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1. Summary. Let X;, --- , X, and ¥y, ---, ¥, be ordered observations from
the absolutely continuous cumulative distribution functions F(z) and G(z)
respectively. If zy; = 1 when the ¢th smallest of N = m 4 n observations is an
X and 2y; = 0 otherwise, then many nonparametric test statistics are of the
form

N
mTy = 21 Ey:zn:.
Theorems of Wald and Wolfowitz, Noether, Hoeffding, Lehmann, Madow, and
Dwass have given sufficient conditions for the asymptotic normality of T .
In this paper we extend some of these results to cover more situations with
F # @. In particular it is shown for all alternative hypotheses that the Fisher-
Yates-Terry-Hoeffding c;-statistic is asymptotically normal and the test for
translation based on it is at least as efficient as the i-test.

2. Introduction. Finding the distributions of nonparametric test statistics
and establishing optimum properties of these tests for small samples has pro-
gressed slower than the corresponding large sample theory. Even so, it is not
possible to state that the basic framework of the large sample theory has been
completed. Dwass [3] has recently presented a general theorem on the asymp-
totic normality of certain nonparametric test statistics under alternative hypoth-
eses. His results, however, do not apply to such important and interesting pro-
cedures as the ¢-test [11]. Many papers have appeared giving the asymptotic
efficiency of particular tests. Hodges and Lehmann [7] have discussed the asymp-
totic efficiency of the Wilcoxon test with respect to all translation alternatives.
In the same paper they have conjectured that the ¢;-test is as efficient as the ¢-
test for normal alternatives and at least as efficient as the é-test for all other
alternatives.

The beginning of our work came from a desire to verify the Hodges and Leh-
mann conjecture. Related to the conjecture is the hypothesis that the ¢;-statistic
is asymptotically normally distributed. Thus our work has two parts: developing
a new theorem for asymptotic normality of nonparametric test statistics and the
establishing of the variational argument required for determining the minimum
efficiency of test procedures.
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Our basic result on the asymptotic normality of statistics of the form Ty is
Theorem 1 of Section 4. This theorem is a partial generalization of results of
Dwass [3] summarized in our Theorem 4. Theorem 1 is not given in the most
general form possible. Our choice of the level of generality was to facilitate our
writing and your reading.

Section 3 contains our basic notation and assumptions. Section 4 contains
statements of the theorem on asymptotic normality as well as the basic portion
of the proof. Details regarding the negligibility of the remainder terms are given
in Section 7. The variational arguments are presented in Section 5 and Section
6 relates our Theorem 1 to Dwass’s results. Applications of Theorem 1 to several
nonparametric tests are given in Section 6.

3. Assumptions and notation. Let X;, X,, -+, X,» be the ordered observa-
tions of a random sample from a population with continuous cumulative dis-
tribution function F(x). Let Y1, Y3, - -+, Y. be the ordered observations of a
random sample from a population with continuous cumulative distribution func-
tion G(z). Let N = m 4 n and Ay = m/N and assume that for all N the in-
equalities 0 < Xo < Ay = 1 — X < 1 hold for some fixed N\ < 3.

Let F(z) = (number of X; < z)/m and G.(z) = (number of ¥; = z)/n.
Thus F.(z) and G.(z) are the sample cumulative distribution functions of the
X’s and Y’s respectively. Define Hy(z) = AxFu(z) + (1 — A)Ga(z). Thus
Hy(z) is the combined sample cumulative distribution function. The combined
population cumulative distribution function is H(z) = AF(z) + (1 — A)G(x).
Even though H(z) depends on N (or rather m and n) through Ax our notation
suppresses this fact for convenience. In fact F(z) and G(z) may actually depend
on N although this will not be stated explicitly. In Corollary 1 the distributions
do depend on N. The point for suppressing this fact is that our limit theorems are
“uniform” and hold, whether the distributions are constant, tend to a limit, or
vary rather arbitrarily with the sample size N.

If the 7th smallest in the combined sample is an X let zx; = 1 and otherwise
let zx; = 0. Then our concern is with statistics of the form

N
3.1) - mTy = Zl Eyi 2yi,

where the Ey; are given numbers. (The special case where Ey; = E(i/N) is
particularly easily handled by our methods. For the Wilcoxon test this condition
is met with Ey; = i/N, and Freund and Ansari [6] have considered Ey; =
E(i/N) = |4 — 4/N | in testing for the equality of dispersion of two popula-
tions.) The definition (3.1) of Ty is the one conventionally used. We shall, how-
ever, use the following representation:

32) Ty = [ THA@) dFa).

The definitions (3.1) and (3.2) are equivalent when Ey; = J(i/N). A repre-
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sentation like (3.2) was used by Blum and Weiss [1, page 243, Eq. 2.4] and R. v.
Mises considered [ ¢(2) dF .(x) in detail [9].

Throughout our proofs K will be used as a generic constant which may depend
on Jy but it will not depend on F(x), G(z), m, n, N. Statements involving o,
or 0, will always be uniform in F(x), G(x), and H(z), and Ay in the interval 0 <
MEMW=E1I—-2<L1

While J» need be defined only at 1/N, 2/N, --- , N/N, we shall find it con-
venient to extend its domain of definition to (0,1] by some convention such as
letting Jy be constant on (¢/N, (z 4+ 1)/N].

Let Iy be the interval in which 0 < Hy(z) < 1. Then Iy is closed on the left
at the smallest observation and open on the right at the largest observation.
The interval, Iy, has a random location.

4. Asymptotic normality.
TaeoreMm 1. If

1 JH) = },im Jw(H) exists for 0 < H < 1 and is not constant,
@ [ VaHn) — JH) dFule) = 00,
(3) Jx(1) = o(v/N),

d'J
dH

@ 1J9@m | = < KIHQ — B

fori = 0,1, 2, and for some & > 0,
then, for fixed F, G and Ay ,

. Ty — L2 _ ‘ 1 —22/2
(4.1) lim P (_T < t) = L ¢,
where
(4.2) oy = L JIH ()] dF (z)
and

Na?v=2<1—xN>{ [[ @i -6V HE HWaFE FE

—R0LELYL®

+'<1_;NM ff F(x)[l—F(y)]J'[H(x)]J'[H(y)]dG(x)dG(y)},

(4.3)

—0LELY L

providing ox # 0.

In Eqs. 4.1 and 4.3 we put subseripts on u and o to recall that these depend
on F, G and Ay and are meaningful in the more general case where F, G, and Ay
are not fixed. Corollary 1 will extend Theorem 1 to obtain convergence to normal-
ity uniformly with respect to F, G, and Ay for a broad range of F, G, and Ay .
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To facilitate the proof of Corollary 1, we will regard F, G, and Ay as variable
throughout the proof of Theorem 1 except where it is specified otherwise.

Assumption 1 is likely to be filled whenever one speaks of a sequence of tests.
In the special case Ex; = E(¢/N) of course Jy = E = J and Assumption 2
will automatically be satisfied. Theorem 2 shows that Assumptions 1, 2 and 3
are often satisfied when the Ex; are the mean values of order statistics. Assump-
tion 4 is the basic condition. The assumption has two functions: it limits the
growth of the coefficients Ex; and it supplies certain smoothness properties.
Both conditions are essential to our argument. We believe that the theorem is
true without the smoothness condition.

Proor. To begin the proof we rewrite Tx as

To = [ I(H) dFala) = [ UL = T P

+ [ I aPa@) + [ TuH) dF.
Ix Hy=1
In the second integral we write dF,, = d(F.,, — F + F), J(Hy) = J(H) +
(Hy— H)J'(H) + [(Hy — H)*/21J"lHy + (1 — ¢)H], where 0 < ¢ < 1,and
H = MF 4+ (1 — Ay)G. After multiplying out the expression becomes
]
Ty = A +BIN+BZN+§10,-N,
where

(44) 4 = J(H) dF(z),
0<HL]
(45)  Bu=[  J(H) dIFu@) — FQ),
0<cH<L
(4.6) Boy = (Hy — H)J'(H) dF (z),
@D Cw=hr [ (= D) dFu@) ~ FG)
0<cH<L

48)  Cow = (1 — ) f cney O = O (H) dlFw0) - F@),

(Hy — H)®

In 2

(4.9) Cov = J leHy + (1 — ¢)H| dFn(z),

(4.10) Ciy = X [_ J(H) - (HN - H)J,(H)] dFM(x);

Hy=

@11)  Cow = f W n(Hy) — J(Hy)) dF (@),

(4.12) Con = 1JN(HN) dF ().

Hy=
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The A, B, C terms represent the “constant,” “first order random,” and “higher
order random” portions respectively of T'x . In this section a detailed study of
the A and B terms is made and in Section 7 it is shown that the C' terms are of
higher order.

The “constant” term, A = [oczc1 J(H) dF(z), is finite as a result of Assump-
tion 4 of Theorem 1; see Section 7.A.10. Since 4 depends on Ay as well as F(x)
and G(z) it need not converge as N — «, but it does remain bounded.

Integrating Bov by parts and using the fact that

[ diFuta) - F@) = o

we obtain

Bur + Bax = L = 2al{ [ BGa) dlFu(a) — P2
(4.13) ” .

- [( 5@ a6 - G(x)]},

where
(4.14) B() = [ J'IH )] d6(y)
(@15 B'@) = [ 1HG) aF Q)
and

MB¥(@) + (I — M)B() = JH(@)] — JIH(@)]

with o determined somewhat arbitrarily, say by H(x) = 1/2.
Thus,

Biw + Bay = [1 — Al {'17;; 32 1(BX) — 8BX)]

fe=

(4.16) 1&g
- ; [B¥*(Y) — 8B*(Y)}},

where & represents expectation and X and ¥ have the F and @ distributions re-
spectively.

The two summations involve independent samples of identically distributed
random variables. Therefore, if F, @, and Ay are fixed, B(X) and B*(Y) are speci-
fied random variables and we may apply the central limit theorem to show that
By + Bax when properly normalized has a Gaussian distribution in the limit.
The central limit theorem applies if the variances of B(X) and B*(Y) are finite
and at least one is positive.

First, we shall find a bound on the moments of B(X) and B*(Y):

| Bz) | =

[ ruenaew | s KGN - HEI.
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Thus for & > 0 such that (2 + 8)(—% + 68 > —1,
8{| BX) 1™ < K f [H@ — H@NTHP g ()

1
< Kf [H(1 — H)]THCH) g < K,
0

having made use of dG@ < (1/\) dH. (See Section 7.A.8.)

Similarly, we may bound the 2 + & absolute moments of B*(Y). The asymp-
totic normality of Bix + Bay follows providing B(X) and B*(Y) do not both
have zero variance.

We compute the variances of B(X) and B*(Y). These can be expressed in
terms of [ B(z) dF(x), [ B*(z) dF(x), etc., but we shall use a slightly different
approach.

BX) - 8B(X) = [ : B() diFi(z) — F)]

~[[ 1@ - reVIHE) w6
has variance

o = 6{ [ [ 1@ = F@IIFG) - POV HEVHG) d06) a6,
and

@1 e =2 [[ FEI ~ FOWH@WHG) d6G) d6G),
—LE<YLR

if it is permitted to interchange expectation and integral. That this may be done

follows from Fubini’s theorem when it is seen that for x < y,

8{| Fi(x) — F(2) | | Fuly) — F(y) |} = KF(@)[1 — F(y)]

and that the last integral above is finite. (In fact this integral is bounded in the
argument dealing with (Caux) in Section 7.B.)
Similarly, the variance of B*(Y) is given by

(418) b = 2 [[ €@ — COITH@WIHG) dF @) dFG).
—0grLY<
These two variances when combined give the variance result stated in (4.3).

We review the status of our proof. In Section 7, the C terms are shown to be
“higher order uniformly.” The A term is non-random and finite. Finally

BIN + B2N
is the sum of two independent terms each of which is the average of random
variables with mean 0 and finite second moments. Theorem 1 follows.

The proof given can be extended to the case where F, G and Ax are not fixed.
To obtain uniform convergence to normality, we apply a theorem of Esseen
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([4], p. 43) which is a generalization of the so-called Berry-Esseen theorem
([8], p. 288)%. Since the C' terms are uniformly 0,(1/4/N) it suffices to obtain
uniform convergence for Biy + Bay . For this it suffices to bound psys for
B(X) and B*(Y). Since we bounded the absolute 2 4+ & moments, all that is
required is to bound the variances of B(X) and B*(Y) away from 0 and to have
m and n — «. Thus we have

CoROLLARY 1. If the conditions 1 to 4 of Theorem 1 are satisfied, and F, G, and
A0 <X = Ay S 1 — N < 1) are restricted to a set for which B(X) and B*(Y)
have variances bounded away from 0, then Eq. 4.1 (asymptotic normality) holds
untformly with respect to F, G, and Ax .

CoROLLARY 2. If conditions 1 to 4 of Theorem 1 are satisfied, 0 < Mo = Ay =
1—h<1,

F(z) = ¥(x — 0y),

G(z) = ¥(xz — ov),

where ¥ has a density ¢, then Eq. 4.1 holds uniformly with respect to Ay, Oy and
ox for on — Oy in some neighborhood of 0. If ox — 6y — 0,

tim V0 — 2 [[ 2t — @G de dy

(4.19) Pyt

- folf(x) dr — I:folJ(x) dx:r.

Proov. It suffices to show that B(X) and B*(Y) have variances bounded away
from zero and to establish Eq. 4.19. Since J is not constant and has a second
derivative, there is an interval of » in which J'(u) is bounded away from 0 and
in which J’(u) > 0 or in which J’(u) < 0. There is a corresponding interval of
z for which ¥(z) lies in the u interval and its density y(z) is almost everywhere
bounded away from 0. For oy — 8y small enough, there is an z interval whose
length is bounded away from 0 where the densities f(z) = ¢(z — 6y) and g =
Y(z — on) are almost everywhere bounded away from 0 and J'[H (z)] is bounded
away from zero. It follows that B(X) and B*(Y) have variances bounded away
from zero.

All that remains is to establish Eq. 4.19. The first equality follows directly
from Theorem 1 by letting F(z) = 2* and G(z) — z*. The second equality can
be obtained by interpreting the double integral as

ffff J' (@)’ (y) du dx dy dv

ocu<e<y<r<l
2 Fisseen’s theorem states thatif X; , X, -+ , X, are independent observations from a
population with mean 0, variance o2, and finite absolute 2 + 3’ moment B2,5" , 0 < 3 =1,

178"
then IF* - @*[ < C@) %572 Pz—"{g—] where F* is the cdf. of X, ®* is the approximat-
n

ing normal cdf, C' depends only on &’ and pas’ = Bsis’ /o“"'.
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and integrating with respect to y first and z second. It can also be obtained by
considering a standard derivation [13] of the asymptotic distribution of Ty
when F = @ where Ty is regarded as the average of a sample of m from the
population of N numbers Jx(1/N), Jx(2/N), ---, Jx(N/N).

We remark that normalizing J so that [5 J(z)dz = 0 and [5 J*(x) dz = 1
will not affect the efficiency of the test. Furthermore, if J is the inverse of a cdf,
the right-hand side of (4.19) is the variance of that distribution.

In applying Theorem 1 the verification of condition 2 may cause some diffi-
culty. The following Theorem 2 gives a simple sufficient condition under which
conditions 1, 2, and 3 hold. In particular with the use of Theorem 2 it is simple
to verify that the distribution of the ¢;-statistic does approach a Gaussion dis-
tribution for alternative hypotheses.

Taeorem 2. If Jx(i/N) is the expectation of the ith order statistic of a sample of
size N from a population whose cumulative distribution function is the inverse func-
tion of J and

| JP) | £ Klul — w7, i=0,1,2,
then
lim Jy(H) = J(H), 0< H<1,
N-wo
Jn(1) = o',
and

fl [Jx(Hy) — J(Hy)] dFn(z) = o(N").

(We write o instead of o0, because the random sequence is bounded by a non-
random sequence which is o(N™%). In fact | [ [Jx(Hy) — J(H¥)] dFu(z) | <
(1/A) [ | Jw(Hy) — J(Hy) | dHx(z) and our proof essentially shows that this
latter integral which is non-random and independent of F and @, is o(N""%).)

Proor. It is well known that Jy(H) — J(H). A proof of the other two results
is given in Section 7.C.

b. Variational argument. We have now established that the limiting distribu-
tion of the ¢-statistic is Gaussian. Thus we may proceed with the study of the
efficiency of this test procedure. We will examine translation alternatives only.
Since the power of the c¢;-test approaches one when the distributions F and @
are held fixed as N approaches infinity we restrict our consideration to the follow-
ing situation.

There is a distribution function ¥(x) which does not depend on N and F(z) =
¥(x — 0) and G(z) = ¥(x — ¢). We test the hypothesis that A = § — ¢ =0
vs. “near” alternatives of the form A = Ay = ¢N ™%, We will also assume that

0<limiy=A<1.

N>

With this framework we are able to use the Pitman criterion (the one considered
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by Hodges and Lehmann) for finding efficiencies of test procedures. The follow-
ing conditions have been established for the ¢;-statistic if ¥ has a density and
clearly hold for the ¢-statistic if ¥ has finite second moments. There are functions
ax(A) and by(A) such that for A in some neighborhood of 0,

TN - aN(A)
(52) limit bg(ﬁg) =1,
* b=t B |

exists and is independent of c.

The quantity Er is called the efficacy of the procedure based on the sequence
of statistics Tw . Of course Er depends on ¥. In comparing two sequences of
tests, say T'» and Ty , for the same pair of near alternatives the two tests will
have the same power only when the ‘corresponding sample sizes, N and N¥,
satisfy the following relationship

*

(54) limit 2 = Zr

N> N 7%

= ET,T*

if Bz £ 0. Ep, s 13 called the asymplotic relative efficiency of Tx with respect
to Ty .

Let E.,,.(¥) denote the asymptotic efficiency relative to the t-test of the ;-
test against translation alternatives. Then we have J = J, the inverse of the
normal N (0, 1) edf ® and applying Corollary 1 and using derivatives in the ex-
pression for E», we have

(5.5) B, (%) = Ilg/o’,
where
(5.6) Ly = [ @V @) do

and ¢ is the variance of the distribution with edf ¥ (and density v).* Normalizing
¥ to have mean 0 and variance 1 does not affect E,, (%) which then becomes
equal to I3z . In this section we shall prove

TurorREM 3. If V is a cdf with a density and finite second moment, then E., «(¥) =
1, and E., (%) = 1 only if ¥ is normal.

Proor. It suffices to show that the minimum of I1¢ subject to the restrictions

Iy = fx\l/(x) dr =0

3 If ¥ does not have finite variance o2, E,,,; is not defined but it makes sense to regard
it as =,
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and
I = /x2¢(x) dr =1

is attained only for ¥ = ® and that 1 = 1

A density ¢(x) assigns to each z a value of ¥ and a corresponding value of
Jo[¥(2)]. I ¢(x) = 0 a.e. on an interval, this interval corresponds to a fixed value
of Jo[¥(z)]. If z is then regarded as a function of Jy , it is multivalued at that
value of Jy. Otherwise z is continuous and it is increasing in Jo. Conversely
any monotone non-decreasing function z of Jo determines a corresponding cdf
¥. We have

u = ®[Jo(w)],
iy 1

o) =
and

o) = &,

V2r

Furthermore
5.7) [voa=-v@) = [ s
and

Y(x) dz = d¥(x) = ¢(Jo) dJs.

Consequently our problem consists of finding a monotone function x(Jy) which

minimizes
1 o(Jo) o(Jo)

(5.8) v /¢(J0) —@ so( 0) 0 f d:c) 0

(dJ 0) (d—Jo
subject to the restrictions and

(59) I = [ ava) do = [ 270 ar = o,

Il

(5.10) Iy = [ 4@ do = [ (7 dly = 1.
In the above form it is immediately obvious that if ¥ = &, 2 = J, and hence
I,z = 1. This form is also more suitable for our variational approach.

Suppose now that z is replaced by #* = cx. Then I, , I, and I; are replaced
by IT = I/e, Iy = eIy, and I = ¢I;. Thus if I, = 0 and I; < 1, we can
obtain Iy = Oand I 5 = 1with IT < I, . This discussion is relevant to the proof
of the following lemma.
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Lemma 1. The solution of the minimization problem is unique #f 4t exists.

Proor. Suppose z; and x; are distinet functions with non-negative derivatives.
Then let z = (1 — w)x; + wze, where 0 = w < 1. Then, by convexity

1w = [ 292 ar < - w) [ 20 an 4w [ 2% a,

() @) @)

L{w) = f:w(Jo) dJo = (1 —w) fx1¢(Jo) Wo+wf$2¢(Jo) dJo,

and
L) = [ @0 dlo < (1 = w) [ ale() dTo + w [ dotr are.

Hence z; and 2. cannot both be solutions of the minimization problem since
otherwise a multiple of (z; + ,)/2 would then satisfy the side conditions and
yield a smaller I; .

With this lemma, all that remains is to show that z = J; is a solution of the
problem. To this end we establish a sufficient condition for the solution of the
problem as follows. Suppose that z; and z, are monotone functions satisfying
the restrictions where 2, gives a lower value for I; than does z; . Then using the
convexity again, we have

d(xz - xl)
1) = - [ — o o ar <o,
(dJo)
50) = [ (= 2ol o = 0,

and
I;(O) =2 f zi(ze — 20)e(Jo) dJo < 0.

Consequently we have
LemMa 2. If x; satisfies the restrictions and if for each zs which does so also there

28 a § = 0 such that
1:(0) + £15(0) 2 0

then x; is the unique solution of the minimization 'problem.‘

4 This sufficient condition is essentially the usual Euler equation except that with the
convexity at our disposal and the monotonicity restriction, it plays the role of a sufficient
instead of a necessary condition.



NONPARAMETRIC TEST STATISTICS 983

Now
2d2x1 T
) "J dJ2 ¢(0 l))
o(Jo) AL, ;

BEFCEES (dm)Z B (ul_acl)3 @Jo.
&,

T,
LO) + 0 = [ @ — 2l (o) + 2T00] do,

ey (02 —2701)
(e

Now let 21(Jo) = Jo. Then

which vanishes for £ = 1/2. Applying Lemma 2 establishes our theorem.

If we regarded the ci-test as one tailor made to compete against the best
parametric test for translation when F and G are normal, we may inquire about
nonparametric tests designed to compete against the best parametric tests when
F and G have some other form,

Suppose F and G are known to be of the form Fo(x — 6) and Fo(x — ¢) respec-
tively where Fi has a twice differentiable density fo . Then an efficient’ test statis-
tic for A = 6§ — ¢ = 0 would be the maximum-likelihood estimate

A=b-2¢
for which the asymptotic distribution is normal with mean A and variance
[NA(1 — A)(infg,)]", where

(5.11) f

providing the above integral exists. The relative efficiency of our nonparametric
test based on the test statistic T with a specified normalized® J to the A test is

[f 0 (51?)

(5.59) Era(Fy = D%
infg,

where

(5.68) T, = f T (Ffi(a) da.

It can be shown that the best J in the sense that it maximizes Er i(Fo) is given
by

_ fo(x) 1/2
(5.12) J(u) = e (infr,)~

5 There seems to be no clear-cut statement in the literature which would establish the
test based on A as an efficient test invariant under the same translation of the X; and Y; .
The authors wish to thank the referee who pointed out the following elegant proof. The
efficacy of thed — @ testisA(1 — ) infr, , where infg, is the information of F . No invariant
test of A = Ay vs. A = 0 can have greater efficacy than the likelihood ratio test for testing
A = Ay vs. A = 0 when the densities of X and Y are fo(z 4+ (1 = MA) and folz — NA). A
standard calculation gives this test efficacy A(1 — A) infro . Thus our § — ¢ test is efficient.

6 Let J be normalized so that /'J(u) du = 0 and SJ2(u) du =1,
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where u = Fy(z). In fact for this J, we have

— e -1z [ [fo(@) _ [fo@PT 1 e N2
Iir, (infr,) f [ 7@ 71(2) ] 2e) fol®) dz = (infg,)

and
Eq',ﬁ = ]..

As it is to be expected, if Fo = ®(N(0, 1)), the corresponding J = J,, the
inverse of ¢. The problem of comparing the nonparametric with the parametric
procedures designed for Fo when F and @ are translates of ¥ 3% F, is hindered
by our ignorance of the behavior of the parametric procedure when ¥ = F, .

6. Orientation and applications.

6.A. Orientation. In Fraser’s book [5] it is shown that the ¢;-test has a limiting
normal distribution for normal alternatives. We have now shown this to be the
case for all alternatives (if we include the cases where Noy = 0 or Nov — 0
as degenerate cases). Hoeffding’s U-statistics include many nonparametric test
statistics and he, Lehmann, and Dwass have shown that U-statistics are asymp-
* totically normal under the alternative hypothesis. The U-statistics do not in-
clude all statistics of the form

N
(31) WLTN = El EN,'ZN,'.
In particular ¢; is not a U-statistic. Dwass’s results [3], summarized in Theorem
4, appear to be the only useful results for statistics of the form (3.1) under gen-
eral alternative hypotheses.
TrEOREM 4. Suppose

(1) The conditions of the first paragraph of our Section 3 hold (Dwass has
written to us indicating that it is sufficient to have m and n approach «);

(2) The polynomial

h
P@) = 2 b t*
k=1
18 non-degenerate, 1.e.,
max(lbll: Tty |bhl) > 0;

B) Xy, -+, X, Y1, ,Ys) = (Ur, -+, Ux) and R; is the number of
U’s less than or equal to U,

(n/mN)1/2: 7= 1; cer,Mm,

a
4) an; =
a; = —(m/nN)", i=m+1,---,N;

5) e = 3 av PRYN);
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then

. tx — E(tN) ) & g=t[2
l;glo P (——————Uw <s \/— dz.

First note

ty = Z P( ) a1 2wi + a2l ~ 2x)]

B (2)D o)
() () ) o

where in Ty wehave Ey; = P(¢/N). Thus there is a non-stochastic linear relation-
ship between ty and Ty . Hence, from the statistical viewpoint f» is equivalent
to Tx, a statistic of the form (3.1). Now let us compare Dwass’s conditions
with ours.

(1) Requiring Ay to be bounded away from 0 and 1 seems to be essential in
our Theorem 1.

(2) The condition Ey; = Jy(i/N) = P(i/N) = v be(¢/N)* is much
stronger than our condition 4 in Theorem 1 in two respects: We only require that
Jx(z) have a limit and the limit need not be a polynomial in z. Of particular
importance we do not require J{z) to be bounded on 0 < z < 1. The require-
ment max (| by, ---, | bx]) > 0 is to insure that Ex: X 0, a trivial case which
causes no difficulty.

6.B. Applications.

Example 1: Let Ex; = ¥ 7" Then Savage has proved [10] that Ty has a
limiting Gaussian distribution under the hypothesis and is the test statistic for
the locally most powerful rank test of 6, = 6, against the alternative 6, = 6,
where F(z) = " and G@) = ¢, —o <2 0 and F(z) = G(x) =
z > 0. In order to verify that 7Ty has a limiting Gaussian distribution under the
alternative hypothesis let us check the conditions of Theorem 1. To do so we
note that Jx(i/N) is the expected value of the 7th smallest observation of a
sample from the exponential distribution and that Theorem 2 is applicable.
Hence Ty is asymptotically normal in all cases.

Ezxample 2: Van der Waerden [12] has developed the theory of the test statistic

Ty = | : J (]]VVHJ’;(’D dF (2,

where J is the inverse of the normal N(0, 1) cumulative distribution. It can be
shown that

~: ; (_JYNE%?) — J(Hy()) ‘ dHx(w) = o (\71—2'\7)

Then conditions 2 and 3 of Theorem 1 are established and the asymptotic nor-
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mality and efficiency properties for this statistic are verified to be the same as
those of the ¢;-statistic.

7. Higher order terms. In proving that the C' terms of Theorem 1 are uni-
formly of higher order the following elementary results are used repeatedly.
7.A. Elementary resulls.

1. H 2z MF = \F.
2. Hz (1 — MG = MG

1—-H 1—-H
—-F< < )
3. 1—FZ NS Th
1-H 1-H
— < <
4 1-6s;- 21l
H(1 - H H1l—-H
5. F(1 — F) £ (2 )é ('2 )-
AN Ao
H( — H)
6. G(I—G)é—)\—g—.

7. dH = Ay dF = M dF.
8. dH z (1 — \y)dG = N dG.
9. Let (ax, by) he the interval Sy., where

(7.1) Swe = {x:H(l —H) > ”;\?‘)}.
Then 7. can be chosen independently of F, G and Ay so that
(72) P{X;e8ye,Y;e8pe,i=1,2,--- ,mji=12---,n}21-—c

10. f J(H(x)) dF (z) is finite.
Proor. Using assumption 4 of Theorem 1 and A.7

i /w J(H(z)) dF(x) < K/: [H(1 — H)]—g-hs dH

(73) 1

dH
= K[ s e = K

7.B. Detailed consideration of the second order terms of Theorem 1. We are now
ready to show that the C terms are uniformly of higher order. We begin with
Civ and prove the following identity:

Ciw = Aw [: (P — F)J'(H) d(Fo@) — F(x))

(7.4) N .
=3 [ f J/(H) d(Fn - Ff + f J'(H) dF,,,].
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Let R be the set of points of increase of F,, . Then the right-hand side of the iden-
tity becomes

M [ i _JH) d(Fw ~ B + fR T AP — Y + - Z:‘i J(H(X) ,17%]
=Yl [ s - B aw. - B + 5 0w
[ - (52 r e
- %N [2 f _JH)Fn ~ F) dFn ~ F) + i:; J'(H(X.))

. [% [ﬂ% - F(X,-)):I - ;1;] + 3 ) n%]

= [ Fu = P d(Fs ~ F).

Using this identity we integrate by parts and obtain

(7.5) Cixy = — ?\21 (Cun + Crov — Cuw),

where
Cax = [ (Fu — FPT(H) aH,
SNe

Cov= [ (Pa— 7D i,
Cux = = [ J(H@)) dFule)

1,
= ; J(H(X)),

where Sy. was defined in 7.A.9.
Now let us consider the random variable Cyxy . We find
&|Cux | = s{f (Fn — P)*|J"(H) | dH} _ [ FA=F) |J”(H) | dH.
SNe SN N A

Now using assumption 4 of Theorem 1 and 7.A.5 we obtain

H(Q — H) dH
& | CllN I = N/;;N, H(]. _ H)]!—S
K 1
= 0 ilTng—s dH
K
< .
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Now using the Markoff inequality ([2], p. 182),
K N"* K
N e T v
where K may depend on ¢. Now consider Cioy .
Let H, = H(oy), Hy; = H(by) as in 7.A.9. Then H, =1 — H; < K/N.
With probability greater than 1 — ¢ we have

Pr (l Cun| > aN_1/2) =

Hy 1
Ciay = fs (F.. — F)XJ"(H) dH = fo FAJ7(E) dH + fH (A — P)L"(B) dH

i H'4H ' (1 - H)?*dH
x| =y * L, Gy

| Cuow | (HI — H) m (H(1 — H))F

IIA

HA

H
K f “HY gH < KNP
0

Hence Cuy + Civ which does not involve e is 0,(N 1. Now to complete the
study of Civ we investigate Cpx :

=12 I
=1

We may assume § < £ or é < % without loss of generality. Then using 7.A.5

| G| = = E 5 @0 - ray).

| Cuw | < 2 [P — P,

which is distribution free. By a theorem of Marcinkiewicz ([8], pp. 242-243)
if a random variable Y has rth order moment finite (0 < r < 1), then the sum
of N independent observations on Y is 0,(N*"). If X has cdf F,

FXON — PO

has a finite moment of order 2/(3 — §) and hence

1 ] _
013N = 0p [;{2 N% 2] == op[N *]
Consequently Ciy = 0,(N 7).
Next consider
(76) Cor = (U =) [ (G = OI'(H) dlFw(@) = F(z)].

We have
Cox = (1 — Ay)(Caay + Con)

where

Cuv = [ (@ — QT d[Fue) — F@,

SNe

Caaw = f (6~ Q) dlFa) - F@))
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With probability greater than 1 — ¢, there are no observations in S and
FEm)
[Cux| = K fs HQ — H)[HQ — )™ dH(z) < K("]—V-) .
Ne

Since the two samples are independent and §(G., — G) = 0, we have

&(Con) = 8{8Cun | X1, X2, -+, Xu} =0,
8(0%21\7 | X1, Xe, , Xm) = Cux + Cun,
Can =2 [ 6@ — 6V HEH)]
2
-d[Fn(z) — F@)] dFuly) —=FG)],
Coun = nim . G@)[1 — G@{J'[H@)]} dF (),
80w = 2 [[ 6@ - G H@WIHG) dF @) dF Q)
z'y:égf‘
< % [[ @ - B! | MH@WVHE) | dHE) dEQ)
Y
= ]I—\{,; f f F(1 - )Y - ) dedy = ]%,
<oyl
1 T 2 K —249
8(Cu) = = [ 60— OUIH F@) S T [ O - BT )
—1--28
= K]:’r:na = o(N7).
Hence
8(C§2N I Xl ) X2 y T X’m) = KOP(N_1)7

where K may depend on ¢ and
| Coow | < Kon,(N7Y)
since
P(Chw > a8(Cin | X1, -+, Xw)) < 1/a.
Consequently Cov = (1 — Av)(Cax + Cxwy) which does not involve e, satisfies
Cov = 0,(N"V%).

7 This integrand has already appeared as part of the variance in Eq. (4.3).
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Now consider

Con = [Hy(z) — H($)12J”[¢HN(23) + (1 — ©)H(2)] dF (),
7.7 0<HN(2) <1

0<e <l

With probability greater than 1 — ¢, the range of integration 0 < Hy(z) < 1
can be replaced by Sy, without changing Ci» . Since

H(x) | _
(7.8a) S | = 0,(1),
and
1—H@) | _
(7.8b) ;;131 I—_Hy(x—) —'Op(l);

for each € > 0, there is an #; > 0 such that with probability greater than 1 — e,
we have for 0 < Hy(z) < 1,

(79) [eHy + (1 — )H|[1 — (pHy + (1 — @)H)] > niH@)[l — H(z)].
Then

| Cay | = j; [HN(%‘) - I?[(x)]ﬁ("'ljg)“His {H[l - H]}—Ha dFm(x) = (ﬂ:k)—%ﬂcsm;

e(| Can|) = Z_lv—'/_;N [MF(l - F) + a- F)Zifl — 2F)

+ (1 — A@Q — G)][H(l — D gF (z)

(H(1 — H) " dH + ]% i [HQ — B gF

—p+b —3+3
Kn** + Ky,
NH *

|
=
P

Consequently ‘
CaN = Op(N—llz).

The Civ term vanishes unless the greatest of the N = m + n observations
is an X. In that case

(7.10) Can = ;1,-1 { —JHE)] = (1 — HX)JTHE)]}.

Using 7.A.9, however,

HX) — HXIN _ ()

1
| JHX] | 5 = = 1
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with probability at least 1 — . Hence

L THX)] = 0,8,

Similarly
— -
< {[H(Xm)]’EiH(XIj;Xm)]} = OP(FI/Z)OP(I) = op(N—Ilz).
Hence

Cuv = Op(N—llz).

The neglibility of Cyv and Cex follows immediately from Assumptions 2 and 3

of Theorem 1.
7.C. Proof of Theorem 2. First we note that

(7.11) JN (%) = EN',' = j;l J(u)ghN(u) du,
where
(7.12) g,-,zv(u) = (Z — 1) fv(']\/' — Z) !ui—l(l - u)(N"?

is the density of the 7th order statistic from the uniform distribution on [0, 1]
and incidentally has mean /(N + 1) and variance {(N — ¢ + 1)/[(N + 1)
(N 4+ 2)]. Then we have

| Exa| £ KN fol [l — WA — W) du

(7.13)
_ENT(V = 3+ OTG +8) _ it

T(N + 20)

By a symmetric argument the desired result J»(1) = o(V 12y follows. Further-
more we have

I (%) -7 (z%r) I < KN +K []lv (1 - %)]—H < KNV,

Before proceeding to bound Jy(2/N) — J(¢/N) for 1 < ¢ £ N/2 we apply
the Stirling formula

(7.14)

log z! = log T'(z + 1)
(7.15)

1 0

DO 4=
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with a rather standard argument to obtainfor1 <7 S N/2,0 < u = (¢ — 1)/
(N - 1)7

172 (N=1)

. N =1 -7 (i—l)(N—i)] K
10" gt 5 g/ R [1+5)

where
(7.17) v=(N—1Du~— (z—1).
Forl <1 = N/2,

(7.18) I <%) -7 (ﬁ) - fol ['7 W —J ({-,)] gin(u) du

= Du + Dz + Du + Dy + D; + Ds,

where

Dy = /;"1 J(w)g:,x (u) du, Dy, = f J(w)gi.n () du,

1—uy

D = —f ( >guv(u)du, D = —f . ( >guv(u)du,
[ Qe

1 1—14]( Z-->2
D=3 — %) I (w¥)gen (u) du,
A /;1 i (u*)gsx (w) du

Dy

2
u* between « and ¢/N, and w; = (¢ — 1)/[2(V — 1)].

LTl = W) (N — @)t N! (G —1— a)!
(719) 9w =u G-l-altN -9 V=& =1

é KuaN agi—a N—a (u) )

where @ = 3 — 6 and we assume § < } and thus & > 0 without loss of general-
ity. Let ® be the normal c¢df. Then

%y
|Du| = fo Klu(l — W] *Ku*Ngi—o,v—o (u) du £ KN®

Jemizizo— o]

VE—1—a)VN —1)
(7.20) |Du| £ KN°® ( V’)

8 K represents a generic constant independent of 72, N, Ay, F, and G. This equation is
related to the asymptotic normality of order statistics and is derived by an operation similar
to the direct proof of the asymptotic normality of the binomial distribution.
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Since g; v(1) = gin(l — u) for1 < ¢ < N/2 and0 < u < 1/2, | Dy | has the
same bound as | Dy |. Similarly
KN“® (—xﬂ)

ERRCA (= = e
i — 1N — 1

and | Dy | has the same bound too. Since the expectation of the ith order statistic
from the uniform distribution is ¢/(N + 1),

Dy = —J' (%) {foul ( - ]%)gi,zv (w) du

[ (- ) o an m‘ﬁ%ﬁ}

IIA

Now
h(w) = |u —]—'ff- giv (W) < Kh(1 — u) foru < u.
Hence
ANEIEE —\/i') i ]
(7.22) : Vi
< KN“® (‘K ’) + KN
Finally

5 1 1\ 2
|Ds| = Ku, 7P ‘/; <u - Z’%) gi.x (u) du,

wrvaest oy ]

2 —3+3 ”
(7.23) lD4|§KuT¥+§|:K%+K%I—2]§K% élfi

|D4| = K’u;Hs[

Thus, for 1 < 7 < N/2,
i i « -V 1 1
(7.24) JN[N:I—J[N]éKN [q:( ~ )+N+F,}

and

x(Hy) — J(Hx)] dFm

1S NF,<N/2

(7.25) 1 - B -\ 1 1
s Lo S [5(5) + 1+ )

t=2

A

s KN
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since o1 ®(—V4/K) and Doy ¢ converge. By a symmetric argument
we can cover the range N/2 < NF,, < N and our theorem follows.
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