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ASYMPTOTIC MEAN SQUARE ERRORS OF VARIANCE
ESTIMATORS FOR U -STATISTICS AND THEIR

EDGEWORTH EXPANSIONS

Yoshihiko Maesono*

This paper studies variance estimators for a class of U -statistics. We obtain
asymptotic representations of jackknife, Hinkley’s (1978) corrected jackknife, un-
biased, Sen’s (1960) and new variance estimators. And we investigate asymptotic
mean square errors of them, theoretically. The Edgeworth expansions of the estima-
tors with remainder term o(n−1) are also established. We show that the normalized
Hinkley’s corrected estimator coincides the normalized unbiased estimator until the
order n−1/2op(n

−1).
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1. Introduction
Let X1, · · · , Xn be independently and identically distributed random vectors with

distribution function F (x). Let h(x1, · · · , xr) be a real valued function which is sym-
metric in its arguments. For n ≥ r let us define a U -statistic by

Un =
(

n

r

)−1 ∑
Cn,r

h(Xi1 , · · · , Xir)

where
∑

Cn,r
indicates that the summation is taken over all integers i1, · · · , ir sat-

isfying 1 ≤ i1 < · · · < ir ≤ n. Un is a minimum variance unbiased estimator of
θ = E[h(X1, · · · , Xr)] and many statistics in common use are members of U -statistics
or approximated by them.

Several variance estimators for the U -statistic are proposed. Sen (1960) has dis-
cussed an estimator of the dominant term r2E[E{h(X1, · · · , Xr)|
X1} − θ]2 of the variance nσ2

n = nV ar(Un) in the case of degree 2 and Sen (1977)
extended it to general degree r. He also proved the law of large numbers. The jackknife
variance estimator σ̂2

J is given by

σ̂2
J =

n − 1
n

n∑
i=1

(U (i)
n − Un)2

where U
(i)
n denotes U -statistic computed from a sample of n − 1 points with Xi left

out. The properties of σ̂2
J are precisely studied. Arvesen (1969) has obtained the exact

representation of σ̂2
J , which is complicated, and Efron and Stein (1981) have showed that

the jackknife variance estimator has positive bias. The bias reduction for the jackknife
variance estimator has been studied by Hinkley (1978), and Efron and Stein (1981).
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In the case of small sample, using computer simulation, Schucany and Bankson (1989)
discuss biases and mean square errors of Sen’s (1960) estimator, the jackknife estimator
and an unbiased estimator which is constituted from unbiased estimators of each term
of the variance expression. It is easy to see that all above estimators have first order
consistency, which means that the normalized estimators converge to the dominant term
r2ξ2

1 of the variance. Shirahata and Sakamoto (1992) have compared several estimators
(unbiased estimator, jackknife estimator, bias modified estimator, and iterated bootstrap
and bootstrap estimators) by computer simulations. They have also discussed exact
representations of the estimators and reduction of the order of summands to compute
the variance estimators.

Using the asymptotic representation of the jackknife variance estimator with the
residual term op(n−1/2), Maesono (1995b) has obtained an Edgeworth expansion with
remainder term o(n−1/2) for the studentized U -statistic. Obtaining the asymptotic rep-
resentation of the variance estimator with residual term op(n−1), where

P{|op(n−1)| ≥ n−1(log n)−1} = o(n−1),

Maesono (1996a) has investigated the Edgeworth expansion of the studentized U -statistic
with remainder term o(n−1). He has also proved the Edgeworth expansion with remain-
der term o(n−1/2) for the jackknife variance estimator σ̂2

J . Further, Maesono (1996b)
has discussed the expansion for a linear combination of U -statistics.

In this paper we will study the variance estimators more precisely and obtain asymp-
totic representations of the normalized estimators with residual terms n−1/2op(n−1). We
show that the unbiased estimator of Schucany and Bankson (1989) coincides with the
Hinkley’s (1978) corrected jackknife estimator until the order n−1/2op(n−1). Using the
asymptotic representations we obtain asymptotic mean square errors of the variance es-
timators. We also propose a new variance estimator and obtain its mean square error.
We establish Edgeworth expansions of those variance estimators with remainder term
o(n−1).

In Section 2, we will review the variance estimators and propose the new estimator.
In Section 3, we will obtain the asymptotic representations of the estimators and discuss
the asymptotic mean square errors. The Edgeworth expansions of them are established
in Section 4.

Hereafter for the sake of simplicity, we will consider the kernel of degree 2. The
generalization to the kernel with arbitrary degree will be obtained with notational com-
plications and tedious calculations.

2. Variance estimators
At first we will obtain the H-decomposition or the ANOVA-decomposition for the

U -statistic. Under the assumption that E|h(X1, X2)| < ∞, let us define

g1(x) = E[h(x,X2)] − θ, g2(x, y) = h(x, y) − θ − g1(x) − g1(y),

A1 =
n∑

i=1

g1(Xi) and A2 =
∑
Cn,2

g2(Xi, Xj).

Then we have
Un − θ =

2
n

A1 +
2

n(n − 1)
A2.

Note that
E[g2(X1, X2)|X1] = 0 a.s.
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Then if one of {i1, i2} is not contained in {j1, · · · , jm}, for any m-variate function ν
which satisfies E|νg2| < ∞, we get

(2.1) E[gk(Xi1 , Xi2)ν(Xj1 , · · · , Xjm)] = 0.

Using this equation we have the variance σ2
n of Un

σ2
n =

4
n

ξ2
1 +

2
n(n − 1)

ξ2
2

where
ξ2
1 = E[g2

1(X1)] and ξ2
2 = E[g2

2(X1, X2)].

Since we discuss the asymptotic properties, we will study the estimation of nσ2
n.

Then we consider the jackknife variance estimator VJ = nσ̂2
J . From the viewpoint of

estimation for 4ξ2
1 , Sen (1960, 1977) has proposed the variance estimator VS

VS =
4

n − 1

n∑
i=1

(Si − Un)2

where

Si =
1

n − 1

n∑
j=1,̸=i

h(Xi, Xj).

Sen (1977) also showed that

(2.2) VS =
(n − 2)2

(n − 1)2
VJ .

As pointed out by Efron (1987, p.200), changing coefficients of the estimators will
have significantly different effects on the small sample performance of the estimators.
Since VJ has positive bias and (n − 2)2/(n − 1)2 = 1 − 2/n + O(n−2), we consider the
new variance estimator Vα given by

Vα =
(
1 − α

n

)
VJ for α ≥ 0.

Note that V2 and VS are asymptotically equivalent and V0 = VJ . If we choose α properly,
we can reduce the bias and the mean square error, which we will discuss in Section 3.

Hinkley (1978) has discussed the bias correction of VJ . Let us define

Qi,j = nUn − (n − 1)(U (i)
n + U (j)

n ) + (n − 2)U (i,j)
n

where U
(i,j)
n denotes the value of Un when Xi and Xj are deleted from the sample. Then

the bias corrected jackknife estimator is given by

VC = VJ − 1
n + 1

∑
Cn,2

(Qi,j − Q̄)2

where Q̄ =
∑

Cn,2
Qi,j/[n(n − 1)].

Schucany and Bankson (1989) proposed the unbiased estimator of nσ2
n, which is

constituted from unbiased estimators of each term of the variance expression. Another
variance expression of nσ2

n is

(2.3) nσ2
n =

4(n − 2)
n − 1

a2
1 +

2
n − 1

a2
2
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where

a2
1 = E[h(X1, X2)h(X1, X3)] − θ2 and a2

2 = E[h2(X1, X2)] − θ2.

Let us define

ζ0(x1, x2, x3, x4) =
1
3
{h(x1, x2)h(x3, x4) + h(x1, x3)h(x2, x4)

+ h(x1, x4)h(x2, x3)},
ζ1(x1, x2, x3) =

1
3
{h(x1, x2)h(x1, x3) + h(x1, x2)h(x2, x3)

+ h(x1, x3)h(x2, x3)}
and

ζ2(x1, x2) = h2(x1, x2).

The unbiased estimators of θ2, E[h(X1, X2)h(X1, X3)] and E[h2(X1, X2)] are given by

θ̂2 =
(

n

4

)−1 ∑
Cn,4

ζ0(Xi1 , · · · , Xi4),

λ̂1 =
(

n

3

)−1 ∑
Cn,3

ζ1(Xi1 , Xi2 , Xi3)

and

λ̂2 =
(

n

2

)−1 ∑
Cn,2

ζ2(Xi1 , Xi2)

respectively. Substituting â2
k = λ̂k − θ̂2 for a2

k in the equation (2.3), we obtain the
unbiased estimator VU of nσ2

n as

VU =
4(n − 2)

n − 1
â2
1 +

2
n − 1

â2
2.

Schucany and Bankson (1989) compared the estimators VJ , VS and VU by simulation
in small samples n = 10. We can see that all these estimators converge to 4ξ2

1 almost
surely. We will study the asymptotic properties of the estimator more precisely.

3. Asymptotic representations and mean square errors
Maesono (1995a) has obtained the asymptotic representations of the variance es-

timators VJ , VS , VC and VU with residual terms op(n−1). Here we will consider the
asymptotic representations more precisely. Let us define

δ(x) = E[g2
2(x,X2)] − ξ2

2 ,

f1(x) = g2
1(x) − ξ2

1 + 2E[g1(X2)g2(x,X2)],
f2(x, y) = −g1(x)g1(y) + g2(x, y){g1(x) + g1(y)}

+ E[g2(x,X3)g2(y, X3) − g2(x,X3)g1(X3) − g2(y,X3)g1(X3)],
f3(x, y, z) = g2(x, y)g2(x, z) + g2(x, y)g2(y, z) + g2(x, z)g2(y, z)

− E[g2(x, X3)g2(y, X3) + g2(y, X3)g2(z,X3)
+ g2(x,X3)g2(z, X3)]

− 2{g1(x)g2(y, z) + g1(y)g2(x, z) + g1(z)g2(x, y)
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and

Vn =
4
n

n∑
i=1

f1(Xi) +
8

n(n − 1)

∑
Cn,2

f2(Xi, Xj)

+
8

n(n − 1)(n − 2)

∑
Cn,3

f3(Xi, Xj , Xk).

Note that Vn has already decomposed. For the variance estimators, we have the following
representations.

Theorem 1. If E|h(X1, X2)|4+ε < ∞ for some ε > 0, we have

VJ = Vn +
8
n2

n∑
i=1

δ(Xi) + nσ2
n +

bJ

n
+ R1;n,(3.1)

VS = Vn +
8
n2

n∑
i=1

{δ(Xi) − f1(Xi)} + nσ2
n +

bS

n
+ R2;n,(3.2)

Vα = Vn +
4
n2

n∑
i=1

{2δ(Xi) − αf1(Xi)} + nσ2
n +

bα

n
+ R3;n,(3.3)

VC = Vn +
4
n2

n∑
i=1

δ(Xi) + nσ2
n + R4;n(3.4)

and

(3.5) VU = Vn +
4
n2

n∑
i=1

δ(Xi) + nσ2
n + R5;n

where
bJ = 2ξ2

2 , bS = 2ξ2
2 − 8ξ2

1 , bα = 2ξ2
2 − 4αξ2

1

and

(3.6) E|Rk;n|2+ ε
2 = O(n−4−ε) (k = 1, · · · , 5).

Proof. See appendix.
bJ , bS and bα are n−1 biases of the jackknife, the Sen’s estimator and the new

estimator respectively. Since Rk,n = n−1/2op(n−1), the unbiased estimator VU coincides
the Hinkley’s (1978) corrected jackknife estimator VC until the order n−1/2op(n−1). It
is easy to see that

(3.7) E[f2(X1, X2)|X1] = E[f3(X1, X2, X3)|X1, X2] = 0 a.s.

and E[f1(X1)] = E[δ(X1)] = 0.
Using the asymptotic representations of Theorem 1, we can study the asymptotic

properties of the variance estimators. Here we will obtain asymptotic mean square errors
of VJ , VS , Vα, VC and VU up to the order n−2. Let us define

mse(VJ) =
16
n

E[f2
1 (X1)]

+
1
n2

{b2
J + 64E[f1(X1)δ(X1)] + 32E[f2

2 (X1, X2)]},

mse(VS) =
16
n

E[f2
1 (X1)] +

1
n2

{b2
S + 64E[f1(X1)(δ(X1) − f1(X1))]
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+ 32E[f2
2 (X1, X2)]},

mse(Vα) =
16
n

E[f2
1 (X1)] +

1
n2

{b2
α + 32E[f1(X1)(2δ(X1) − αf1(X1))]

+ 32E[f2
2 (X1, X2)]}

and
mse(VC) =

16
n

E[f2
1 (X1)] +

1
n2

{32E[f1(X1)δ(X1)] + 32E[f2
2 (X1, X2)]}.

Note that mse(VJ) = mse(V0) and mse(VS) = mse(V2). We have the following theorem.

Theorem 2. If E|h(X1, X2)|4+ε < ∞ for some ε > 0, we have

E(VJ − nσ2
n)2 = mse(VJ) + O(n− 5

2 ),

E(VS − nσ2
n)2 = mse(VS) + O(n− 5

2 ),

E(Vα − nσ2
n)2 = mse(Vα) + O(n− 5

2 ),

E(VC − nσ2
n)2 = mse(VC) + O(n− 5

2 )

and
E(VU − nσ2

n)2 = mse(VC) + O(n− 5
2 ).

Proof. It follows from (3.6) and (A.2) in Lemma 1 (see Appendix) that under
the moment condition, for 1 ≤ k ≤ 5,

E|n−1Rk;n

n∑
i=1

f1(Xi)| ≤ n−1

{
E

∣∣∣∣∣
n∑

i=1

f1(Xi)

∣∣∣∣∣
2+ ε

2

E|Rk;n|2+ ε
2

} 2
4+ε

= O(n− 5
2 ),

E|n−2Rk;n

n∑
i=1

δ(Xi)| ≤ n−2

{
E

∣∣∣∣∣
n∑

i=1

δ(Xi)

∣∣∣∣∣
2+ ε

2

E|Rk;n|2+ ε
2

} 2
4+ε

= O(n−3),

E

∣∣∣∣∣n−2Rk;n

∑
Cn,2

f2(Xi, Xj)

∣∣∣∣∣ ≤ n−2

{
E

∣∣∣∣∣∑
Cn,2

f2(Xi, Xj)

∣∣∣∣∣
2+ ε

2

E|Rk;n|2+ ε
2

} 2
4+ε

= O(n−3)

and
E|Rk;n|2 ≤ {E|Rk;n|2+ ε

2 } 4
4+ε = O(n−4).

Thus, using these equations and (3.7), we can obtain the equalities.

Remark 1. It is possible to improve the equations with remainder terms of the
order O(n−3). But it needs more calculation, then we leave the equations as they are.

Let us define

e1 = E[g4
1(X1)], e2 = E[g2

1(X1)g2
2(X1, X2)],

e3 = E[g2
1(X1)g1(X2)g2(X1, X2)],

e4 = E[g1(X1)g1(X2)g2
2(X1, X2)],

e5 = E[g1(X1)g1(X2)g2(X1, X3)g2(X2, X3)],
e6 = E[g1(X1)g2(X1, X2)g2(X1, X3)g2(X2, X3)]
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and
e7 = E[g2(X1, X3)g2(X2, X3)g2(X1, X4)g2(X2, X4)].

Then, using the equation (2.1), it follows from direct computations that

E[f2
1 (X1)] = e1 − ξ4

1 + 4e3 + 4e5,

E[f1(X1)δ(X1)] = e2 − ξ2
1ξ2

2 + 2e3

and
E[f2

2 (X1, X2)] = ξ4
1 + 2e2 − 4e3 + 2e4 − 4e5 + 4e6 + e7.

Here we will study the asymptotic mean square errors for the variance and the co-
variance estimation problems. Also, the asymptotic mean square error of the Wilcoxon’s
signed rank test will be discussed.

Example 1. Variance estimation;

Let us consider the kernel h(x, y) = (x − y)2/2. Then if V ar(X1) = σ2, the U -
statistic

Un =
(

n

2

)−1 ∑
Cn,2

h(Xi, Xj)

is an unbiased estimator of σ2. It is easy to see that

θ = σ2, g1(x) =
1
2
(x2 − σ2) and g2(x, y) = −xy.

For the sake of simplicity, we will consider the case that the distribution F (x) is sym-
metric about the origin. Let us define mk = E[Xk

1 ]. Then because of symmetry of F , if
k is odd number, mk = 0. Using this fact, from direct computations, we can show that

ξ2
1 =

1
4
(m4 − σ4), ξ2

2 = σ4, e1 =
1
16

(m8 − 4σ2m6 + 6σ4m4 − 3σ8),

e2 =
σ2

4
(m6 − 2σ2m4 + σ6), e4 =

1
4
(m4 − σ4)2, e6 = −σ4

2
(m4 − σ4),

e7 = σ8 and e3 = e5 = 0.

(Normal distribution:) If the underlying distribution is normal, that is Xi ∼ N(0, σ2),
we can show that

bJ = 2σ4, bS = −2σ4, bα = 2σ4 − 2ασ4,

mse(VJ) = σ8

{
56
n

+
268
n2

}
, mse(VS) = σ8{56

n
+

44
n2

},

mse(Vα) = σ8

{
56
n

+
4(α2 − 30α + 67)

n2

}
and mse(VC) = σ8

{
56
n

+
200
n2

}
.

In the case of σ2 = 1 and n = 10, Schucany and Bankson (1989) discussed the mean
square errors of VJ/n, VS/n and VC/n by simulation. Corresponding asymptotic mean
square errors are given by

mse(VJ)
102

= 0.0828,
mse(VS)

102
= 0.0604 and

mse(VC)
102

= 0.0760.

Their estimated mean square errors are close to these values.
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(Logistic distribution:) We consider the logistic distribution which has the density
function

πe
− πx√

3σ

√
3σ(1 + e

− πx√
3σ )

.

In this case we have that V ar(X1) = σ2,

bJ = 2σ4, bS = −22
5

σ4, bα = 2σ4 − 16α

5
σ4,

mse(VJ) = σ8

{
538.33

n
+

1002.95
n2

}
, mse(VS) = σ8

{
538.33

n
− 1135.02

n2

}
,

mse(Vα) = σ8

{
538.33

n
− 1

n2
(10.24α2 − 1089.46α + 1002.95)

}
and

mse(VU ) = σ8

{
538.33

n
+

764.89
n2

}
.

Example 2. Covariance estimation;

Let {XXXXXXXXi}i≥1 be two dimensional random vectors. And putting XXXXXXXXi = (Yi, Zi), we
denote

V ar(XXXXXXXX1) = V ar{(Y1, Z1)} =

(
σ2

y ρσyσz

ρσyσz σ2
z

)
.

Let us consider a symmetric kernel h(xxxxxxxx1, xxxxxxxx2) = (y1 −y2)(z1 − z2)/2. Then corresponding
U -statistic is an unbiased estimator of ρσyσz = Cov(Y1, Z1). It is easy to see that

θ = ρσyσz, g1(xxxxxxxx1) =
1
2
(y1z1 − ρσyσz) and g2(xxxxxxxx1, xxxxxxxx2) = −1

2
(y1z2 + z1y2).

Further we assume that XXXXXXXXi is bivariate normal distribution

XXXXXXXXi = (Yi, Zi) ∼ N

(
µ,

(
σ2

y ρσyσz

ρσyσz σ2
z

))
.

From direct computations we can get

ξ2
1 =

1 + ρ2

4
σ2

yσ2
z , ξ2

2 =
1 + ρ2

2
σ2

yσ2
z , e1 =

3
16

(3ρ4 + 14ρ2 + 3)σ4
yσ4

z ,

e2 =
1
8
(3ρ4 + 14ρ2 + 3)σ4

yσ4
z , e3 = 0, e4 =

1
8
(ρ4 + 6ρ2 + 1)σ4

yσ4
z ,

e5 = 0, e6 = −1
8
(ρ4 + 6ρ2 + 1)σ4

yσ4
z and e7 =

1
8
(ρ4 + 6ρ2 + 1)σ4

yσ4
z .

Thus we have

bJ = σ2
yσ2

z(1 + ρ2), bS = −σ2
yσ2

z(1 + ρ2), bα = (1 − α)(1 + ρ2)σ2
yσ2

z ,

mse(VJ) = σ4
yσ4

z

{
8
n

(ρ4 + 5ρ2 + 1) +
1
n2

(39ρ4 + 190ρ2 + 39)
}

,

mse(VS) = σ4
yσ4

z

{
8
n

(ρ4 + 5ρ2 + 1) +
1
n2

(7ρ4 + 30ρ2 + 7)
}

mse(Vα) = σ4
yσ4

z

{
8
n

(ρ4 + 5ρ2 + 1) +
1
n2

[α2(ρ2 + 1)2

− 6α(3ρ4 + 14ρ2 + 3) + 39ρ4 + 190ρ2 + 39]
}
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and
mse(VC) = σ4

yσ4
z{

8
n

(ρ4 + 5ρ2 + 1) +
1
n2

(30ρ4 + 140ρ2 + 30)}.

Remark 2. In the cases of the above tow examples, mse(VS) < mse(VC) <
mse(VJ). As discussed in Schucany and Bankson (1989), though Sen’s estimator VS

has small mean square error, it has substantial negative bias. VC and VU are asymptot-
ically unbiased and have smaller mean square error than VJ . But VC and VU sometimes
take negative values in small sample case. Schucany and Bankson (1989) also pointed
out by simulation that from the viewpoint of Pitman closeness VJ is closer to nσ2

n than
VU . If we take α = 1 of Vα, both biases and mean square errors are relatively small.
Especially in the case of the normal distribution, the biases of V1 are 0. Note that V1 is
asymptotically equivalent to (VJ + VS)/2 and always takes a non-negative value.

Example 3. Wilcoxon’s signed rank test;

In order to compare the mean square errors of the variance estimators, let us discuss
the variance estimation of the Wilcoxon’s signed rank statistic. Let X1, · · · , Xn be a
random sample from the distribution F (x − η), where F (x) satisfies F (−x) = 1 − F (x)
for any x. So, the distribution F (x) is symmetric about origin. The Wilcoxon’s signed
rank statistic is very popular to test or to estimate η. For the sake of simplicity, we
consider the following statistic

Mn =
(

n

2

)−1 ∑
Cn,2

Ψ(Xi + Xj)

where Ψ(x) = 1, 0 if x ≥ 0, < 0. Mn is asymptotically equivalent to the Wilcoxon’s
statistic. Let us assume η = 0 and F (x) has a density function. From direct computation,
we can show that

θ =
1
2
, σ2

n =
2n − 1

6n(n − 1)
, g1(x) = F (x) − 1

2
, ξ2

1 =
1
12

, ξ2
2 =

1
12

,

e1 =
1
80

, e2 =
1

144
, e3 = − 1

360
, e4 = − 1

360
, e5 =

1
720

,

e6 = − 1
1440

and e7 =
1

720
.

Thus we have

bJ =
1
6
, bS = −1

2
, bα =

1
6
− α

3
,

mse(VJ) =
53

180n2
, mse(VS) =

31
60n2

,

mse(Vα) =
1
n2

[
1
9

(
α − 1

2

)2

+
4
15

]
and mse(VC) =

4
9n2

.

It follows from the above calculation that

mse(VJ) < mse(UC) < mse(VS).

When α = 1/2, mse(V1/2) takes a minimum value 4/(15n2) and mse(V1/2) < mse(VJ).

Remark 3. Example 1 and Example 2 give us the same conclusion. But it is
different in the case of the Wilcoxon’s statistic. So, we had better to check the mean
square errors of the variance estimators using Theorem 2 in each case.



10 J. JAPAN STATIST. SOC. Vol.28 No.1 1998

4. Edgeworth expansions
From Theorem 1, we can regard the variance estimators as sum of U -statistics

and n−1 term. For asymptotic U -statistics, Lai and Wang (1993) have established the
Edgeworth expansion with remainder term o(n−1). Applying their result, we can get
Edgeworth expansions of the variance estimators. Let us assume the following conditions.
(C1) E|h(X1, X2)|8 < ∞
(C2) lim sup|t|→∞ |E[exp{itf1(X1)}]| < 1
(C3) E|f2(X1, X2)|s < ∞ (s > 0) and there exist K Borel functions ψν :RRRRRRRR → RRRRRRRR such that

E[ψ2
ν(X1)] < ∞(ν = 1, · · · ,K), K(s−2) > 4s+(28s−40)I{E|f3(X1,X2,X3)|>0}, and

the covariance matrix of (W1, · · · , WK) is positive definite, where Wν = (Lψν)(X1)
and (Lψν)(y) = E[f2(y, X2)ψν(X2)], and I{.} is an indicator function.

The condition C3 is concerned with the number of nonzero eigen function of f2(x, y).
Alternatively Lai and Wang (1993) have proved the validity of the Edgeworth expansion
under the following condition (C̃3).
(C̃3) There exist constants cν and Borel functions wν :RRRRRRRR → RRRRRRRR such that E[wν(X1)] =

0, E|wν(X1)|s < ∞ for some s ≥ 5 and f2(X1, X2) =
∑K

ν=1 cνwν(X1)wν(X2)a.s.;
moreover, for some 0 < γ < min{1, 2(1 − 11/
(3s))},

lim sup
|t|→∞

sup
|u1|+···+|uK |≤|t|−γ

∣∣∣∣∣E
[
exp

(
it

{
f1(X1) +

K∑
ν=1

uνwν(X1)

})]∣∣∣∣∣ < 1.

Let us define

τ2 = E[f2
1 (X1)], d1 = E[f2

2 (X1, X2)], d2 = E[f1(X1)δ(X1)],

d3 = E[f3
1 (X1)], d4 = E[f1(X1)f1(X2)f2(X1, X2)],

d5 = E[f4
1 (X1)], d6 = E[f2

1 (X1)f1(X2)f2(X1, X2)],
d7 = E[f1(X1)f1(X2)f2(X1, X3)f2(X2, X3)],
d8 = E[f1(X1)f1(X2)f1(X3)f3(X1, X2, X3)],

κ3 = τ−3(d3 + 12d4), κ4 = τ−4(d5 − 3τ4 + 24d6 + 48d7 + 8d8),

P1C(x) =
x2 − 1

6
κ3, P1J(x) = P1C(x) − bJ

4τ
,

P1S(x) = P1C(x) − bS

4τ
, P1α(x) = P1C(x) − bα

4τ
,

P2J(x) =
x

τ2

(
d1 + 2d2 +

b2
J

32

)
+

κ4 − bJκ3

24
(x3 − 3x)

+
κ2

3

72
(x5 − 10x3 + 15x),

P2S(x) =
x

τ2

(
d1 + 2d2 − 2τ2 +

b2
S

32

)
+

κ4 − bSκ3

24
(x3 − 3x)

+
κ2

3

72
(x5 − 10x3 + 15x),

P2α(x) =
x

τ2

(
d1 + 2d2 − ατ2 +

b2
α

32

)
+

κ4 − bSκ3

24
(x3 − 3x)

+
κ2

3

72
(x5 − 10x3 + 15x)
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and

P2C(x) =
x

τ2
(d1 + d2) +

κ4

24
(x3 − 3x) +

κ2
3

72
(x5 − 10x3 + 15x).

We have the following theorem.

Theorem 3. Assume that the conditions C1 and C2 hold. If either condition C3

or C̃3 is satisfied, we have

P

{√
n(VJ − nσ2

n)
4τ

≤ x

}
= Φ(x) − φ(x)P1J(x)√

n
− φ(x)P2J(x)

n
+ o(n−1),

P

{√
n(VS − nσ2

n)
4τ

≤ x

}
= Φ(x) − φ(x)P1S(x)√

n
− φ(x)P2S(x)

n
+ o(n−1),

P

{√
n(Vα − nσ2

n)
4τ

≤ x

}
= Φ(x) − φ(x)P1α(x)√

n
− φ(x)P2α(x)

n
+ o(n−1),

P

{√
n(VC − nσ2

n)
4τ

≤ x

}
= Φ(x) − φ(x)P1C(x)√

n
− φ(x)P2C(x)

n
+ o(n−1)

and

P

{√
n(VU − nσ2

n)
4τ

≤ x

}
= Φ(x) − φ(x)P1C(x)√

n
− φ(x)P2C(x)

n
+ o(n−1).

Proof. It is sufficient to prove the case of VJ . Since Ũn =
√

n{Vn+8
∑n

i=1 δ(Xi)/n2+
R1;n} is an asymptotic U -statistic, it follows from Lai and Wang (1993) that

P

{
Ũn

4τ
≤ x

}
= Φ(x) − φ(x)P1C(x)√

n
− φ(x)P̃2(x)

n
+ o(n−1)

where

P̃2(x) =
x

τ2
(d1 + 2d2) +

κ4

24
(x3 − 3x) +

κ2
3

72
(x5 − 10x3 + 15x).

Since

P

{√
n(VJ − nσ2

n)
4τ

≤ x

}
= P

{
Ũn

4τ
≤ x − bJ

4τ
√

n

}
,

expanding by bJ/(4τ
√

n), we have the Edgeworth expansion for VJ .

Example 4. Let us consider the case of variance estimation in Example 1. From
direct computation, we can show that

f1(x) =
1
4
(x2 − σ2) − 1

4
ξ2
1

and

f2(x, y) = −1
4
(x2 − σ2)(y2 − σ2) − xy

2
(x2 + y2 − 2σ2) + σ2xy

= −1
4
(x2 − σ2)(y2 − σ2) − 1

2
(x3 + x)(y3 + y) +

1
2
x3y3

+
(

2σ2 +
1
2

)
xy.
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Thus putting

c1 = −1
4
, w1(x) = x2 − σ2, c2 = −1

2
, w2(x) = x3 + x,

c3 =
1
2
, w3(x) = x3, c4 = 2σ2 +

1
2

and w4(x) = x,

we have

f2(X1, X2) =
3∑

ν=1

cνwν(X1)wν(X2) a.s.

Assume that E|X1|22 < ∞ and the underlying distribution F (x) has a density function.
We can show that

lim sup
|t|→∞

sup
|u1|+···+|u4|≤|t|−1

∣∣∣∣∣E
[
exp

(
it

{
f1(X1) +

4∑
ν=1

uνwν(X1)

})]∣∣∣∣∣ < 1.

Hence the conditions (C1), (C2) and (C̃3) are satisfied.

Appendix A
First we review the moment evaluations of the H-decomposition, which is very useful

for discussing asymptotic properties. Let ν(x1, · · · , xr) be a function which is symmetric
in its arguments and E[ν(X1, · · · , Xr)] = 0. Let us define

ρ1(x1) = E[ν(x1, X2, · · · , Xr)],
ρ2(x1, x2) = E[ν(x1, x2, · · · , Xr)] − ρ1(x1) − ρ1(x2), · · · ,

and

ρr(x1, x2, · · · , xr) = ν(x1, x2, · · · , xr) −
r−1∑
k=1

∑
Cr,k

ρk(xi1 , xi2 , · · · , xik
).

Then we can show that

(A.1) E[ρk(X1, · · · , Xk)|X1, · · · , Xk−1] = 0 a.s.

and ∑
Cn,r

ν(Xi1 , · · · , Xir) =
r∑

k=1

(
n − k

r − k

)
Λk

where
Λk =

∑
Cn,k

ρk(Xi1 , · · · , Xik
).

Using the equation (11) and moment evaluations of martingales (Dharmadhikari, Fabian
and Jogdeo (1968)), we have the upper bounds of the absolute moments of Λk as follows.

Lemma 1. For q ≥ 2, if E|ν(X1, · · · , Xr)|q < ∞, there exists a positive constant
c, which may depend on ν and F but not on n, such that

(A.2) E|Λk|q ≤ cn
qk
2 .

For the simplicity we use a symbol o∗p(n
−3/2) which may be different in each case

but satisfies
E|o∗p(n− 3

2 )|2+ ε
2 = O(n−4−ε).
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It follows from Markov’s inequality that o∗p(n
−3/2) = n−1/2op(n−1).

From Markov’s inequality and (12), we can easily obtain the following lemma which
is useful for obtaining the asymptotic representations.

Lemma 2. If E[ν(X1, · · · , Xr)] = 0 and E|ν(X1, · · · , Xr)|2+ε < ∞ for ε > 0, we
have that

(A.3) n−r−1
∑
Cn,r

ν(Xi1 , · · · , Xir) =
1

n2(r − 1)!
Λ1 + o∗p(n

− 3
2 ).

and

(A.4) n−r
r∑

k=4

(
n − k

r − k

)
Λk = o∗p(n

− 3
2 ).

Using the above lemmas, we will prove Theorem 2.
Approximation of VJ

At first we will obtain the approximation of VJ . Let us define

D1 =
n∑

i=1

g2
1(Xi), D2 =

∑
Cn,2

g1(Xi)g1(Xj),

D3 =
∑
Cn,2

{g1(Xi) + g1(Xj)}g2(Xi, Xj),

D4 =
∑
Cn,3

{g1(Xi)g2(Xj , Xk) + g1(Xj)g2(Xi, Xk) + g1(Xk)g2(Xi, Xj)},

D5 =
∑
Cn,2

g2
2(Xi, Xj),

D6 =
∑
Cn,3

{g2(Xi, Xj)g2(Xi, Xk) + g2(Xi, Xj)g2(Xj , Xk)

+ g2(Xi, Xk)g2(Xj , Xk)}

and

D7 =
∑
Cn,4

{g2(Xi, Xj)g2(Xk, Xℓ) + g2(Xi, Xk)g2(Xj , Xℓ)

+ g2(Xi, Xℓ)g2(Xj , Xk)}.

From Maesono (1995, p.18), we have

n∑
i=1

(U (i)
n − Un)2 =

4
n(n − 1)

D1 − 8
n(n − 1)2

D2 +
8

n(n − 1)2
D3

− 16
n(n − 1)2(n − 2)

D4 +
8

n(n − 1)2(n − 2)
D5

+
8(n − 4)

n(n − 1)2(n − 2)2
D6 − 16

n(n − 1)2(n − 2)2
D7.
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Note that VJ = (n − 1)
∑n

i=1(U
(i)
n − Un)2. Using the H-decomposition, Lemma 1 and

Lemma 2, we have that

4
n

D1 = 4ξ2
1 +

4
n

n∑
i=1

{g2
1(Xi) − ξ2

1},

8
n(n − 1)

D3 =
8
n

n∑
i=1

E[g1(X0)g2(Xi, X0)|Xi]

+
8

n(n − 1)

∑
Cn,2

{[g1(Xi) + g1(Xj)]g2(Xi, Xj)

− E[g1(X0)g2(Xi, X0)|Xi] − E[g1(X0)g2(Xj , X0)|Xj ]},
8

n(n − 1)(n − 2)
D5 =

4ξ2
2

n
+

8
n2

∑
i=1

δ(Xi) + o∗p(n
− 3

2 ),

8(n − 4)
n(n − 1)(n − 2)2

D6 =
8

n(n − 1)

∑
Cn,2

E[g2(Xi, X0)g2(Xj , X0)|Xi, Xj ]

+
8

n(n − 1)(n − 2)

∑
Cn,3

β(Xi, Xj , Xk) + o∗p(n
− 3

2 )

and
16

n(n − 1)(n − 2)2
D7 = o∗p(n

− 3
2 )

where X0 is a random vector with distribution F (x) and is independent of X1, · · · , Xn

and

β(x, y, z) = g2(x, y)g2(x, z) + g2(x, y)g2(y, z) + g2(x, z)g2(y, z)
− E[g2(x, X0)g2(y, X0) + g2(y, X0)g2(z,X0) + g2(x,X0)g2(z, X0)].

Thus we have the equation (3.1).

Approximation of VS

It follows from the equation (2.2) that

VS =
{

1 − 2
n

+ O(n−2)
}

VJ .

From the equation (A.3), we can show that

− 2
n

VJ = −8ξ2
1

n
− 8

n2

n∑
i=1

f1(Xi) + o∗p(n
− 3

2 )

and
O(n−2)VJ = o∗p(n

− 3
2 ).

Thus we have the equation (3.2).

Approximation of Vα

Similarly as VS , we can easily obtain the equation (3.3).

Approximation of VC



VARIANCE ESTIMATORS FOR U -STATISTICS 15

To obtain the equation (3.4), it is sufficient to prove the following lemma which is
an improvement of Lemma A4 in Maesono (1995).

Lemma 3. If E|h(X1, X2)|4+ε < ∞ for some ε > 0, we have

1
n + 1

∑
1≤i<j≤n

(Qi,j − Q̄)2 =
2ξ2

2

n
+

4
n2

n∑
i=1

δ(Xi) + o∗p(n
− 3

2 ).

Proof. From the proof of Lemma A4 in Maesono (1995), we have

1
n + 1

∑
1≤i<j≤n

(Qi,j − Q̄)2

=
4

(n + 1)(n − 1)(n − 3)
D5 − 8

(n + 1)(n − 1)(n − 2)(n − 3)
D6

+
16

(n + 1)(n − 1)(n − 2)(n − 3)2
D7.

Using the H-decomposition and the equations (A.3) and (A.4), we get that

4
(n + 1)(n − 1)(n − 3)

D5 =
2ξ2

2

n
+

4
n2

n∑
i=1

δ(Xi) + o∗p(n
− 3

2 ),

8
(n + 1)(n − 1)(n − 2)(n − 3)

D6 = o∗p(n
− 3

2 )

and
8

(n + 1)(n − 1)(n − 2)(n − 3)2
D7 = o∗p(n

− 3
2 ).

Thus we have the equation (3.5).

Approximation of VU

Finally we will consider the unbiased estimator VU . We will obtain approximations
of â2

1 and â2
2. Let us consider λ̂1. From the definition, we can get

E[h(x,X2)] = g1(x) + θ, h(x, y) = g2(x, y) + g1(x) + g1(y) + θ.

Using these equations and (2.1), we can show that

E[ζ1(x, y, X3)] =
1
3
{g2(x, y)[g1(x) + g1(y)] + 3g1(x)g1(y) + g2

1(x) + g2
1(y)

+ E[g2(x,X3)g2(y,X3) + (g2(x,X3) + g2(y, X3))g1(X3)]

+ 2θg2(x, y) + 4θg1(x) + 4θg1(y) + ξ2
1 + 3θ2}.

We also have

E[ζ1(x,X2, X3)]

=
2
3
{E[g2(x,X3)g1(X3)] + ξ2

1} +
4
3
θg1(x) + θ2 +

1
3
g2
1(x)
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and E[ζ1(X1, X2, X3)] = ξ2
1 + θ2. Here we have

E[ζ1(x, X2, X3)] − ξ2
1 − θ2

=
2
3
E[g2(x,X2)g1(X2)] +

4
3
θg1(x) +

1
3
{g2

1(x) − ξ2
1}

= g̃1(x) (say),

E[ζ1(x, y, X3)] − ξ2
1 − θ2 − g̃1(x) − g̃1(y)

=
1
3
E[g2(x,X3)g2(y,X3) − {g2(x, X3) + g2(y, X3)}g1(X3)]

+ g1(x)g1(y) +
1
3
{g1(x) + g1(y) + 2θ}g2(x, y)

= g̃2(x, y) (say)

and

ζ1(x, y, z) − ξ2
1 − θ2 − g̃2(x, y) − g̃2(x, z) − g̃2(y, z)

− g̃1(x) − g̃1(y) − g̃1(z)

=
1
3
{g2(x, y)g2(x, z) + g2(x, y)g2(y, z) + g2(x, z)g2(y, z)

− E[g2(x,X3)g2(y, X3) − g2(x,X3)g2(z, X3) − g2(y,X3)g2(z, X3)]}
+

2
3
{g1(x)g2(y, z) + g1(y)g2(x, z) + g1(z)g2(x, y)}

= g̃3(x, y, z) (say).

Thus using the H-decomposition, we can show that

λ̂1 = ξ2
1 + θ2 +

3
n

n∑
i=1

g̃1(Xi) +
6

n(n − 1)

∑
Cn,2

g̃2(Xi, Xj)(A.5)

+
6

n(n − 1)(n − 2)

∑
Cn,2

g̃3(Xi, Xj , Xk).

Next we will obtain an approximation of θ̂2. Similarly as λ̂1, we can get

E[ζ0(x, y, z,X4)] =
1
3
{g1(x)g2(y, z) + g1(y)g2(x, z) + g1(z)g2(x, y)

+ θg2(x, y) + θg2(x, z) + θg2(y, z)
+ 2g1(x)g1(y) + 2g1(x)g1(z) + 2g1(y)g1(z)}

+ θg1(x) + θg1(y) + θg1(z) + θ2,

E[ζ0(x, y, X3, X4)]

=
1
3
{2g1(x)g1(y) + θg2(x, y)} + θg1(x) + θg1(y) + θ2

and
E[ζ0(x, X2, X3, X4)] = θ{g1(x) + θ}.
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Thus from the H-decomposition and the equation (A.4), we have

θ̂2 = θ2 +
4
n

n∑
i=1

θg1(Xi)(A.6)

+
4

n(n − 1)

∑
Cn,2

{g1(Xi)g1(Xj) + θg2(Xi, Xj)}

+
8

n(n − 1)(n − 2)

∑
Cn,3

{g1(Xi)g2(Xj , Xk) + g1(Xj)g2(Xi, Xk)

+ g1(Xk)g2(Xi, Xj)} + o∗p(n
− 3

2 ).

Combining the equations (A.5) and (A.6), we have the approximation of â2
1 as

(A.7)
4(n − 2)
n − 1

â2
1 = 4ξ2

1 − 4ξ2
1

n
− 4

n2

n∑
i=1

f1(Xi) + Vn + o∗p(n
− 3

2 ).

Since
E[h2(X1, X2)] = 2ξ2

1 + ξ2
2 + θ2,

using the H-decomposition and the equation (13), we obtain

n−1λ̂2 =
2ξ2

1 + ξ2
2 + θ2

n
+

2
n2

n∑
i=1

{δ(Xi) + f1(Xi) + 2θg1(Xi)} + o∗p(n
− 3

2 ).

From the H-decomposition and the equations (A.3) and (A.4), we can show that

(A.8)
2

n − 1
â2
2 =

4
n2

n∑
i=1

{δ(Xi) + f1(Xi)} +
4ξ2

1 + 2ξ2
2

n
+ o∗p(n

− 3
2 ).

Combining the above evaluations (A.7) and (A.8), we have the desired approximation
(3.5).
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