1, there exists then, by the

definition (32), some ω′ ∈ R
N such that maxy |ω′

y| ≤ 2δ, and such that ω′′ = ω+ω′ ∈ R(x). There exists

therefore a cluster {k1, . . . , kp} around x, with p ≤ n2, such that (31) holds. This implies

|k1 · ω′′| = |k1|2
∣∣ω′′ − P (ω′′, π(k1))

∣∣
2

≤ |k1|2
∣∣ω′′ − P

(
ω′′, π(k1) ∩ · · · ∩ π(kp)

)∣∣
2

≤ |k1|2Lpδ

and therefore |ω · k1| ≤ |k1|2Lpδ + r2δ ≤ Ln2+1δ if L is large enough and using that p ≤ n2. It holds by

definition of a cluster around x that supp(k1) ⊂ B(x, 4r). Let us now take another x′ such that θx′ > 0

and |x− x′| > 4r. Then the same reasoning gives a vector k′1 6= k1 satisfying again |ω · k′1| ≤ Ln+1δ. By

taking n3 large enough, we can find n2 linearly independent vectors and thus guarantee that ω ∈ Z.

Suppose now that LH̃θx(ω, q) 6= 0 for some x ∈ B(a, n3). It then follows from the second assertion

of Proposition 2 that ω ∈ S(x), so that, by definition, there exists a cluster {k1, . . . , kn2} around x such

that |ω · kj | ≤ Ln2+1δ. This implies ω ∈ Z.

We now move to the second claim of the Lemma. Since the function χZ depends only on the variables proof

simplifiedωx with x ∈ B(a, 2n3), and since the Gibbs measure factorizes with respect to the variables ωy (y ∈ ZN ),

we get

〈χZ〉T =

∫
χZ(ω)

∏
x∈B(a,2n3)

e−ω
2
x/T dωx∫ ∏

x∈B(a,2n3)
e−ω

2
x/T dωx

≤ C(n3)

∫
χZ(ω)

∏

x∈B(a,2n3)

e−ω
2
x/T dωx.

The result follows by a straightforward computation that exploits that the set Z is determined by n2

constraints. �

5.6 Bounds on the norms of Ua and Ga

Let ∂♯ be the derivative with respect to any ωz or qz with z ∈ ZN , or even no derivative at all (∂♯f = f).

To lighten some notations, we again use the shorthand g ∼ δ−n with the same meaning as in the proof

of (25) and (26). Rem. by W: I found it confusing to repeat this without clearly stating that

it is a repetition. EOR We now allow δ to depend on ǫ, and we fix the values of n1 and n2.

24



Let us first obtain the bounds 〈U2
a 〉T ≤ Cn0

ǫ1/4, 〈(∂♯Ua)2〉T ≤ Cn0
ǫ−1/4 (recall that we denote by n0 First part

rewrittenthe number n appearing in Theorem 1). We use (25) and (26), and the fact that the functions ϑa,x, ϑa,∗

are bounded, to see that the local function HO
>a −H>a takes the form

HO
>a −H>a =

n1∑

n=0

ǫn(HO
>a −H>a)

(n) (60)

= HO
>a − Tn1

(
RH̃>a

)
= HO

>a −
n1∑

n=0

ǫn
n∑

k=0

R(n−k)H̃
(k)
>a ∼

n1∑

n=0

ǫnδ−2(n−1). (61)

Let us fix δ = ǫ1/4. Let us start with the term corresponding to n = 0 in (60). From (61) we have

(HO
>a −H>a)

(0) =
∑

x>a

Dx − H̃
(0)
>a

=
∑

x>a

Dx −
∑

x∈B(a,n3)

ϑa,x
∑

y>x

Dy − ϑa,∗
∑

y>a

Dy

Let W ⊂ Ω be the set containing all (ω, q) such that θx(ω) < 1 for some x ∈ B(a, n3). By inspection of

the definitions (45) and (46), we have

ϑa,x(ω) = δa,x, ϑa,∗(ω) = 0, (HO
>a −H>a)

(0)(ω, q) = 0, for (ω, q) ∈ Ω \W

Therefore (HO
>a−H>a)

(0) = χW · (HO
>a−H>a)

(0). So, arguing as in the proof of Lemma 4, we find that,

since χW · (HO
>a −H>a)

(0) depends ony on the variables ωx, with |x− a| ≤ C,

〈(
(HO

>a −H>a)
(0)

)2
〉

T

≤ C

∫
χW(ω)

(
(HO

>a −H>a)
(0)

)2

(ω)
∏

x:|x−a|≤C

e−ω
2
x/T dωx

≤ C′

∫
χW(ω)

∏

x:|x−a|≤C

e−ω
2
x/2T dωx ≤ C′′δ = C′′ǫ1/4, (62)

where, to get the last inequality, we used that, for any (ω, q) ∈ W, there is at least one k ∈ Kr, with

supp(k) ⊂ B(a, n3), such that |ω · k| ≤ Ln2+1δ. Similarly

〈(
∂♯(H

O
>a −H>a)

(0)
)2

〉

T

≤ C
δ

δ2
≤ Cǫ−1/4. (63)

Next, we conclude from (17) and (61) that for 1 ≤ n ≤ n1, we have

〈(
ǫn∂♯(H

O
>a −H>a)

(n)
)2

〉

T

≤ C
(
ǫnδ−(2n−1)

)2

≤ C. (64)

Using (62-64) in (60), we deduce

〈(HO
>a −H>a)

2〉T ≤ Cǫ1/4, 〈(∂♯(HO
>a −H>a))

2〉T ≤ Cǫ−1/4,

from which the claimed bounds on Ua follow.

Next, to obtain the bound 〈(∂♯Ga)2〉T ≤ Cn0
, we start from the definition (54) and we note that both

terms in this definition are local; for Tn1(RLH̃H̃>a) this follows from the explicit expression in Section

5.4 and the other term is then local as a difference of local terms. We compute factors 2

and ∂♯

added
〈(∂♯Ga)2〉T ≤ 2ǫ−2(n0+1)

〈(
∂♯Tn1(RLH̃H̃>a)

)2〉
T

+ 2ǫ2(n1−n0)
〈(
∂♯LV

n1∑

k=0

R(n1−k)H̃
(k)
>a

)2〉
T

(65)
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We look first at the second term and conclude, by means of (25) and (26) that it is of the form estimate

corrected
∂♯LV

n1∑

k=0

R(n1−k)H̃
(k)
>a ∼ δ−2n1 .

We thus obtain, using locality, corrected

ǫ2(n1−n0)
〈(
∂♯LV

n1∑

k=0

R(n1−k)H̃
(k)
>a

)2〉
T

≤ Cn0
if δ = ǫ1/4 and ✭✭✭✭✭✭

n1 = 3n0 + 1n1 = 2n0.

We then analyze the first term in (65). By the first point of Lemma 4, the function LH̃H̃>a vanishes

on the open set Ω \ Z, so that ∂♯Tn1(RLH̃H̃>a) vanishes on this set as well. Using Cauchy-Schwarz

inequality, and the second point of Lemma 4, we conclude that

〈(
∂♯Tn1(RLH̃H̃>a)

)2〉
T

=
〈(
∂♯Tn1(RLH̃H̃>a)

)2
χZ

〉
T

≤ Cδn2/2
〈(
∂♯Tn1(RLH̃H̃>a)

)4〉1/2
T
.

Using (25, 26) and the fact that ϑa,x, ϑa,∗ are bounded functions of ω/δ, we find that corrected

∂♯Tn1(RLH̃H̃>a) = ∂♯

n1∑

n=0

ǫn
n∑

m=0

R(n−m)
m∑

j=0

{
H̃(m−j), H̃

(j)
>a

}
∼

n1∑

n=0

ǫnδ−2n+2 ∼ δ2.

We conclude that δ = ǫ1/4 guarantees that minor

change〈(
∂♯Tn1(RLH̃H̃>a)

)2〉
T

≤ Cδn2/2+4 ≤ Cǫn2/8+1.

taking n2 = 16n0 + 8, we conclude that 〈(∂♯Ga)2〉T ≤ Cn0
. This shows Theorem 1 in the case where H

is given by (1). �

6 Proof of Theorem 1 for the NLS chain

The proof of the theorem given for rotors can readily be taken over to the non-linear Schrödinger chain

by a adapting to this case the definition of the space S(Ω) given in Section 3.

We simply view functions on Ω = C
N as functions on R

2N . We use the notation ω = (ωx)x∈ZN
=

(|ψx|2)x∈ZN
, and we observe that now ω ∈ (R+)

N . We will say that f ∈ S(Ω) if the following conditions

are met for some r(f) < +∞: We first ask, as before, that f is smooth, that f and all its derivatives are

of polynomial growth and that f can be expressed as a sum of local terms, each of which is indexed by

z in a ball or radius r(f). We next replace (16) by the requirement that f takes the form

f(ψ) =
∑

k∈ZN

f̂(k, ω)ψk with f̂(k, ω) = 0 if max
x

|kx| ≥ r(f),

where we have used the notation

ψk =
∏

x∈ZN

ψ̃kx
x with ψ̃kx

x =





ψkx
x if kx > 0,

1 if kx = 0,

ψ
kx

x if kx < 0.
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Rem. by W: misprints corrected EOR It is then checked that the formulas involving explicitly

the decomposition of f in its Fourier components is simply transposed by means of the substitution

eik·q 7→ ψk.

All the definitions and conclusions of Section 3 remain valid with obvious adjustments whereas the

third claim of Proposition 1 can be omitted since it is only used to prove Theorem 3 stated for the rotor

chain only.

Rem. by W: Next passage has been added EOR Let us comment on the ’obvious adjustments’

needed in Section 3. The notation g ∼ δ−n is now understood to mean that g is a sum of terms of the

form

δ−nb(ω/δ, δ)f(ψ, ψ̄)

with b being exactly as in Section 3 and f ∈ S(Ω). The definition of R and of the solution of the equation

LDu = f is again simply taken over from Section 3. As before, it holds that if g ∼ δ−n, h ∼ δ−m, then

Lgh ∼ δ−m−n−1.

Let us illustrate this. For simplicity consider g = δ−nbg(ω/δ), h = δ−mbh(ω/δ), then

(Lgh)(ψ, ψ̄) = −iδ−n−m
∑

x

∂

∂ψ̄x
bg(ω/δ)

∂

∂ψx
bh(ω/δ) + . . . (ψ ↔ ψ̄) (66)

= −iδ−n−m
∑

x

∂ωx
∂ψ̄x

∂bg(ω/δ)

∂ωx

∂ωx
∂ψx

∂bh(ω/δ)

∂ωx
+ . . . (67)

= −iδ−n−m−1
∑

x

{
(ωx/δ) b

′
g,x(ω/δ)b

′
h,x(ω/δ)− . . .

}
(68)

where b′g,x, b
′
h,x are partial derivatives of bg, bh and the expression between {. . .} is a smooth function of

ω/δ.

The results of Section 4 can also be taken over without change. It is observed that the functions θx,

x ∈ ZN , can still be defined for ω ∈ R
N , even though only their restriction to (R+)

N is needed.

The arguments of Section 5 remain all valid as well, except for the claims relying on the fact that made more

precisethe Gibbs measure factorize with respect to the variables ωx (x ∈ ZN ). This includes the proof of the

second claim of Lemma 4, the argument leading to (62,63), and the property that the polynomials that

depend only on some fixed variables, are integrable with respect to the Gibbs measure, with bounds that

do not depend on the volume. We now prove that 〈χZ〉T ≤ Cδn2 for the non-linear Schrödinger chain as

well (the other properties are shown in the same way). Let us assume T = 1 for simplicity of notation.

We have

〈χZ〉1 =

∫
χZe

−H(ψ) dψ∫
e−H(ψ) dψ

, (69)

with dψ = dℜ(ψ)dℑ(ψ). The function χZ only depends on the variables indexed by x ∈ B(a, 2n3), and it

is thus natural to factorize the integrals into three pieces. Rem. by W: I thinkk in what follows you

forgot the 1/2 in front of the quartic term, all my changes are consequences of that EOR

For the numerator, we simply use the fact that e−φ ≤ 1 for all φ ≥ 0, to obtain that
∫
χZe

−H(ψ) dψ ≤
∫ ∏

x<a−2n3

e−H
′

x(ψ) dψx ·
∫
χZ

∏

x∈B(a,2n3)

e−H
′

x(ψ) dψx ·
∫ ∏

x>a+2n3

e−H
′

x(ψ) dψx,
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where H ′
x differs from Hx only for the boundary terms x = a− 2n3 − 1 and x = a+ 2n3 :

H ′
a−2n3−1 = Ha−2n3−1 − ǫ|ψa−2n3

− ψa−2n3−1|2 and H ′
a+2n3

= Ha+2n3
− ǫ|ψa+2n3+1 − ψa+2n3

|2.

These definitions are chosen such that H ′
a−2n3−1 does not depend on ψa−2n3 and H ′

a+2n3
does not depend

on ψa+2n3+1. The middle integral is estimated as in the case of rotors:

∫
χZ

∏

x∈B(a,2n3)

e−H
′

x(ψ) dψx ≤ C

∫
χZ

∏

x∈B(a,2n3)

e−
1
4 |ψx|

4

dψx ≤ C δn2 .

for ǫ sufficiently small. We then similarly factorize the numerator in (69), using this time the bound

|ψx − ψx+1|2 ≤ 2(|ψx|2 + |ψx+1|2) for the boundary terms:

∫
e−H(ψ) dψ ≥

∫ ∏

x<a−2n3

e−H
′′

x (ψ) dψx ·
∫ ∏

x∈B(a,2n3)

e−H
′′

x (ψ) dψx ·
∫ ∏

x>a+2n3

e−H
′′

x (ψ) dψx

where H ′′
x differs from Hx only for the following boundary terms:

H ′′
a−2n3−1 = Ha−2n3−1 − ǫ|ψa−2n3

− ψa−2n3−1|2 + 2ǫ|ψa−2n3−1|2, H ′′
a−2n3

= Ha−2n3
+ 2ǫ|ψa−2n3

|2

as well as H ′′
a+2n3

and H ′′
a+2n3+1 that are defined similarly. The middle integral is bounded from below

by a constant depending on n3, using e−Hx ≥ e−|ψx|
4

for ǫ sufficiently small.

To finish the proof, it is thus enough to show that there exists a constant C < +∞ such that

∫ ∏
x<a−2n3

e−H
′

x(ψ) dψx∫ ∏
x<a−2n3

e−H
′′

x (ψ) dψx
≤ C and

∫ ∏
x>a+2n3

e−H
′

x(ψ) dψx∫ ∏
x>a+2n3

e−H
′′

x (ψ) dψx
≤ C.

Both cases are treated similarly, and we consider the second one only. Writing b = a+ 2n3 + 1, we have

∫ ∏
x≥b e

−H′

x(ψ) dψx∫ ∏
x≥b e

−H′′

x (ψ) dψx
=

∫
e2ǫ|ψb|

2 ∏
x≥b e

−H′′

x (ψ) dψx∫ ∏
x≥b e

−H′′

x (ψ) dψx
.

Brascamp-Lieb inequalities furnish a possible way to estimate this integral (see [7]). Since the function

z 7→ |z|4 is not strictly convex at origin, we need however to slightly modify the measure at x = b. There

exist constants c, c′ > 0 small enough such that

ψb 7→ 1

2
|ψb|4 + c

(
1− 1

1 + |ψb|2
)
− c′|ψb|2

is convex on C. Letting then

H ′′′
b (ψ) = H ′′

b + c
(
1− 1

1 + |ψb|2
)

and H ′′′
x = H ′′

x for x > b, we have

∫ ∏
x≥b e

−H′

x(ψ) dψx∫ ∏
x≥b e

−H′′

x (ψ) dψx
≤ C

∫
e2ǫ|ψb|

2 ∏
x≥b e

−H′′′

x (ψ) dψx∫ ∏
x≥b e

−H′′′

x (ψ) dψx
.

It is checked that

ψ 7→
(N−1)/2∑

x=b

H ′′′
x (ψ)−

(
c′|ψb|2 +

ǫ

2

(N−1)/2∑

x=b

|ψx+1 − ψx|2
)
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is convex, with the convention that ψ(N+1)/2 = ψ(N−1)/2. By Brascamp-Lieb inequality (Corollary 7 in

[7]), followed by the change of variables φb = ψb and φx+1 = ψx+1 − ψx for b ≤ x ≤ (N − 3)/2, we

conclude that
∫ ∏

x≥b e
−H′

x(ψ) dψx∫ ∏
x≥b e

−H′′

x (ψ) dψx
≤ C

∫
e−(c′−2ǫ)|ψb|

2 ∏
x≥b e

− ǫ
2 |ψx+1−ψx|

2

dψx∫
e−c′|ψb|2

∏
x≥b e

− ǫ
2 |ψx+1−ψx|2 dψx

(ψ(N+1)/2 = ψ(N−1)/2)

= C

∫
e−(c′−2ǫ)|φb|

2 ∏
x≥b e

− ǫ
2 |φx|

2

dφx∫
e−c′|φb|2

∏
x≥b e

− ǫ
2 |φx|2 dφx

= C

∫
e−(c′−2ǫ)|φb|

2

dφb∫
e−c′|φb|2dφb

≤ C′

for some C′ < +∞. �

7 Proofs of Theorems 2, 3 and 4

The proof of Theorems 2 and 3 closely follows the proof of analog results in [14], itself inspired by [21].

We will need some decorrelation properties of the Gibbs measure. General results in [19] apply to the

measures corresponding to the Hamiltonians (1) and (3), if ǫ is small enough for a given temperature

T . Given A,B ⊂ ZN , let d(A,B) = min{|x − y| : x ∈ A, y ∈ B}. Given a local function f on Ω, let

S(f) ⊂ ZN be the set of points such that f does only depend on variables indexed by points in S(f).

There exist constants C < +∞ and c > 0 such that given two smooth functions f and g on Ω satisfying

〈f〉T = 〈g〉T = 0, it holds that

|〈fg〉T | ≤ Ce−cd(S(f),S(g))〈|∇f |2〉1/2T 〈|∇g|2〉1/2T (70)

where |∇f |2 =
∑
x∈ZN

(
|∂ωx

f |2+ |∂qxf |2
)
for the rotor chain and |∇f |2 =

∑
x∈ZN

(
|∂ψx

f |2+ |∂ψ̄x
f |2

)
for

the NLS chain. Strictly speaking, (70) is stated in [19] only in the case where the one-site phase space is

R, but the proof goes through without any changes in our case as well (our one-site phase space is T×R,

and C respectively) since the only genuine requirement is a Poincaré inequality for the one-site measure.

Proof of Theorem 2. Applying Theorem 1, we write

ǫ

∫ ǫ−nt

0

JN (Xs
ǫ ) ds =

ǫ√
N

∑

a∈ZN

∫ ǫ−nt

0

Ja,a+1(X
s
ǫ ) ds

=
1√
N

∑

a∈ZN

(
Ua(X

ǫ−nt
ǫ )− Ua(X

0
ǫ )
)
+
ǫn+1

√
N

∑

a∈ZN

∫ ǫ−nt

0

Ga(X
s
ǫ ) ds.

Therefore factors 2

〈(
ǫ

∫ ǫ−nt

0

JN (Xs
ǫ ) ds

)2〉
T

≤ 2
〈( 1√

N

∑

a∈ZN

(
Ua(X

ǫ−nt
ǫ )− Ua(X

0
ǫ )
))2〉

T

+ 2
〈(ǫn+1

√
N

∑

a∈ZN

∫ ǫ−nt

0

Ga(X
s
ǫ ) ds

)2〉
T

We conclude by stationarity of the Gibbs measure, by the decorrelation inequality (70), and by the

bounds (8) that 4 → 2
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〈( 1√
N

∑

a∈ZN

(
Ua(X

ǫ−nt
ǫ )− Ua(X

0
ǫ )
))2〉

T
≤ 2

〈( 1√
N

∑

a∈ZN

Ua

)2〉
T

≤ Cǫ−1/2.

Next, by Jensen’s inequality, by the invariance of the Gibbs measure, by the decorrelation inequality

(70), and by the bounds (8), we have

〈(ǫn+1

√
N

∑

a∈ZN

∫ ǫ−nt

0

Ga(X
s
ǫ ) ds

)2〉
T

≤ ǫ2(n+1)ǫ−nt

∫ ǫ−nt

0

〈( 1√
N

∑

a∈ZN

Ga(X
s
ǫ )
)2〉

T
ds

= ǫ2(n+1)ǫ−2nt2
〈( 1√

N

∑

a∈ZN

Ga

)2〉
T

≤ Cǫ2t2.

Finally we obtain that

ǫ−m
〈( ǫ√

ǫ−nt

∫ ǫ−nt

0

JN (Xs
ǫ ) ds

)2〉
T

=
Cǫn−m

t
(ǫ−1/2 + ǫ2t2).

Because n −m > 0, this quantity goes to zero when taking successively the limits N → ∞, ǫ → 0 and

t→ ∞. �

Proof of Theorem 3. Let us write ET (·) for 〈E(·)〉T . Theorem 1 implies that, for any a ∈ ZN ,

ǫJa,a+1 = LHUa + ǫn+1SUa + ǫn+1Ga − ǫn+1SUa = LUa + ǫn+1Ga − ǫn+1SUa

where L is defined by (9). Since Ga is local and antisymmetric under the exchange ω 7→ −ω, there exists
a local function Fa that solves the Poisson equation SFa = Ga and inherits of the properties of Ga (see

Lemma 2 in [14]). To simplify notations, let us write

UN =
1√
N

∑

a∈ZN

Ua, KN =
1√
N

∑

a∈ZN

(FA − Ua).

We find that factors 2

ET

( ǫ√
t

∫ t

0

JN (Xsǫ) ds
)2

≤ 2ET

( 1√
t

∫ t

0

LUN (Xsǫ) ds
)2

+ 2ǫ2(n+1)
ET

( 1√
t

∫ t

0

SKN (Xsǫ) ds
)2

.

The first term is written as a sum of the variance of a stationary martingale and a rest term: factor 2

ET

( 1√
t

∫ t

0

LUa

)2

=
〈
UN · (−ǫn+1S)UN )

〉
T

+
1

t
ET

(
UN (Xtǫ)− UN (X0

ǫ)
)2

≤ ǫn+1
〈
UN · (−S)UN )

〉
T

+
2〈U2

N 〉T
t

≤ Cǫ−1/2(ǫn+1 + 1/t), (71)

where the last bound has been obtained as in the proof of Theorem 2. The second term involves a

function SK, that obviously lies in the image of the symmetric part S of the generator L. A classical

bound [18] yields

ǫ2(n+1)
ET

( 1√
t

∫ t

0

SKN (Xsǫ) ds
)2

≤ Cǫ2(n+1)
〈
SKN · (−ǫn+1S)−1SKN

〉
T

= Cǫn+1
〈
SKN ·KN

〉
T

≤ C′ǫn+1/2, (72)

where the last bound has been obtained as in the proof of Theorem 2. The theorem is obtained by taking

the limit N → ∞ and then the limit t→ ∞ in (71) and (72) �
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Proof of Theorem 4. By the definition of the currents Ja,a+1 we get

LH(HI) = ǫJa1,a1+1 − ǫJa2,a2+1

so that, by integrating over time the statement of Theorem 1,

HI(X
t
ǫ)−HI =

∑

j=1,2

(−1)j+1
(
Uaj (X

t
ǫ)− Uaj + ǫn+1

∫ t

0

dsGaj (X
s
ǫ )
)
.

By invariance of the Gibbs state, we have 〈(Uaj (Xt
ǫ))

2〉T = 〈U2
aj 〉T for j = 1, 2. Hence by analogous

manipulations as those in the proof of Theorem 2, we get

〈(HI(X
t
ǫ)−HI)

2〉T ≤ C(n)
∑

j=1,2

(
〈U2

aj 〉T + ǫ2n+1t2〈G2
aj 〉T

)
.

The theorem now follows by the bounds on Ua, Ga stated in Theorem 1, upon taking t = ǫ−n. �
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