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ASYMPTOTIC MINIMAXITY OF FALSE DISCOVERY RATE
THRESHOLDING FOR SPARSE EXPONENTIAL DATA1

BY DAVID DONOHO AND JIASHUN JIN

Stanford University and Purdue University

We apply FDR thresholding to a non-Gaussian vector whose coordi-
nates Xi , i = 1, . . . , n, are independent exponential with individual means
µi . The vector µ = (µi) is thought to be sparse, with most coordinates 1
but a small fraction significantly larger than 1; roughly, most coordinates are
simply ‘noise,’ but a small fraction contain ‘signal.’ We measure risk by per-
coordinate mean-squared error in recovering log(µi), and study minimax es-
timation over parameter spaces defined by constraints on the per-coordinate
p-norm of log(µi),

1
n

∑n
i=1 logp(µi) ≤ ηp .

We show for large n and small η that FDR thresholding can be nearly
minimax. The FDR control parameter 0 < q < 1 plays an important role:
when q ≤ 1/2, the FDR estimator is nearly minimax, while choosing a fixed
q > 1/2 prevents near minimaxity.

These conclusions mirror those found in the Gaussian case in Abramovich
et al. [Ann. Statist. 34 (2006) 584–653]. The techniques developed here seem
applicable to a wide range of other distributional assumptions, other loss mea-
sures and non-i.i.d. dependency structures.

1. Introduction. Suppose that we have n measurements Xi which are expo-
nentially distributed, with (possibly different) means µi ,

Xi ∼ Exp(µi), µi ≥ 1, i = 1, . . . , n.(1.1)

The unknown µi’s exhibit sparse heterogeneity: most take the common value 1,
but a small fraction take different values greater than 1.

There are various ways to precisely define sparsity; see [3], for example. In our
setting of exponential means, the most intuitive notion of sparsity is simply that
there is a relatively small proportion of µi’s which are strictly larger than 1,

#{i : µi �= 1}
n

≤ ε ≈ 0.(1.2)

Such situations arise in several areas of application.

• Multiple lifetime analysis. Suppose that the Xi represent failure times of many
comparable independent systems, where a small fraction of the systems—we do
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not know which ones—may have significantly higher expected lifetimes than
the typical system.

• Multiple testing. Suppose that we conduct many independent statistical hy-
pothesis tests, each yielding a p-value pi , say, and that the vast majority of
these tests correspond to cases where the null distribution is true, while a small
fraction correspond to cases where a Lehmann alternative [13] is true. Then
Xi ≡ log(1/pi) ∼ Exp(µi), where most of the µi are 1, corresponding to true
null hypotheses, while a few are greater than 1, corresponding to Lehmann al-
ternatives.

• Signal analysis. A common model (e.g., in spread-spectrum communications)
for a discrete-time signal (Yt )

n
t=1 takes the form Yt =∑j Wj exp{√−1λj t} +

Zt , where Zt is a white Gaussian noise and the λj index a small number of
unknown frequencies with white Gaussian noise coefficients Wj . In spectral
analysis of such signals, it is common to compute the periodogram I (ω) =
|n−1/2∑

t Yt exp(
√−1ωt)|2 and consider as primary data the periodogram ordi-

nates Xi ≡ I (2πi
n

), i = 1, . . . , n/2 − 1. These can be modeled as independently
exponentially distributed with means µi , say; here, most of the µi = 1, meaning
that there is only noise at those frequencies, while some of the µi > 1, meaning
that there is signal at those frequencies (i.e., certain frequencies ωi = 2πi

n
hap-

pen to match some λj ). In an incoherent or noncooperative setting, we would
not know the λj and, hence, would not know which µi > 1.

The simple sparsity model (1.2) is merely a first pass at the problem; in applica-
tions, we may also need to consider situations with a large number of means which
are close to, but not exactly, 1. A more general assumption (adapted from [3, 7]) is
that for some 0 < p < 2, the log means obey an �p constraint,

1

n

(
n∑

i=1

logp µi

)
≤ ηp, η small, 0 < p < 2.

Working on the log-scale turns out to be useful because of the ‘multiplicative’
nature of the exponential data. The parameter p measures the degree of sparsity
of µ. As p → 0,

n∑
i=1

logp(µi) −→ #{i : µi �= 1}.

1.1. Minimax estimation of sparse exponential means. We now turn to simul-
taneous estimation of the means µi . Let µ = (µ1,µ2, . . . ,µn) and suppose we use
the squared �2-norm on the log-scale to measure loss,

‖ log µ̂ − logµ‖2
2 =

n∑
i=1

(log µ̂i − logµi)
2.
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Motivated by situations of sparsity, we consider restricted parameter spaces,
namely �p-balls with radius η,

Mn,p(η) =
{
µ : 1

n

n∑
i=1

logp(µi) ≤ ηp

}
.(1.3)

We quantify performance by means of the expected coordinatewise loss

Rn(µ̂,µ) = E

[
1

n

n∑
i=1

(log µ̂i − logµi)
2

]
.

We are interested in the minimax risk, the optimal risk which any estimator can
guarantee to hold uniformly over the parameter space,

R∗
n = R∗

n(Mn,p(η)) = inf
µ̂

sup
Mn,p(η)

Rn(µ̂,µ).(1.4)

This quantity has been studied before in a related Gaussian noise setting [3], but
not, to our knowledge, in an exponential noise setting. Its asymptotic behavior as
η → 0 is pinned down by the following result.

THEOREM 1.1.

lim
η→0

[
limn→∞ R∗

n(Mn,p(η))

ηp log2−p log 1
η

]
= 1.

A natural approach in this problem is simple thresholding. More precisely, set
µ̂t ≡ (µ̂t,i)

n
i=1, where

µ̂t,i =
{
Xi, Xi ≥ t,

1, otherwise.
(1.5)

For an appropriate choice of threshold t (which depends in principle on p and η,
but not on n), this can be asymptotically minimax, as the following result shows.

THEOREM 1.2.

lim
η→0

inf
t

[
lim

n→∞
supMn,p(η) Rn(µ̂t ,µ)

R∗
n(Mn,p(η))

]
= 1.

Here, by “asymptotically minimax,” we mean that the ratio of the worst risk ob-
tained by the estimator to the corresponding minimax risk tends to 1 as n → ∞,
followed by η → 0.

The minimizing threshold t0 = t0(p, η) referred to in this theorem behaves as

t0(p, η) ∼ p log(1/η) + p log log(1/η) · (1 + o(1)
)
, η → 0.

In order to have asymptotic minimaxity, it is important to adapt the threshold to
the sparsity parameters (p, η).
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1.2. FDR thresholding. FDR-controlling methods were first proposed in a
multiple hypothesis testing situation in [1, 2]. For the exponential model we are
considering, we suppose that there are n independent tests of unrelated hypothe-
ses, H0,i versus H1,i , where the test statistics Xi obey the conditions

under H0,i : Xi ∼ Exp(1),(1.6)

under H1,i : Xi ∼ Exp(µi), µi > 1,(1.7)

and it is unknown how many of the alternative hypotheses are likely to be true.
Select a value q , 0 < q < 1, which Abramovich and Benjamini [1, 2] called the
FDR control parameter. If we call any case where H0,i is rejected in favor of H1,i

a ‘discovery,’ then a ‘false discovery’ is a situation where H0,i is falsely rejected.
An FDR-controlling procedure controls

E

[
#{False Discoveries}
#{Total Discoveries}

]
≤ q.

Simes’ procedure [17] was shown by [4] to be FDR-controlling and it is easy to
describe. We begin by sorting all of the observations into descending order,

X(1) ≥ X(2) ≥ · · · ≥ X(n).

Next, compare the sorted values with quantiles of Exp(1); more specifically, if
E(t) denotes the standard exponential distribution function and Ē = 1−E the cor-
responding survival function, compare (X(1),X(2), . . . ,X(n)) with (t1, t2, . . . , tn),
where

tk = Ē−1
(
q · k

n

)
= − log

(
q · k

n

)
, 1 ≤ k ≤ n,

and let t0 = ∞. Finally, let k = kFDR be the largest indexD. k ≥ 1 for which X(k) ≥
tk , with k = 0 if there is no such index. The FDR thresholding estimator µ̂FDR

q,n uses
the (data-dependent) threshold t̂FDR ≡ tkFDR and has components (µ̂i)

n
i=1, where

µ̂i =
{
Xi, Xi ≥ t̂FDR,

1, otherwise.
(1.8)

In particular, if kFDR = 0, then µ̂i = 1 for all i. We think of the observations ex-
ceeding tFDR as discoveries; the FDR property guarantees relatively few false dis-
coveries.

An attractive property of the procedure is its simplicity and definiteness. An-
other attractive property is its good performance in an estimation context. Our
main result in this paper is the following theorem.

THEOREM 1.3. 1. When 0 < q ≤ 1
2 , the FDR estimator µ̂FDR

q,n is asymptoti-
cally minimax, that is,

lim
η→0

[
lim

n→∞
supµ∈Mn,p(η) Rn(µ̂

FDR
q,n ,µ)

R∗
n(Mn,p(η))

]
= 1.



2984 D. DONOHO AND J. JIN

2. When q > 1
2 , the FDR estimator µ̂FDR

q,n is not asymptotically minimax, that is,

lim
η→0

[
lim

n→∞
supµ∈Mn,p(η) Rn(µ̂

FDR
q,n ,µ)

R∗
n(Mn,p(η))

]
= q

1 − q
> 1.

1.3. Interpretation. By controlling the FDR so that there are at least as many
‘true’ discoveries above threshold as ‘false’ ones, we obtain an estimator that with
increasing sparsity η → 0, asymptotically attains the minimax risk. This is the case
across a wide range of measures of sparsity.

The same general conclusion was found in a model of Gaussian observations
due to Abramovich, Benjamini, Donoho and Johnstone [3]. In that setting, the au-
thors supposed that Xi ∼ N(µi,1) and that the µi are mostly close to zero so
that 1

n
(
∑n

i=1 |µi |p) ≤ η
p
n . (Note that the sparsity parameter η was replaced by a

sequence ηn → 0 as n → ∞ in [3].) In that setting, it was shown that FDR thresh-
olding gave asymptotically minimax estimators. Hence, the results in our paper
show that FDR thresholding, known previously to be successful in the Gaussian
case, is also successful in an interesting non-Gaussian case.

It appears to us that there may be a wide range of non-Gaussian cases wherein
the vector of means is sparse and FDR gives nearly-minimax results. Elsewhere,
Jin [12] will report results showing that similar conclusions are possible in the
case of Poisson data. In that setting, we have, for large n, n Poisson observations
Ni ∼ Poisson(µi) with the µi mostly 1 and perhaps a small fraction significantly
greater than 1. In that setting as well, it seems that FDR thresholding gives near-
minimax risk.

In fact, the approach developed here seems applicable to a wide range of non-
Gaussian distributions and loss functions. At the same time, it also seems able to
cover a wide range of dependence structures.

1.4. Contents. The paper is organized as follows. Theorems 1.1 (on minimax
risk) and 1.2 (on thresholding risk) are developed and proved in Sections 2 and 3,
respectively. These sections also introduce a model in which the parameter µ is
realized by i.i.d. random sampling rather than as a fixed vector; this model is very
useful for computations.

Sections 4–7 develop our technical approach to analyzing FDR thresholding.
This starts in Section 4 with a definition and analysis of the so-called FDR func-
tional, establishing various boundedness and continuity properties. The FDR func-
tional allows us to articulate the idea that in a Bayesian setting where both the
mean vector µ and the subordinate data X are realizations of iid random variables,
there is a ‘large-sample threshold’ which FDR thresholding is consistently ‘es-
timating.’ Section 5 discusses the performance of an idealized pseudo-estimator
which thresholds at this large-sample threshold even in finite samples; it shows
that the idealized ‘estimator’ achieves risk performance approaching the minimax
risk. Section 6 shows that in large samples, the risk of FDR thresholding is well
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approximated by the risk of idealized FDR thresholding. Section 7 ties together
the pieces by showing that the results of Sections 4–6 for the Bayesian model have
close parallels in the original frequentist setting of this introduction, implying The-
orem 1.3.

Section 8 ends the paper by (i) graphically illustrating two important points
about the method and the proof below, (ii) by comparing our results to recent
work of Genovese and Wasserman and of Abramovich et al. and (iii) describing
generalizations to a variety of non-Gaussian and dependent data structures.

1.5. Notation. In this paper, we let E denote the cumulative distribution func-
tion (cdf) of Exp(1), while, to avoid confusion, we use E for the expectation op-
erator applied to random variables; we also let Ē denote the survival function of
Exp(1) and extend this notation to all cdf’s; that is, for any cdf G, we let Ḡ = 1−G

denote the survival function.
We let ‘#’ denote the scale mixture operator, mapping any (marginal) distribu-

tion F on [1,∞) to a corresponding G = E#F on [0,∞), according to

F
E#−→ G : G(t) =

∫
E(t/µ)dF (µ).

Note here that G is the cdf of a scalar random variable X, with µ a random variable
µ ∼ F and X|µ ∼ Exp(µ). We let F denote the set of all eligible cdf’s,

F = {F :PF {µ ≥ 1} = 1
}
,

and Fp(η) denote the convex set of pth moment-constrained cdf’s,

Fp(η) =
{
F ∈ F :

∫
logp(µ)dF (µ) ≤ ηp

}
, 0 < p < 2.(1.9)

We also let G denote the collection of all scale mixtures of exponentials,

G = {G :G = E#F,F ∈ F },
and let Gp(η) denote the subclass where the mixing distributions obey the moment
condition E [logp(µ)] ≤ ηp ,

Gp(η) = E#Fp(η) = {G :G = E#F,F ∈ Fp(η)}, 0 < p < 2.(1.10)

In this paper, except where we explicitly state otherwise, the cdf’s F and G are
always related by scale mixing, so

G = E#F.

(The relation F → E#F is one-to-one.) We often use G and Gn together, always
implicitly assuming that they are related as the theoretical and empirical cdf of
the same underlying samples so that Gn is the empirical distribution for n i.i.d.
samples Xi ∼ G, where

Gn(t) = 1

n

n∑
i=1

1{Xi<t}.
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2. Asymptotics of minimax risk. In this section, we prove Theorem 1.1.
As usual, R∗

n(M) = supπ∈� ρn(π), where ρn(π) denotes the Bayes risk
EπEµ[ 1

n
‖ log µ̂π − logµ‖2

2] with µ random, µ ∼ π ; µ̂π denotes the Bayes esti-
mator corresponding to the prior π and �2 loss and � denotes the set of all priors
supported on M [here, M = Mn,p(η), as in (1.3)]. Throughout this paper, we al-
ways implicitly assume that Pπi

{µi ≥ 1} = 1, where πi is the ith entry of π .
As in [7], we obtain a simple approximation of R∗

n by considering a minimax-
Bayes problem in which µ is a random vector that is only required to belong to M

on average. We define the minimax-Bayes risk as

R̄∗
n(Mp,n(η)) = inf

µ̂
sup
π

{
EπEµ

[
1

n
‖ log µ̂ − logµ‖2

2

]
:

Eπ

[
1

n

n∑
i=1

logp µi

]
≤ ηp

}
.

(2.1)

Since a degenerate prior distribution concentrated at a single point µ ∈ Mp,n(η)

trivially satisfies the moment constraint, the minimax-Bayes risk is an upper bound
for the minimax risk, that is,

R∗
n(Mn,p(η)) ≤ R̄∗

n(Mn,p(η)).(2.2)

In fact, for large n, we have asymptotic equality; in Section 2.1 we will prove the
following:

THEOREM 2.1.

lim
n→∞

R∗
n(Mn,p(η))

R̄∗
n(Mn,p(η))

= 1.

Consider a univariate decision problem with data X a scalar random variable, with
µ a random scalar satisfying µ ∼ F and X|µ ∼ Exp(µ). The corresponding uni-
variate minimax-Bayes risk is

ρ̄(η) = ρ̄p(η) = inf
δ

sup
F∈Fp(η)

EF Eµ

(
log δ(X) − logµ

)2
.(2.3)

The univariate and n-variate minimax risks are closely connected; in Section 2.2,
we will prove the following:

THEOREM 2.2. R̄∗
n(Mn,p(η)) = ρ̄p(η).

The univariate minimax-Bayes risk has a simple asymptotic expression as given
by the following result:
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THEOREM 2.3. For 0 < p < 2,

lim
η→0

(
ρ̄p(η)

ηp log2−p log 1
η

)
= 1.

Theorem 1.1 follows immediately by combining Theorems 2.1–2.3.

2.1. Proof of Theorem 2.1. Because (2.2) gives half of what we need, our task
is to establish an asymptotic inequality in the other direction. We use a strategy
similar to that of [7].

Now, for fixed η, choose 0 < ζ � η and construct the product distribution

�
(n)
η−ζ = ∏n

i=1 π∗
η−ζ , where µi

iid∼ π∗
η−ζ ,

∫
logp(µ)dπ∗ = (η − ζ )p , 1 ≤ i ≤ n,

and π∗ is least favorable for the univariate Bayes Minimax problem (2.3), so
�

(n)
η−ζ is least favorable for the n-variate Bayes Minimax problem (2.1). Let

An = { 1
n

∑n
i=1 logp µi ≤ ηp}. We then construct a new prior, �̃(n)

η−ζ = �
(n)
η−ζ (·|An).

By the law of large numbers (LLN),

P(An) → 1,(2.4)

while under �
(n)
η−ζ , we have µ ∈ Mn,p(η), that is, supp�

(n)
η−ζ ⊂ Mn,p(η). As the

minimax risk is the supremum of Bayes risks, we have

R∗
n ≥ ρn

(
�̃

(n)
η−ζ

)
.(2.5)

Now, for any constant w > 1, and with L(·, ·) the loss function

L(µ̂,µ) = 1

n

n∑
i=1

(log µ̂i − logµi)
2,

define the w-truncated loss function,

L(w)(µ̂,µ) = 1

n

n∑
i=1

min{(log µ̂i − logµi)
2,w}.

Clearly,

ρn

(
�̃

(n)
η−ζ ,L

)≥ ρn

(
�̃

(n)
η−ζ ,L

(w)),(2.6)

where ρn(π,L) denotes the Bayes risk with respect to the loss function L. With
‖ · ‖T V denoting the variation distance, the definition of �̃

(n)
η−ζ and (2.4) give

∥∥�̃(n)
η−ζ − �

(n)
η−ζ

∥∥
T V ≤ 1 − P(An) → 0.

For variation distance, |EP f −EQf | ≤ ‖f ‖∞ · ‖P −Q‖T V ; thus, for any fixed w,
the Bayes risk∣∣ρn

(
�̃

(n)
η−ζ ,L

(w))− ρn

(
�

(n)
η−ζ ,L

(w))∣∣≤ w · (1 − P(An)
)→ 0 as n → ∞.
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On the other hand, for L or L(w), the coordinatewise separability of the loss and
the independence of the coordinates ensure that the per-coordinate Bayes risk does
not depend on the number of coordinates, that is,

ρn

(
�

(n)
η−ζ ,L

)= ρ1(π
∗
η−ζ ,L), ρn

(
�

(n)
η−ζ ,L

(w))= ρ1(π
∗
η−ζ ,L

(w)).

We conclude that for each w > 0,

ρn

(
�̃

(n)
η−ζ ,L

(w))→ ρ1
(
π∗

η−ζ ,L
(w)) as n → ∞.

Using monotone convergence of L(w) → L as w → ∞, we have

ρ1(π
∗
η−ζ ,L

(w)) → ρ1(π
∗
η−ζ ,L) = ρ̄(η − ζ ),

so from (2.5)–(2.6),

R∗
n ≥ ρ̄(η − ζ ).

Now, ρ̄(η) is monotone and continuous as a function of η; thus, by letting ζ → 0,
we have

R∗
n ≥ ρ̄(η) = R̄∗

n.

2.2. Proof of Theorem 2.2. First, observe that by the coordinatewise-separable
nature of any estimator δ = δn for µ and the i.i.d. structure of the Xi/µi ,

1

n
EπEµ‖ log δn − logµ‖2

2 = 1

n

∑
i

∫
Eµi

[log δ(Xi) − logµi]2πi(dµi)(2.7)

= 1

n

∫
Eµ1[log δ(X1) − logµ1]2

(∑
i

πi

)
(dµ1)(2.8)

= EFπ Eµ1[log δ(X1) − logµ1]2,(2.9)

where Fπ = 1
n

∑
πi(dµ1) is a univariate prior. Second, observe that the moment

condition on π can also be expressed in terms of Fπ since

1

n
Eπ

∑
logp µi = 1

n

∑
i

∫
logp(µi)πi(dµi) =

∫
logp(µ1)Fπ(dµ1);(2.10)

thus EFπ logp µ1 ≤ ηp . Theorem 2.2 is easily derived from (2.7)–(2.10). Indeed,
let (F 0, δ0) be a saddlepoint for the univariate problem (2.3), that is, δ0 is a min-
imax rule, F 0 is a least favorable prior distribution and δ0 is Bayes for F 0. Let
F 0,n denote the n-fold Cartesian product measure derived from F 0 and δ0,n the
n-fold Cartesian product of δ0. From (2.10) and (2.7), F 0,n satisfies the moment
constraint for R̄∗

n(Mn,p(η)) and

1

n
EF 0,nEµ‖ log δ0,n − logµ‖2

2 = ρ̄p(η).
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To establish the theorem, it is enough to verify that (F 0,n, δ0,n) is a saddlepoint for
the minimax problem R̄∗

n(Mn,p(η)). This would follow if for every π obeying the
moment constraint for R̄∗

n(Mn,p(η)),

EπEµ‖ log δ0,n − logµ‖2
2 ≤ EF 0,nEµ‖ log δ0,n − logµ‖2

2.

But (2.7)–(2.10) reduce this to the saddlepoint property of (F 0, δ0) in the
1-dimensional minimax problem ρ̄p(η).

2.3. Proof of Theorem 2.3. The following is proved in [11], Chapter 6:

LEMMA 2.1. For functions a = a(η) and d = d(η) such that limη→0 a(η) =
0, limη→0 d(η) = ∞ and limη→0[a(η)/d(η)]1/(d(η)−1) = 0,∫ 1

0
[(a/d) + y1−1/d ]−1 dy = d · (1 + O((a/d)1/(d−1))

)
as η → 0.

We now describe lower and upper bounds for ρ̄(η), both equivalent to
ηp log2−p(log 1

η
) asymptotically as η → 0. First, consider a lower bound for ρ̄(η).

A natural lower bound uses 2-point priors,

ρ̄(η) ≡ sup
F∈Fp(η)

ρ1(F ) ≥ sup
{(ε,µ): ε logp(µ)=ηp}

ρ1(Fε,µ),(2.11)

where Fε,µ = (1−ε)ν1 +ενµ ∈ Fp(η) denotes the mixture of mixing point masses
at 1 and µ with fractions (1 − ε) and ε, respectively. The Bayes rule δB(X;Fε,µ)

obeys

log(δB(X;Fε,µ)) =
ε
µ
e−X/µ

(1 − ε)e−X + ε
µ
e−X/µ

logµ(2.12)

and the Bayes risk is

ρ1(Fε,µ) = (logµ)2
∫ ∞

0

(1 − ε)e−x ε
µ
e
− x

µ

(1 − ε)e−x + ε
µ
e
− x

µ

dx

= ε log2(µ)

µ

∫ 1

0

(
ε

(1 − ε)µ
+ y

1− 1
µ

)−1

dy;(2.13)

particularly, if we let µ∗ = µ∗(η) = log( 1
η
)/(log log 1

η
) and ε∗ = ε∗(η) = ηp/

logp(µ∗), then applying Lemma 2.1 with a = a(η) = ε∗/(1 − ε∗) and d = d(η) =
µ∗, we have

ρ1(Fε∗(η),µ∗(η)) =
(
ηp log2−p log

1

η

)
· (1 + o(1)

)
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and obtain the desired lower bound

ρ̄(η) ≥ ρ1(Fε∗(η),µ∗(η)) =
(
ηp log2−p log

1

η

)
· (1 + o(1)

)
.(2.14)

We obtain an upper bound by considering the risk of thresholding. Define the
univariate thresholding nonlinearity

δt (x) =
{
x, x ≥ t,

1, otherwise.
(2.15)

Then with thresholding estimator δt (X) based on scalar data X obeying X|µ ∼
Exp(µ), where the scalar µ is distributed according to a prior F ∈ Fp(η), the
univariate Bayes thresholding risk is

ρT (t,F ) = E
(
log(δt (X)) − log(µ)

)2
.

We are particularly interested in the specific threshold

t0 = t0(p, η) = p log
(

1

η

)
+ p log log

(
1

η

)
+
√

log log
(

1

η

)
.

The worst-case univariate Bayes risk for this rule is

ρ̄T (t0, η) = ρ̄(t0, η;p) ≡ sup
F∈Fp(η)

ρT (t0,F ).(2.16)

As the minimax rule is at least as good as any specific rule, we have

ρ̄(η) ≤ ρ̄T (t0, η).(2.17)

Now, in the proof of Theorem 1.2 below, we show that the thresholding risk obeys

ρ̄T (t0, η;p) ≤ ηp log2−p log
1

η

(
1 + o(1)

)
as η → 0.(2.18)

Combining the lower bound given by (2.14) and the upper bounds given by
(2.17)–(2.18), we obtain Theorem 2.3.

3. Asymptotic minimaxity of thresholding. We now prove Theorem 1.2,
showing that thresholding estimates can asymptotically approach the minimax
risk.

3.1. Reduction to univariate thresholding. In effect, we need only prove
(2.18). We first recall why this establishes Theorem 1.2. Again, let µ̂t denote the
thresholding procedure on samples of size n. Trivially, for any t and n, the risk of
thresholding at t exceeds the minimax risk

sup
Mn,p(η)

Rn(µ̂t ,µ) ≥ R∗
n(Mn,p(η)).
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Theorem 1.2 thus follows from an asymptotic inequality in the other direction,

lim sup
η→0

inf
t

[
lim sup
n→∞

supMn,p(η) Rn(µ̂t ,µ)

R∗
n(Mn,p(η))

]
≤ 1.(3.1)

If we take

t0 = t0(p, η) = p log(1/η) + p log log(1/η) +
√

log log(1/η),(3.2)

then by Theorem 2.1 and Theorem 2.2, (3.1) reduces to

lim sup
η→0

[ lim supn→∞ supMn,p(η) Rn(µ̂t0,µ)

ρ̄(η)

]
≤ 1.(3.3)

Consider the worst Bayes risk of µ̂t0 with respect to any prior µ ∼ π , where π

is the distribution of a random vector which is only required to belong to Mn,p on
average,

R̄∗
n(µ̂t0, η) = R̄∗

n(µ̂t0, η;p)

(3.4)

= sup

{
EπEµ

[
1

n
‖ log µ̂t0 − logµ‖2

2

]
, for π : Eπ

1

n

n∑
i=1

logp µi ≤ ηp

}
.

Now, since degenerate prior distributions concentrated at points µ ∈ Mp,n(η) triv-
ially satisfy the moment constraint Fp(η), we have

sup
Mn,p(η)

Rn(µ̂t0,µ) ≤ R̄∗
n(µ̂t0, η).(3.5)

Consider also the worst univariate Bayes risk (2.16) of the scalar rule δt0(X), as
in (2.15), with respect to the univariate prior F ∈ Fp(η). As in the proof of Theo-
rem 2.2, it is not hard to show that the minimax multivariate Bayes risk is the same
as the minimax univariate Bayes risk

R̄∗
n(µ̂t0, η) = ρ̄T (t0, η).(3.6)

Hence, we now see that given (2.14), the matching upper bound (2.18) implies that

lim
η→0

ρ̄T (t0, η)

ρ̄(η)
= 1.(3.7)

Combining (3.5)–(3.7) yields (3.3) and Theorem 1.2. We thus turn to (2.18).
The univariate Bayes risk for thresholding at t can be decomposed into a bias

proxy and a variance proxy as follows:

ρ̄T (t,F ) =
∫

(logµ)2(1 − e
− t

µ ) dF (µ) +
∫ [∫ ∞

t
µ

log2(x)e−x dx

]
dF(µ),

≡
∫

b(t,µ)dF (µ) +
∫

v(t,µ)dF (µ),
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say. We now proceed to show that as η → 0,

sup
F∈Fp(η)

∫
b(t0,µ)dF (µ) ≤ ηp log2−p log

1

η
(3.8)

and

sup
F∈Fp(η)

∫
v(t0,µ)dF (µ) = o

(
ηp log2−p log

1

η

)
.(3.9)

Together, these imply (2.18).

3.2. Maximizing linear functionals over Fp(η). The relations (3.8)–(3.9) con-
cern maximization of functionals over cdf’s of moment-constrained scale mix-
tures. We now approach this problem from a general viewpoint, looking ahead to
maximization problems in later sections.

Consider two functions ψ(µ),φ(µ) in C[1,∞) ∩ C2(1,∞). Suppose

(a) φ is strictly increasing and φ(1) = 0;
(b) ψ is bounded, ψ(1) = 0, ψ ≥ 0 but ψ is not identically 0;
(c) limµ→∞[ψ(µ)/φ(µ)] = 0.

We are interested in the maximization problem

�(z) = sup
F∈F

{∫
ψ(µ)dF(µ) :

∫
φ(µ)dF(µ) ≤ z

}
.(3.10)

In the case φ(µ) = µ, �(z) is the usual convex envelope of ψ , that is, �(z) traces
out the least concave majorant of the graph of � . The next two lemmas describe
the computation of the envelope.

LEMMA 3.1. Suppose limµ→1+[ψ(µ)/φ(µ)] exists and the limit is strictly
smaller than �∗ ≡ supµ>1{ψ(µ)/φ(µ)}. Set

µ∗ = µ∗(ψ,φ) ≡ max{µ > 1 :ψ(µ)/φ(µ) = �∗}.
Then for any 0 ≤ z ≤ φ(µ∗), �(z) = �∗ · z and is attained by the mixture of
point masses at 1 and µ∗ with masses (1 − ε(z)) and ε(z), respectively, where
ε(z) = ε(z;ψ,φ) = z/φ(µ∗).

See Figure 1.

LEMMA 3.2. Suppose that limµ→1+[ψ(µ)/φ(µ)] = ∞ and suppose there
exists µ̄ = µ̄(ψ,φ) > 1 so that (ψ ′(µ)/φ′(µ)) is strictly decreasing in the interval
(1, µ̄] and, finally, that ψ ′(µ̄)/φ′(µ̄) < �∗∗(µ̄), where

�∗∗(µ) = �∗∗(µ; µ̄, φ,ψ) ≡ sup
µ′>µ̄

ψ(µ′) − ψ(µ)

φ(µ′) − φ(µ)
, 1 ≤ µ < µ̄.(3.11)
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FIG. 1. Generalized convex envelope �(z) for the case limµ→1+[ψ(µ)/φ(µ)] < ∞ in the
φ–ψ plane. In this example shown here with limµ→1+[ψ(µ)/φ(µ)] = 0, the thinner curve is
{(φ(µ),ψ(µ)) : µ ≥ 1}. When 0 ≤ z ≤ φ(µ∗), �(z) is a linear function of z and is illustrated by
the line segment. The case z > φ(µ∗) is not discussed.

Then there is a unique solution µ∗ = µ∗(ψ,φ) to the equation

�∗∗(µ) = ψ ′(µ)/φ′(µ), 1 < µ ≤ µ̄;
moreover, letting

µ∗ = max
{
µ ≥ µ̄ :

ψ(µ) − ψ(µ∗)
φ(µ) − φ(µ∗)

= �∗∗(µ∗)
}
,

then when 0 < z ≤ φ(µ∗), �(z) = ψ(φ−1(z)) and is attained by the single point
mass νµz with µz = φ−1(z) and when φ(µ∗) < z ≤ φ(µ∗), �(z) = ψ(µ∗) +
�∗∗(µ∗)[z − φ(µ∗)] and is attained by the mixture of point masses at µ∗ and
µ∗ with masses (1 − ε(z)) and ε(z), respectively, where ε(z) = ε(z;φ,ψ) =
[z − φ(µ∗)]/[φ(µ∗) − φ(µ∗)].

Notice here that the strict monotonicity of ψ ′(µ)/φ′(µ) over (1, µ̄] is equivalent
to concavity of the curve {(φ(µ),ψ(µ)) : 1 < µ ≤ µ̄} in the (φ(µ),ψ(µ)) plane.
See Figure 2.

The proofs of Lemmas 3.1 and 3.2 can be found in the full version of this pa-
per [6].
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FIG. 2. Generalized convex envelope �(z) for the case limµ→1+[ψ(µ)/φ(µ)] = ∞ in the φ–ψ

plane. The thinner curve is {(φ(µ),ψ(µ)) : µ ≥ 1}. When 0 < µ < µ∗, {(φ(µ),�(µ)) : 0 < µ < µ∗}
traces out the same curve as that of {(φ(µ),ψ(µ)) : 0 < µ < µ∗} and when µ∗ ≤ µ ≤ µ∗, �(z) is
a linear function of z = φ(µ) which is illustrated by the line segment. The slope of the line segment
equals that of the tangent at µ∗ of the curve {(φ(µ),ψ(µ)) : µ ≥ 1}. The case z > φ(µ∗) is not
discussed.

3.3. Maximizing bias and variance. To apply Lemma 3.1 to the bias proxy,
set ψ = ψη(µ) = b(t0,µ) = log2(µ)(1 − e−t0/µ), φ(µ) = logp(µ) and �(z) as
in (3.10). Then the worst bias supFp(η)

∫
b(t0,µ)dF ≡ �(ηp). Direct calculation

shows that for large t0,

µ∗ ≡ argmax[ψ(µ)/φ(µ)] ∼ t0

log log t0 − log(2 − p)

and

�∗ = �̄p,η ≡ ψ(µ∗)
logp(µ∗)

∼ log2−p t0 ∼ log2−p log
(

1

η

)
.

It is obvious that for sufficiently small η, ηp < φ(µ∗); thus, by Lemma 3.1,
�(ηp) = �∗ · ηp and relation (3.8) follows directly.

Now consider the variance proxy. Let ψ(µ) = ψη(µ) ≡ v(t0,µ) − v(t0,1),
φ(µ) = logp(µ), and again with �(z) as in (3.10), the maximal variance
proxy supFp(η)

∫
v(t0,µ)dF = �(ηp) + v(t0,1). Notice here that v(t0,1) =
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o(ηp log2−p(log 1
η
)), so to show relation (3.9), we need only demonstrate that

�(ηp) = O(ηp).(3.12)

Direct calculations show that

lim
µ→1+

[
ψ(µ)

φ(µ)

]
=



0, 0 < p < 1,

t0 log2(t0)e
−t0, p = 1,

∞, 1 < p < 2,

(3.13)

so we will calculate �(z) for the cases 0 < p ≤ 1 and 1 < p < 2 separately.
When 0 < p ≤ 1, let c = ∫∞

1 log2(x)e−x dx and note that for sufficiently large
t0, the condition of Lemma 3.1 is satisfied; moreover, direct calculations show that

µ∗ = argmax
µ>1

{ψ(µ)/φ(µ)} ∼ t0, �∗ = ψ(µ∗)
logp(µ∗)

∼ c

logp(t0)
;

for sufficiently small η, we have ηp < φ(µ∗), so by Lemma 3.1, �(ηp) = �∗ · ηp

and (3.12) follows directly.
When 1 < p < 2, if we let µ̄ denote the smaller solution of the equation

t0
µ

log(µ) = (p − 1), then for large t0, µ̄ ∼ 1 + p−1
t0

; moreover, by elemen-
tary analysis, [ψ ′(µ)/φ′(µ)] is strictly decreasing in (1, µ̄] and ψ ′(µ̄)/φ′(µ̄) <

�∗∗(µ̄) and the condition of Lemma 3.2 is satisfied. Furthermore, for large t0,

�∗∗(µ) ∼ c

logp t0
, ∀1 < µ ≤ µ̄.(3.14)

More elementary analysis shows that

µ∗ = argmax
µ≥µ̄

ψ(µ) − ψ(µ∗)
φ(µ) − φ(µ∗)

∼ argmax
µ≥µ̄

ψ(µ)

φ(µ)
∼ t0

and

µ∗ = exp
([ct0 log2+p t0e

−t0/p]1/(p−1)),
φ(µ∗) = [ct0 log2+p t0e

−t0/p]p/(p−1).

It is now clear that for sufficiently small η > 0, φ(µ∗) < ηp < φ(µ∗). Thus, by
Lemma 3.2,

�(ηp) = ψ(µ∗) + �∗∗(µ∗)
(
ηp − log(µ∗)

)
.(3.15)

Taking µ = µ∗ in (3.14) and (3.15) gives (3.12), since

�(ηp) = ψ(µ∗) + �∗∗(µ∗)[ηp − φ(µ∗)] ∼ ηp c

logp t0
= o(ηp).
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4. The FDR functional. We now come to the central idea in our analysis of
FDR thresholding—to view the FDR threshold as a functional of the underlying
cumulative distribution function. For any fixed 0 < q < 1, the FDR functional
Tq(·) is defined as

Tq(G) = inf
{
t : Ḡ(t) ≥ 1

q
Ē(t)

}
,(4.1)

where G is any cdf.
The relevance of Tq follows from a simple observation. If Gn is the empirical

distribution of X1,X2, . . . ,Xn, then Tq(Gn) is effectively the same as the FDR
threshold t̂FDR(X1, . . . ,Xn). More precisely (see Lemma 6.1 below), thresholding
at Tq(Gn) and at t̂FDR(X1, . . . ,Xn) always gives, numerically, exactly the same
estimate µ̂q,n.

In this section, we consider several key properties of this functional.

4.1. Definition, boundedness and continuity. We first observe that Tq(G) is
well defined at nontrivial scale mixtures of exponentials.

LEMMA 4.1 (Uniqueness). For fixed 0 < q < 1 and for all G ∈ G, G �= E, the
equation

Ḡ(t) = 1

q
Ē(t)(4.2)

has a unique solution on [0,∞) which we denote Tq(G).

PROOF. Indeed, with µ a random variable greater than or equal to 1, Ḡ(t) =
E [Ē(t/µ)]. Hence, if µ �= 1 a.s., then for some µ0 > 1 and some ε > 0, we have
that for all t ≥ 0, Ḡ(t) > εĒ(t/µ0). Now, Ḡ(0) < Ē(0)/q , while for sufficiently
large t , Ē(t)/q < εĒ(t/µ0). Hence, for some t = t0 on [0,∞), (4.2) holds. Now,
consider the slope of Ḡ(t),

− d

dt
Ḡ(t) = E [Ē(t/µ)/µ] < E [Ē(t/µ)] = Ḡ(t).

Compare this with the slope of Ē(t)/q . We have

− d

dt

1

q
Ē(t) = 1

q
Ē(t).

At t = t0, 1
q
Ē(t) = Ḡ(t), so

d

dt

(
Ḡ(t0) − 1

q
Ē(t)

)∣∣∣∣
t=t0

> 0.

In short, at any crossing of Ḡ − 1
q
Ē, the slope is positive. Downcrossings being

impossible, there is only one upcrossing, so the solution (4.2) is unique. �
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The ideas used in the proof immediately lead to two other important properties
of Tq .

LEMMA 4.2 (Quasi-Concavity). The collection of distributions G ∈ G satis-
fying Tq(G) = t is convex. The collection of distributions satisfying Tq(G) ≥ t is
convex.

PROOF. The uniqueness lemma shows that the set Tq(G) = t consists pre-
cisely of those cdf’s G obeying Ḡ(t) = e−t /q; this is a linear equality constraint
over the convex set G and defines a convex subset of G. The set Tq(G) ≥ t con-
sists precisely of those cdf’s G obeying Ḡ(t) ≤ e−t /q; this is a linear inequality
constraint over the convex set G and generates a convex subset. �

We also immediately have the following:

LEMMA 4.3 (Stochastic Ordering). We introduce the following notation for
cdf’s: G0 � G1 if Ḡ1(t) ≥ Ḡ0(t) for all t > 0. Then

G0 � G1 �⇒ Tq(G0) ≥ Tq(G1).

We now turn to boundedness and continuity of Tq . Recall that the Kolmogorov–
Smirnov distance between cdf’s G and G′ is defined by

‖G − G′‖ = sup
t

|G(t) − G′(t)|.

Viewing the collection of cdf’s as a convex set in a Banach space equipped with
this metric, the FDR functional Tq(·) is, in fact, locally bounded over neighbor-
hoods of nontrivial scale mixture of exponentials.

LEMMA 4.4 (Boundedness). For G ∈ G, G �= E,

− log
(

q

1 − q
‖G − E‖

)
≤ Tq(G) ≤ 1 − q

q

1

‖G − E‖ .

PROOF. We introduce the shorthand notation τ = Tq(G). The left-hand in-
equality follows from Ḡ(τ ) = Ē(τ )/q , which gives

‖G − E‖ = sup
t

∣∣G(t) − E(t)
∣∣≥ Ḡ(τ ) − e−τ = 1 − q

q
e−τ .

For the right-hand inequality, again use Ḡ(τ ) = Ē(τ )/q and convexity of et to
obtain

1

q
=
∫

e
(1− 1

µ
)τ

dF ≥ 1 + τ ·
∫ (

1 − 1

µ

)
dF.
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At the same time, since E � G, we have ‖G − E‖ = supt>0
∫ [e− t

µ − e−t ]dF .

Observe that as a function of t ,
∫ [e− t

µ − e−t ]dF has a unique maximum point

t = t̄ satisfying
∫ 1

µ
e
− t̄

µ dF = e−t̄ , so

‖G − E‖ =
∫

[e− t̄
µ − e−t̄ ]dF =

∫ (
1 − 1

µ

)
e
− t̄

µ dF ≤
∫ (

1 − 1

µ

)
dF

and we have τ ≤ 1−q
q

1
‖G−E‖ . �

In fact, the FDR functional is even locally Lipschitz away from G = E. Note
that the image of the mapping Tq : G → R is the interval (log( 1

q
),∞).

LEMMA 4.5 (Modulus of Continuity). Define

ω∗(ε; t0) ≡ sup
{∣∣Tq(G′) − t0

∣∣ :Tq(G) = t0,‖G − G′‖ ≤ ε,G ∈ G
}
.

Then for each fixed t0 > log(1/q),

ω∗(ε; t0) ≤ q

log(1/q)
t0e

t0ε · (1 + o(1)
)

as ε → 0.(4.3)

Crucially, the estimate (4.3) is uniform over {G ∈ G, Tq(G) ≤ t0} for fixed t0 > 0.
The proof even shows that

ω∗(ε; t0) ≤ C · ε for 0 < ε < εt0,(4.4)

where C = Ct0,q < ∞ if t0 < ∞. This implies the local Lipschitz property.

PROOF OF LEMMA 4.5. Consider the optimization problem of finding the cdf
G∗ ∈ G which satisfies Tq(G

∗) = t0 and, subject to that constraint, is as ‘steep’ as
possible at t0, that is,

∂

∂t
Ḡ∗(t)

∣∣∣∣
t=t0

= inf
{

∂

∂t
Ḡ(t)

∣∣∣∣
t=t0

: Ḡ(t0) = 1

q
Ē(t0),G ∈ G

}
.(4.5)

Letting φ(µ) = e−t0/µ and ψ(µ) = (t0/µ)e−t0/µ, Problem (4.5) can be
viewed as maximizing the linear functional

∫
ψ(µ)dF(µ) with the constraint∫

φ(µ)dF(µ) = 1
q
e−t0 . Observe that ψ ′(µ)/φ′(µ) strictly decreases in µ over

(1,∞), so in the φ–ψ plane, the curve (φ(µ),ψ(µ)) is strictly concave and
by arguments used in the proof of Lemma 3.2, the constrained maximum of∫

ψ(µ)dF(µ) is obtained at the point mass F which satisfies
∫

φ(µ)dF(µ) =
1
q
e−t0 .

It thus follows that the solution to Problem (4.5) is Ḡ∗
t0
(t) = e−t/µ∗

for µ∗ =
1/(1 + log(q)/t0). It has the remarkable property that if Tq(G) = t0,

Ḡ(t) ≤ Ḡ∗
t0
(t), 0 < t < t0, Ḡ(t) ≥ Ḡ∗

t0
(t), t > t0.(4.6)
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FIG. 3. The dashed curve is (1/q)Ē(t) with q = 1/2 and the solid curve is Ḡ∗
t0

(t). In the plot,

t− is the solution of Ḡ∗
t0

(t) + ε = (1/q)Ē(t) and t+ is the smallest solution to the equation

Ḡ∗
t0

(t) − ε = (1/q)Ē(t). For any other G with Tq(G) = t0, Ḡ(t) is bounded above by Ḡ∗
t0

(t) when

0 < t < t0 and is bounded below by Ḡ∗
t0

(t) when t > t0; moreover, for any G′ with ‖G′ − G‖ ≤ ε,
t− ≤ Tq(G′) ≤ t+.

Indeed, letting

h(t) ≡ [Ḡ(t)/Ḡ∗
t0
(t)
]− 1 =

∫
e
( 1
µ∗ − 1

µ
)t

dF (µ) − 1,

direct calculation shows that h(t) is strictly convex as long as PF {µ = µ∗} �= 1
(otherwise h ≡ 0) and (4.6) follows by observing that h(0) = h(t0) = 0.

For sufficiently small ε, define t− by

Ḡ∗
t0
(t−) + ε = Ē(t−)/q(4.7)

and define t+ to be the smallest solution to the equation

Ḡ∗
t0
(t) − ε = Ē(t)/q;(4.8)

see Figure 3. Now, if ‖G′ − G‖ ≤ ε, then by (4.6) and (4.8),

Ḡ′(t+) ≥ Ḡ(t+) − ε ≥ Ḡ∗
t0
(t+) − ε = Ē(t+)/q,

hence, Tq(G
′) ≤ t+. Similarly, by (4.6) and (4.7),

Ḡ′(t−) ≤ Ḡ(t−) + ε ≤ Ḡ∗
t0
(t−) + ε = Ē(t−)/q.(4.9)
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Observe that the function (Ḡ∗
t0
(t) − Ē(t)/q) is strictly decreasing in the interval

[0, t0], so (4.9) can be strengthened into

Ḡ′(t) ≤ Ḡ(t) + ε ≤ Ḡ∗
t0
(t) + ε < Ē(t)/q, 0 < t < t−;

hence, Tq(G′) ≥ t−. It follows that

ω(ε; t0) ≤ max{t0 − t−(ε), t+(ε) − t0}.(4.10)

Finally, setting w = t+ − t0, (4.7) can be rewritten as e−w/µ∗ − e−w =
εqet0 . Letting w(δ) denote the smaller of the two solutions to e−w/µ∗ − e−w =
δ, elementary analysis shows that for small δ > 0, w(δ) ∼ δ/(1 − 1/µ∗) =
δt0/ log(1/q), so as ε → 0, t+ − t0 ∼ (q/ log(1/q)) · t0e

t0ε and, similarly, t0 −
t−(ε) ∼ (q/ log(1/q)) · t0et0ε. Inserting these into (4.10) gives the lemma. �

4.2. Behavior under the Bayesian model. The continuity of Tq established in
Lemma 4.5 and the role of minimax Bayes risk in solving for the minimax risk
in Sections 2 and 3 combine to suggest a fruitful change of viewpoint. Instead of
viewing the Xi ∼ Exp(µi) with fixed constants µi , i = 1, . . . , n, we view the µi

as themselves sampled i.i.d. from a distribution F , so the Xi are sampled i.i.d.
from a mixture of exponentials G = E#F . Starting now and continuing through
Sections 5 and 6, we adopt this viewpoint exclusively. Moreover, for our sparsity
constraint, instead of assuming that 1

n
(
∑n

i=1(logp(µi)) ≤ ηp , we assume that this
happens in expectation so that F obeys EF log(µ1)

p ≤ ηp . We call this viewpoint
the Bayesian model because now the estimands are random. Although it seems a
digression from our original purposes, it is interesting in its own right and will be
connected back to the original model in Section 7.

The motivation for this model is, of course, the ease of analysis. We immediately
obtain the asymptotic consistency of FDR thresholding as given in the following:

COROLLARY 4.1. For G ∈ G and G �= E, the empirical FDR threshold
Tq(Gn) converges to Tq(G), that is,

lim
n→∞Tq(Gn) = Tq(G), a.s.

In a natural sense, the FDR functional Tq(G) can be considered as the ideal FDR
threshold—the threshold that FDR is “trying” to estimate and use.

PROOF OF COROLLARY 4.1. The ‘Fundamental Theorem of Statistics’ (for
example, [16], page 1) tells us that if Gn is the empirical cdf of X1,X2, . . . ,Xn

i.i.d. G, then

‖Gn − G‖ → 0, a.s.(4.11)

Simply combining this with continuity of Tq(G) at G �= E gives the proof. �
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Of course, we can sharpen our conclusions to rates. Under i.i.d. sampling Xi ∼
G, ‖Gn − G‖ = OP (n−1/2). Matching this, we have a root-n rate of convergence
for the FDR functional.

COROLLARY 4.2. If G ∈ G and G �= E, then∣∣Tq(Gn) − Tq(G)
∣∣= OP (n−1/2),

where the OP () is locally uniform in G.

PROOF. Indeed,∣∣Tq(Gn) − Tq(G)
∣∣≤ ω∗(‖Gn − G‖;Tq(G)) = ω∗(OP (n−1/2);Tq(G)).

By (4.4), for small ε > 0, ω∗(ε;Tq(G)) ≤ CGε, where CG is locally bounded
when G �= E. Therefore, this last term is locally uniformly OP (n−1/2) at each
G ∈ G where G �= E. �

We can, of course, go further. By Massart’s work on the DKW constant [9, 15],
we have

P
{‖Gn − G‖ ≥ s/

√
n
}≤ 2e−2s2

, ∀s ≥ 0,(4.12)

which combines with estimates of ω∗ to control probabilities of deviations
Tq(Gn) − Tq(G).

5. Ideal FDR thresholding. Continuing now in the Bayesian model just de-
fined, we define the ideal FDR thresholding pseudo-estimate µ̃q,n, with coordi-
nates (µ̃i) given by

µ̃i =
{
Xi, Xi ≥ Tq(G),

1, otherwise.
(5.1)

In words, we are thresholding at the large-sample limit of the FDR procedure.
Note that Tq(G) depends on the underlying cdf G, which is actually unknown

in any realistic situation. µ̃q,n is not a true estimator; it can only be applied in a
setting where we have side information supplied by an oracle which tells us Tq(G).
We view µ̃q,n as an ideal procedure and the risk for µ̃q,n as an ideal risk—the risk
we would achieve if we could use the threshold that FDR is ‘trying’ to ‘estimate.’
Despite the gap between ‘true’ and ‘ideal,’ µ̃q,n plays an important role in studying
the true risk for (true) FDR thresholding. In fact, we will eventually show that,
asymptotically, there is only a negligible difference between the ideal risk for µ̃q,n

and the (true) risk for the FDR thresholding estimator µ̂q,n. Let R̃n(Tq,G) denote
the ideal risk for µ̃q,n in the Bayesian model,

R̃n(Tq,G) ≡ 1

n
E

[
n∑

i=1

(
log(µ̃q,n)i − logµi

)2]
.
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Arguing much as in Sections 2 and 3 above, in the Bayesian model, we also have
the following identity with univariate thresholding risk:

R̃n(Tq,G) = ρT (Tq(G),F ).(5.2)

Since this ideal risk depends only on a univariate random variable X1 ∼ G and
Tq(G) is nonstochastic, its analysis is relatively straightforward. Also, we can now
drop the subscript n from R̃n.

THEOREM 5.1. Fix 0 < q < 1 and 0 < p < 2.

1. Worst-case ideal risk. We have

lim
η→0

[supG∈Gp(η) R̃(Tq,G)

ηp log2−p log 1
η

]
=



1, 0 < q ≤ 1
2 ,

q

1 − q
, 1

2 < q < 1.
(5.3)

2. Least favorable scale mixture. Fix 0 ≤ s ≤ 1. Set

µ∗
b = µ∗

b(η) = log
(

1

η

)/
log log

(
1

η

)
, µ∗

v = µ∗
v(η) = log

(
1

η

)
· log log

(
1

η

)

and

Gε,µ = (1 − ε)E(·) + εE(·/µ), ε · logp(µ) = ηp.

Define

µ̃ = µ̃(η;q, s) =




µ∗
b(η), 0 < q < 1

2 ,

µ∗
v(η), 1

2 < q < 1,

(1 − s) · µ∗
b(η) + s · µ∗

v(η), 0 ≤ s ≤ 1, q = 1
2 .

Then Gε,µ̃ is asymptotically least favorable for Tq , that is,

lim
η→0

[
R̃(Tq,Gε,µ̃)

supG∈Gp(η) R̃(Tq,G)

]
= 1.

By Theorems 2.1–2.3, the denominator on the left-hand side of (5.3) is as-
ymptotically equivalent to the minimax risk in the original model of Section 1.
In words, the worst-case ideal risk for the i.i.d. sampling model is asymptotically
equivalent to the minimax risk (1.4) as η → 0. This, of course, is no accident; it is
a key step towards Theorem 1.3.
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5.1. Proof of Theorem 5.1. We now describe, in a series of lemmas the ideas
for proving Theorem 5.1. In later subsections, we prove the individual lemmas.

Since the ideal risk R̃(Tq,G) is, by (5.2), reducible to the univariate thresh-
olding Bayes risk which we studied in Section 3, we know to split the ideal risk
R̃(Tq,G) into two terms, the bias proxy and the variance proxy,

B̃2(Tq,G) ≡
∫

b(Tq(G),µ)dF (µ), Ṽ (Tq,G) ≡
∫

v(Tq(G),µ)dF (µ).

Consider Ṽ (Tq,G). Asymptotically as η → 0, every eligible F ∈ Fp(η) puts
almost all mass in the vicinity of 1, so

Ṽ (Tq,G) ≈ v(Tq(G),1) ≈ log2(Tq(G))e−Tq(G).(5.4)

We set ṽ(t) ≡ log2(t)e−t . The following formal approximation result is proved
in [11], Chapter 6:

LEMMA 5.1. As η → 0,

sup
G∈Gp(η)

∣∣Ṽ (Tq,G) − ṽ(Tq(G))
∣∣= o

(
ηp log2−p log

1

η

)
.

Note that as G tends to E, Lemma 4.4 implies that Tq(G) → ∞. Since
ṽ(Tq(G)) decreases rapidly, the key to majorizing the variance is to keep Tq(G)

small, motivating study of

T ∗
q = T ∗

q (η;p) = inf
G∈Gp(η)

Tq(G).(5.5)

LEMMA 5.2. As η → 0,

T ∗
q = T ∗

q (η;p) = p

(
log

1

η
+ log log log

1

η

)
+ log

(
1 − q

q

)
+ o(1).

The proof is given in Section 5.2. As a direct result, we get

log2(T ∗
q )e−T ∗

q =
[

q

1 − q
ηp log2−p log

1

η

]
· (1 + o(1)

);
moreover, when Tq(G) exceeds T ∗

q , the variance proxy ṽ(T ∗
q ) drops out and we

obtain the following:

LEMMA 5.3. As η → 0,

sup
G∈Gp(η)

Ṽ (Tq,G) =
[

q

1 − q
ηp log2−p log

1

η

]
· (1 + o(1)

)
and

sup
G∈Gp(η),Tq(G)≥T ∗

q +√
T ∗

q

Ṽ (Tq,G) = o

(
ηp log2−p log

1

η

)
.
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We now study the bias proxy. The key observation is

b(t,µ) ≈



log2 µ, µ � t,

t
µ

log2 µ, µ � t.
(5.6)

To develop intuition, consider the family of 2-point mixtures,

G2,0
p (η) = {Gε,µ = (1 − ε)E(·) + εE(·/µ), ε logp µ = ηp}.

Now, (5.6) tells us that the maximum of the bias functional over this family is
obtained by taking µ as large as possible, while avoiding Tq(Gε,µ)

µ
� 1; moreover,

direct calculations show that

Tq(Gε,µ)

µ
= log(1 + p( 1

q
− 1) 1

ηp log(µ))

µ − 1
,(5.7)

so the value of µ causing the worst bias proxy should be close to the solution of
the equation

log(1 + p( 1
q

− 1) 1
ηp log(µ))

µ − 1
= 1.

Elaborating on this idea leads to the following result, to be proven in Section 5.3:

LEMMA 5.4. As η → 0,

sup
G∈Gp(η)

B̃2(Tq,G) =
(
ηp log2−p log

1

η

)
· (1 + o(1)

)
.

Combine the above analysis for bias and variance proxies, to give

1 + o(1) ≤ supG∈Gp(η) R̃(Tq,G)

ηp log2−p log 1
η

≤ 1

1 − q
+ o(1) as η → 0.

Compare this to the conclusion of Theorem 5.1; we have obtained the correct rate,
but not yet the precise constant. To refine our analysis, note that the worst bias and
the worst variance are obtained at different values µ within the family G2,0

p (η).
Denote the µ’s causing the worst bias and the worst variance by µ∗

b and µ∗
v . Then

µ∗
b ∼ log 1

η

log log 1
η

, µ∗
v ∼ log

1

η
· log log

1

η
as η → 0.

Divide Gp(η) into two subsets,

G1 ≡ {G ∈ Gp(η), Tq(G) ≥ T ∗
q +
√

T ∗
q

}
,

G2 ≡ {G ∈ Gp(η), Tq(G) < T ∗
q +
√

T ∗
q

}
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and consider each separately. [Note that Gµ∗
b
∈ G1, while Gµ∗

v
∈ G2. Here, Gµ∗

b

and Gµ∗
v

are mixtures of point masses at 1 and µ living in G2,0
p (η) with µ = µ∗

b

and µ∗
v , respectively]. Over the first subset, the variance is uniformly O(ηp) and

we immediately obtain

sup
G1

R̃(Tq,G) ≈ sup
G1

B̃2(Tq,G) ≈ ηp log2−p log
1

η
as η → 0.

For the second subset, the following lemma is proved in [6], page 22:

LEMMA 5.5. As η → 0,

sup
G2

R̃(Tq,G) =




(
ηp log2−p log

1

η

)
· (1 + o(1)

)
, 0 < q ≤ 1

2 ,

q

1 − q
·
(
ηp log2−p log

1

η

)
· (1 + o(1)

)
, 1

2 < q < 1.

Theorem 5.1 follows once Lemmas 5.2 and 5.4 are proved.

5.2. Proof of Lemma 5.2. Consider the upper envelope of the survivor function
among moment-constrained scale mixtures,

Ḡ∗
t = Ḡ∗

t (η;p) = sup{Ḡ(t),G ∈ Gp(η)}.
The quantity of interest is the crossing point where this envelope meets the FDR
boundary,

T ∗
q = inf

{
t : Ḡ∗

t ≥ Ē(t)/q
}
.

Equivalently,

T ∗
q = inf

{
t :
[(

Ḡ∗
t /Ē(t)

)− 1
]≥ (1 − q)/q

}
.(5.8)

Letting

h∗(t;η,p) = [(Ḡ∗
t /Ē(t)

)− 1
]
,

the key to calculating T ∗
q is to explicitly express h∗(t) as a function of t , asymp-

totically, for small η.
Calculating h∗(t) again involves optimization of a linear functional over a class

of moment-constrained cdf’s and we can apply the theory in Section 3.2. Set ψ =
ψt(µ) = [e(1− 1

µ
)t − 1] and φ(µ) = logp(µ) and define � = �t as in (3.10) so that

h∗(t;η,p) = �t(η
p). Note that

lim
µ→1+

[
ψt(µ)

logp(µ)

]
=



0, 0 < p < 1,

t, p = 1,

∞, 1 < p < 2,

(5.9)

so we treat the cases 0 < p ≤ 1 and 1 < p < 2 separately.
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When 0 < p ≤ 1, elementary analysis shows that for large t ,

µ∗ = argmax
µ≥1

{
e
(1− 1

µ
)t − 1

logp(µ)

}
∼ t log(t)

p
, �∗ = e

(1− 1
µ∗ )t − 1

logp(µ∗)
∼ et/[logp(t)],

so the condition of Lemma 3.1 is satisfied and

�t(η
p) ∼ ηpet/ logp(t).(5.10)

Inserting (5.10) into (5.8) and solving for t gives the lemma for the case 0 < p ≤ 1.
When 1 < p < 2, direct calculations show that the function ψ ′(µ)/φ′(µ)

strictly increases in the interval (1, µ̄] with log(µ̄) = log(µ̄(t;p)) = (p − 1)/t ,
also that [ψ ′(µ̄)/φ′(µ̄)] ≤ �∗∗(µ̄), so the condition of Lemma 3.2 is satisfied.
More calculations show first, that

µ∗ = µ∗(t;p) ∼ argmax
{µ′≥µ̄}

{
ψ(µ′)

logp(µ′)

}
∼ t

p log(t)
,

second, that for any 1 < µ ≤ µ̄,

�∗∗(µ) = �∗∗(µ; t)
≡ max

{µ′≥µ̄}

{
ψ(µ′) − ψ(µ)

logp(µ′) − logp(µ)

}
∼ max

{µ′≥µ̄}

{
ψ(µ′)

logp(µ′)

}
∼ et

logp(t)

and, finally, that

log(µ∗) = log(µ∗(t;p)) ∼
(

1

p
t logp(t)e−t

)1/(p−1)

since h∗(t, η,p) = �t(η
p). By Lemma 3.2,

h∗(t, η,p) =




e(1−e−η)t − 1, ηp ≤ logp(µ∗),
e
(1− 1

µ∗ )t − 1 + �∗∗(µ∗)
(
ηp − log(µ∗)

)
,

logp(µ∗) < ηp ≤ logp(µ∗);
(5.11)

moreover, by letting t∗ = t∗p(η) denote the solution of logp(µ∗(t,p)) = ηp , we can
rewrite (5.11) as

h∗(t;η,p) =
{
e(1−e−η)t − 1, t ≤ t∗,
e
(1− 1

µ∗ )t − 1 + �∗∗(µ∗)
(
ηp − log(µ∗)

)
, t ≥ t∗,

(5.12)

here noting that t∗ ∼ (p − 1)p log( 1
η
) for small η.

Inserting (5.12) into (5.8), it becomes clear that for sufficiently small η and
t ≤ t∗, h(t;η,p) ≈ 0. Thus, T ∗

q is obtained by equating

1 − q

q
= e

(1− 1
µ∗ )t − 1 + �∗∗(µ∗)

(
ηp − log(µ∗)

)∼ ηpet/ logp(t),

which gives the lemma for the case 1 < p < 2. �
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5.3. Proof of Lemma 5.4.

LEMMA 5.6. For a measurable function ψ defined on [1,∞), where ψ ≥ 0
but is not identically 0 and supµ≥1{ψ(µ)/µ} < ∞, then for G ∈ G and 0 < τ <

Tq(G), we have∫
ψ(µ)[e−τ/µ − e−Tq(G)/µ]dF ≤ (1/q) sup

{µ≥1}
{ψ(µ)/µ} · τe−τ /(1 − e−τ ).

Letting τ → 0 and combining Lemma 5.6 with Fatou’s Lemma, we have∫
ψ(µ)[1 − e−Tq(G)/µ]dF ≤ (1/q) sup

{µ≥1}
{ψ(µ)/µ}.(5.13)

PROOF OF LEMMA 5.6. Let k0 = k0(τ ;G) = �Tq(G)

τ
�. Since Tq(G) > τ , k0 ≥

1. Moreover,∫
ψ(µ)[e−τ/µ − e−Tq(G)/µ]dF ≤

∫
ψ(µ)[e−τ/µ − e−(k0+1)τ/µ]dF(5.14)

=
∫

ψ(µ)(1 − e−τ/µ)

[
k0∑

j=1

e−j ·τ/µ

]
dF.(5.15)

We introduce the shorthand notation c = maxµ≥1{ψ(µ)/µ} and recall that 1 −
e−x/µ ≤ x/µ for all x ≥ 0, so for 1 ≤ j ≤ k0,∫

ψ(µ)(1 − e−τ/µ)e−j ·τ/µ dF ≤ τ

∫
(ψ(µ)/µ)e−j ·τ/µ dF

≤ τ · c · ∫ e−j ·τ/µ dF.

(5.16)

By definition of k0 and the FDR functional,∫
e−j ·τ/µ dF = Ḡ(j · τ) ≤ (1/q)e−j ·τ , 1 ≤ j ≤ k0.(5.17)

Combining (5.14)–(5.17) gives

∫
ψ(µ)[e−τ/µ − e−Tq(G)/µ]dF ≤ (c/q) · τ ·

k0∑
j=1

e−j ·τ

≤ (c/q) · τ · e−τ /(1 − e−τ ).

(5.18)

�

We now prove Lemma 5.4. As in Section 3, let

t0 = t0(p, η) = p log(1/η) + p log log(1/η) +
√

log log(1/η).
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By the monotonicity of b(t,µ) and (3.8), for sufficiently small η > 0,

sup
G∈Gp(η),Tq(G)≤t0

B̃2(Tq,G) ≤ sup
Gp(η)

∫
b(t0,µ)dF

= ηp log2−p log(1/η)
(
1 + o(1)

)
.

(5.19)

Moreover, for any G with Tq(G) > t0, letting ψ(·) = log2(·) and τ = t0 in
Lemma 5.6, we have

0 ≤ B̃2(Tq,G) −
∫

b(t0,µ)dF =
∫

log2(µ)[e−t0/µ − e−Tq(G)/µ]dF

≤ ct0e
−t0/(1 − e−t0),

where c = maxµ≥1{log2(µ)/µ}, so it is clear that

sup
{G∈Gp(η),Tq(G)>t0}

B̃2(Tq,G) ≤
∫

b(t0,µ)dF + O(t0e
−t0).(5.20)

Lemma 5.4 follows directly from (5.19)–(5.20) and t0e
−t0 = o(ηp log2−p log( 1

η
)).
�

6. Asymptotic risk behavior for FDR thresholding. We now turn to µ̂q,n,
the true FDR thresholding estimator. For technical reasons, we define a threshold
T̂q,n slightly differently than t̂FDR. This difference does not affect the estimate.
Thus, we will have µ̂q,n ≡ µ̂

T̂q,n
= (µ̂i) with

µ̂i =
{
Xi, Xi ≥ T̂q,n,

1, Xi < T̂q,n.

Our strategy is to show that the ideal and true FDR behave similarly.
Still in the Bayesian model, we let Rn(T̂q,n,G) denote the per-coordinate aver-

age risk for µ̂q,n, that is,

Rn(T̂q,n,G) ≡ 1

n
E

[
n∑

i=1

(
log(µ̂q,n)i − logµi

)2]
.

Here, again, the expectation is over (Xi,µi) pairs i.i.d. with bivariate structure
Xi |µi ∼ Exp(µi).

We will show that as n → ∞, the difference between the true risk Rn(T̂q,n,G)

and the ideal risk R̃(Tq,G) is asymptotically negligible. We suppress the subscript
n on Rn (this is an abuse of notation).

THEOREM 6.1.

lim
n→∞

[
sup
G∈G

∣∣R(T̂q,n,G) − R̃(Tq,G)
∣∣]= 0.
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As a result,

lim
n→∞

[
sup

G∈Gp(η)

∣∣R(T̂q,n,G) − R̃(Tq,G)
∣∣]= 0.

Combining Theorems 6.1 and 5.1, we have

lim
η→0

[
lim

n→∞
supG∈Gp(η) R(T̂q,n,G)

ηp log2−p log 1
η

]
=



1, 0 < q ≤ 1
2 ,

q

1 − q
, 1

2 < q < 1.

Hence, T̂q,n asymptotically achieves the n-variate minimax Bayes risk when n →
∞ followed by η → 0.

6.1. Proof of Theorem 6.1. PROOF. We begin by defining T̂q,n. In applying
the FDR functional to the empirical distribution, it is always possible that

Ḡn(t) <
1

q
Ē(t), for all t > 0,(6.1)

in which case Tq(Gn) = t̂FDR = +∞. Letting Wn denote the event (6.1), define

T̂q,n =
{
Tq(Gn), over Wc

n,

log(n
q
), over Wn.

(6.2)

The following lemma, which was proven in [6, 11], shows that this definition of
threshold gives the same estimator as Tq(Gn), while obeying a bound which is
convenient for analysis.

LEMMA 6.1. Suppose Xi
iid∼ G, G ∈ G, G �= E and T̂q,n is defined as in (4.1).

Then

1. The FDR estimator is equivalently realized by thresholding at T̂q,n:
µ̂FDR

q,n = µ̂
T̂q,n

.

2. T̂q,n ≤ log(n
q
).

Next, we study the risk for T̂q,n. We have

R(T̂q,n,G) = 1

n

n∑
i=1

EF Eµ

[
log2(µi)1{Xi<T̂q,n} + log2

(
Xi

µi

)
1{Xi≥T̂q,n}

]

= EF Eµ

[
log2(µ1)1{X1<T̂q,n} + log2(X1/µ1)1{X1≥T̂q,n}

]
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and R(T̂q,n,G) naturally splits into a ‘bias’ proxy and the ‘variance’ proxy, as
follows:

B2(T̂q,n,G) = EF Eµ[log2(µ1)1{X1<T̂q,n}],
V (T̂q,n,G) = EF Eµ[log2(X1/µ1)1{X1≥T̂q,n}].

The comparable notions in the ideal risk case were

B̃2(Tq,G) = EF Eµ[log2(µ1)1{X1<Tq(G)}],
Ṽ (Tq,G) = EF Eµ[log2(X1/µ1)1{X1≥Tq(G)}].

Intuitively, we expect that B̃2 is ‘close’ to B2 and that Ṽ is ‘close’ to V ; our next
task is to validate these expectations. Observe that∣∣B2(T̂q,n,G) − B̃2(Tq,G)

∣∣≤ E
[
log2(µ1)|1{X1<T̂q,n} − 1{X1<Tq(G)}|],(6.3)

∣∣V (T̂q,n,G) − Ṽ (Tq,G)
∣∣≤ E

[
log2(X1/µ1)|1{X1<T̂q,n} − 1{X1<Tq(G)}|].(6.4)

It would not be hard to validate the expectations if |T̂q,n − Tq(G)| were negligible
for large n, uniformly for G ∈ G. In Section 4, Lemma 4.5 tells us that T̂q,n−Tq(G)

is locally OP (n−1/2) or, more specifically,∣∣Tq(G) − Tq(Gn)
∣∣∼ q

log(1/q)
Tq(G)eTq(G)‖G − Gn‖, G �= E.(6.5)

Unfortunately, for any fixed n, G might get arbitrary close to E and, as a result,
Tq(G) might get arbitrary large, so the relationship in (6.5) cannot hold uniformly
over G ∈ G.

A closer look reveals that those G’s failing (6.5) would, roughly, satisfy

Tq(G)eTq(G) ≥ √
n, or Tq(G) ≥ log(n)/2.

Note that as n increases from 1 to ∞, {G ∈ G :Tq(G) ≥ log(n)/2} defines a se-
quence of subsets, strictly decreasing to ∅. Motivated by this, we look for a sub-
sequence of subsets of G obeying

(a) G(1) ⊂ G(2) ⊂ · · · ⊂ G(n) ⊂ · · · and
⋃∞

1 G(n) = G;
(b) G(n) approaches G slowly enough such that supG(n)[√nTq(G)eTq(G))] = o(1);

(c) for large n, |R(T̂q,n) − R̃(Tq,G)| is uniformly negligible over G \ G(n).

A convenient choice is

G(n)
1 ≡ {G ∈ G :Tq(G) ≤ log(n)/8}, n ≥ 1.(6.6)

We expect that the difference between Tq(Gn) and Tq(G) is uniformly negligible

over G(n)
1 , that is,

sup
G(n)

1

∣∣Tq(G) − Tq(Gn)
∣∣= op(1).
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LEMMA 6.2. Let An denote the event {|T̂q,n − Tq(G)| ≤ n−1/4}. Then for
sufficiently large n,

sup
G∈G(n)

1

PG{Ac
n} ≤ 3e−[32(1−q)2/q2]n1/4/ log2(n).

Based on Lemma 6.2, one can develop a proof for the following.

LEMMA 6.3. For sufficiently small 0 < δ < 1,

1. limn→∞ sup
G∈G(n)

1
|B2(T̂q,n,G) − B̃2(Tq,G)| = 0;

2. limn→∞ sup
G∈G(n)

1
|V (T̂q,n,G) − Ṽ (Tq,G)| = 0.

As a result, limn→∞ sup
G∈G(n)

1
|R(T̂q,n,G) − R̃(Tq,G)| = 0.

We now consider (c). Define

G(n)
0 ≡ G \ G(n)

1 , n ≥ 1.(6.7)

Though it is no longer sensible to require that |Tq(Gn) − Tq(G)| be uniformly

negligible over G(n)
0 , we still hope that Tq(Gn) at least stays at the same magnitude

as Tq(G), or Tq(Gn) = Op(log(n)). This turns out to be true and, in fact, is an
immediate consequence of Massart’s inequality (4.12).

LEMMA 6.4. Letting Dn be the event {T̂q,n ≥ log(n)/16},
sup

G∈G(n)
0

PG{Dc
n} = 2e−2[(1−√

q)2/q2]n7/8
.

Combining this with Lemma 6.1, we have, except for an event with negligible
probability,

log(n)/16 ≤ T̂q,n ≤ log(n/q).

Since v(t,µ) is monotone decreasing in t , it is now clear that both V (T̂q,n,G) and

Ṽ (Tq,G) are uniformly negligible over G(n)
0 .

LEMMA 6.5.

lim
n→∞

[
sup

G∈G(n)
0

Ṽ (Tq,G)
]
= 0, lim

n→∞
[

sup
G∈G(n)

0

V (T̂q,n,G)
]
= 0.

Finally, note that b(t,µ) is strictly increasing in t , so either B2(T̂q,n,G) or

B̃2(Tq,G) will not be uniformly negligible over G(n)
0 . However, note that b(t,µ)

increases very slowly in t for large t , so we can expect that |B2(T̂q,n,G) −
B̃2(Tq,G)| is uniformly negligible over G(n)

0 .
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LEMMA 6.6. limn→∞[sup
G∈G(n)

0
|B2(T̂q,n,G) − B̃2(Tq,G)|] = 0.

The choice of log(n)/8 is only for convenience; a similar result holds if we
replace log(n)/8 by c log(n) for 0 < c < 1/2.

Combining the above lemmas yields Theorem 6.1. �

The proofs of Lemmas 6.1–6.6 can be found in the full version of this paper [6].

7. Proof of Theorem 1.3. We now complete the proof of Theorem 1.3. The
key point is to relate the Bayesian model of Sections 4–6 to the frequentist
model of Section 1. In the frequentist model, Xi ∼ Exp(µi),1 ≤ i ≤ n, where
µ = (µ1,µ2, . . . ,µn) is an arbitrary deterministic vector µ ∈ Mn,p(η). Recall
that Rn(T̂q,n,G) denotes the risk of FDR estimation in the Bayesian model,
while Rn(µ̂q,n,µ) denotes the risk in the frequentist model. Below, we will show
that

lim
η→0

[
lim

n→∞
supG∈Gp(η) Rn(T̂q,n,G)

supµ∈Mn,p(η) Rn(µ̂q,n,µ)

]
= 1.(7.1)

Recall that by Theorems 1.1, 5.1 and 6.1, we have

lim
η→0

[
lim

n→∞
supG∈Gp(η) Rn(T̂q,n,G)

R∗
n(Mn,p(η))

]
=



1, 0 < q ≤ 1
2 ,

q

1 − q
, 1

2 < q < 1,

so Theorem 1.3 follows from (7.1). To prove (7.1), let Gµ denote the mixture
Gµ = 1

n

∑n
i=1 E(·/µi), let R̃n(µ̃q,n,µ) denote the ideal risk for thresholding at

Tq(Gµ) under the frequentist model and let R̃(Tq,G) again denote the ideal
risk for thresholding at Tq(G) in the Bayesian model. We have the crucial iden-
tity

R̃n(µ̃q,n,µ) ≡ R̃(Tq,Gµ), ∀µ,n.(7.2)

Also, note that the class of Gµ’s arising from some µ ∈ Mn,p(η) is a subset of the
class of all G’s arising in Gp(η), for each n > 0. Hence,

sup
µ∈Mn,p(η)

R̃(Tq,Gµ) ≤ sup
G∈Gp(η)

R̃(Tq,G), ∀n.

However, note that by Theorem 5.1, appropriately chosen 2-point priors can
be asymptotically least-favorable for ideal risk in the Bayesian model. By
choosing µ which contain entries with only the two underlying values in the
least favorable prior and with appropriate underlying frequencies, we can ob-
tain

lim
η→0

[
limn→∞ supµ∈Mn,p(η) R̃(Tq,Gµ)

supG∈Gp(η) R̃(Tq,G)

]
= 1.(7.3)
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Now, relating the Bayesian to the frequentist model via (7.2), we have

lim
η→0

[
limn→∞ supµ∈Mn,p(η) R̃n(µ̂q,n,µ)

supG∈Gp(η) R̃(Tq,G)

]
= 1.(7.4)

Suppose we can next show that the ideal FDR risk in the frequentist model is equiv-
alent to the true risk in the frequentist model, in the same sense as was proved in
Theorem 6.1. Hence,

lim
η→0

lim
n→∞

[
supµ∈Mn,p(η) Rn(µ̂q,n,µ)

supµ∈Mn,p(η) R̃n(µ̃q,n,µ)

]
= 1.(7.5)

Then (7.3)–(7.5) yield (7.1).
The key point is that (7.5) follows exactly as in Section 6. Indeed, there is a

precise analog of Theorem 6.1 for the relation between the frequentist risk and the
frequentist ideal risk. This is based on two ideas.

First, if Gn now denotes the cdf of X1, . . . ,Xn in the frequentist model, we again
have very strong convergence properties of Gn, this time to Gµ. This concerns
convergence of the empirical cdf for non-i.i.d. samples, which is not well known,
but can be found in [16], Chapter 25.

LEMMA 7.1 (Bretagnolle [5]). Let Xn1,Xn2, . . . ,Xnn be independent ran-
dom variables with arbitrary df’s Fni , let Fn(x) be the empirical cdf and let
F̄ = Avei{Fni}. Then for all n ≥ 1, s > 0, there exists an absolute constant c such
that

Prob
{√

n‖Fn − F̄n‖ ≥ s
}≤ 2ece−2s2

.

By means of Massart’s work ([16], Chapter 25 and [15]), we can take c = 1.
Then taking Fni = Exp(µi) and F̄ = Gµ, we obtain

Pµ

{‖Gn − Gµ‖ ≥ s/
√

n
}≤ 6e−2s2

, ∀µ.

This is completely parallel to the bound (4.12).
Second, it follows immediately from Section 4’s analysis that there are frequen-

tist fluctuation bounds for Tq(Gn)−Tq(Gµ) paralleling those in the Bayesian case.
To apply this, we define

M1
n,p(η) = {µ ∈ Mn,p(η), Tq(Gµ) ≤ log(n)/8

}
(7.6)

and

M0
n,p(η) = Mn,p(η) \ M1

n,p(η).(7.7)

LEMMA 7.2. For sufficiently small η > 0,

1. limn→∞[supµ∈M1
n,p(η) |Rn(µ̂q,n,µ) − R̃n(µ̃q,n,µ)|] = 0;
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2. limn→∞[supµ∈M0
n,p(η) |Rn(µ̂q,n,µ) − R̃n(µ̃q,n,µ)|] = 0.

The proof of this lemma is entirely parallel to that of Theorem 6.1, so we omit
it. This completes the proof of (7.1).

8. Discussion.

8.1. Illustrations. We briefly illustrate two key points.
First, we consider finite-sample performance of FDR thresholding. Figure 4

shows the result of FDR thresholding with various values of q . It used a sample size
n = 106, sparsity parameters p = 1, η = 10−3 and a range of two-point mixtures
of the kind discussed in Theorem 5.1. The figure compares the actual risk of the
FDR procedure under a range of situations with the asymptotic limit given by
Theorem 1.3. Clearly, the risk depends more strongly on q in finite samples than
seems called for by the asymptotic expression in Theorem 1.3. In the simulations,
the mixtures were based on various (ε,µ) pairs with µ ranging between 2 and 30
and where, for each µ, ε = η

log(µ)
.

For each q ∈ {0.05,0.15,0.25,0.5}, we applied the FDR thresholding estimator
µ̂FDR

q,n , obtaining an empirical risk measure

R̂(q,µ) = R̂(q,µ;η,n) = 1

n
‖ log µ̂q,n − logµ‖2

2.

Figure 4 plots R̂(q,µ;η,n) versus µ for each q . As µ varies between 2 and 30,
the empirical FDR risk first increases to a maximum, then decreases; this fits well
with our theory. We also note that for q smaller than 1/2, the empirical FDR risk is
not larger than η log log( 1

η
) and when q is close to 1/2, though the empirical FDR

risk can be larger than η log log( 1
η
), it is rarely larger than, say, 1.3 · η log log( 1

η
).

Second, we illustrate the behavior of the ideal risk function introduced in the
second part of Theorem 5.1. Figure 5 illustrates an example of the ideal risk de-
composition into bias proxy and variance proxy, showing the maxima of each and
the different ranges over which the two assume their large values.

8.2. Generalizations. The approach described here can be directly extended to
other settings. Jin has recently derived, by similar methods, asymptotic minimaxity
of FDR thresholding for sparse Poisson means obeying µ ≥ 1, with most µi = 1.
This could be useful in situations where we have a collection of ‘cells’ and expect
one event per cell in typical cases, with occasional ‘hot spots’ containing more
than one event per cell.

Preliminary calculations show that a wide range of non-Gaussian additive noises
can also be handled by these methods. To see why, note that due to the use of
log(µi) in both the loss measure and parameter set, the results of this paper can be
considered a study of FDR thresholding in a situation with additive noise having a
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FIG. 4. Simulation results for FDR thresholding. Curves (dashed, solid, cross, and diamond) de-
scribe per-coordinate loss of the FDR procedure with different q values (q = 0.05, 0.15, 0.25, 0.5)
at different two-point mixtures. Here, the mixtures concentrate at 1 and µ with mass ε = η/ log(µ)

at µ. The horizontal line corresponds to the asymptotic risk expression η log log( 1
η ).

standard Gumbel distribution. Thus, defining Yi = log(Xi), the model of Section 1
posits effectively that

Yi = θi + Zi, i = 1, . . . , n,

where, for θi ≥ 0,

1

n

(∑
i

θ
p
i

)
≤ ηp,

we measure loss by
∑

i (θ̂i − θi)
2 and the noise Zi obeys eZi ∼ Exp(1). Although

we have focused on the one-sided problem in which θi ≥ 0 for all i, we can cer-
tainly generalize the study to treat the two-sided problem with 1

n
(
∑

i |θi |p) ≤ ηp

and where both θi > 0 and θi < 0 are possible. Other additive non-Gaussian noises
which have been considered include double-exponential. Of course, in considering
non-Gaussian distributions, the effectiveness of thresholding depends on the tails
of the noise distribution being sufficiently light. Thus, asymptotic minimaxity of
thresholding would be doubtful for additive Cauchy noise.

Another generalization concerns dependent settings. In principle, FDR thresh-
olding can still be ‘estimating’ the FDR functional in large samples, even without
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(a)

(b)

FIG. 5. Panel (a): The ‘bias proxy’ B̃2(Tq ,Gε,µ) and the ‘variance proxy’ Ṽ (Tq,Gε,1,µ).

Panel (b): Enlargement of (a). The maxima of B̃2(Tq,Gε,µ) and Ṽ (Tq ,Gε,µ) are obtained roughly

at µ∗
b and µ∗

v , respectively, with µ∗
b = log( 1

η )/ log log log( 1
η ), µ∗

v = log( 1
η ) · log log( 1

η ). In this figure,

η = 10−6.

i.i.d. stochastic disturbances. Suppose that the Xi are weakly dependent, in such a
way that their empirical cdf still converges at a root-n rate. Then all of the above
analysis can be carried through in detail without essential change.

One frequently raised question is whether the study here could easily be gen-
eralized to other distributional settings such as other exponential families. Unfor-
tunately, the results in this paper depend on some properties of the exponential
distribution which other exponential families might not have. The most important
is the monotone likelihood ratio of the family of exponential density functions
{fµ(x),0 < µ < ∞ : fµ(x) = 1

µ
e−x/µ · 1{x>0}} [14]; this seems crucial for our

argument [12], but some exponential families are not MLR. Jin’s study shows that
the behavior of the FDR functional in the discrete Poisson setting is essentially
different from that of a continuous setting (Gaussian, exponential, etc.). Another
frequently raised issue concerns the possibility of working on the original scale
instead of the log-scale. However, this does not give rise to a meaningful problem;
if we used �2-loss on µ instead of on logµ, the minimax risk would be infinite.
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8.3. Relation to other work. There are two points of contact with earlier lit-
erature. The first, of course, is with the work of Abramovich, Benjamini, Donoho
and Johnstone [3]. Like the present work, [3] proves an asymptotic minimaxity
property for the FDR thresholding estimator only for Gaussian noise, and for a
subtly different notion of sparsity. In [3], the sparsity parameter η = ηn so that
the sparsity is linked to sample size, which makes sense in a variety of nonpara-
metric estimation applications such as like wavelet denoising [1, 2, 7, 8]. In our
work, η goes to zero only after n → ∞. This simplifies our analysis; the underly-
ing tools in [3]—empirical processes, moderate deviations—are more delicate to
deploy than ours. The advantage of our approach seems to lie principally in the
ease of generalization to a wider range of non-Gaussian and dependent situations.

The second connection is with the work of Genovese and Wasserman [10].
While they do not consider our multiparameter estimation problem, they do use
a Bayesian viewpoint related to Sections 4–6 of our paper. Our approach consid-
ers, of course, a different class of Bayesian examples and a different notion of
estimation risk. Their paper seems focused on developing intuition and a broader
understanding of the FDR approach, while ours uses FDR to attack a specific op-
timal estimation problem.
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