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ASYMPTOTIC NORMALITY IN MIXTURE MODELS

SARA VAN DE GEER

�

Abstract� We study the estimation of a linear function �� �
R
adF�

of a distribution F�� using i�i�d� observations of the mixture pF� �
R
k��� y�dF��y�� Let �Fn be the maximum likelihood estimator of F�

and ��n �
R
ad�Fn� We examine the asymptotic distribution of ��n� A

problem here is that usually� �Fn does not dominate F�� Our main

aim is to show that this can be overcome by considering the convex
combination ��Fn � �	� ��F�� with � � 	�

�� Introduction

Let X�� � � � � Xn be independent identically distributed random variables on
�X �A�� with distribution P � Suppose that for some ���nite measure ��

p �
dP

d�
� fpF �

Z
k��� y�dF �y� � F � 	g�

where 	 is the class of all probability measures on a measurable space �Y �B��
and where k � X � Y � 
���� is a given kernel with

R
k�x� y�d��x� � � for

all y � Y � So
p � pF� �

Z
k��� y�dF��y��

for some F� � 	�
In this paper� we assume that F� is unknown� and that the maximum

likelihood estimator Fn of F� exists� The latter is �not necessarily uniquely�
de�ned by

nX
i��

log p �Fn�Xi� � max
F��

nX
i��

log pF �Xi��

Consider now functionals of the form

��F � �

Z
adF� F � 	�

with a a given function on �Y �B�� Write �� �
R
adF� and �n �

R
ad Fn�

We shall investigate the asymptotic behaviour �and e�ciency� of the esti�

mator of �n of ��� An important issue in this context is the appropriate
di�erentiability of ��F �� Let us brie�y sketch the main idea�
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Consider a pair of random variables �X� Y � with values in X � Y � let
k��� y� be the density of X given Y � y� and F� the distribution of Y � For
a function b � X � R� write

E�b�X�jY � y� � A�b�y��

Thus

A�b�y� �

Z
k�x� y�b�x�d��x��

Write for h � Y � R�

E�h�Y �jX � x� � AF�h�x��

where

AFh�x� �

R
k�x� y�h�y�dF �y�

pF �x�
�

If for some b�

E�b�X�jY � y� � a�y�� for F��almost all y� �����

then clearly
E�b�X�� � ���

So if ����� holds for some b � L��P � not depending on F�� then ���n�
Pn

i�� b�Xi�
is a

p
n�consistent and asymptotically normal estimator of ��� We say that

��F�� is di�erentiable at F� if a solution of ����� exists� Note that if k��� y�
is a complete family for y in the support of F�� there is at most one solution
of ������ In general� there may also be several solutions� in which case we
would like to take the one with the smallest variance� But such a solution
possibly depends on F�� The arguments below indicate that perhaps the
maximum likelihood procedure automatically picks the best solution� with
the estimator Fn plugged in for F��

We shall now discuss the solution with the smallest variance� First� we
center the functions� Instead of a in ������ we consider the gradient of ��F ��
which is de�ned as

�F � a�
Z

adF�

If for some hF � L��F � with
R
hFdF � ��

A�AFhF � �F � F�a�s�� �����

we call
bF � AFhF �����

the e�cient in�uence curve at ��F �� Note that bF is also centered now�R
bFdPF � �� It follows from Van der Vaart ������ that ���n�

R
b�F�dP is a

lower bound for the asymptotic variance of an estimator of ��� He considers
parametric submodels with Hilbert space structure to arrive at results of this
type in a very general context� In our case� the parametric submodel would
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be indexed by 	F � fFt � �dFt���� � ��� �
�
thF ��dF ����� jtj smallg� For this

reason� we call hF a direction �along which one can consider a submodel��
The assumptions hF � L��F � and

R
hF dF � � ensure that indeed 	F � 	�

Suppose now that the e�cient in�uence curves b �Fn
and bF� exist� So

b �Fn
� A �Fn

h �Fn
for some h �Fn

� L�� Fn�� and

A�b �Fn
� � �Fn

� Fn�a�s�� �����

Observe that Fn is an interior point of f Fn�t � d Fn�t � ���th �Fn
�d Fn� jtj smallg�

So we have
d

dt

nX
i��

log p �Fn�t
�Xi�jt�� � ��

or
nX

i��

b �Fn
�Xi� � ��

Write this as Z
b �Fn

dPn � ��

with Pn the empirical distribution based on X�� � � � � Xn �see ������� Now�
let us compare this with

R
b �Fn

dP � Changing the order of integration gives

Z
b �Fn

dP �

Z
A�b �Fn

dF��

Moreover� if Fn dominates F�� then ����� yieldsZ
A�b �Fn

dF� �

Z
� �Fn

dF� � �� � �n�

So then we have the identity of van der Laan ������ ������

�n � �� �

Z
b �Fn

d�Pn � P �� �����

Finally� if b �Fn
converges to bF� in an appropriate sense� one obtains asymp�

totic normality �and e�ciency� of �n �
The problem is now that the assumption that Fn dominates F� is often

not valid� Nevertheless� van der Laan ������ presents some examples that
show that the identity ����� can hold even when Fn does not dominate F��
We shall however be concerned with the situation where the identity �����
is not necessarily true�

Our approach is to consider for each � 	 	 
 � and F � 	� the convex
combination

F� � 	F � ��� 	�F��

Then indeed� Fn�� dominates F�� We shall obtain asymptotic normality of
�n by choosing 	 � 	n in such a way that it tends to one at an appropriate
speed�
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The paper is organized as follows� In Section �� we derive a linear ap�
proximation for �n� Asymptotic normality and e�ciency follow from this�
The conditions we need to arrive at the result are consistency of the maxi�
mum likelihood estimator �obtained by separate means�� di�erentiability of
��F � at F � F�� � 	 	 
 �� bounded directions and suitable continuity
conditions on the in�uence curves� A discussion of these conditions can be
found in Section �� Section � presents some examples�

�� Asymptotic normality

As pseudo�metric on 	� we take the Hellinger distance between the mixtures�

d�F� �F� � h�pF � p �F � � �
�

�

Z
�
p
pF � p

p �F �
�d������ F� �F � 	�

Consistency of Fn in this metric holds in fairly general situations� It is closely
related to the further assumptions as stated in Condition � �see Section ���
for more details��

We use the notation

Pn �
�

n

nX
i��

�Xi
� �����

i�e� Pn is the empirical distribution that puts mass ���n� at each of the
observations X�� � � � � Xn� Moreover� we shall make frequent use of stochastic
order symbols� If fZng is a sequence of real�valued random variables� and
fkng a sequence of positive numbers� then we say that Zn � OP�kn� if

lim
M��

lim supn��P�jZnj � knM� � ��

Similarily� Zn � oP�kn� means that for all  � ��

lim
n��

P�jZnj � kn� � ��

Condition �� �consistency and rates�� The estimators Fn and �n are
consistent� i�e�

d� Fn� F�� � oP���� �����

and
j�n � ��j � oP���� �����

Moreover� for some ��n � o�n������Z
log�

�p �Fn
p �Fn � pF�

�dPn � OP��
�
n�� �����

Condition � �di�erentiability in a neighbourhood of F� and existence of
e�cient in�uence curves�� For some  � �� and for all � 	 	 
 � and F � 	
with d�F� F�� 	 � we have

A�bF� � �F� � F��a�s�� �����
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for bF� satisfying

bF��x� � AF�hF��x�� pF��x� � �� �����

for some hF� � L��F��� with
R
hF�dF� � ��

Condition �� �control on the direction hF��� For some  � � and M 
��

sup
d�F�F�	��

sup
�����

sup
y�support�F�	

j��� 	�hF��y�j 	M� �����

Condition �� �control on the e�cient in�uence curves bF��� The informa	
tion for estimating �� is positive
Z

b�F�dP � �� �����

Moreover� the in�uence curves are uniformly bounded
 for some  � ��

sup
d�F�F�	��

sup
�����

sup
pF��x	��

jbF��x�j 
�� �����

Finally� for � 
 n � ��

sup
d�F�F�	��n

sup
�����

Z
b�F�dPn �

Z
b�F�dP � oP���� ������

and

sup
d�F�F�	��n

sup
�����

Z
�bF� � bF��d�Pn � P � � oP�n

������ ������

Theorem ���� Assume that conditions �	� are met� Then

�n � �� �

Z
bF�d�Pn � P � � oP�n

������ ������

Proof� By ������ we can �nd a non�random increasing function � � ������
������ satisfying

��x�� � for x� �� ������

x

��x�
	 �

�
for all x � �� ������

and
x

��x�
� � for x� �� ������

such that ��n � o�n�������n������ This gives

Z
log�

�p �Fn

p �Fn
� pF�

�dPn � oP�n
�������n������ ������
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Choose

�� 	n �
j�n � ��j� n����

��j�n � ��j� n�����
� ������

Then 	n 
 � and by ������� 	n 
 ���� Since j�n � ��j � oP���� ������
implies that ��� 	n� � oP���� Furthermore� ������ yields

j�n � ��j
�� 	n

� oP���� ������

as well as
n����

�� 	n
� oP���� ������

De�ne
�Fn � 	n Fn � ��� 	n�F�� ������

Let  � � be small enough� so that ������ ������ ����� and ����� in conditions
��� are ful�lled for this value of � and let Dn be the set

Dn � fd� Fn� F�� 	 g�

Because 	n 
 �� we can �nd on Dn an in�uence curve b �Fn and a direction
h �Fn

� such that
A�b �Fn � � �Fn

�

and
b �Fn�x� � A �Fn

h �Fn
�x�� x � fp �Fn

� �g�
We can writeZ

b �FndPnlfDng �
Z

b �Fnd�Pn � P �lfDng�
Z

b �FndP lfDng� ������

Because d� Fn� F�� � oP���� we have that lfDng � � � oP���� So� using
�������Z

b �Fnd�Pn�P �lfDng �
Z

bF�d�Pn�P ��oP�n
����� � OP�n

������ ������

Since �Fn dominates F�� and 	n � � � oP����Z
b �FndP lfDng � �	n��n � ���lfDng � ��� � oP������n � ���� ������

Insert ������ and ������ into ������ to get thatZ
b �FndPnlfDng �

Z
bF�d�Pn�P ��oP�n���������oP������n����� ������

Let

tn �

R
b �FndPn

��� 	n�
R
b�F�dP

lfDng� ������

ESAIM � P�S November������ Vol��� Art�	�pp��
���



ASYMPTOTIC NORMALITY IN MIXTURE MODELS ��

Equality ������� together with ������ ������ and ������ imply that

tn � oP���� ������

Take M as in ����� and En � Dn � fjtnj 
 ��Mg� De�ne on fEng�

d �Fn�tn� � �� � tn��� 	n�h �Fn
�d �Fn�

Then on fEng�
�Fn�tn� � 	� ������

Moreover� from ������ we know that lfEng � ��oP���� so that by ����� and
�������Z

log�
p �Fn��tn	

p �Fn

�dPnlfEng �
Z

log�� � tn��� 	n�b �Fn�dPnlfEng ������

� tn��� 	n�

Z
b �Fn

dPnlfEng � �

�
t�n��� 	n�

�

Z
b��Fn

dPnlfEng�� � oP����

�
�

�

�
R
b �FndPn�

�R
b�F�dP

lfEng�� � oP�����

Since Fn maximizes the likelihood� and ������ holds on En� we haveZ
log p �Fn

dPnlfEng 

Z

log p �Fn��tn	
dPnlfEng� ������

Furthermore� the concavity of the log�function and the fact that 	n 
 ���
yieldZ

log p �Fn
dPn 
 ��	n � ��

Z
log p �Fn

dPn � ���� 	n�

Z
log�

p �Fn
� pF�
�

�dPn�

������
Combine ������� ������ and ������ to �nd

���� 	n�

Z
log�

�p �Fn

p �Fn
� pF�

�dPn 
 �

�

�
R
b �FndPn�

�R
b�F�dP

lfEng�� � oP����� ������

From ������ and ������� we know that the left�hand side of this equality is

���	n�oP�n
�������n����� � �j����j�n����� ��n�����

��j�n � ��j� n�����
oP�n

�����

� �j�n � ��j� n�����oP�n
������

where in the last step� we used that � is increasing� In view of ������� the
right�hand side of ������ is of the form

�OP�n
������ �� � oP������n � ����

��
� � oP���R
b�F�dP

��
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So we �nd from ������ that

j�n � ��j� 	 maxfOP�n���� �j�n � ��j� n�����oP�n
�����g�

which implies j�n � ��j � OP�n
������ But then� the left�hand side of ������

is oP�n���� so that it reads

�

Z
bF�d�Pn�P ��oP�n

���������oP������n�����
����oP���� � oP�n

����

In other words�

�n � �� �

Z
bF�d�Pn � P � � oP�n

������

tu

�� Comments on conditions ���

Conditions � and � can be veri�ed using the concept of entropy� Therefore�
we introduce the following de�nitions� Let Q be a probability measure on
�X �A� and G � Lq�Q�� q 
 ��

Definition � The ��covering number Nq���G� Q� of G is de�ned as the
number of balls with radius � necessary to cover G� More precisely� let
fgjgmj�� be such that for each g � G there is a j � f�� � � � � mg such that

Z
�g � gj�

qdQ 	 �q� �����

Then Nq���G� Q� is the smallestm for which such a collection fgjgmj�� exists�
The ��entropy of G is Hq���G� Q� � logNq���G� Q�� ��

Definition �� Let f
gLj � gUj �gmj�� be such that for all g � G there is a
j � f� � � � � mg such that

gLj 	 g 	 gUj � �����

and Z
�gUj � gLj �

qdQ 	 �q� �����

WriteNB
q ���G� Q� for the smallestm for which such a collection f
gLj � gUj �gmj��

exists� Then HB
q ���G� Q� � logNB

q ���G� Q� � � is called the ��entropy with
bracketing�

���� On Condition �

Suppose that Y is a locally compact Hausdor� space with countable base�
and that B is the Borel ��algebra� Let C� be the class of all functions
c � Y � R that vanish at in�nity� If k�x� �� � C� for ��almost all x � X �
then d� Fn� F��� � almost surely �see Pfanzagl ��������
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Denote the class of all measures F on �Y �B� with F �Y� 	 � by 	��
The vague topology on 	� is the smallest topology such that F � R

cdF is
continuous for every c � C�� Let � be the metric corresponding to the vague
topology� We say that F� is identiable �for the metric �� if for all F � 	��
d�F� F�� � � implies ��F� F�� � �� If F� is identi�able� then d� Fn� F�� � �
almost surely implies �� Fn� F�� � � almost surely� So in particular� then

j�n � ��j � � almost surely� whenever a � C�� More details can be found in
e�g� Pfanzagl ������ or Van de Geer �����a��

Let us now investigate the rate of convergence for the log�likelihood
ratio� Note �rst of all that

� 	
Z

log�
�p �Fn

p �Fn
� pF�

�dPn 	 �

�

Z
log�

p �Fn

pF�
�dPn�

so that nothing is lost �and indeed something could be gained� by comparing
p �Fn

with the convex combination �p �Fn
� pF���� instead of with pF� �

Lemma ���� Suppose that

Z �

�

q
HB

� ���G� P �d� 
�� �����

where

G � f
r
pF � pF�

pF�
� F � 	g�

Then Z
log�

p �Fn

pF�
�dPn � OP��

�
n�� with ��n � o�n������

Proof� See Van de Geer ������� A slight modi�cation can be found in Wong
and Shen ������� tu

We call the left�hand side of ����� the entropy integral� If the entropy in�
tegral diverges� suboptimal rates can emerge �see Birg�e and Massart ��������

Lemma ��� below makes use of the special structure of the mixing
model� We need the following notation� for � 
 ��

��� ��� �

Z
pF���

pF�d��

and

��� ��� �

Z
pF���

�

pF�
d��

Lemma ���� Let K � fk��� y� � y � Yg� Suppose that the functions in K
are uniformly bounded� and that for all probability measures Q with nite
support�

N����K� Q�	 A��w� � � �� �����
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where the constants A and w do not depend on Q� Let � 	 �n � ��
�n 
 ����n� � n���
w	���
�w	�����n��

w���
�w	� ThenZ
log�

�p �Fn

p �Fn
� pF�

�dPn � OP��
�
n�� �����

Proof See Van de Geer �����b�� tu
Lemma ��� may not yield the optimal rate� but all we need here is a

rate faster than n����� This is the case if ����n� � o�n
�

�w � � To put it
di�erently� if we de�ne

���� ��� � supf� � ����� 	 ��g�
then ��n � o�n����� if

����
��
� ���� � o���

�

w � for � � ��

���� On Condition �

It is natural to require ����� and ����� for 	 � �� The fact that we need these
equalities for all � 	 	 
 � is closely related to being able to estimate the
e�cient in�uence curve� However� it should be noted that we only assume
bF to exist for certain F that dominate F��

In some applications� b �Fn does exist� but this usually will not help to
simplify the proofs �see Section � for an example��

���� On Condition �

Here� we assume that hF� behaves like ���� � 	�� Clearly� this allows
misbehaviour for 	 � �� but it also requires hF� to be bounded� In
some applications� this reduces to assuming that hF� is bounded� The
proof of Theorem ��� reveals that we need that for all t su�ciently small�
dF��t��dF� � ��t���	�hF� exists and is non�negative� i�e�� that F��t� � 	�
If for some function g� dg�dF� exists and is bounded� say by C� then also
dg�dF� exists and ��� 	�dg�dF� is bounded by C� This is the reason why
in Example ��� and ��� our approach works� But it fails in Example ����

���� On Condition �

Let us present a brief overview of some results from empirical process theory�
that can be applied in this context� We cite them from Pollard ������ and
Ossiander ������� Throughout� we assume that the necessary measurability
conditions are satis�ed�

Consider a class G of functions on �X �A�� with envelope

G � sup
g�G

jgj�

The class G is called a Glivenko	Cantelli class if

sup
g�G

j
Z

gd�Pn � P �j � �� almost surely�
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It is called a Donsker class if
p
n
R
gd�Pn�P � converges in distribution to a

mean zero Gaussian process on G� This limiting process is assumed to have
continuous sample paths with respect to ���� ��� with

��g�� g��
� �

Z
�g� � g��

�dP � �

Z
�g� � g��dP �

��

Necessary and su�cient conditions for G to be a Glivenko�Cantelli class
are�

G � L��P ��

and
H����G� Pn� � oP�n�� � � ��

If G is a Donsker class� then the asymptotic equicontinuity condition holds�
i�e� for all  � � there exists a � � � such that

lim sup
n��

P� sup
g�G�

jpn
Z

g	d�Pn � P �j � � 
 � �����

with G	 � f�g�� g�� � g�� g� � G� ��g�� g�� 	 �g� Su�cient conditions for G
to be a Donsker class are�

G � L��P ��

and Z �

�

q
HB

� ���G� P �d� 
�� �����

Condition ����� may be replaced by

Z �

�

p
����G�d� 
�� �����

where

����G�
 sup
Q

H����

Z
G�dQ�����G� Q�� ������

and where the supremum is taken over all probability measures Q with �nite
support�

Suppose now that ����� is met� and that for � 
 n � ��

sup
d�F�F�	��n

sup
�����

Z
�bF� � bF��

�dP � �� ������

Then it is clear from the above that ������ and ������ are ful�lled if one of
the entropy conditions ����� or ����� holds� with

G � fbF� � d�F� F�� 	 � � 	 	 
 �g�

In many applications however� no explicit expressions are available for
the e�cient in�uence curves� so that it may still be di�cult to check the
entropy conditions�
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�� Examples

Example ���� interval censored obervations� case I

Suppose one observes Xi � �Ti� �i�� where �i � lfYi 	 Tig� Yi and Ti are
independent random variables� both with values in a bounded interval� say
��� ��� and where Ti has �unknown� distribution G� i � �� � � � � n� This is one
of the models studied in Groeneboom and Wellner ������� The density of
Xi with respect to G� �� � being the counting measure on f�� �g� is

pF��t� �� � �F��t� � ��� ����� F��t�� �

Z
k�t� �� y�dF��y��

with k�t� �� y� � �lfy 	 tg � ��� ��lfy � tg�
Lemma ���� Suppose G has density g with respect to Lebesgue measure�
Assume that �a�y� � da�y��dy exists and

j �a�t�
g�t�

j 	 C� 
�� t � ��� ��� �����

and

jd� �a�t��g�t��
dF��t�

j 	 C� 
�� t � ��� ��� �����

Then
�n � �� �

Z
bF�d�Pn � P � � oP�n

������

where

bF��t� �� � �� ��� F��t�� �a�t�

g�t�
� ��� ��

F��t� �a�t�

g�t�
� t � ��� ��� � � f�� �g�

Proof Condition � is met� d� Fn� F��� � almost surely� j�n���j � � almost
surely and Z

log�
p �Fn

pF�
�dPn � OP�n

������

This follows from the theory in Subsection ��� �see also Groeneboom and
Wellner ������ and Van de Geer �����a��� De�ne

bF��t� �� � �� ��� F��t�� �a�t�

g�t�
� ��� ��

F��t� �a�t�

g�t�
� t � ��� ��� � � f�� �g�

Then

A�bF��y� � �
Z �

y�

��� F��t�� �a�t�dt�

Z y�

�

F��t� �a�t�dt

� a�y�� a����
Z �

�

��� F��t��� �a�t�dt � �F��y�� y � ��� ���
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Because F� dominates F�� dF��dF� exists� So

hF��y� � �d�F��y���� F��y�� �a�y��g�y��

dF��y�

�
��F��y�� �� �a�y�

g�y�
�
F��y����� F��y���

g��y�

d� �a�y��g�y��

dF��y�

dF��y�

dF��y�

exists too� Moreover� for pF��t� �� � ��

AF�hF��t� �� � �

R t
� hF�dF�

F��t�
� ��� ��

R �

t hF�dF�

�� F��t�
� bF��t� ���

Thus� Condition � is ful�lled�
Clearly�

jhF��y�j 	 C� �
C�

��� 	�
�

Therefore� Condition � holds too�
Finally� we shall verify Condition �� Note �rst that

Z
b�F�dP �

Z
F��t���� F��t��� �a�t��

�

g�t�
dt � ��

and
jbF��t� ��j 	 C��

To check ������ and ������� we use the theory of Subsection ���� We have

d��F� F�� �
�

�
�

Z
�
p
F �

p
F��

�dG�

Z
�
p
�� F �

p
�� F��

�dG��

and Z
�bF� � bF��

�dP �

Z
�F��t�� F��t��

�� �a�t���

g�t�
dt 	 C�

�d
��F�� F���

So indeed� ������ is satis�ed� for � 
 n � ��

sup
d�F�F�	��n

sup
�����

Z
�bF� � bF��

�dP � ��

Also ����� holds� namely for G � fbF� � d�F� F�� 	 � � 	 	 
 �g� we have
for some constant A�

HB
� ���G� P � 	 A

�

�
� � � ��

This follows from entropy calculations for monotone functions �see Birman
and Solomjak ������ and� for the extension to entropy with bracketing�
Van de Geer �������� Therefore� ������ and ������ are ful�lled� In view of
Theorem ���� this completes the proof� tu
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The result of Lemma ��� was established earlier in Groeneboom and
Wellner ������� They use speci�c properties of the maximum likelihood
estimator Fn� such as the distance between successive jumps of Fn being
smaller than n���� logn with large probability� In this sense� local properties
of Fn had to be obtained �rst� before one could arrive at the asymptotic
behaviour of such global quantities as the mean of the maximum likelihood
estimator� It inspired us to develop an alternative proof� which is hopefully
applicable in more general situations�

The model for interval censored observations gives a good insight into
the di�culties that arise due to the fact that Fn does not dominate F�� Let
us have a closer look for the case a�y� � y� It is known that Fn has �nite
support� say z� 
 � � � 
 zm� De�ne

g�t� �
G�zj�� G�zj���

zj � zj��
� t � �zj��� zj��

and

b �Fn�t� �� � �� ��
Fn�t�

g�t�
� �

Fn�t�

g�t�
�

Then for y � fz�� � � � � zmg�

A�b �Fn�y� � y � �n � � �Fn
�y��

However� Z
� �Fn

dF� � ���n � ��n��

with
��n �

Z Z y �

g�t�
dG�t�dF��y��

In general� ��n �� ��� unless G happens to be the uniform distribution on
��� ���

Write

h �Fn
�y� � �d� Fn�y���� Fn�y���g�y��

d Fn�y�

�
� Fn�y�� �

g�y�
�

Fn�y����� Fn�y���
g�y�g�y��

dg�y�

d Fn�y�
�

In order to have that at Fn� the derivative of the likelihood equals zero in
the direction h �Fn

� one must have that this direction is bounded� This leads

to showing that the jumps of Fn are large enough�

Example ���� interval censored observations� case II

Let Xi � �Ti� Ui� �i� �i�� with �i � lfYi 	 Tig� �i � lfTi 
 Yi 	 Uig and Yi
independent of �Ti� Ui�� i � �� � � � � n� We assume bounded support� say Ti� Ui
and Yi � ��� ��� and that Ti 
 Ui� This model is also studied in Groeneboom
and Wellner ������� The rate of convergence of the log�likelihood ratio can
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be found in Van de Geer �����b�� In general� no explicit expression for the
in�uence curve can be given� However� it can be shown that under fairly
mild conditions� b �Fn

and h �Fn
exist and are bounded� One of the conditions

here is that Ti and Ui can be arbitrary close to each other� We shall now
consider a situation where this is not true� but where explicit expressions
are available� Namely� we suppose that Ui � Ti � �� Let G �F�� be the
distribution of Ti �Yi�� with density g �f�� w�r�t� Lebesgue measure�

Suppose that

� 
 ��C� 	 f��y� 	 C� 
�� y � ��� ��� �����

j �a�t� ��j � j �a�t�j
g�t�

	 C� 
�� t � ��� ��� �����

and

jd� �a�t� ���g�t��

dF��t � ��
j � jd� �a�t��g�t��

dF��t�
j 	 C� 
�� t � ��� ��� �����

Then

bF��t� �� �� � �
HF��t�

F��t�
� �

HF��t� ���HF��t�

F��t� ��� F��t�
�����

���� � � ��
HF��t
�	

�� F��t� ��
�

and

HF��y� �

�
F��y��F��y� � F��y � ��� �� a�y	

g�y	 � � 
 y 	 ��

�F��y � �� � F��y����� F��y��
a�y	

g�y��	 � � 
 y 	 ��
�����

The directions are hF� � dHF��dF�� with HF� of the form ������ with
F� replaced by F�� However� condition � is not met� because dF �y �
���dF��y� and dF �y��dF��y � ��� � 
 y 	 �� can be arbitrary large� It
is not clear to us whether the maximum likelihood estimator will be e��
cient� So this example shows that Theorem ��� certainly does not always
provide an answer�

Example ���� convolution�

Let Xi � Yi�Zi� with Yi and Zi independent� Yi has unknown distribution
F� and Zi has known distribution K� i � �� � � � � n� Suppose K �F�� has
density k �f�� w�r�t� Lebesgue measure and that K and F� have support in
��� ��� We consider the special case

k�z� � cz��c�� � 
 z 	 �� c� �
log c�
c� � �

�

where c� 
 � is �xed�

Lemma ���� Suppose

� 
 ��C� 	 f��y� 	 C� 
�� � 
 y 	 �� �����
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and
jd �a�y��dyj 	 C� 
�� ������

Then
�n � �� �

Z
bF�d�Pn � P � � oP�n

������

where

bF��x� �

��
�

�F� �x	

LF��x	
� � 
 x 	 ��

�F� ��	��F� �x��	

LF� ��	�LF� �x��	
� � 
 x 	 � �

�F��y� �
c�LF��y��F����� � �a�y� � log c��a�y�� ����c�LF��y��LF����� LF��y��

LF���� � �c� � ��LF��y�
�

and

LF��y� �

Z y

�

c�u� dF��u��

Proof Let us only check ����� of Condition �� The other conditions can be
veri�ed in the same way as in Lemma ���� If c� � �� then ����� also follows
from the same arguments as in Lemma ���� and we �ndZ

log
p �Fn

pF�
dPn � OP�n

������

For c� � �� the class K � fk��� y� � k�� � y�� y � ��� ��g satis�es for
some A�

N���K� Q�	 A����

for all � � � and all probability measures Q� Moreover� K is uniformly
bounded� Now�

PF��x� �

�
cx
�

c�

R x
�
c�y� dF��y�� � 
 x 	 ��

cx
�

c�

R �
x�� c

�y
� dF��y�� � 
 x 	 ��

Using ������ one sees that in Lemma ���� one can take ��� ��� � � and ��� ��� �
log����� for � � � small� So� inserting w � � in this lemma� one obtains

Z
log�

�p �Fn

p �Fn
� pF�

�dPn � OP�n
�����logn������

tu
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