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ASYMPTOTIC MATCHING FOR INTERPLANETARY FLYBYS 
JOHN V. BREAKWELL 

ABSTRACT. The matching of planet-centered hyperbolas 
with heliocentric elliptic arcs is explained, following the treat
ment by Breakwell and Perko (1965). Application is described 
to the computation of accurate multi-flyby trajectories, fol
lowing Granstrom (1971), and to the guidance law for in
flight trajectory corrections. 

I. Introduction. The first application of matched asymptotic expan
sions in celestial mechanics was the pioneering paper of Lagerstrom 
and Kevorkian [4] in 1963, which considered Earth-to-Moon trajec
tories having small geocentric angular momentum. 

A later paper, in 1965, by Breakwell and Perko |1] removed the 
restrictions to small angular momentum, and hence was applicable 
also to the matching of heliocentric ellipses with local planetocentric 
hyperbolas. In the Earth-to-Moon context, particular attention was 
paid to the "aiming problem/' i.e., to the effect of "small" changes in 
geocentric initial conditions on the subsequent Moon-centered hyper
bola, more precisely the osculating hyperbola at closest approach. 
Here "small" meant relative changes in initial position and velocity of 
the order of the mass-ratio v of Moon to Earth. It was found that, to 
first order in v, the effect of the Moon's attraction on the approach 
asymptote to the Moon-centered hyperbola, and on the time of closest 
approach could be represented by certain "gross biases," independent 
of initial conditions and obtainable by quadrature, together with a 
"local" time correction proportional to the logarithm of the hyperbolic 
eccentricity. In other words, the location of the approach asymptote, 
as well as the "velocity at infinity" along it, vaiy essentially linearly 
with initial conditions over the assumed small range, whereas the time 
of closest approach includes a highly non-linear, but easily calculable, 
term. 

Corresponding results apply to the matching of planet-centered 
hyperbolas with "initial conditions" on heliocentric ellipses before 
and after planetary encounter, and to the matching of the departure 
hyperbola from one planet to the arrival hyperbola at the next planet. 

It is the purpose of this paper to recapitulate this analysis and to 
present certain features of its application in 1971 by Granstrom [3] 
to the calculation of accurate interplanetary multi-flyby trajectories, 
as well as to the guidance laws necessary for in-flight trajectory correc
tions. 
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II. The Outer Expansion. Suppose that r(0)(£), t0^ t^ tl9 repre
sents a geocentric Keplerian orbit, either elliptic, parabolic or hyper
bolic, which would intersect a massless Moon at time tÌ9 the massless 
Moon being presumed to follow the true path of the moon. If the 
actual orbit, including small initial condition changes and perturba
tion by the Moon and by other more distant bodies (as well as by 
Earth oblateness) is: 

(1) r(t) = r^(t) + p(t), 

and if the orbit difference p(t) is separated by orders of v = fijIJL@: 
(p(2), for example, is of order v2, at least for t not close to tx; it will 
be found later to be of a different order in a matching region close to 

(2) ftt) = p<»(t) + p*\t) + • • -, 

then: 
^\t)=Tm(t)p^(t) + J{^\t),t) 

(3) 
Ü <*>(*) = Ym(t)p*\t) + {dJWV\t)Wl\t) 

+ TERMS WITH (pw(t))2, etc., 
in which J(r(t), t) denotes the perturbing acceleration, and T®(t) 
denotes the geocentric gravity-gradient tensor (jue/r

3)(3f fT — 1), f 
denoting the unit-vector r/r and p& the Earth's gravitational param
eter. 

The effect of initial condition changes can be included entirely in 
p(1)(£)sothat: 

P(1)(t)= [<,(Uo),<I>l 0(Uo)] ( ! j ° ) 

(4) 

8v0 

+ r **,(*, t')7(*<o,(o,o*' 

J to 

J t0 

+ TERMS WITH (p(1)(*'))2] dt', 

where <b\(t, t0), <&®,0(f, t0) denote the 3 X 3 portions dr^(t)ldr(t0) 
and dr{0)(t)ldv(t0) of the unperturbed geocentric 6X6 transition 
matrix 4>e(£, t0), for which various analytical formulas are available. 

Now, as £'—»£1? the perturbing acceleration J(r(0)(t'), t') "blows 
up" in the manner: 

(5) 7(* < 0 , <O*' )~Mi/V( ' i - t ' ) 2 , 
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where vl is the relative velocity with which the unperturbed tra
jectory r {0)(t) meets the massless Moon, and vx denotes its magnitude. 
Also 

(6) tf^itj') ~ (t- t')X (identity matrix). 

The quadrature in (4)(1) is thus singular as t-> ti9 but the singularity 
can be separated out: 

P <t>®Vf(t,t')J(t{0\t'),t')dt' 

The first term on the right of (7) contains the singular part, while the 
second term, which with its time derivative remains finite as ^-> tly 

may be denoted by pF
il\t). Evaluating the first term and substituting 

into (4)(1), we find: 

(8) p " W = - ^ ^ - l n ( T o / T ) + pB<1W, 

where r denotes tx — t, and 

AuW-_^fL(^_1)+ßFa, ( t ) 

+ [ < ( t , « 6 ) , * e ^ < 6 ) ] ( ^ ) • 

The second-order position perturbation p{2)(t) contains further singu
larities: 

(9) 

3 ^ V - 1 )PB (1)(*I) + LESSER TERMS, 

where the omitted terms include terms like v2 In T as well as bounded 
terms of order v2. 

It remains to obtain the resulting expression for the position 
r(t) — ?i(t) relative to the Moon for small T. Firstly, the unperturbed 
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relative position is: 

(10) ?«»(*) - *«(*) = - i 5 l T - (ltyr^t^T* + 0(*T2,T4), 

where the error term 0(m2) arises from the inclusion of the Moon's 
mass in the Moon's acceleration relative to the Earth. Combining (2), 
(8), (9), (10), and writing 

we obtain the outer expansion: 

m)-ut)= [-vi + [ - ^ - l n 7 +PBa\t1)] 

(11) + F -TPB^Kh) - (l/6)re(^)5ir3 + - ^ - ( l n ^ - 3/S 

where successive groups [ ] are of orders v112, i>, v312, if, as we now 
assume, T/T0 = (^1/2). Here and later no distinction is made between 
0(yk) and 0(vk In v). The 0(v2) in (11) includes the remainder fol
lowing truncation of the expansion of the position perturbation p at 
p (2); this remainder, unlike thep ( i ) ' s , satisfies a non-linear differential 
equation, but it is straightforward (see Perko, 1967, [5] ) to verify that 
it is Oiy2) when T/T0 is Oiy1'2). 

III. The Inner Expansion. Our basic results will be obtained by 
comparing, in the "matching region" represented by T/T0 = 0(^1/2), 
the outer expansion (11) with an "inner expansion" representing a 
Moon-centered hyperbola perturbed by the Earth. 

Relative to the center C of the hyperbola, the unperturbed position 
is expressible as: 

r = a cosh Fî0 — b sinh Fj 0, 

F being the hyperbolic anomaly, b the length of the perpendicular ON 
from the focus 0 (the Moon) onto an asymptote, a the semi-transverse 
axis AC, equal to CN, and î0,j0 being unit vectors along the symmetry 
axes of the hyperbola. 

The eccentricity of the hyperbola is eH = V l + (b2la2), and the 
length a is related to the velocity Ü» at infinity by: v x

2 = pja, so 
that: 

(12) eH= V I + fc^.-ViA«2. 
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If we introduce unit-vectors î*, j * along and perpendicular to the 
incoming asymptote (see figure), the unperturbed position relative to 
the focus 0 (the Moon) is easily expressed as: 

?*((>) 

(13) 

= — 7 - î* ( — £Hsinh £ + 1 e~z ) 
Vooz \ eH / 

+ & ; * ( i - ^ ) , 

where £ denotes — F. If, furthermore, T* denotes the time tp — t prior 
to perilune passage (closest approach) at time tp, the "time equation" 
is: 

(14) T* = J^L {eHsinh % _ Q 

The perturbing acceleration due to the Earth is rer* ( 0 ) , and if T* 
(like T in the outer expansion) is 0(^1/2), so that & is 0(^~1/2), this 
perturbing acceleration is predominantly — Y^t^v^r^î^, and the per
turbed position, to first order, is:. 

* * = 2*(0) (l/6)re(*1)u«T*3î*+ LESSER TERMS. 

This yields the inner expansion: 
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(15) 

+ \^{ei-±-)î*e-i-±j*e-! 
L I)«2 \ 2 eH I eH

 J 

- ( 1 / 6 ) ^ ( 0 ^ *3t* ] + 0(*2) 

successive term groups [ ] being again of orders *>1/2, v, v312, and the 
0(^2) including the remainder following truncation of the perturbation 
at first order. 

IV. The Matching. To compare the inner and outer expansions (15) 
and (11), we guess (and later verify) that tp — tx and b are both 
0(v). Denoting tp — tx by 8, we may write: 

' - - - [ -£^] +[---£]+ [-1M' 
(16) 

and 

( 1 7 ) l n W T o ) = [ f + l n £ ^ ] + [ | . e - ( ( f + ^ ) ] + O M . 

On substituting (16) and (17) into (11), the outer expansion may be 
written: 

+ I uis + - ^ l n ~,r^~+ pB {h) J 

+ [ TERMS T V — , — 1 + 0(P2). 

Comparison with the inner expansion (15) gives agreement in the 
constant and e* terms, provided that 

(19) vJ* = Si + PB{l)(h) + 0(*^2) 

and 

- vx8 + fcj* = — r l n |f p + pB
(1)(*i) j - + 0(^2), 
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which may be rewritten, by virtue of (19), as: 

(20) - 3 l 8 + ^ = i ^ | i ( l n ^ - l ) + p B a ) ( , 1 ) + 0 ( ^ ) . 

The agreement of the remaining terms in (15) and (18) is quite easily 
verified with the aid of (19), (20). This agreement is, of course, 
an inevitable consequence of the validity of both expansions in the 
matching region T/T0 = 0(v112). Note that Ô and b, according to 
(20), are now verified to be 0(v). The error 0(^3/2) in (19) is, more
over, replaceable by 0(^2), since the evaluation of the 0(y2) terms in 
the inner and outer expansions would introduce no new terms linear 
i n r orr*. 

It is perhaps worth pointing out that the choice, T/T0 = 0(^1/2), for 
the matching region was quite arbitrary, although convenient. A 
higher exponent than 1/2 would require further terms in the outer 
expansion in order to obtain an error not exceeding 0(v2), while a 
lower exponent would require further terms in the inner expansion. 

In a recent paper [2], Breakwell and Perko carried both expan
sions essentially through 0(^5/2) instead of 0(v312), for the particular 
case of the circular restricted 3-body problem, and arrived at correc
tions of order v2 to the matching formulas (19) and (20). The second-
order velocity correction was particularly tedious. 

Recalling tha£pB
i{)(ti) includes initial conditions in a term 

[< (Uo) ,^ 0 (Mo) ] ( %° ) 
St50 

so thatpB
(l)(*i) includes them in a term 

[*?»(*, *>),<.ft«o)]( 2° )• 8v0 

the matching formulas (21) and (22) may be combined into: 

[ fi-tp+ f r l n e " ] 5i + B" 

(21) 
ü„o" — Ü! 

where t5«, = t5«,*, is the arrival velocity at infinity, b~ = bj*, is 
the perpendicular onto the arrival asymptote, and the "gross biases" 
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Bi, Bx ', are independent of initial condition changes ôr0, 8v0. 
A similar formula relates the osculating hyperbola around a planet 

with "initial conditions" on a heliocentric ellipse either prior to or fol
lowing planetary encounter, and these may be combined [2] to relate 
successive planetary encounters as follows: 

[ti- tPi + ( t ^ ) 3 In eHi ] vc + V 

ü»i — vf 

- l tpi-l - (v*_l)3 lneHi-{] S V l + £ V l 
(f>Vi) 

3 ^ - ! - 3 i _ i 

+ 2nd ORDER TERMS. 

Here ^_1? ^ denote times of departure and arrival on an unperturbed 
heliocentric elliptic arc from a massi ess planet "i — 1," with gravita
tional parameter fii_i9 to the massless planet "i" with parameter jj^; 
v+i-i, Vi~ denote the relative velocities of departure and arrival, 
tp _ and tp, denote actual times of closest approach, and b\_y, v^0._l, 
eH refer to the osculating hyperbola around planet i — 1 at time 
tp._l while be t5„., eH. refer to that around planet i at time tp_. 
4>°(^, ^_x) is the transition matrix along the unpertrubed heliocentric 
ellipse, and Bh Bi ' represent certain gross biases due to all the planets 
including planets i — 1 and i. 

The quantities b{
+, t3ii related to the departure asymptote from 

planet i are related to b{~, t5äj simply by a rotation through an angle 
8i = 2Sin-l(lleHi). Thus: 

1 

v^bf 2vXib{
2 

1 + <&i2/M<2 

V. The Computation of Accurate Multi-Flyby Trajectories. The 
first step, and a laborious one, in the calculation of a multi-flyby tra
jectory, is to search for a succession of unperturbed heliocentric 
elliptic arcs, passing from one massless planet to another, such that the 
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magnitudes v{~y v{
 + of the relative velocities Vi~, v{

 + of departure and 
arrival at planet i are approximately equal, and that the change 8i in 
the direction of the relative velocity is compatible with a flyby above 
the planet's surface and appreciable atmosphere. This search is 
usually aided by Lambert's Theorem for determining a (heliocentric) 
ellipse passing between two points in a given time interval. 

Now formula (12) for hyperbolic eccentricity, reapplied in the 
planetary context, shows that a "zero order" estimate of 8i is sufficient 
to determine b{ to first order in v{{ = /X^/JA©). Denoting (1 /2 )^" + 
Ü| + ) by Vf, v~i - i?i*(t5r/^i") by Ai;^, vi, — v^v^fa^) by 
At; £,., and tPi — t{ by A£i? formula (22) may be written 

' _ 0 * £ C A A / _ r * î ^ l A*._\ /g.*N 

where the bias B<* includes the terms with fef~, fo;+, In em, In eH;-i> 
all 

replaced by their zero-order estimates, while the bias B* ' includes cor
rections for the small differences between v{* and v{~, v{

+. 
If the component of A Ü ^ along Vi'lVi is denoted by At;«,» (it 

is just the magnitude correction v^ — t;**), and if the two-vector part 
of Au«; orthogonal to VÌ~IVÌ~ is denoted by T};-, and the part of 
At; i orthogonal to v^lv^ by 17^, then formula (24) can be par
titioned as follows: 

(25) I Ä I = I MU MU I I t i 1 + I ft 
°\ 
* ) • w 

/Mji : 1 « •> 
™£ 

M ( i ) 

13 

1 1 2 3 

M ( i ) 
33 

where £ denotes the two-vector: 

(26) fi = 

It follows from (25) that 

Au»! 

(27) r i t , = - (M (*»)-»[M^ 6-x + « J , 

so that 
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(28) îi= [M*2 - M " ( M i 3 ) - ' MtliZ-x 
+ [ # - MIUMTZ)-^], 

while T)i~ is similarly expressible in terms of £_ l 5 a,, y{. Repeated 
application of (28) yields: 

2 X 2 2 X 1 

(29) ÇN= A £0 + X , 

N representing the final destination planet, so that Aüoo0 and At>a>N 

are easily expressible linearly in terms of A£0, AtN and the biases 
\i, A2>

 a s a r e a l s o all intermediate A Ü ^ , A^ and all the asymptote 
direction corrections rj^lvi*. This provides the planetary encounter 
information for a two-parameter family of multi-flyby trajectories, the 
two parameters being time of departure from Earth and time of arrival 
at the final planet, these times being close, it must be assumed, to 
their zero-order estimates t0, tN. 

The numerical values of the original gross biases Biy B{', which are 
related (see [1]) to quadratures such as pF

(1)(^i) in (7), may be ob
tained by comparison of the preliminary unperturbed elliptic arc be
tween ti and ti_i with some numerically integrated "exact" trajec
tory from a close approach to planet i — 1 at a time close to ^_x to a 
close approach to planet i at a time close to fy. After the selection of 
particular At0 and &tN and the calculation from (25)-(29), of the cor
responding first order planetary encounter information, "exact" legs 
of the multi-flyby trajectory should be numerically integrated from 
one planet to the next, and the relatively small mismatches easily re
duced (see [3] ) by a re-application of the matching formulas, until 
a single essentially continuous "nominal" multi-flyby trajectory is 
obtained. 

VI. Mid-Course Guidance. Suppose, now, that small trajectory de
viations from the nominal trajectory have been estimated during flight, 
and that a velocity correction is planned at some time tc between 
tPi-i and tpi, but not too close to either. If 8r(tc), 8v (tc) are the 
estimated small position and velocity deviations, the next b{ can be 
restored by a small velocity impulse 8vD satisfying: 

/-tfc,«pA /sHtc) 
(30) = *°(fP|, tc) 

\ Ôt5-i J \8v (tc) + 8vD 

from which 8vD is easily expressible linearly in terms of 8r(tc), 

• 
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8v (tc), and 8tpt, as are also 8vXi, Sty- and all subsequent ô£J? Srjy—. 
This provides considerable flexibility in choosing the velocity cor

rection St5D. Possible criteria are: 

(i) 8tVi = 0, 

(ii) a later 8tp = 0, 

(iii) Min, |8SD|. 
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