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ASYMPTOTIC METHODS FOR METAL OXIDE SEMICONDUCTOR FIELD
EFFECT TRANSISTOR MODELING*

M. J. WARD’S, F. M. ODEH:[:, AND D. S. COHEN

Abstract. The behavior of metal oxide semiconductor field effect transistors (MOSFETs) with small
aspect ratio and large doping levels is analyzed using formal perturbation techniques. Specifically, the
influence of interface layers in the potential on the averaged channel conductivity is closely examined. The
interface and internal layers that occur in the potential are resolved in the limit of large doping using
the method of matched asymptotic expansions. This approach, together with other asymptotic techniques,
provides both a pointwise description of the state variables as well as lumped current-voltage relations that
vary uniformly across the various bias regimes. These current-voltage relations are derived for a variable
doping model respresenting a particular class of devices.

Key words, singular perturbation, interface layer, uniform expansions, current-voltage relations, channel
conductivity

AMS(MOS) subject classifications. 35B25, 35B40, 41A60

1. Introduction. Since its invention in 1960, the metal oxide semiconductor field
effect transistor (MOSFET) has been intensely studied, mainly by electronic device
engineers, because of its importance in the design of computer memory chips. In.itially,
rather simplified analytical models were used to determine the lumped current-voltage
relations of long-channel devices in various bias regimes. These models were usually
derived by means of physical approximations regarding the behavior of the longitudinal
electric field--the so-called long-channel approximation--whose range of validity is
unclear. Moreover, constant doping density was almost always assumed for the sake
of "explicitly solving" the governing equations. Since variable doping implants are
often used, especially for moderately short devices and for technological reasons such
as the reduction of loss of gate control on channel conductivity, the assumption of
constant doping is too severe a restriction. Despite these as well as other shortcomings,
these models have proved quite useful in predicting the behavior of long-channel
devices and are still extensively employed in circuit simulation packages. Some of the
classic papers on analytical MOSFET modeling include ], [9], and [3]. A comprehen-
sive review of analytical MOSFET modeling is found in [2].

Recently, asymptotic techniques were shown to be an effective tool for investigating
the behavior of solutions to the semiconductor equations in many relevant cases. For
example, Please [10], using formal asymptotic expansions for large doping levels,
constructed the asymptotic potential and provided a detailed description of the I-V
characteristics for a one-dimensional forward biased p-n junction. Also Markowich
[7], [8], in addition to proving existence and regularity theorems, demonstrated via
singular perturbation theory the occurrence of internal and boundary layers in a
two-dimensional setting. In this paper we are primarily concerned with resolving the
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structure of solutions to the governing equations for the MOSFET with small aspect
ratio. The asymptotic techniques used are related to [10], but are somewhat more
involved due to rapid changes in the potential near the semiconductor-insulator
interface. This asymptotic approach offers certain advantages over traditional modeling
methods. For example, variable doping density can be easily taken into account and,
more importantly, it allows us to compute closed form current-voltage relations that
vary uniformly across the various bias regimes. In addition, this approach also provides
a pointwise description of the state variables, in contrast to the earlier long-channel
models that only determined lumped characteristics. An outline of the paper is given
at the end of the following section after the formulation of the mathematical model
and a brief introduction to the operation of the MOSFET.

We remark here that the problems associated with the design of very short-channel
devices cannot be addressed by analytical long-channel modeling. For these devices,
punchthrough between the source and drain becomes a possibility and, perhaps more
importantly, the validity of the conventional drift-diffusion model must be more
carefully examined. The analysis of these very short-channel devices, which requires
a full numerical discretization of the governing semiconductor equations at each bias
point, is outside the scope of this paper. An excellent overview of numerical device
simulation is presented in Fichtner, Rose, and Bank [4].

2. Mathematical formulation and outline. A cross-sectional view of the MOSFET
is shown in Fig. 1. Electrical connections are made to the metal gate electrode and to
the n.well reservoirs that comprise the source and drain regions. This device is
designated as an n-channel MOSFET, since for appropriate voltage biases the current
flow between the source and drain is due to the transport of mobile conduction electrons
parallel to the semiconductor-insulator interface. The conductivity of this channel
between the source and drain is greatly influenced by the normal component of the
electric field established by the voltage applied to the gate. Since the gate is isolated

v’l* I gate contact___
A T II (0,0) insulator to,

C D

source region

n well

o(}

n -channel region drain region

well

depletion boundary ---- Nc

p bulk -P junction
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FIG. 1. Cross-sectional view of the MOSFET.
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from the semiconductor by a layer of insulating material typically made of silicon
dioxide, the modulating effect of the gate on the conductivity of the channel is purely
by a field-effect mechanism. An electron current between the source and drain then
results from applying a bias between the source and drain contacts. One of the primary
goals of "analytical" modeling is to determine the amount of this current flow as an
"explicit" function of the source-drain bias for various ranges of gate voltage. These
current-voltage relations are called I-V characteristics.

The migration of the conduction electrons parallel to the interface can be a result
of both drift, under the influence of the electric field, and diffusion due to concentration
gradients. The asymptotic analysis presented below delineates the ranges of gate and
source-drain bias for which the electron current density is dominated by either the
drift or diffusion component.

In general, the MOSFET is a four terminal device with voltages applied to the
gate, source, drain, and substrate. Without loss of generality, we assume that the
substrate and the source are kept at the same voltage. Allowing for a source-substrate
bias simply introduces another parameter into the model and does not affect the
structure of solutions to the governing equations. All voltage quantities are referenced
with respect to the source.

To simplify the geometry, the semiconductor equations will be solved in the
rectangular region BGHC. However, since the behavior of the current-voltage relations
depends strongly on the electric field occurring in the insulator, we must solve for the
electrostatic potential in the oxide IBCJ. The equations in the semiconductor and
the oxide are then coupled through the boundary conditions to be imposed on the
semiconductor-insulator interface BC. We now introduce the relevant equations and
the associated boundary conditions.

In the region BGHC, the equations comprising the static drift-diffusion model for
an n-channel MOSFET, assuming no recombination and that holes remain in thermal
equilibrium, are

e.V E p =- q(p- n + N),

,I, q, V n + nE

(2.1) V. J, =0,

VO=-E,
-qq-kTp-- llie

where

n,p are the electron and hole concentrations,
N is the concentration of selected impurities or dopants,
J is the electron current density,
E, q are the electric field and electrostatic potential,
/xn is the electron mobility,
e is the dielectric constant of the semiconducting material,
p is the space charge density,
ni is the intrinsic carrier concentration,
q is the charge of a proton,
k is the Boltzmann’s constant,
T is the assumed constant lattice temperature.

The combination kT/q is called the thermal voltage v,l,.
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The main assumptions of the model are that the holes remain in equilibrium and
that there is no recombination or generation. For the range of gate voltages to be
considered, the hole concentration in the channel region is negligible. Therefore, the
current density due to holes in the channel region can be neglected. Thus, the channel
current is due, almost exclusively, to the migration of conduction electrons near the
interface along the channel. However, any modeling of bulk currents deep in the
substrate, where the hole population is large, would have to take into account the hole
current density. Assuming that the length scale as a result of the electron carrier lifetime
is sufficiently long compared to the channel length, recombination from a Shockley-
Read-Hall process can be neglected. In addition, since the fields encountered will only
be moderate, we can neglect any generation effects caused by avalanche multiplication.
These assumptions on the generation and recombination terms, which result in a
divergence free electron current density, are commonly used in analytical MOSFET
modeling (see [2]).

The electrical behavior of a semiconductor device is greatly influenced by the
spatial distribution of selected impurities, called dopants, that are implanted into the
channel to enhance the conductivity. The net impurity concentration, N, is assumed
to be completely ionized and does not contribute to the flow of current. Moreover,
the doping profile in the active region BGHC, used to enhance the channel conductivity,
is assumed to be of the form N N(Xl). Both the impurity profile in the channel
and the mobility model, which may depend on the field, are assumed to be given.
The range of validity and the physical justification of this model is discussed in
Selberherr 11 ].

The boundaries of real devices are composed of both physical boundaries, which
include contacts and insulating segments, and artificial boundaries needed for numeri-
cal and analytical simulations. We now prescribe the boundary conditions for the
simplified geometry BGHC.

Neglecting any surface or bulk recombination effects we assume that there is no
flux of carriers normal to the interface BC or across the artificial line segment GH.
Namely,

J,’=0 on xl=0 and xl=x*,

where is the unit normal to BC and GH and x* is the depth of the n-well reservoirs.
Furthermore, assuming no interface charges, the electrostatic potential and the electric
displacement vector are continuous across the interface BC

OX OX ins

where e. and ei are the dielectric constants of the semiconductor and the oxide,
respectively. Neglecting interface charges is not restrictive since their inclusion simply
introduces another additive parameter into the model. The boundary condition for the
potential on the line segment GH is prescribed later.

The n-well reservoirs of conduction electrons are formed by implanting large
concentrations of donor impurities into the semiconducting material. The dopant
concentration N Nc in these two reservoirs, bounded by the rectangular regions
ABGK and CDLH, is taken to be constant.

Assuming perfect ohmic contacts for the source and drain AB and CD, this then
specifies Dirichlet boundary conditions for q and n on the contacts in terms of N,.
(see Selberherr [11]). In terms of the simplified geometry BGHC, these boundary
conditions, normally imposed on the source and drain, are imposed on BG and CH,
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respectively. These boundary conditions, derived from assuming thermal equilibrium
and a vanishing space charge on the contacts, are

n 1/2(N,. +x/N + 4n2) N,. on BG and CH,

d/ Vth ln (N’+x/N2c+4n) Nc
V,hln-- on sourceBG,

2rli /i

Vthln(Nc+x/N2+4n)+vas VthlnNc+ vas on drain CH,
2r/i rl

for Nc/ni >> 1. Typically N/ni 108. The difference in the applied bias between the
source and drain, va, is called the source-drain bias.

The oxide bounded by IBCJ is assumed to be charge neutral and thus in this
region the electrostatic potential satisfies

Vq =0.

There is no transport equation for the mobile electrons in the oxide. The boundary
condition for the potential on the gate contact IJ is

ffJ 1.)g l.)fb,

where vg. is the externally applied gate bias referenced with respect to the source. The
voltage vy, is the flatband voltage, which measures the difference in the work functions
between the metal gate and the semiconductor. The boundary conditions on the artificial
boundary segments IB and JC are taken to be E. 0.

To begin the analysis we introduce an appropriate scaling of the drift-diffusion
model. For MOSFETs, the ratio of the maximum channel dopant concentration to the
intrinsic level ni is normally very large. Therefore, we introduce a large parameter A by

A max IN(x1) nil.
However, for A >> 1 rapid variations in the potential normal to the semiconductor-
insulator occur. From an analysis of the one-dimensional Poisson equation, these
variations occur on a scale of O((ln A/A)1/2). In addition, the electron concentration
can range over many orders of magnitude. To normalize the electron concentration,
a new independent variable is introduced that has a much smaller range. Also, in terms
of this variable, the no-flux boundary condition on the current density vector becomes
a pure Neumann condition. Thus, we consider the following scaled variables

d V,h In A w,

(2.2) xl=Le x whereLa= niq2]

X2 Ly,

gl gl e(w-4)in’,

where b is called the electron quasi-Fermi potential and measures the departure from
thermal electronic equilibrium. The physical length scale Ld is called the intrinsic
Debye length, and/x represents a typical magnitude of the mobility.



1104 M.J. WARD, F. M. ODEH, AND D. S. COHEN

With this scaling, the governing equations (2.1) become

1 e(w-4). e-W,. + d (x)(2,3a) r2w=
A

(2.3b) 24 +4 (/ )+ln Ar(w- 4)) =0,

(2.3c) J. (J.,, L) _kTn (A In A)/ e(W-),
Ld

where the normalized doping profile d(x) is defined by

S(Ld(ln A/A)/Zx)
d(x)= =O(1) withd()=>0,

and the gradient operator in the new variables is

,e wheree=
From this scaling the validity of any one-dimensional analysis normal to the interface
is seen to be restricted to channel lengths and maximum dopant concentrations
satisfying e << 1. The numerical value of e for silicon at room temperature with 106,
La 33 microns and L 10 microns is e ,012. Enforcing the conservative condition
e N .01, we expect that a quasi-one-dimensional analysis in the middle channel region
away from the source and drain should be quite adequate for 10 micron or longer
devices. For micron and submicron devices with the same channel doping, the governing
equations are fully two-dimensional and numerical methods must be employed to
accurately solve for the potential.

As a remark, since the voltage quantities are scaled with respect to the thermal
voltage, the influence of large source-drain biases that can effect the validity of any
one-dimensional approximation is not immediately apparent. Physically, even for e << 1,
a large source.drain bias of =5 volts can cause the device to exhibit significant
two-dimensional behavior in the drain end of the channel. The increased influence of
the region near the drain for large source-drain biases leads to the physical effect of
channel length modulation, which we do not consider, where the current depends on
the source-drain bias in a complicated way.

In terms of the electron quasi-Fermi potential, the boundary conditions prescribed
above for 0 and n in the scaled domain BGHC transform under (2.2) to

(2.4a) =0 ony=O and = ony=l,
In h

Ob 0 onx=O and Ob 0 onx=x*,(2.4b)
Ox Ox

where ds= Vds/1)th and x* is the scaled depth of the n-well reservoir. The no-flux
boundary condition on 4 imposed at x* is reasonable since variations in the electric
field in the x direction occur on a scale of =.10 microns for A 106, whereas the depth
of the source and drain wells is =.50 microns. This fact implies that an asymptotic
boundary condition for the potential along GH is appropriate. The precise value of
x* is not important since the mobile electrons are normally concentrated only near
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the interface. In addition, the boundary conditions corresponding to BG and CH for
the scaled potential, w, are

ln(N,:/n,)
(2.5a) w wbi on y 0,

In A

ds(2.5b) w wbi +7-"7. on y 1.
lnA

To proceed analytically, the potential in the insulator must be modeled. Since the
typical oxide thickness, to,,, is approximately .025 microns, we have d to,,/L <= .01 << 1
assuming L 10 microns. Therefore with d O(e) a one-dimensional potential drop
in the middle region of the oxide, y/e >> 1 and (1-y)/e >> 1, is assumed. With this
assumption, and using the continuity of the potential and the electric displacement
vector across the interface, we obtain the boundary condition

(2.6) ----+Co,, (w+l)=Cox on x=0ox v h v h In h

for y/e >> 1 and (1-y)/e >> 1. For convenience in (2.6), we have defined an effective
gate voltage, 3g, by Tgs (vg Vyb + In h )/Vth. This normalization implies that for 3g 0
we have w -1. Using the material constants for silicon and silicon dioxide and
taking tox--.025, L 10 microns, the scaled oxide capacitance, Cox, defined by Cox
ella/toxe. is approximately 450. The value Cox 450,0 is used in all the calculations
below.

Using (2.6) as a boundary condition for p in the semiconductor region BGHC
will determine the surface potential w(x, O)=-w(y) and hence the field in the middle
region of the oxide. In several special cases, the surface potential will be found to be
essentially constant in the middle channel region away from the source and drain.

As a remark, since the potential within an O(e) extent of the source and drain
BG and CH, respectively, will not be found, an equation that determines the surface
potential along the full extent of the interface is not needed. Some models used for
the surface potential near the source and drain, which bypass having to solve Laplace’s
equation for the potential in the oxide, are provided in Greenfield [5].

Finally, in order to derive the I-V characteristics, we need a definition of the
source-drain current Iris. Integrating the current density component parallel to the
interface over the active channel cross section, we arrive at the definition of the current

(2.7) Id .lx: dXl.
,dO

Owing to the no-flux conditions (2.4a), (2.4b), we have that Ia is constant with respect
to channel-wise direction. Under a more general situation in which recombination
currents at the interface are taken into account, an additional averaging of (2.7) over
the channel length would have to be done.

In the above expression we have assumed a unit width perpendicular to the plane
ofthe MOSFET. Using the expression for J,: from (2.3c), the above equation now reads

(2.8) /d
Oy tx e

,, .,
dx,

where I kTnlzLa / L.
An outline of the remainder of this paper is as follows. In 3, the equations

relating the potential and the quasi.Fermi potential in the middle channel region are
obtained by means of a regular perturbation expansion in the aspect ratio e. This
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middle region O(e)<< y << 1- O(e), away from the source and drain, is referred to as
the mid-channel or outer e region. In 4, the equilibrium potential in the outer region
is resolved using the method of matched asymptotic expansions (see Kervorkian and
Cole [6]) in the large doping limit A >> 1. Here, we analyze the different regimes of
behavior of the potential, depending on the value of the gate voltage, with special
emphasis on the rather delicate inversion regime when the potential varies extremely
rapidly near the silicon-oxide interface. Then, the mobile charge in equilibrium is
found using standard techniques in the asymptotic evaluation of integrals. In 5 and
6, we combine a discussion of the behavior of the quasi-Fermi potential together with
the results of 4 to obtain the current-voltage relations in the relevant operating regimes
for both constant and variable doping. Also, as a by-product, we give a more precise
description of the so-called pinchoff behavior.

3. The outer e expansion in the mid-channel region. In the mid-channel region we
assume a regular expansion for the electron quasi-Fermi potential and the potential
in the form

w(x, y)= w(x, y)+ e2w(x, y)+...,

49(x, y)= c(x, y)+ ez4) ’(x, y)+....

In addition, we assume that the mobility model is a known function of both x and
the partial derivative in the channel-wise direction of the electron quasi-Fermi potential

ix=tx x,
Oy /

Substituting this expansion into (2.3a), (2,3b), and equating powers of e yields, to
leading order,

02W0 1 e(wO_4,O)lnX(3.1a) -wln

Ox2 - -e )+ d(x),

(owoo_ _o )o Oo.(3.1b) + + In h
ox --d ox ox / ox

The no-flux boundary conditions on b, (2.4b), effectively uncouples this leading order
system and enforces b= b(y) only, which means that the flow of current is directed
primarily parallel to the interface. Using this form, the second-order equation in the
expansion of the electron transport equation now reads

021])
t" +lnA b(3.2)

Ox Ox ---x / Ox
,,o+ Oy+lnh -y-4" 4"

where the primes denote total derivatives with respect to y. From (3.2) we observe that
the second-order equation for b requires knowledge of only the leading order potential.

From the Fredholm alternative, the solvability condition for (3.2) with no flux
boundary conditions on x 0 and x x* provides the differential equation satisfied
by 4. Integrating (3.2) once and satisfying the required no-flux boundary conditions
enforces

(3.3) b ’’ In A( to)2 --ll- 1)to 0 to) w(’,b)lnA-fyln /x (’, e dr =0,
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where in general the potential depends on o from (3.1a). This equation can also be
written compactly in the form

(3.4)

where

O 4),0,,O+y (In (o’.)) =0

/’1"/z(’, ,o) e(W(C,6)-4,),nx dsr,(x* w,, o, ,o)_=
Jo

is the averaged channel conductivity per unit charge. As will be seen in 5, the first
form of the equation for, (3.3), is advantageous for determining the diffusion current
in subthreshold gate bias regimes. Integrating (3.4) once shows that cr,’ is constant
in y and comparing it to (2.8) gives

(3.5) ’r.(x*, W, 4, ,o)In i =-- as e -0.

Satisfying the boundary conditions (2.4a) for b at y 0 and y 1 will thus determine
the source-drain current. From (3.5), it is clear that since Vds > 0 we must have o>= 0
and that o vanishes identically if 3ds 0.

In the special case for which/z (’) only, the source-drain current from (3.5)
can be written compactly as

io’(3.6) Ids"--I /x’Qc((y)) In h dy

where

(3.7)

as e O,

Qc(O(y)) h ,/2

is the amount of mobile charge in the channel under nonequilibrium conditions. In
4, we shall evaluate Q asymptotically as A in various gate bias regimes.
We now make a few remarks concerning the above perturbation approach to

current flow in MOS devices. First, from (3.2), we note that there can be some current
flow normal to the interface near the drain end of the channel. In prior modeling, the
current flow in the channel away from the source and drain is assumed to be entirely
tangential. In fact, (3.4), (3.2), and some algebra show that the current density normal
to the interface in the original variables is

Id. 0 [ tr.(X, W, o, 6,o)
(3.8) oy

Second, to determine the I-V characteristics associated with various gate bias
regimes and doping profiles, the outer e equation for the potential w parameterized
by o must be solved and the averaged channel conductivity computed. Unfortunately,
it is not possible to solve (3.1a) explicitly. However, the outer e potential can be
resolved asymptotically by the method of matched asymptotic expansions in the limit
of large doping, A >> 1, for various classes of implant profiles d(x). Using these
asymptotic expansions for the potential, the averaged channel conductivity can then
be evaluated asymptotically for given mobility models using well known techniques
in the asymptotic evaluation of integrals. Furthermore, from the A >> 1 expansion, a
pointwise description of the field quantities and the current density vector is available.



1108 M.J. WARD, F. M. ODEH, AND D. S. COHEN

Third, the boundary conditions associated with (3.4) on the outer solution are
(2.4a). In contrast to the potential, boundary layers in 4 are not anticipated near the
source and drain. However, the use of (3.5) necessitates computing the potential in
the inner regions near the source and drain in order to determine the i- characteristics.
Since the potential is not analytically known near the source and drain, even for large
doping, numerical methods must be employed to compute the potential in these regions
and to match to the behavior in the mid-channel region.

in conventional modeling the boundary conditions (2.4a), (2.4b) are used and the
potential near the source and drain is neglected. It has been noted by Brews [2] that
with this simplification the source-drain bias is not the bias applied on the drain contact
but rather should be interpreted as the bias at an O(e) distance away from the drain.
Using the results of the h >> 1 asymptotics for the outer potential, and adhering to
Brews interpretation, we will find closed form expression for the I-V curves in the
relevant bias regimes. The influence of the potential in the inner regions on the current
flow is currently under investigation.

4. One-dimensional equilibrium potential k >> i. In this section the potential in the
mid-channel region, under the assumption of equilibrium, o. 0, is analyzed in the
limit A >> 1. The asymptotic potential is constructed for a particular class of impurity
profile d(x). The results of this section are then easily generalized to nonequilibrium
conditions sinceo O(y) only.

The class of MOS devices that we are concerned with in this paper are formed
by implanting only acceptor impurities, such as boron, into the substrate. The doping
profile for these devices in the mid-channel region is modeled by

d(x)=+(1-fl)e-(/ with0<l,

where/3 is independent of h. Typically,/3 [.01, 1.0] and o-, referred to as the straggle,
satisfies tr [.50, 5.0]. The boundary value problem for the potential in the mid-channel
region in equilibrium from (3.1a) is

(4.1)

with boundary conditions

gwlnh wlnh

W,,x=- e- )+ d(x),

w(O)= w(Jg.) and lim w(x)=-----1 sinh_,(.)-- in h

The asymptotic boundary condition for the potential can be imposed at x x*. The
w. w.(g.) relationship will be derived later.

As a remark on the boundary condition at the interface, the strategy is to solve
(4.1) asymptotically for various ranges of w., thereby deriving explicit expressions for
w,,(0) as a function of w.. Finally, using the mixed boundary condition that holds on
the interface (2.6), expressions for gs as a function of w. for various ranges of w, are
obtained, Inverting these relationships gives w, and thus the potential, as a function
of g. in various gate bias regimes.

The operating regime of the device is characterized by the different dominant
balances in the Poisson equation (4.1) in the limit h >> that can hold near the interface.
These different balances lead to substantially different behavior in the mobile charge
as a function of the gate voltage in the on and off states of the device.

The classification scheme shown below is based on the magnitude of the surface
potential W. Since for w, >-1, the potential is a decreasing function of x, the value
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of w. determines the importance of the electron concentration e(w-1)lnA to the space
charge density near the interface. If the electron concentration dominates the impurity
concentration near x O, the surface is said to be inverted and a thin layer, called an
inversion layer, is present near the interface. With these considerations, the following
classification, for constant doping/3 1, is normally made:

Ws(gs) > 1 strong inversion,

0 -< ws (Sgs) -< 1 weak inversion,

-l+ O(1/ln A)<< w.(gL)<0 depletion,

[w.(3g,) + 11 O(1/ln A) near flatband,

w(3g)<< -1 + O(1/ln A) accumulation.

Notice from (2.6), Og. 0 at flatband where w 1. We analyze below the basic regimes
relevant to an n-channel device, namely strong and weak inversion, as well as depletion.
The asymptotic potential for the remaining two regimes can be constructed in a similar
manner.

The conventional modeling approach valid for constant doping,/3 1, is based
on the first integral of (4.1). Although this approach is useful for finding the total
charge, it does not provide a simple pointwise description of the potential and, more
importantly, is not applicable to the case of variable implants. The asymptotic approach
presented below does not suffer from these limitations. However, to illustrate the
matching technique we first consider the constant doping case in both weak and strong
inversion.

4.1. Weak inversion-depletion (-1 + O(l/ln A)<< w<= 1), In this case, the dominant
contribution to the space charge density near the interface arises from the immobile
acceptor ions. The analysis of the matching for this case closely parallels that of
Please 10].

Near the interface, the nonlinearity in the Poisson equation can be neglected for
In A >> 1. The potential near the interface, referred to as the depletion layer potential,
Wd, satisfying wd(O)= W. is expanded as

Wd=--X +ax+wL where a= , ai(lnA)-i,

with at to be determined. Moreover, in the bulk an expansion of the boundary condition
at infinity for In A >> 1 provides Wb =--1 + O(1/A2 In A). Since Wb --1 we know that
the term e-w/l)l’’ in (4.1) must become significant for some x. Therefore, the depletion
layer potential must be matched to the bulk potential wb by constructing an internal
layer about some unknown depth Xd where the hole and impurity concentrations in
(4.1) balance. Matching the solutions in the transition and depletion layers will then
determine both Xd, referred to as the depletion width, and a.

An important feature of the matching is to obtain the (w. + 1- I/In A) /2 terms
that appear in the exact solution. The presence of these terms requires an infinite order
expansion of a and Xd in powers of l/In A in the asymptotic solution, For In A very
large, matching only a finite number of such terms results in an accurate asymptotic
solution except near flatband. However, for doping levels of A 106, we have In A 13.8
and so to retain high accuracy in our asymptotic expansions in weak inversion we will
construct an infinite order expansion in powers of l/In A.
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In the transition layer, inspection of (4.1) shows that the appropriate scalings are

x,=(X--Xd)(lnA) 1/2 and w=w,(x,)=-l+ho(x,)/lnA.

In terms of these new variables, the transition layer equation for ho is

(4.2) h 1 e-h,
where ho(oO)=0 is needed to match to the bulk. It is not possible to integrate (4.2)
explicitly; a first integral, however, provides the implicit expression

h
+y 1) dy.(4.3) -x/xt (e-y -1/2

The lower limit of the integral can be chosen arbitrarily since O(1) changes in its value
are reflected in O((ln A))-1/2 changes in the depletion width.

Even though the transition layer solution is not known explicitly, all we require
for matching are the asymptotics out of this layer. Defining an intermediate variable

xn via

X--Xd 1
xn where 1/-------- << r/(h << 1

r/(A) (lnA)

and expanding the implicit transition layer solution (4.3) as xt-->-oo, or alternatively
as ho-> oo, provides

1 xrtc (c
2 )w,-’- -1 +- 2 2__ --1/2 -+ 1 (In A)-l2x,r/ ----(ln A) +

where

(4.4) c= [(y- 1)-’/:’--’(e-Y+y 1) -/2] dy.

The value of c to five significant digits from numerical integration is c .81785.
Similarly, expanding the depletion layer potential in terms of an intermediate

variable gives
2 2 2

Wd "-Xd + axd + Ws + x,rl(a + Xd)+Xnrt
To match, we must also expand the depletion width as

Xd , Xdi (In A
i=0

and equate powers of rt(A) in the above expressions. Matching the transition and
depletion layer potentials to an infinite order in O(1/ln A) by solving the resulting
algebraic equations gives

a x/(w. + 1- l/In A )1/2,
(4.5) c

Xd -- (ln A)-/2+(w + l/In A)/,

of which the first few terms for In A >> are

1a-(w,+l)/ 1
2(w,+l)ln

c -l/ 1/xe (lnl) +(w,+l) 1
2(w+l)ln
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The leading order term in this expansion is equivalent to the conventional depletion
layer approximation, (see Sze [12]), in which the transition layer is neglected and the
leading order potential is patched for C continuity to the bulk at some unknown
location. Using the expression for a, the depletion layer potential is

Wd --1/2X2--X/(Ws -- 1 l/In A )1/2 _[_ Ws"

From this expression we notice that the expansion breaks down near flatband where
w. =-1 + O(1/ln A). When this occurs the transition layer equation is valid up to the
interface as there is no region of depleted carriers.

To determine the current flow in 5 below, the amount of mobile charge from
(4.6) in equilibrium defined by

(4.6) Qc -= e w(’)lnA dr
o

must be evaluated asymptotically for In A >> 1 using the depletion layer potential. Since
the dominant contribution to Qc arises from the interface, a two-term expansion from
integration by parts provides

(4.7)
eWLlnX

Qc x/(A In A )l/2(W -1
t" l/In A )1/2

1 )2(ws+l-1/lnA)lnA

for lnA >> 1 and -l+O(1/ln A)<< ws_<-l. From this expression we note that if w<_-0
there are virtually no mobile carriers near the interface available for current conduction.
Alternatively if ws>0 there are some mobile carriers near the interface that are
responsible for a leakage or subthreshold current upon application of a source-drain
bias.

For variable doping, 0 </3 <_- 1, a similar analysis applies, although the equations
for the matching parameters must be solved numerically. In addition, for variable
doping the matching can only be done to leading order. The details of the calculation
are provided in Ward [13]. The main assumption needed is that the doping profile is
slowly varying in the bulk. For the variable doping case, the leading order (in 1/In A)
potential, Wd, in the depletion layer is

Wd W + ax + fl-- xZ+ (1-- fl2 If (X ) e-(C/) d,

where a w(0), proportional to the total charge, is to be found by matching. Matching
the depletion layer and bulk potentials by means of a transition layer, described above,
determines a and Xd. To leading order, and using the Gaussian form of the doping
profile d (x), we obtain

1 + w ’d (’) dr,

d
a -flXa -(1 -/3) e

The implicit expression for the depletion width is easily solved by Newton iterations.
As in the case of constant doping, the expression for the asymptotic mobile charge
from (4.6) in the variable doping case can be written. We find

eW,"’( )(4.8) Q
(A In A)/Za a21n,
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We now consider the case of strong inversion characterized by a different dominant
balance in the Poisson equation for In A >> 1 near the interface. An analogue of this
interface layer is not present for p-n junctions unless the junction is strongly one-sided.

4.2. Strong inversion (ws>=l). In this case, since ws => 1 we have e(w-1}na >> 1 near
the interface which results in the potential having a large gradient near x 0. In this
thin inversion layer the contribution to the space charge density is dominated by the
n-carriers. A schematic plot of the potential in strong inversion, illustrating the layer
structure for In it >> 1, is shown in Fig. 2. To illustrate the matching we again first
consider the case of constant doping, d 1.

In the inversion layer the appropriate scaling is

x/’(it) and Wi(, w(’/ln it Wio( it )"i-
(ln it ’ w,1 (:,7, it +’".

Substituting this expansion into (4.1) then yields the layer equations

1
(4.9a) w" W,o"X

,o A(ln A) e Wo(0) w,

1
eW,olnA ](4.9b) w,"- inA w, 1 w,(o) =0.

There are several solutions to (4.9a) which satisfy the boundary condition on x 0.
The appropriate solution required for the matching, which satisfies the boundary
condition on x 0, is

(4.10) W,o(Y) 1+i- In (a2o In it)-7--7 In sinh Y + 3/

where

(4.11) y=sinh -1 (a) and

m to Wo(, A) + Wit (, ,) inversion layer

1.0’ -- =zln

w o depletion layer
.50

o.o

.o

-1.
w -I +

It: transition layer

-I.5

o.o ,.o

FIG. 2. Schematic plot of the equilibrium potential.
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The unknown constant ao O(1) will be found by matching. Notice that 3’ is transcen-
dentally small unless w. is very near 1.

Defining an intermediate variable x, by x,=x/rl(a), where 1/lna<< r/(a)<< 1,
then as Y-+ oo out of the inversion layer, we have

In (In h) 2- (ln (2ao)- 3’)-,,/aor/x,.In A

As a remark, the equation for the higher order correction wil from (4.9b), can be solved
explicitly using the form of Wio. However, it suffices for matching to obtain the behavior
of wi as Y-+ oo. A simple calculation shows that

(4.13) wl 1/2:- + a, +b as -+ oo,

where, without loss of generality, we can set ai,, bg 0. Therefore, using the expansions
of Wio and w we have

(4.14) w--.+
In (ln A)

In A
2 1 2 2+]- (ln (2ao)- y)- x/aor/x, +x,r/

out of the inversion layer.
Since the potential is decreasing, adjacent to the inversion layer we have a depletion

layer in which the electron concentration is now subdominant to the impurity concentra-
tion. In this region the nonlinear terms in the Poisson equation (4.1) can be neglected,
and so with w,x we have

W Wd 1/2X + ax + b,

where a(A), b(A)= O(1) are to be found by matching. Matching the depletion layer
to the bulk by means of a transition layer centered at some unknown depth Xd gives
a relation for a and Xd in terms of b. A similar calculation as in weak inversion provides

a -x/(b + 1 l/In a)’/2,

(4.15) c
Xd -- (In a )-,/2 +,,/(b + 1 l/In a )1/2,

with c given by (4.4). Now, in contrast to weak inversion, b is not determined by
satisfying the boundary condition on the interface, but rather is found by matching to
the inversion layer.

Finally, matching to the inversion layer determines b and ao. In terms of an
intermediate variable, x,, we have

2 2(4.16) Wd b + ax, rl +x,r
so that matching (4.16) and (4.14) we obtain

In (In A)
(4.17)

b 1+
In a

2
(ln(2ao)-+ ln---

ao (b+ l-l/In A)’/2,

where y is given by (4.11). Defining K by

In (ln a)
(4.18) K(A, w., ao)

In A
2

[ln (2ao)- 3’1+ ln----
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and combining (4.17) gives a weakly nonlinear equation for ao

(4.19) So- (2/K(A, w, So)- 1/ln A) /.

The above equation can be solved approximately or numerically by iteration for fixed
large doping levels. Once o is found, the "switchback" term K(A, w, So) is known
and thus Xd, a and b are determined from (4.15), (4.17). Note that, even though K 1
for A >> 1, the approximation ao x/ is rather poor, since K .20 for A 106.

An important point to notice is that the order of K(A, ws, ao) in the depletion
layer expansion depends on the surface potential. In very strong inversion, typically
when w. >> 1 + In (In A)/ln A, a is transcendentally small in In A as A . This implies
that in this regime, K(,, ws, ao)= O(ln (In A)/ln A) so that the matching parameters
ao, a and the depletion width are highly insensitive to the surface potential w..
Therefore, for this range of surface potential ao"- (2+In (In A)/ln A I/In ,)/2.
However, for W 1 + the expansion sinh-(a)---ln (2a)+ 1/4ce 2 for a >> 1 applies and
consequently K---(1/ln h). Therefore, in this limit a---(2-1/ln h) /2, which agrees
asymptotically with the weak inversion result (4.5) when w, 1.

To compare our asymptotics with the numerical solution to (4.1), the BVP is
solved numerically by finite differences on a stretched mesh with the boundary condition
as x- oe imposed at a few depletion widths from the interface. From Fig. 3, the error
defined as the magnitude of the difference between the numerical and asymptotic
potential for h 106 is roughly .60 percent in both weak and strong inversion.

A 106 constant doping

1.23

0.36

0.00

FG. 3. Comparison of the asymptotic and the numerical potential.

Finally, a similar analysis applies for the variable doping case provided the doping
is locally constant in the inversion layer and is slowly varying in the bulk. Retaining
the same notation for the depletion layer potential as in weak inversion, and after
some algebraic manipulations, the coupled leading order equations for the matching
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constants are found to be

(4.20a) fl---Xd+ I2(Xd)=2+ K(A, Ws ao)
2

(4.20b) ,Sxa ,/Ceo+ 12 xa O,

where a=-o and the integrals I and I2 are defined by

(4.21) I(xe)= (d()-) d and h(xe)= (d()-) d.

For fixed large I, standard numerical methods are then employed to solve for the
matching constants. Further details on the variable doping case are provided in
Ward 13].

As a preliminary calculation for obtaining the I-V characteristics in the linear and
saturation regime in 6, the mobile charge Q must be computed asymptotically. In
this case the dominant contribution to the integral, (4.6), defining Q, also arises from
the interface. However, using the leading order inversion layer potential constructed
in this section, we see that Laplace’s method is not directly applicable since the higher
order" terms satisfies

w(0)
==O(1) for<<l.

In W’o(0) 2(1 + 2)
The failure of a routine application of Laplace’s method is a result of the strong
dependence of the slope of Wo on A and the near logarithmic singularity ofthe inversion
layer potential at Y=-y/o << 1 just outside the domain. To remedy this situation,
we evaluate the integral asymptotically by integrating over the inversion layer from
the interface to infinity in the stretched variable Y. Using Wo, the mobile charge integral
is given asymptotically by

Q -(A In A)’/2 1
dY.

sinh (aoY/+ y)

A direct computation of this integral provides

(4.22) Q

_
eW,,/2(i +2_ ),

where is given by (4.11) and o in the constant and variable doping cases is found
from (4.19) and (4.20a), (4.20b), respectively. This expression for the mobile charge
reduces for In >> 1 to the leading order term of the expression for the mobile charge
in weak inversion at the strong-weak inversion transition, w 1.

Finally, the surface potential is related to the input gate voltage by studying the
boundary condition (2.6) that holds on the interface in the mid-channel region. Defining
the total charge Q by

I0Q -(I In i)1/ w"(x) dx=( In 1)l/w’(0),

the boundary condition on x =0 from (2.6) becomes

(4.23) F(w,.)(w+l)lnl v. 0.
Cox

From the asymptotic potential for constant doping, we have

ea/(1 +)/ w, 1Q-
( lnl)/(w,+l-1/lnl) 1/ -l+O(1/lnl)<<
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where a is given by (4.11). The above expressions agree asymptotically at w, 1. A
similar relationship can also be written for the variable doping case. We find

_Ix/’eWinx/2(iqi-Oz2)l/2. )
w-->I

Q’
(A In A )1/2 xd

__
2

(1-)erf(xd/tr) -l+O(lnfl/lnA)<< w.<--_l

where a and Xd are given by (4.11) and (4.20a), (4.20b), respectively. Since the total
charge is known in both weak and strong inversion as a function of w,, (4.23) is easily
inverted for w. w,(3g.,,) by Newton iterations. In the case of variable doping, an inner
Newton iteration cycle is needed to solve for the matching parameters at each step of
the outer iteration.

For constant doping a first integral of (4.1) exists, and using the asymptotic
boundary condition for the potential, the total charge is

Q,.(w).--x/(eW.n+e-W.,"+w.A lnA +A(ln A 1)) ’/2.

As discussed earlier, the first integral only exists for the case of constant doping. The
asymptotic analysis presented above gives the total charge under both constant and
variable doping. To check the accuracy of the asymptotics we now compare the
asymptotic total charge with the total charge obtained from the first integral assuming
constant doping. The total charge as a function of the gate voltage for constant doping
as obtained from both the first integral and the asymptotic theory is compared in
Fig. 4 where the relative error is plotted. The two expressions are seen to be in very
close agreement under both weak and strong inversion.

A plot of the surface potential as a function of the gate voltage for variable doping
using the asymptotic total charge is shown in Fig. 5. Using the ws ws(g.) relationship
and the expressions for the mobile charge in weak and strong inversion under variable
doping, the mobile charge as a function of the gate voltage is plotted in Fig. 6. The
critical voltage, g.,h, which we define as the value of the gate voltage where w.
1 + In (ln A)/ln A, is labeled on the graph. This definition is motivated by the fact that

7.0 --:

6.0
l 10

iq.(%)l
xxo=

2.( 4.0 6.0 8.0 I0.0 12.0

Ogs (gate voltage) I01

3.0

2.0

FiG. 4. Comparison of the total charge.



ASYMPTOTIC METHODS FOR MOSFET MODELING 1117

2.00

50

O0

0 50

0 O0

o.2o 0,40 0.60 0.80 .00 1.20

#, gate voltage) x 10

FiG. 5. Surface potential as a function of the gate voltage.
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FIG. 6. Mobile charge as a function of the gate voltage.

the critical parameter a, and hence the mobile charge, changes its behavior at
From this figure we notice that once strong inversion conditions have been established,
further increases in the gate voltage are reflected almost exclusively in the buildup of
mobile charge near the interface.

An important consequence of the detailed analysis of the equilibrium potential
in the , >> limit is that the total and mobile charges are easily evaluated asymptotically
in all bias regimes. This feature allows for current-voltage relations that agree asymptoti-
cally across the boundary between weak and strong inversion. The analysis of the
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nonequilibrium problem that follows relies strongly on the asymptotic results derived
for the equilibrium problem. We now derive the current-voltage relations for the
subthreshold current flow.

5. Subthreshold current flow. In the subthreshold case, corresponding to the weak
inversion regime, there is a small leakage current upon application of a source-drain
bias. In this case the gate voltage is sufficiently low so that the contribution to the
space charge density of the mobile n-carriers can be neglected for 3, >> 1 near y O(e)
where b 0. Since 4’> 0 in the channel, the contribution to the space charge density
of the mobile n-carriers can be neglected everywhere in the mid-channel region. This
implies that the nonequilibrium potential from (3.1a) is independent of b(y) for A >> 1
and consequently is given asymptotically by the equilibrium potential in weak inversion.
Since the surface potential is also independent of y in the channel, then for constant
mobility (3.3) reduces asymptotically to

(5.1) b" In A (b ,o) 2 0,

in the mid-channel region. Neglecting the transverse electric field in the inner regions
near the source and drain, the boundary conditions (2.4a) are imposed on (5.1) and thus

1
b=-ln (1- (1-exp (--Od))Y).In A

Since asymptotically there is no transverse electric field in the mid-channel region, the
current flow is due to diffusion. Using the definition of the current, (2.8), with/z 1
and the mobile charge, (4.6), we find

Id, --It(1--exp (--d))Qc(w(gs)).

Using the asymptotic results (4.8) for the mobile charge in weak inversion, the current-
voltage relation is given by

ids,.,.,ic(1-e-".)eW.’’( 1 )(X lnX)l/2]a 1+ a21nA as A-->, e->0,

where a a(3g.) is given by (4.5) and (4.20a), (4.20b) under constant and variable
doping, respectively. The w w(3g.) relationship is determined from (4.23) using the
asymptotic total charge. The leading order term under constant doping is in agreement
with the result by Barton [1] based on conventional device modeling.

A plot of the current versus the source-drain bias for various gate voltages under
variable doping is shown in Fig. 7. Due to the exponential dependence of the current
on the surface potential, small increases in the gate voltage are reflected in relatively
large increases in the current. A plot of the current versus the source-drain bias for
fixed gate voltage and for various straggles tr of the variable implant is shown in
Fig. 8. Since, as seen in Fig. 6, the amount of mobile charge in equilibrium is smaller
for larger straggles, the leakage current under subthreshold conditions is also smaller
for larger straggles.

Next, we consider the case when the dominant contribution to the space charge
density arises from the mobile n-carriers near the interface in some region ofthe channel.

6. The linear and saturation regimes. In this section the MOSFET is analyzed
when the dominant contribution for A >> to the space charge density near the interface
arises from the mobile n-carriers in some region of the channel. It is assumed that at
an O(e) distance away from the source, where 4=0, the gate voltage exceeds
threshold. The threshold voltage here is defined as the value of the gate voltage in
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equilibrium for which w., 1. Therefore, for some region of the channel an inversion
layer exists and the mobile electrons drift under the influence of the transverse electric
field toward the drain. Depending on the relative magnitude of the gate voltage and
the source-drain bias, the inversion layer may extend throughout the channel up to an
O(e) distance away from the drain. This range of gate voltage and source-drain bias
constitute the linear regime. For other ranges of gate voltage and source-drain bias
the dominant balance for A >> 1 near the interface in the Poisson equation changes at
some position y* in the channel referred to as the pinchott position. For y > y* the
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dominant contribution to the space charge density arises from the fixed impurity ions
as the mobile n-carriers are now subdominant near the interface. In this post-pinchoff
region, which is typically quite narrow, the flow of current will be seen to be primarily
due to diffusion. This range of gate voltage and source-drain bias constitute the
saturation regime. In this section we will determine the electron concentration and the
potential throughout the channel in both the linear and saturation regimes under
constant mobility but will allow for variable doping. The current-voltage relations
associated with these regimes will also be determined.

Before discussing pinchoff in detail, the potential in the inversion layer from (3.1a)
for h >> 1 with b as parameter can easily be constructed using the asymptotic theory
presented in 4. Assuming ws-4> near the source, so that a local inversion layer
exists, the potential in this layer for h >> 1 retaining the same notation as in 4, is

(6.1) W,o() 1 + &o+In (ln A)
In A

+ ln- ]- In sinh \ V’ + ’
where Y x In A. We have dropped the superscript (0) for the potential since only the
leading order term in the expansion for e will be considered. Matching to the depletion
layer in the usual way determines both ao and the depletion width Xd. Retaining the
same notation as in 4, we find for constant doping

Xd =,f(Z+&+ K(A, w., ao, q)- 1/ln A)1/2,(6.2a)

(6.2b)

where

ao (2+b+ K(A, w., ao, b)- 1/ln A) ’/,

(6.3a) K(A, ws, ao, 4)
In (In A)

In h

2
[In (2ao)-y]+ ln----

(6.3b) a ao(ln h)I/ah (-w.+4’)/2 and y=sinh-(a).

For variable doping, the leading order coupled system of algebraic equations for xa
and ao are analogous to those in (4.20a), (4.20b). The coupled equations are

(6.4a) xZa + I2(xa 2 + K (,, w, ao, c),
2

(6.4b) xa -’v/ao+ I,(xa 0,

where the integrals 11 and 12 are defined in (4.21). Once the variation of b with y has
been determined from the differential equation resulting from the Fredholm alternative
condition (3.5), the asymptotic potential in the mid-channel region is known explicitly
in terms of x and y.

For fixed gate voltage, the minimum source-drain bias such that pinchoft occurs
at the end of the channel can easily be found from the depletion approximation. By
definition, pinchoff occurs at the end of the channel when the dominant balance there
for In h >> 1 changes between weak and strong inversion, i.e.,

w-&=l aty=l-O(e) where &O=d/lnh.
Using the mixed boundary condition for the potential that holds along the interface,
(2.6), combined with the potential in weak inversion, the pinchoff curve in the
plane for constant doping is

Sg. 2 In h + 5d, +2, (2 In h + a. 1) 1/2

Cox
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This curve delineates the boundary between the linear and saturation regimes as shown
in Fig. 9. A similar relationship can also be found for variable doping.

As a first step in determining the current, we notice that for constant mobility,
/ = 1, (3.5) reduces to

Io(6.5) in hb’ e-6n ewOlnx Ids A 1/

As in 4, equation (4.22), the integral appearing above can be computed asymptotically
for A >> 1 using the parameterized potential w in the inversion layer (6.1). Provided
an inversion exists, i.e., W- b> 1, we have

where a is given (6.3b). in the linear regime this expression is valid throughout the
channel. However, in the saturation regime, the above expression does not apply
throughout the channel since we have wsp ws(y*)= 1 + b(y*) for some y* (0, 1).
At the pinchoff position y*, a =no (In A)1/2 >> 1 and thus using (1 +a2)l/--a’-- 1/2a,
and assuming constant doping, (6.6) reduces to

(6.7) (--)1A 1/2 fo*ewO,nXdx..x/2AinA(l+wp_l/lnA)l/ew.p’n;t

in the post-pinchoff region y > y*. Since in this post-pinchott region the asymptotic
potential for A >> 1 is independent of y, the differential equation for th given by (6.5)
in this region is identical to that studied in the subthreshold regime. Therefore, in the
region y*< y < 1- O(e) the flow of current is due to diffusion.

A significant complication in the analysis arises from the nonnegligible transverse
electric field established in the oxide as a result of the bias applied on the drain contact.
This field implies that the surface potential along the interface varies with the position

pinchoff cu

linear regime J

subthreshold resime

Yd. {source- drain bias)

FIG. 9. Control plane illustrating the various bias regimes.
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y along the channel in the linear regime. The transverse electric field results in a drift
component to the current density parallel to the interface. To determine the variation
of ws with y along the channel, we must first examine the mixed boundary condition
for the potential that holds along the interface. For constant doping we also compare
our A >> 1 results with those predicted by conventional modeling based on a first integral
of (3.1a) with b as parameter. The mixed boundary condition (2.6) from 2 for fixed

v-s is

(6.8) F(w, b)-= (w + 1)In A _Q(w, b)_g 0,
Cox

where the total charge Q Q(ws, th), for constant doping, satisfies

e(Ws-4’)lnX/2( 1 + a :z) 1/2 asymptotic,Q"-’-x/ (eWs_,o,,,+e_W.n,+Ws A InA+A (lnA-1)) 1/2 conventional,

and a given by (6.3b). The asymptotic total charge is valid provided that an inversion
layer exists, i.e., w.-b> 1. Once the pinchoff condition w- b= 1 for some y* has
been attained, the expression for the total charge in weak inversion is used in (6.8).

To compare the asymptotic and conventional expressions for the charge, for a
given Sg.,, (6.8) can be solved numerically by Newton’s method for w w(4). As in
the case when b =0 from Fig. 3, the agreement between the asymptotic and the
conventional theories is found to be excellent. As before, the asymptotic approach
allows for an easy examination of the variable doping case. In all computations that
follow, the asymptotic total charge under both constant and variable doping is used.

We now solve the coupled system (6.5), (6.8) for b and ws(y) and determine the
current Ids subject to the boundary conditions 4(0)= 0 and b(1)= 3a./ln A in both
the linear and saturation regimes.

Since b’> 0 it is convenient to consider y y(4) where from (6.5)

(6.9) Idly’(b) -IQ.( w(th), b) In A.

As shown above, the mobile charge Q is known asymptotically for In A >> 1 in the
channel in both the linear and the saturation regimes. Since the derivative of F with
respect to w does not vanish, the implicit function theorem shows that the surface
potential w, w(b) can be found from (6.8) using the asymptotic total charge Qs,
i.e., F(w(b), b) 0.

The source-drain current is then found by integrating (6.9) from b In A =0 to

b o In A d

(6.10) Ie,=-Ic Q(W,(u/lnA), u/ln I) du,

where we use the asymptotic expressions for the mobile charge. The electron quasi-
Fermi potential 4 is then found from the implicit relationship

), In A dr/.(6.11) Idy=--I Qc(w.(rl rl

These integrals are evaluated by Simpson’s rule as a function of the source-drain
bias for various gate voltages. A plot of the current versus source-drain bias for constant
channel doping and for various Tg. is shown in Fig. 10. From this figure we notice that
as the gate voltage increases the current saturates at larger source-drain biases. The
current voltage relations for various straggles tr in the variable implant are shown in
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FIG. 10. Current versus drain bias for constant doping in saturation regime.

Fig. 11. It is seen that the current-voltage relations in the linear regime are relatively
insensitive to variations in the straggle. On the other hand, the saturation behavior,
e.g., the dependence of the saturation current on the gate voltage, depends strongly
on the parameters characterizing the channel implant.

It is important to emphasize that the pinchoff position y* in the channel is quite
insensitive to source-drain biases in the saturation regime. This is due to the fact that
the current increases only marginally once saturation has occurred, since then the
dominant contribution to the mobile charge integral arises from those electrons closer
to the source. Thus, the pinchoff position y*< y < 1- O(e) is in general quite thin.

6. O0 e.. 60.0 co. 460.0

p=O.50 A=IO

5.00 o.= 1.6

2.o t
.o

3.00 / .’" :
."

0.00 0.20 0.40 0.60 0.80 1.00

e.|Source-Drain Biss) x lO

FIG. 11. Current versus drain bias for variable doping in saturation regime.
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0.0

, lO 0 .50 o 3.36 variable doping

lil* 52.5

lid, 3.43

lid, 8.00

It (channel position)

FIG. 12. Electron quasi-fermi potential for various drain biases.

Using the two relations (6.10) and (6.11), b can be found numerically as a
function of y in the channel. A plot of the electron quasi-Fermi potential in the channel
for various Ta** is shown in Fig. 12. The logarithmic singularity in the electron quasi-
Fermi potential just outside the domain, that was found in the subthreshold case, is
also apparent in this case as well. Finally, with b known, the surface potential W,(y)
and hence the parameterized potential w(x, y) is known as a function of position in
the region O(e) < y < O(e).
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