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In this contribution we study asymptotic methods for differential equation mod­
dels of physiological and ecological phenomena. In a survey of the literature 
special attention is given to the Hop~· bifurcation, almost linear oscillations, 
relaxation oscillations, nonlinear reaction-diffusion and to the change in stability 
of an ecological system due to periodic forcing. 

I. INTRODUCTION 

This paper deals with the asymptotic analysis of differential equation models 

of physiological and ecological phenomena. In contrast with systems in physics and 

engineering the elements constituting a biological system are in general not known 

in detail. Or, as in the case of population dynamics, the way elements have inter­

action may be poorly understood. Even in situations, where the biologist is aware of 

finer structures, one still may choose for a simple model. For example, in popula­

tion dynamics problems, one may leave out the age structure of a species. The idea 

is to study a mathematical model exhibiting the same phenomena as the biological 

system. It is anticipated that in a simple mathematical model the underlying mecha­

nism will be more easily understood. Thus, instead of modelling a physiological 

system with some flavor of realism, we suggest to introduce a basic model, which may 

function as a prototype of a biological system. In sections 8 and 9, for example,we 

take the Van der Pol oscillator as a model for a spontaneously oscillating element 

of a physiological system. 

In the last decade there has grown a more or less general accepted theory 

of asymptotic methods for differential equations. For almost linear oscillations the 

method of Krylov-Bogoliubov and Mitropolsky takes this position [6]. For singular 

perturbation problems, there are also textbooks [16,40], which explain the tech­

niques for that class of problems. 

For one part this paper is meant as a survey of the use of standard asymptotic 

methods and so we will describe the biological context in which they arise, but we 

will not work them out, as it suffices to refer to the literature. On the other hand 

there are asymptotic methods, which are developed typically with an eye on biological 



77 

applications, those will be studied in more detail. We mention the change in stabil­

ity of a system due to periodic forcing, the dynamics of highly nonlinear oscilla­

tors and nonlinear reaction-diffusion problems. 

2. MODELLING CHEMICAL REACTIONS IN PHYSIOLOGICAL SYSTEMS 

As a result of a chemical reaction concentrations of reactants will change in 

time. These changes can be described by a system of coupled nonlinear differential 

equations. Reaction mechanisms in biological systems are controlled by enzymes. The 

Michaelis-Menten theory gives us an example of a typical enzymatic reaction. A sub­

strate S forms together with the enzyme E a complex C, which in term breaks irre­

versibly down to form the enzyme E again and a product P. Schematically, we have 

kl 
_:..;:,. 

(2. la) s + E """IC c' 
-I 

(2. lb) 
k2 

c ___,. E + P. 

The corresponding system of differential equations for the concentrations of the 

reactants with given initial values becomes 

(2. 2a) 
ds 

k 1es + k_ 1c , s (0) dt = - so, 

(2. 2b) 
de 

- k 1es + (k_ 1+k2)c, e(O) = dt = eo, 

(2.2c) 
de 

k 1es - (k_ 1+k2)c c(O) = O, dt = 

(2.2d) ~-dt - k2c' p(O) O, 

where the concentrations are indicated by lower casts. The rate constants k±i are 

nonnegative. Usually, e0 is small compared with s0 . Since the sum of e and c is con­

stant in time, we may first solve the system (2.2ac). We carry out the following 

transformations 

(2.3abc) 

(2.3def) x = s/s0 , 

and arrive at the singularly perturbed system 

(2.4a) 
dx 
di: 

- x + (x+1.i-:>..)y, x(O) I, 



(2.4b) £ 2z = x - (x+µ}y, 
d-r 
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y(O) • O, 

The solution exhibits an initial boundary layer in y and can be expressed in an 

asymptotic expansion by using standard singular perturbation techniques, see [16,40]. 

A hypothetical chemical reaction with time periodic changes in concentrations 

of some of the reactants is the Bruxellator [39] : 

kl 

(2.5a) A 
k_l x' 

k2 

(2. 5b) B + x 
k_2 

y + D, 

k3 

(2. 5c) 2X + y 
k_3 

3X, 

(2.5d) x E. 

Keeping the reactants A,B,D and E at a constant level and setting the reverse reac­

tions all zero, we obtain for the concentrations of X and Y: 

(2. 6a) 

(2.6b) 

Introduction of nondimensional variables defined by 

(2. 7abc) 

(2. 7de) 

transforms (2.6) into 

(2.8a) 
du 2 
dt' = I - (f3+l)u + au v , 

(2.8b) 
dv 2 err= au - au v. 

This system has the equilibrium point (u,v) = (I, f!,/a.), which is stable for f!, < I + a. • 

Above the critical value ac = I + a. the equilibrium becomes unstable and a stable 

limit cycle with amplitude of order O((a-ac) 1/2) occurs. This phenomenon is called 

Hopf bifurcation. We will deal with it in more detal in the context of a different 

problem. For 13 and a. large the oscillation may turn into a highly nonlinear so-cal­

led relaxation oscillation. Introduction of a new dependent variable w = u +v 
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changes the system into 

( 2. 9a) 
du 
dt = f(u,w), 

(2. 9b) 
dw 
dt = g(u,w), 

(2.9cd) f(u,w) 2 
I - u - Su+ au (w-u), g(u,w) I - u 

In figure I we sketch the corresponding closed trajectory in the phase plane. 

Later on we will discuss relaxation oscillations in relation with the Van der Pol 

equation. 
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oscillation governed by the Bruxellator, see (2.9) with a 5 , 

Many types of biological system exhibit spontaneous periodic behaviour. We men­

tion rhythmic action of cardiac tissue, the gastor-intestinal tract and the ureter. 

Circadian rhythms are present in organisms at all levels of evolution [49]. The 

physiology of these phenomena is quite complex see [JO]. llriting down the equations, 

for all components with their interactions is, in general, not possible. The 

Hodgkin-Huxley equations [24] describing the propagation of electric pulses in neu­

rons marks the progress that is made, so far at this point. Prototypes of biological 

oscillations are found in anorganic chemistry: the Belousov-Zhabotinskii reaction, 
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see [47], and in electronic circuit theory: Vand der Pol oscillator, see [48]. 

3. MODELLING INTERACTING BIOLOGICAL POPULATIONS 

The density of a biological species Xi in a given habitat will change under the 

influence of available food and predation by other species. Assuming that there are 

no delay effects due to the influence of age structure, we model density ch&nges of 

interacting species by a system of coupled nonlinear differential equations 

dx. 
(3. I) d: = xigi(xl, •.• ,xn)' i I, ... ,n. 

The growth rate gi contains information about the way Xi interacts with the other 

species. A negative partial derivative ag./ax. means that x. experiences either com-
1. J l. 

petition or predation from X .• On the other hand a positive partial derivative means 
J 

that xj is a prey for xi or that xi takes prof it from the presence of xj in a dif-

ferent way (if this profit is mutual, then the interaction is called symbiosis). 

In a realistic model there is also a self limitation upon the growth of Xi' that is 

agi/axi is negative for Xi large. The generalized Volterra-Lotka system 

(3. 2) 
dx. n 
dtl. = x.(a.+ I b .. x.), 

i. i. j=I l.J J 
i I, ... ,n 

is the most elementary system satisfying the above conditions. The existence of 

stable limit solutions (equilibrium or limit cycle) is an important aspect in the 

analysis of this system. For n = I, (3.2) with b 11 < 0 < a 1 represents the Verhulst 

equation, which can be solved explicitly for some initial value x1 (O) = x 10 > 0: 

(3.3) 

Fort+ 00 x1 (t) tends to the stable equilibrium x1 = - a 1/b 11 • For n = 2 and 

a 2 <O <a1, b 12 <O <b21 , b 11 = 0 = b22 we have the classical Volterra-Lotka system 

describing a prey-predator relation. This system has a family of neutrally stable 

periodic solutions. It is a conservative system which makes it less attractive in 

terms of its biological applicability. In [22] we dealt with asymptotic methods for 

this system. 

The other two possibilities of interaction for n = 2 are competition, b12 ,b21 < 0 

and symbiosis b 12 ,b21 > O, see Freedman [19] for the analysis of these cases and 

for more literature. For n ~ 3 the dynamics of the system (3.2) can be quite complex. 

Coexistence or deterministic persistence of all species is the main question at this 

level of complexity. In terms of the mathematical problem one tries to find condi­

tions for the coefficients in order to have limit solutions (equilibria or limit 

cycles) with xi > O. A stable equilibrium may occur at any n for an appropriate 
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choice of a. and b ..• Limit cycles are possible for n ~ 3, see [26]. 
l. l.J 

4. SOME REMARKS ON DIFFERENTIAL EQUATION HODELS 

The models for chemical reaction and population interaction of the preceding 

sections all have the form 

(4. I) i I, ... ,n 
dx 

or dt = f(x;p), 

where p 1 , ••• ,pm denote the parameters of the system. The dynamics of this system 

depends upon the dimension n. For n = I equilibria are the only possible stable (and 

unstable) limit solutions. For n = 2 limit cycles may arise as well, while for n ~ 3 

the strange attractor (see [41]) occurs as the third possibility of a stable limit 

solution. The values of the parameters may also influence the occurrence of certain 

limit solutions. At a point of bifurcation in the parameter space a limit solution 

may turn from stable into unstable and a new type of limit solution will branch off. 

For the analysis of this phenomenon for m = I we refer to [29]. The requirement of 

generic bifurcation (see Hale [23]) restricts the types of bifurcations that are per­

mitted. For n = m = I a stable and unstable equilibrium may coalesce at a bifurca­

tion point and disappear afterwards. For n = 2, m = I there are four generic bifur­

cations possible. With one of them, the Hopf bifurcation, we will deal in section 6. 

Bifurcations of (4.1) with n = m = 2 have been analyzed from the typical system 

(4. 2a) 

(4.2b) 

see Holmes and Marsden [25]. From point of view of applications there is no reason 

to study bifurcations for larger values of m, as usually the behavior of the system 

may depend critically upon only some of the parameters. 

In many cases physiological systems undergo external periodic influences such 

as the day-night rhythm and pace maker oscillations. Seasonal influences play a role 

in population dynamics. Therefore, we will also investigate periodically forced 

systems of the type 

(4. 3) 
dx 
dt h(x,t;p), h(x,t+T;p) h(x,t;p). 

For n = 2 this system may represent a periodically forced nonlinear oscillator. 

First of all we expect a solution with the same period as the driving force (har­

monic entrainment). However, there may also occur solutions with a period being a 

multiple of the driving period (subharmonic entrainment) or even chaotic solutions, 
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see [25]. 

There is an extensive literature on differential equation models in physiology 

and ecology, we mention [8,19,27,28,37]. In the next section we will restrict our 

asymptotic analysis to the behavior of the system near equilibrium and to periodic 

solutions of {4.1) and (4.3). For periodic solutions asymptotic methods are neces­

sarily restricted to the two extreme cases: almost linear oscillations and relax­

ation oscillations. In general, a quantitative analysis for the intermediate range 

has to be carried out with the aid of numerical methods. Perturbation methods .are 

also important in the analysis of bifurcations. As an example, we study the Hopf 

bifurcation is section 6. 

5. NEAR-EQUILIBRIUM ANALYSIS OF THE PERTURBED VOLTERRA-LOTKA SYSTEM 

Bojadziev [6) studies the local behavior near equilibrium of a system of type 

(3. I) with 

(5. la) 

(5. lb) 

with o = 0 and e1 = e 1(x2) and e2 = e2(x1) being analytic functions of such a form 

that the system has at least one equilibrium CX1 ,x2) with xi > O, i = 1,2. Assuming 

that the solution remains in a small E-neighborhood of x = x, one may set 

x(t) = x + E v(t). Substitution into (3.1) with (5.1) yields a regularly perturbed 

system of differential equations for vi(t), i = 1,2. To this system Bojadziev ap­

plies the Krylov-Bogoliubov-Mitropolskii method leading to solutions that exhibit 

either damped or undamped oscillations depending on the choice of g(x). 

Freedman and Waltman (20] consider(3 .1).(5.1) with ei = e:di(xl'x 2), i = 1,2 

and 0 < E << 1. They analyse the existence of a stable periodic solution near the 

equilibrium of the unperturbed system (e:=O). Under certain conditions for d(x) exis­

tence of periodic solutions can be proved by using the implicit function theorem. 

In this case E can be seen as a bifurcation parameter and a Hopf bifurcation takes 

place at'E = O. We will deal with perturbation methods for this phenomenon in the 

next section, 

6. THE HOPF BIFURCATION 

point x = x 
Let us consider the system (3.2) with b •. ~ O. This system has an equilibrium 

1J 
satisfying 



83 

( 6. I) a + Bx o, 

where a is a vector with entries ai and B the matrix with entries bij' The 

change of variables 

(6. 2) x. = x.(J+v.) 
]. ]. J. 

transforms (3.2) into 

(6.3) 
dv 
dt = - Cv - N(v,v), 

where C ={c .. } , c .. =b .. x. and N w,v) (v.Cv). Coste e.a. [9] analyse the 
J.J nxn lJ l.J J 

behavior of the solution near equilibrium at a point in the parameter space, where 

a Hopf bifurcation occurs. There the equilibrium changes from stable with all eigen­

values of C positive to unstable with two complex conjugate eigebvalues crossing 

the imaginairy axis. In order to analyse this qualitative change locally in the para­

meter space, we introduce E as the critical parameter and take E = 0 at point of 

bifurcation. Let 

(6.4) C(e) = C0 - EC]+ ••. 

Then the eigenvalues of c0 are positive except for the conjugate imaginary eigen-

values !-± = ±iw0 • cl is chosen such that these two eigenvalues of C(E) obtain posi-

tive real parts as E is negative and negative real parts for E positive. Introduc-

tion of a new time scale 

(6.5) T = tfi',; , T/(2rr) 

changes (6.3) into 

(6.6) 

with N.(v,v) = (v.C.v), j = 0,1. It is assumed that a solution of (6.6) can be ex-
J J 

panded as 

(6.7abc) v(T) I n 
i=I 

Substitution into (6.6) 

(6.8a) 

i V(i) (T) , i:; 

yields after 

F. 
]. 

i 

1 
I 

i i:;(i) l 
i (i) 

= - + n , E = n E 
WO i=I i=I 

grouping terms of equal order the equations 

1,2, 
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(6.Sbc) 

The solution of the first equation has the form 

(6.9) V (I) it - -it = 4'e + 4'e , 

where 4' and '$ are eigenvectors of c0 satisfying 

(6. JOab) 

t 
Let w and 1ji be eigenvectors of the conjugate c0 of c0 satisfying 

(6.llab) 

Then there hold the orthogonality conditions ('$,~) = O, where (a,b) = E a.b .• 
1. 1. 

To equation (6.8) with i = 2 the Fredholm alternative applies: a solution exists 

if 

(6.12) 

where 

(6.13) 

T 

<a,b> = i J (a(t),b(t))dt. 

0 

Using the orthogonality conditions we reduce (6.12) to 

(6.14ab) o, 

as F2 is real valued. Assuming that p'IO (6.J4a) demands ~(I)= e:(I)= O, so that 

v(2) follows from (6.8ac). In a similar way the Fredholm alternative for the equa­

tion of v(3) yields a value for e:( 2) which is assumed to be different from zero. For 

e:(2)> 0 we have the situation as sketched in fig. 2a. The other case is given in 

fig. 2b. For systems with ai equal the Hopf bifurcation breaks down. In [9] this 

problem is analyzed in further detail. For a textbook on bifurcation theory we refer 

to [29]. 
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Fig. 2a. Bifurcation diagram for e:(Z)> 0 Fig. 2b. Bifurcation diagram for e:(Z)< C 

7. PERIODICALLY FORCED VOLTERRA-LOTKA SYSTEMS 

There exists a number of papers which deal with (3.2) for n = 2 with time peri­

odic coefficients, see [5,12,13,36]. We will discuss here the approach of Rosenblat 

[44], as 

class of 

(7. la) 

(7. lb) 

where 

(7. 2a) 

(7. 2b) 

(7.2c) 

with 

(7. 2d) 

it gives a good impression how asymptotic methods can be applied to this 

problems. The system of equations takes the form 

c(t) 

$(t+T) 

1/1 (t+T) 

x 1_ax2} 

c(t) 

{ 
x2_sx1} 

I - ---
d(t) • 

c{ l+e: $ (t) }, d (t) 

$(t), <$(t)> o, 

1/i(t), <1/J(t)> 0 

T 

<p(t)> = 'f J p(t)dt. 

0 

d{ l+e:ljJ(t)}, 

Fore:= 0 the equilibrium (x1,x2) = {(c-da)/(l-aS),(d-Sc)/(1-aS)} is asymptotically 

stable in the range of parameter values 

(7. 3abc) aS<I, a<c/d and fl<d/c. 

Let us start from this situation and increase fl until it passes the value d/c. Then 

the equilibrium representing coexistence of species becomes unstable and leaves the 
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positive quadrant. The effect of fluctuations in the coefficients is studied by ex­

panding the near equilibrium solution of (7.1) as 

(7. 4) x(t;E) = x + l e:n x(n)(t). 

n=I 

Substituting in (7.1) gives for the coefficients of the terms with E 

dx(I) ax 
(x(l)+a.x(J)) (7. Sa) 

I I 
axl<P(t). --+--

dt c I 2 

(l) 

(7; Sb) 
dx2 bx2 

(Sx(l)+x<2» bx2 ljJ (t). --+--
dt d I 2 

It is noted that <x~ 1 )(t)> = O, i = 1,2. A similar couple of equations holds for 
l. 

x. (Z)(t), i = 1,2. From these equations it is derived that 
l. 

(7 .6ab) 

where 

(7.7ab) 

<x(Z)(t)> 
I 

N-i3M, 

I -ai3 

In order to analyse the change in the range of 13 values for which coexistence is pos­

sible we set 

(7 .8ab) 

The equilibrium satisfies 

(7. 9ab) 

2 
E cai3 1 4 

x 1 = c{I + --- + O(E )}, x2 c-ad 

2 2 
E s1c 4 

- --- + O(E ). 
c-ad 

Consequently, x(l)(t) 
2 

0 and x(l)(t) is the solution of 
I 

(7. 10) 

d (I) 
xl 
--+ 

dt 

ax 1 (I) 
--x 

c I 

The average of x~ 2 ) changes into 

(7. 11) <x(Z)(t)> 
2 

The co;xistence equilibrium disappears for <x2 (t)> = O or, taking into account terms 

of O(e: ), for 
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(7 .12) 0. 

Thus, the range of S values for which coexistence is possible is bounded above by 

e(c) = d/c + ES(c) with 
I 

(7. 13) ~ <cijl(cijl-xi 1)) 
c 

Depending on the parameter values of c and d and the shape of the periodic functions 

~ and 1jl the coefficient sic) may be either positive, negative or zero. Thus, a pos­

itive S(c) can be interpreted as stabilizing for the coexistence of two species. Al-
l 

though the calculations are based upon small disturbances, it is anticipated that 

this tendency is also present for E large. A similare conclusion, based on a dif­

ferent analysis, was made by Cushing [13]. 

8. COUPLED ALI10ST LINEAR OSCILATORS 

As we stated in section 2 there exist many types of biological systems exhib­

itin? spontaneous periodic behaviour, such as tissue of the heart muscle or the 

gastro-intestinal tracts. Such tussue consists of interconnected cells with each 

cell acting as an autonomous oscillator. In order to have the organ functioning in 

the desired way there must be some coordination in the rhythmic activity of the 

cells. In this section and the next one we study the phenomenon of mutual entrain­

ment. 

Modelling the contraction waves in the gastro-intestinal tract Linkens [31] 

uses a chain of almost linear oscillators 

(8. I) 0, 

O. Assuming that ci is small a first order asymptotic approximation 

of an entrained solution will be 

(8.2) i I, ... ,n 

with a 1 = O. Substitution of (8.2) into (8.1) yields, after equating the coefficients 

of cos wt and sin wt, a system of 2n algebraic equations for w, ai and ai' which is 

solved by minimizing the residues of these equations for some initial estimates of 

ai,ai, and w (the Rosenbrock Hill climbing routine). This method is quite practical 

and does not follow the scheme of solving the system asymptotically for ci small as 

pointed out by Krylov, Bogoliubov and Mitropolsky. The results of Linkens for (8.1) 

agree with the observed waves in the physiological system, where the contracting 

oscillations at the beginning of the tract have a higher intrinsic frequency, which 
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results in phase waves propagating from there down the tract. In (8.1) this config­

uration is simulated by choosing decreasing values for wi as i increases. The KBM­

method for two coupled almost linear Van der Pol oscillators has been worked out in 

Minorsky [34] • Linkens [32] gives more references to the KBM-methods for coupled 

Van der Pol oscillators. In a number of cases it is questionable whether almost 

linear oscillations are the appropriate models for biological oscillations. In the 

Michaelis-Menten kinetics time constants of reactions have usually quite different 

orders of magnitude. It is for this reason that we expect that relaxation oscilla­

tors will do much better. There are two arguments in favor of the linear oscillator 

which we ought to bring up before dealing with the next subject. First, in some 

cases oscillations may arise as fluctuations near an equilibrium, which makes them 

indeed almost sinusoidal. Secondly, in the case of the intestinal tract the measured 

potential turns out to be close to harmonic. 

9. COUPLED RELAXATION OSCILLATORS 

In this section we investigate the analogy between phenomena in populations of 

coupled biological oscillators and the behavior of systems of ~ntrained relaxation 

oscillators. Using perturbation methods we will obtain quantitative results for en­

trainment of coupled relaxation oscillators. In the foregoing section we already 

mentioned one reason for using relaxation oscillators as prototypes of biological 

oscillations. In addition to this there are other properties of relaxation oscilla­

tors to support this idea. First, they exhibit a high orbital stability and, second­

ly, they are easily speeded up or slowed down on the orbit by external periodic in­

fluences. 

In [21] mutual entrainment of Van der Pol relaxation oscillators is analyzed. 

The phenomena of mutual synchronization and propagation of phase waves, which exist 

in physiological systems, are also found in the behavior of these mathematical os­

cillators. Let us first analyse the synchronizing influence of one relaxation os­

cillator upon an almost identical one: 

((9. la) 
dx0 

= Yo - F(xo), e: dt 
(9. Jc) 

dx1 
e: (ft= YI - F(x1), 

(9.lb) 
dyo 

dt = - XO' 

dyl 
dt =-( l-op1 )x1 + ox0 (9. Id) 

with 0 <e:<<a<<l and F continuous statisfying F(O) = 0 and F'(x) = sign(x2-I). 

The discontinuous limit solution of (9.iab) is x(t) = exp{-(t-tB)} at the branch AB, 

see fig. 3a. Its period is T0 = 2 ln 3, see fig. 3b for the time dependent behavior. 
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Fig. 3a, Limit trajectory of periodic 

solution as E + 0 

Fig. 3b. Time dependent behaviour of the 

piece-wise linear relaxation os­

cillator 

Let us indicate this first order approximation of the oscillation by 

(9.2ab) 

In the limit for E tending to 0 the system (9.lcd) follows the same closed trajec­

tory as (x0,y0), see fig. 3a. For (9. Id) we compute the different velocity on this 

trajectory. Let x1 = x 0 (~ 1 (t)), y 1 = Y 0 (~ 1 (t)), then 

(9.3) 
dY0 d~I 

~ crt = - (1-op 1 )x 0 (~ 1 <t)) +a x0(t) 

or, using (9.lb), 

(9.4) 

The solution of this equation gives us the new phase after one period T0: 

(9.5) 

with 

TO 

~(a 1 ) = - J x0 (t)/X0(t+a1)dt. (9.6) 

0 

The phase shift function ~(a 1 ) can be calculated explicitly. It is an exponential 

function with ~(a 1 ) = - ~(a 1 +T 0 /2), see fig. 4. For IP1 J< T0 the phase shift can 

compensate the intrinsic frequency difference and oscillator (x1,y1) is synchronised 
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Fig. 4. The phase shift function V for the piece-wise 

linear relaxation oscillator. 

Mutual synchronization of a large system of coupled relaxation oscillators is 

analyzed in a similar way. Take 

(9. 7a) 

(9.7b) 

dx. 
l 

E Clt =Yi - F(xi)' 

dy. 
d: = - (1-op.)x. + o l G .. (x.(t)), 

l l j,li lJ J 
i 

then the phase functions satisfy 

(9.8) 1-0 p. +a l G .. (x 0 (w.(t))/x 0 (~.(t)), 
l j,,&i lJ J l 

1,. •• ,N 

Existence of synchronized solutions of such a system can be proved by using the 

theory of Mishenko and Pontryagin [34,43]. The common period of the entrained system 

will depend upon the type of coupling. Both slowing down and speeding up of the aver­

age free running period is possible in the synchronized state. The total effect is 

computed from the functions G ..• Simulation of spatially distributed oscillators 
lJ 

with nearest neighbor coupling leads to bulk oscillations, stable phase waves, as 

well as to persistent chaotic wave patterns resembling fibrillation of heart tissue, 

see [21]. For different approaches to coupled highly nonlinear oscillators we refer 

to [38,46]. 

10. NONLINEAR REACTION-DIFFUSION EQUATIONS 

Let us consider a chemical reaction of the type discussed in section 2, which 

takes place in a tube with a small cross-section. Moreover, we assume that as in 

(2.4) and (2.8) the dynamics can be described by a system of two coupled equations 

for two of the reactants. Let one of these reactants have a small diffusion coeffi­

cient then the system will have the form 
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(10. la) 
au 

f(u,v) + 
2 a2u 

at= e: 
ax2 ' 

(10, lb) av = g(u,v) + 
a2v 

at 
ax2 ' 

where the independent variable x denotes the position in the tube. Fife [17] analy­

ses a model with functions f and g having null curves as shown in fig. Sa. Then 

(u±,v±) are two stable stationary states. Let far away at one side of the infinitely 

long tube the system be in the state (u_,v_)say for x + -=, and in state (u+,v+) 

for x + =. There is wave front, exhibiting a gradual change in v and a sharp tran­

sition in u. It propagates slowly to either the left or the right as will turn out 

in the subsequent analysis. Substitution of 

( 10. 2) z = x - e:ct 

transforms (10. 1) into 

(10.3a) 
2 d2u du 

f(u,v) 0, e: 
d/ 

+ e:c -+ 
dz 

2 
dv + (10.3b) .!_:'.. + e:c g(u,v) o. 

dz2 dz 

Outside the front region, where u changes rapidly, u and v are approximated by the 

solutions of the reduced equations (e:=O): 

( 10. 4a) f(u0,v0) = 0 ' 

2 

(I0.4b) 
d v0 

g(uo,vo) 0. --+ 
dz 2 

From (10.4a) we conclude that u0 = h±(v0), seeAfig. Sa. Let z 

the front, where v0 takes the (unknown) value v, then 

2 
d VO 
dz2 + g(h±(vo),vo) = o (10.S) for z ~ 0. 

or in the phase-plane formulation with Po 

(10. 7a) 

(19.7b) 

dp0 A 
Po a;-= - g(h_(v0),v0) for v0 < v with p0(v_) o, 

0 

dpo 
Po dvo = - g(h+(v0),v0) for v0 > 0 with p0(v+) = o. 

0 be the position of 

Since p0 dp0 /dv0 = !dp~/dv 0 , integration of both right-hand sides gives Po as a 
A 

function of v0 . Moreover, as p0 is continuous in v 



(10.8) 

" v 

f g (h_ (s), s)ds 
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0 

J g(h+(s),s)ds, 

v v 
+ 

which determines uniquely the value of 0. To find the shape of u at the front itself 

we use the stretched variable z; = z/e.. The local approximation u = w0 (z;) then satis­

fies 

(I O. 9) 
dW0 " 

c--+f(u0 ,v) 
di; 

0 

and matches the outer solution u0, if 

(10.!0ab) lim w0 (z;) = h_(O)and 
z;+-a> 

lim 
l;+a> 

Trajectories in the phase plane should satisfy 

(19.11) o, 

The phase portrait is such that for a unique c = c* a trajectory exists that con­

nects the two stationary points (h_(0),0) and (h+(0),0), see fig. Sb. Aronson and 

Weinberger (2] prove that 
h (0) + 

(10.12) * > 
0 according as 

I 
f(u,O)du 

< c < > o. 
h_ (v) 

There exists an extensive literature on reaction-diffusion problems. Besides in 

chemical reactions similar mechanisms are found in population genetics and in the 

dynamics of interacting species, see [4,11,14,lS,18,42]. The phenomenon of a travel­

ling wave front is one aspect of the dynamics of a reaction-diffusion system. Exis­

tence of stable spatial inhomogenities is another aspect, which is given much 

attention in the literature [3,30,33]. 

t 

g=O 

(u_,v_) 

u=h_(v) 
u+ 

Fig. Sa. Null curves for f and g Fig. Sb. Phase plane picture of the 

boundary layer in u. 
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