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Asymptotic Normality of Linear Multiuser
Receiver Outputs

Dongning Guo, Sergio Verdú, and Lars K. Rasmussen

Abstract—This paper proves large-system asymptotic nor-
mality of the output of a family of linear multiuser receivers
that can be arbitrarily well approximated by polynomial re-
ceivers. This family of receivers encompasses the single-
user matched filter, the decorrelator, the MMSE receiver,
the parallel interference cancelers, and many other linear
receivers of interest. Both with and without the assump-
tion of perfect power control, we show that the output de-
cision statistic for each user converges to a Gaussian ran-
dom variable in distribution as the number of users and the
spreading factor both tend to infinity with their ratio fixed.
Analysis reveals that the distribution conditioned on almost
all spreading sequences converges to the same distribution,
which is also the unconditional distribution. This normality
principle allows the system performance, e.g., the multiuser
efficiency, to be completely determined by the output signal-
to-interference ratio for large linear systems.

Index Terms: Code-division multiple access, multiuser
detection, multiple access interference, central limit theo-
rem, multiuser efficiency, signal-to-interference ratio.

I. Introduction

Linear multiuser receivers for multiple access channels
have been studied extensively during the last two decades
due to their performance capabilities and analytical tractabil-
ity [1]. A linear receiver provides a soft output that can be
either hard limited for decision-making or treated as soft re-
liability information for further processing such as in coded
transmission [2], [3]. The conventional matched filter, the
decorrelator and the minimum mean square error (MMSE)
receiver are among the earliest and most well-known linear
receivers. More recently, linear interference cancelers have
also been analyzed [4], [5], [6], [7], [8], [9].

The performance, in particular, the uncoded bit-error-
rate (BER) of a linear receiver, depends on the cumula-
tive distribution of the multiple access interference (MAI),
which is in general a discrete distribution. For all but the
decorrelator, the BER is given as a sum of an exponen-
tial number of Gaussian error functions (Q-functions1), the
evaluation of which is infeasible for even moderately sized
systems.

To circumvent this difficulty, a Gaussian approximation
of the MAI is often used. Weber et al. [10] were among the
earliest to model interfering users’ signals as white Gaus-
sian noise. Since then a large amount of work has been
dedicated to the justification of various normality approx-
imations. For a long-code system, the MAI embedded in
the output of the matched filter for each user can be well
approximated by a Gaussian random variable [1], [11]. For
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1Q(x) = 1√
2π

∫∞
x e−t2/2dt

a short-code system, the system size has to be much larger
in order for the error in this approximation to normality to
be negligible. Nevertheless, the distribution of the MAI in
a matched filter output is shown to converge to a Gaussian
law in the sense of divergence by Verdú and Shamai [11].
In fact, [11] is one of the first to prove asymptotic normal-
ity for an output distribution conditioned on the spreading
sequences. Moreover, Poor and Verdú [12] showed that
the distribution of the output MAI of the MMSE receiver
in a short-code system often has no noticeable difference
to a Gaussian law. Recently, it was proved rigorously by
Zhang et al. that the MAI in the MMSE receiver output is
asymptotically Gaussian [13]. Normality is also established
for linear blind multiuser receivers [14].

These normality results allow the large-system probabil-
ity of error of these receivers to be quantified by a sin-
gle Q-function of the square root of the output signal-to-
interference ratio (SIR). It also implies that error-control
codes for Gaussian channels are asymptotically optimal if
autonomous single-user decoding is to be used. As a result,
the receiver and the decoder can be designed and optimized
separately.

The normality property of all the above mentioned re-
ceivers is not accidental. Indeed, this is a result of the
central limit theorem due to the fact that the MAI is a
sum of contributions from a large number of users. In this
paper, we extend the normality principle to a much wider
family of linear receivers, which is defined as a set of ma-
trix filters each of which shares the same eigenvectors as
those of the channel correlation matrix and takes eigenval-
ues given by a function of the eigenvalues of the correlation
matrix. Immediately, this family includes the conventional
receiver, the decorrelator, and the MMSE receiver. Also, it
includes a subset of matrix filters described by polynomial
expansion of the correlation matrix, called polynomial re-
ceivers [15], which corresponds exactly to the set of linear
multistage parallel interference cancelers [16].

Our results are asymptotic in nature, namely, they are
large-system limits where the number of users and the
spreading factor both tend to infinity with a fixed ratio.
Recent work in [17], [18], [11], [13], [19] shows that this ap-
proach can average out the dependence on specific spread-
ing sequences and result in simple expressions for system
performance. Moreover, asymptotic results provide good
approximations for moderately sized systems in many cases
of practical interest.

Our results can be summarized as follows. Assuming
random spreading sequences, the output decision statistic
of the family of linear receivers for each user is asymptot-
ically Gaussian in distribution conditioned on one’s own
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transmitted symbol. Moreover, the asymptotic output dis-
tribution of a receiver in this family is the same conditioned
on almost all possible spreading sequences, which is also
the asymptotic unconditional distribution. The normality
principle holds for very general scenarios. The spreading
sequences are not limited to binary sequences and the re-
ceived energies of the users can be different.

Our results follow the work of Zhang et al. [13], where
asymptotic normality was concluded for the MMSE re-
ceiver only. Besides making use of some of the same math-
ematical tools as in [13], our proof is quite different. We
tackle the problem by starting from polynomial receivers.
We show that the output decision statistic of every poly-
nomial receiver is asymptotically Gaussian in distribution.
We then generalize the normality principle to a large family
of receivers that can be approximated arbitrarily by poly-
nomial receivers.

This paper is organized as follows. Section II introduces
the system model and notation. Polynomial receivers are
studied under the perfect power control assumption in Sec-
tion III. The normality principle is generalized to a family
of receivers in Section IV. Arbitrary energy distribution is
considered in Section V. Results on some popular receivers
are summarized in Section VI. Some numerical examples
are given in Section VII.

II. System Model

A. CDMA Uplink Channels

We assume a symbol-synchronous CDMA system de-
picted in Fig. 1 where each user’s spreading sequence is
independently and randomly chosen. For the purpose of
large-system analysis, we consider first a K-user system
with a spreading factor of N = N(K) and then let K and N
go to infinity with their ratio converging to a non-negative
number β, i.e.,

lim
K→∞

K

N(K)
= β. (1)

Let {Pk | k = 1, 2, . . . } be a deterministic sequence con-
sisting of the received energies per symbol of all users. The
signal-to-interference ratio2 of user k in absence of interfer-
ing users is therefore Pk

σ2 . By absorbing a common factor
into the noise level, we can assume without loss of gener-
ality for a K-user system

1
K

K∑
k=1

Pk = 1. (2)

In Section III and IV, we study the simplest perfect power
control case, where the received energies are equal from
all users, i.e., Pk = 1 for k = 1, . . . ,K. In Section V,
we allow the received energies to be different. We assume,
however, that the empirical distributions of {P1, . . . , PK}

2The SIR is defined as the energy ratio of the useful signal to the
noise in the output. In contrast, the signal-to-noise ratio (SNR) of
user k is usually defined as the ratio of the input energy and single-
sided noise spectral density Pk/(2σ2).

converge as K →∞ to a distribution FP , called the energy
distribution, which has finite moments of any order.

Let {s̄nk |n = 1, 2, · · · , k = 1, 2, · · · } be an infinite array
of real-valued independent identically distributed (i.i.d.)
random chips. For convenience we assume that the dis-
tribution of the chips has unit-variance and finite higher
order moments, and is symmetric, i.e., −s̄nk follows the
same distribution as s̄nk. Consider a K-user system. The
spreading sequence of user k is given as an N -dimensional
vector, s̄(K)

k = 1√
N

[s̄1k, s̄2k, · · · , s̄Nk]>. We define the un-
normalized spreading sequence of user k to be

s(K)
k =

1√
N

[s1k, s2k, · · · , sNk]>=
√

Pk s̄(K)
k . (3)

We also define the unnormalized correlation matrix R(K)

as a K×K random matrix with its element on the kth row
and the jth column as the crosscorrelation of user k and
user j’s unnormalized spreading sequences,[

R(K)
]

kj
= s>ksj =

1
N

N∑
n=1

snksnj =

√
PkPj

N

N∑
n=1

s̄nks̄nj .

(4)

Note that we label the correlation matrix with its corre-
sponding system dimension (the number of users). In fact,
every variable pertaining to a K-user system has K as its
corresponding dimension. For notational convenience, we
will often omit the index (K) when the dimension is under-
stood from the context. For instance, R(K) is simplified to
R.

Let {dk | k = 1, 2, · · · } be a sequence of independent
random antipodal modulated symbols taking the value of
+1 and −1 equally likely. For a K-user system, let d =
[d1, · · · , dK ]> be the vector of transmitted symbols.

A set of sufficient decision statistics is obtained by matched
filtering using all user’s unnormalized spreading sequences3

yMF = Rd + n (5)

where the correlation matrix R is determined by (4), and
n is a zero-mean Gaussian noise vector with covariance
matrix σ2R, where σ2 is the noise sample variance.

B. Linear Receivers

A linear receiver assumes knowledge of the spreading se-
quences, the received energies, as well as the noise variance
and makes use of this information in detection. Mathe-
matically, it is a K ×K matrix filter G, dependent on R
and σ2, applied to the matched-filter output. It outputs a
vector of decision statistics expressed as

y = G · yMF (6)
= G · (Rd + n) (7)
= (GR) · d + z (8)

where z = Gn is a zero-mean Gaussian random vector
with covariance matrix σ2GRG>. We denote GR by H

3This is in contrast to matched filtering using normalized spreading
sequences as in [1].
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Fig. 1. Discrete time system model.

throughout the paper for notational simplicity. Thus, we
have a simple linear system expressed as

y = H · d + z. (9)

An advantage of linear receivers is that they can be
implemented in a decentralized fashion [1]. Independent
single-user decoding is conducted based on the decision
statistic sequence produced by the individual linear re-
ceiver. From an individual user’s point of view, the multi-
access channel collapses to a single-user channel by treat-
ing the MAI as noise. The input-to-output characteristic
of such a single-user channel is determined by the distri-
bution of the output decision statistic conditioned on the
transmitted symbol.

Without loss of generality, we consider user 1. As far as
the performance is concerned, we can assume that user 1
always transmits +1.4 User 1’s decision statistic is a scalar

y1 = H11 +
K∑

k=2

H1kdk + z1 (10)

where Hkj , like [H]kj , denotes the element of H on the
kth row and the jth column. Clearly, this decision statistic
consists of the transmitted symbol (d1 = 1) scaled by H11,
the multiaccess interference aggregated from all the other
users, and a Gaussian noise term.

We can interpret the randomness of the decision statistic
in two different ways which correspond to short-code and
long-code systems respectively. In a short-code system, the
spreading sequences are randomly picked at the beginning
of transmission and remain the same for every transmit-
ted symbol. For each channel use, the randomness in y1

includes that of the transmitted symbols and that of the
noise. The performance, e.g. the uncoded probability of
error, can be easily obtained once we have the distribution
of y1 conditioned on the spreading sequence. In a long-
code system, the spreading sequences are randomly and
independently chosen symbol-by-symbol. The randomness
of y1 then also includes the randomness of the crosscorre-
lations reflected in matrix H. The expected performance,

4Accordingly, all distributions we will be considering are implicitly
conditioned on d1 = 1.

for instance the uncoded error probability averaged over
all spreading sequences, is now better characterized by the
unconditional distribution of y1. In this paper we address
both the conditional distribution and the unconditional dis-
tribution as the system size increases without bound. The
resulting distributions turn out to be the same for all but
a negligible set of spreading sequences.

C. A Family of Linear Receivers

Note that R is symmetric. It has an eigen-decomposition
as

R = UΛU> (11)

where U is unitary and Λ = diag(λ1, · · · , λK) is a diagonal
matrix consisting of the eigenvalues of R, which are all non-
negative random variables dependent on R. We limit our
study to receivers taking the form of

G = U · diag(g(λ1), · · · , g(λK)) ·U> (12)

for some real continuous function g, and refer to them as
the family of linear receivers throughout this paper. With
slight abuse of notation we denote the right hand side
of (12) by g(R). Note that g(R) is symmetric and shares
the same eigenvectors with R, and the eigenvalues of g(R)
are given by the function g evaluated at the eigenvalues of
R.

The family of receivers defined in the above represents
a subset of linear receivers. It does not include succes-
sive interference cancelers, which, unlike (12), treat users
unequally. Neither does it include the optimum linear de-
tector in the sense of BER or asymptotic multiuser effi-
ciency [1, Page 288]. Nonetheless, a wide spectrum of lin-
ear receivers belong to this family. In particular, if the
function g degenerates to a constant 1, the receiver G is
reduced to the single-user matched filter. If g is a polyno-
mial, G becomes a polynomial receiver (or, equivalently, a
parallel interference canceler [16]). If we let

g(λ) =

{
1
λ if λ > 0,

0 if λ = 0,
(13)
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the resulting G is the decorrelator. If we let g(λ) = (λ +
σ2)−1, G becomes the MMSE receiver.

Let us include the dimension index for the rest of this
section to make it clear what we mean by a linear receiver
in the large-system analysis. A linear receiver here refers
to a sequence of matrix filters

{
G(K)

}∞
K=1

, each G(K) a
function of R(K), for which the vector of output decision
statistics is expressed as

y(K) = G(K) · y(K)
MF . (14)

In particular, a linear receiver in the family of our interest
is defined as a sequence of receivers specified by a function
g, i.e., for K = 1, 2, . . . ,

G(K) = U(K) · diag
(
g(λ(K)

1 ), · · · , g(λ(K)
K )

)
·
(
U(K)

)>
(15)

where

R(K) = U(K) · diag
(
λ

(K)
1 , · · · , λ

(K)
K

)
·
(
U(K)

)>
. (16)

We study the marginal probabilistic law of the decision
statistic y(K), i.e., the distribution of y

(K)
1 , as K goes to

infinity.

D. Eigenvalue Distribution

The normality results we will show in the following sec-
tions hinge on the intriguing fact that the limiting empirical
distribution of the eigenvalues of a large random covariance
matrix is deterministic. Denote the limit of the cumulative
distribution of the eigenvalues of the random matrix R(K)

by FΛ. It is dependent on the received energy distribution
FP . In general, this distribution function does not have a
closed-form solution. Its Stieltjes transform, defined as

m(z) =
∫

1
λ− z

dFΛ(λ) (17)

satisfies

m(z) =
[
−z + β−1

∫
P

1 + Pm(z)
dFP (P )

]−1

(18)

where FP is the energy distribution [20], [21].
In the equal-energy case, a closed-form solution exists [22]

FΛ(λ) = max
(

0, 1− 1
β

)
· u(λ) +

∫ λ

−∞
pβ(t) dt (19)

where u(λ) is a unit step function, and

pβ(λ) =

{
1

2πβλ

√
(λ− λmin)(λmax − λ) if λmin < λ < λmax,

0, otherwise,
(20)

with λmin = (1−
√

β)2 and λmax = (1 +
√

β)2. An expres-
sion for the moments of the eigenvalues has been developed
in [22]

E
{
λi
}

=
i−1∑
j=0

1
j + 1

(
i
j

)(
i− 1

j

)
βj . (21)

III. Polynomial Receivers Under Perfect Power
Control

In this section, we study a subset of linear receivers,
namely, the set of polynomial receivers, special cases of
which have been considered in [15], [5], [23]. A polynomial
receiver G is of the form

G =
m∑

i=1

xiRi−1 (22)

where m is an integer, and the weights xi are arbitrary de-
terministic real numbers. G can be expressed as a member
of the family of receivers defined by (12) if we let g be a
polynomial

g(λ) =
m∑

i=1

xiλ
i−1. (23)

We study the output distribution of the polynomial receiver
G in both the conditional case and the unconditional case.

In this section, we also limit ourselves to the equal-energy
case, i.e., Pk = 1, k = 1, . . . ,K, for which we obtain simple
expressions for the limiting distribution. The results are
extended to unequal-energy case in Section V.

A. Conditional Distribution

Consider the MAI term in the decision statistic y1 in (10)
where H is given. It is a sum of contributions from all in-
terfering users. Due to the central limit theorem, its distri-
bution becomes closer and closer to a Gaussian law as the
system size increases without bound. Precisely, we have
the following theorem.

Theorem 1: The decision statistic (10) as a function of
H, where the polynomial receiver is given as (22), converges
to a Gaussian random variable in distribution with prob-
ability 1. The mean value corresponding to the limiting
distribution is

µ1 =
m∑

i=1

xiMi (24)

and the variance is

σ2
1 =

m∑
i=1

m∑
j=1

xixj [Mi+j −MiMj + σ2Mi+j−1] (25)

where Mi is defined as

Mi = lim
K→∞

E
{[

Ri
]
11

}
. (26)

In the special case of perfect power control, Mi is equal to
the ith-order moment of the limiting eigenvalue distribution
given by (21).

Note that surprisingly the mean and the variance are not
dependent on R, since Mi is an average over all spreading
sequences. Indeed, the theorem states that the asymptotic
conditional distribution is almost surely independent of the
spreading sequences. We develop a proof of the theorem
starting from showing the existence of Mi.
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Lemma 1: Under perfect power control,

Mi = lim
K→∞

E
{[

Ri
]
11

}
(27)

exists and is given by (21).
Proof: Under perfect power control,

[
Ri
]
kk

’s are
identically distributed for all k. Hence

E
{[

Ri
]
11

}
=

1
K

K∑
k=1

E
{[

Ri
]
kk

}
(28)

=
1
K

E
{
tr
{
Ri
}}

(29)

=
1
K

E

{
K∑

k=1

λi
k

}
(30)

= E
{
λi
}

(31)

where λ is a randomly picked eigenvalue of Ri. Taking the
large-system limit of both sides of (31), the left hand side
is Mi and the right hand side is given by (21).

We next present a simple fact that underlies all major
results in this paper.

Lemma 2: Let {ŝnk |n = 1, 2, · · · , k = 1, 2, · · · } be an ar-
ray of independent random variables each taking equally
likely values of +1 and −1. Let n1, · · · , ni ∈ {1, · · · , N}
and k1, · · · , ki, ki+1 ∈ {1, · · · ,K}. Then the product

ŝn1k1 ŝn1k2 ŝn2k2 ŝn2k3 · · · ŝni−1ki−1 ŝni−1ki
ŝniki

ŝniki+1 (32)

is a constant +1 if the indexes are such that all the indexed
ŝ variables appear in pairs; otherwise the product is a ran-
dom variable taking the values of +1 and −1 equally likely.

This Lemma holds trivially. For example, ŝ21ŝ24ŝ14ŝ14ŝ24ŝ21

consists of 3 pairs of identical binary variables and is equal
to ŝ2

21ŝ
2
24ŝ

2
14 = +1. On the contrary, ŝ12ŝ11ŝ31ŝ32 is a fair

coin toss of +1 and −1, and has a zero mean.
Every entry in the matrix Ri is a highly structured weighted

sum of products of the form of (32),[
Ri
]
1k

=
K∑

k2,...,ki=1

R1k2Rk2k3 · · ·Rkik (33)

=
1

N i

K∑
k2,...,ki=1

N∑
n1,...,ni=1

sn11sn1k2sn2k2sn2k3 · · · sni−1ki−1sni−1ki
sniki

snik.(34)

Lemma 2, reinforced with combinatorial arguments, pow-
erfully reveals the probabilistic behavior of individual el-
ements in Ri. We have the following proposition, the
proof of which is quite lengthy and relegated to Appendix I
and II.

Proposition 1: For every positive integer p, and every
user index k, the pth-order central moment of

√
K
[
Ri
]
1k

converges to a deterministic constant as K →∞.
As a consequence, the asymptotic distribution of

√
K
([

Ri
]
1k
− E

{[
Ri
]
1k

})
(35)

has finite moments of any order. This allows us to have a
clear picture of the probabilistic property of the elements
in Ri. By first subtracting its mean value (the off-diagonal
elements have zero-mean) each entry diminishes as K →
∞. This vanishing rate is quite fast. In fact, if we amplify
it by

√
K, each entry converges to some random variable,

the moments of which are the finite limits of the central
moments of (35).

A weaker boundedness result is sufficient for our study,
namely, the pth order central moment of

√
K
[
Ri
]
1k

is
bounded by some number for all K, due to its convergence.
The following is immediate.

Corollary 1: For every positive integer p, the pth order
central moment of

[
Ri
]
1k

is upper bounded by γK− p
2 for

all p and K where γ is a positive number independent of
K.

Corollary 1 leads to the following almost sure conver-
gence.

Lemma 3:
[
Ri
]
11

converges to Mi with probability 1 as
K →∞.

Proof: Define

vK =
[
Ri
]
11
− E

{[
Ri
]
11

}
. (36)

The system dimension (K) is explicit in vK . By Corol-
lary 1, there exists γ > 0,

E
{
v4

K

}
<

γ

K2
, ∀K. (37)

By the Markov Inequality [24], for every ε > 0,

P (|vK | > ε) ≤
E
{
v4

K

}
ε4

(38)

<
γ

ε4K2
. (39)

Clearly,

∞∑
K=1

P (|vK | > ε) < ∞. (40)

By the Borell-Cantelli Lemma [25], vK converges to 0 with
probability 1. Therefore,[

Ri
]
11

= E
{[

Ri
]
11

}
+ vK (41)

converges with probability 1 to Mi by Lemma 1.
The following is immediate from Lemma 3.
Corollary 2: The coefficient H11 =

∑m
i=1 xi

[
Ri
]
11

con-
verges to

∑m
i=1 xiMi with probability 1.

Also, we have the following lemma about the MAI term
in (10).

Lemma 4: The distribution of
∑K

k=2 H1kdk, conditioned
on the spreading sequences, converges to a Gaussian law
with probability 1.

To prove Lemma 4, we use the Lindeberg-Feller central
limit theorem [26, page 448], which is restated here in a
form convenient for this paper.
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Theorem 2 (Lindeberg-Feller) For each K, let {XK,1, . . . ,
XK,K} be independent zero-mean random variables with
finite variance. Suppose that

K∑
k=1

E
{
X2

K,k

}
→ 1, (42)

and that the Lindeberg condition is satisfied, i.e., for all
ε > 0,

lim
K→∞

K∑
k=1

E
{
X2

K,k · 1{|XK,k|>ε}
}

= 0 (43)

where 1{·} is the indicator function which takes the value
of 1 if the condition in the braces is satisfied and 0 other-
wise. Then

∑K
k=1 XK,k converges to a standard Gaussian

random variable in distribution.
Lemma 4 can be proved as follows.

Proof: [Lemma 4] Assume that the spreading se-
quences are given so that H is determined. We study the
set of random variables {H12d2, . . . ,H1KdK} for each K
and show that for almost all possible spreading sequence
assignments, the conditions required by Theorem 2 are sat-
isfied, namely,
(L4.1) {H1kdk | k = 2, · · · ,K} is a set of independent zero-
mean random variables;
(L4.2)

∑K
k=2 E

{
(H1kdk)2

∣∣∣H} converges as K →∞; and
(L4.3) The Lindeberg condition

lim
K→∞

K∑
k=2

E
{

(H1kdk)2 · 1{|H1kdk|>ε}

∣∣∣H} = 0, ∀ε > 0.

(44)

Condition (L4.1) holds for all H by independence of dk’s.
The sum in condition (L4.2) can be obtained as

K∑
k=2

H2
1k =

K∑
k=1

H1kHk1 −H2
11 (45)

= [H2]11 −H2
11. (46)

Notice that

H2 =
m∑

i=1

m∑
j=1

xixjRi+j . (47)

The right hand side of (46) converges to

m∑
i=1

m∑
j=1

xixjMi+j −

(
m∑

i=1

xiMi

)2

(48)

with probability 1 by Corollary 2.
To examine condition (L4.3) we define

WK(H, ε) =
K∑

k=2

E
{

(H1kdk)2 · 1{|H1kdk|>ε}

∣∣∣H} . (49)

Since dk = ±1, and noting that

1{x>ε} ≤
(x

ε

)n

, ∀x, ε, n > 0, (50)

we have

WK(H, ε) =
K∑

k=2

H2
1k · 1{|H1k|>ε} (51)

≤
K∑

k=2

H2
1k ·

H4
1k

ε4
(52)

Hence for every δ > 0,

P (WK(H, ε) > δ) ≤ 1
δ
· E {WK(H, ε)} (53)

≤ 1
δε4

· E

{
K∑

k=2

H6
1k

}
(54)

=
K − 1
δε4

· E
{
H6

12

}
(55)

≤ 1
δε4K2

· E
{

(
√

KH12)6
}

(56)

where (53) is by the Markov Inequality and (55) holds be-
cause the H1k’s, k = 2, · · · ,K, are identically distributed.
Since every moment of

√
KH1k =

∑m
i=1 xi

√
K
[
Ri
]
1k

is
bounded due to Corollary 1, the probability P (WK(H, ε) > δ)
is bounded by some γK−2 which is summable over K.
Analogously to Lemma 3, the Borell-Cantelli Lemma leads
to

lim
K→∞

WK(H, ε) = 0 with probability 1, (57)

i.e., the Lindeberg condition (L4.3) is satisfied with prob-
ability 1.

In all, conditions (L4.1-3) are satisfied with probability
1. Invoking Theorem 2, we obtain that conditioned on
almost all spreading sequences, the MAI is asymptotically
Gaussian.

With the distribution of all three components of the de-
cision statistic (10) known (the noise is trivially Gaussian),
we can now prove its asymptotic normality.

Proof: [Theorem 1] The first term on the right hand
side of (10) converges with probability 1 to a deterministic
value by Corollary 2. The MAI term is asymptotically
Gaussian with probability 1 by Lemma 4. The noise is
zero-mean Gaussian with variance

E
{
z2
1

}
= [GRG]11 σ2, (58)

which can be easily shown to converge to

ν2
∞ = σ2

m∑
i=1

m∑
j=1

xixjMi+j−1 (59)

with probability 1. Conditioned on the spreading sequences,
the MAI and the noise are independent. The distribution
of the decision statistic is therefore asymptotically Gaus-
sian with mean value and variance given by (24) and (25)
respectively.
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B. Unconditional Distribution

It is also desirable to know the distribution of the de-
cision statistic when the spreading sequences are allowed
to vary symbol-by-symbol as in a long-code system. In
every symbol interval, the MAI is a large sum of contri-
butions from individual interfering users, whose spreading
sequences are chosen independently from that of the desired
user. It is expected that the MAI approaches a Gaussian
probability law in distribution as the number of users in-
creases. The resulting distribution is trivially the same as
in the conditional case since the unconditional distribution
is a mixture of the conditional ones, the limit of which are
all the same except for a negligible set in probabilistic sense
by virtue of Theorem 1. Precisely, we have the following
theorem.

Theorem 3: The unconditional distribution of the deci-
sion statistic given by (10), where the polynomial receiver
is given as (22), converges to a Gaussian law with mean
value and variance given by (24) and (25) respectively.

Proof: We present a direct proof similar to that of
the conditional case rather than citing Theorem 1. The
proof reveals some dependence subtleties not present in
the conditional case.

First, H11 →
∑m

i=1 xiMi with probability 1 by Corol-
lary 2.

Second, we need to show that the distribution of
∑K

k=2 H1kdk

converges to a Gaussian law. This is not as simple as in the
conditional case, since the H1k’s are now dependent ran-
dom variables. We resort to a more general central limit
theorem in [27]. We show that the following 3 conditions
are satisfied.
(T3.1)

∑K
k=2 H1kdk is a martingale for every K;

(T3.2) E

{(∑K
k=2 H1kdk

)2
}

converges as K →∞; and

(T3.3) The Lindeberg condition is satisfied, i.e.,

K∑
k=2

E
{

(H1kdk)2 · 1{|H1kdk|>ε}

}
→ 0, ∀ε > 0. (60)

For every K, and an arbitrary user index k > 1, the
conditional expectation

E {H1kdk|H12d2, · · · ,H1 k−1dk−1} = 0 (61)

by independence of the data symbols. By definition, H1k

is an absolutely fair sequence, and therefore
∑K

k=2 H1kdk

is a martingale [25, p. 209]. Hence (T3.1) is true.
Also by the independence of the antipodal symbols,

E


(

K∑
k=2

H1kdk

)2
 =

K∑
k=2

E
{
H2

1k

}
(62)

= E
{
[H2]11

}
− E

{
H2

11

}
.(63)

The right hand side of (63) converges by Corollary 2. Thus
we have (T3.2).

To verify (T3.3), we find, for every ε > 0

K∑
k=2

E
{

(H1kdk)2 · 1{|H1kdk|>ε}

}
= (K − 1) · E

{
H2

12 · 1{|H12|>ε}
}

(64)

≤ (K − 1) · 1
ε2
· E
{
H4

12

}
(65)

≤ 1
Kε2

· E
{

(
√

KH12)4
}

(66)

→ 0 (67)

as K →∞ by Corollary 1.
With conditions (T3.1)–(T3.3) verified, the sum

∑K
k=2 H1kdk

converges to a Gaussian law, with zero mean and a variance
given by (48), following a dependent central limit theorem
for martingales in [27].

Moreover, the noise converges trivially to a Gaussian
random variable in mean square sense. Note that both
the MAI and the noise are dependent on the spreading se-
quences. Given the output noise variance, however, the
noise and the MAI are mutually independent. Consider a
slight modification of the decision statistic, where we in-
troduce a scalar multiplier to the noise term to remove
dependence,

y′1 = H11 +
K∑

k=2

H1kdk +
ν∞√
E {z2

1}
· z1 (68)

where ν∞ is defined in (59). The standard Gaussian ran-
dom variable z1/

√
E {z2

1} can be easily shown to be inde-
pendent of the spreading sequences and hence of the MAI.
Since the multiplier converges to 1, (y′1−y1) converges to 0
in mean square sense, and hence y1 and y′1 share the same
asymptotic distribution.

In all, the distribution of y1 is asymptotically Gaussian
with a mean value as that of the limit of the first term, and
a variance as the sum of the limits of those of the MAI and
the noise. They are given in (24) and (25), respectively.

IV. Asymptotic Normality

We have shown above that, under perfect power control,
every polynomial receiver yields asymptotically Gaussian
outputs. By the Weierstrass Theorem, the set of polyno-
mials is dense in the space of continuous functions defined
on a finite interval [28]. For this reason, we can show that
every receiver of the form G = g(R) can be arbitrarily well
approximated by a sequence of polynomial receivers. As a
consequence its output is also asymptotically Gaussian in
distribution. Formally, we have the following theorem.

Theorem 4: Assume perfect power control. For every
function g continuous on

(
max2(0, 1−

√
β), (1 +

√
β)2
)
, the

output decision statistic of any linear receiver G = g(R)
defined in (12) is asymptotically Gaussian in distribution
conditioned on almost all spreading sequences. The mean
value corresponding to the limiting distribution is

µg =
∫

g(λ) · λ dFΛ(λ) (69)



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 12, DECEMBER 2002 8

and the variance is

σ2
g =

∫
g2(λ) · λ · (λ + σ2) dFΛ(λ)− µ2

g. (70)

The following lemma is useful for proving Theorem 4.
Lemma 5: Let G = g(R). For all ε > 0, there exists a

polynomial receiver G̃ = g̃(R) such that the mean square
difference of every user’s output decision statistic of G and
G̃ is less than ε for sufficiently large K for almost all spread-
ing sequences.

Lemma 5, proved in Appendix III, establishes that a lin-
ear receiver can be arbitrarily well approximated by poly-
nomial receivers in the large-system limit. The fact that the
output of every polynomial receiver converges to a Gaus-
sian random variable leads to the asymptotic normality of
linear receiver outputs. The proof of Theorem 4 also re-
quires the following lemma.

Lemma 6: Let
{

Y
(K)
m

∣∣∣K = 1, 2, · · · ,m = 1, 2, · · ·
}

be an

array of continuous random variables. Let
{
Y (K)

}∞
K=1

and
{Ym}∞m=1 be two sequences of random variables. Denote
the cumulative distribution functions of Y

(K)
m , Y (K) and

Ym as F
(K)
m , F (K) and Fm respectively. Suppose that

(L6.1) lim
m→∞

lim
K→∞

E

{∣∣∣Y (K) − Y (K)
m

∣∣∣2} = 0; and(71)

(L6.2) lim
K→∞

∣∣∣F (K)
m (a)− Fm(a)

∣∣∣ = 0, ∀a,m, (72)

then both F (K) and Fm converge pointwise to the same
distribution.

system size K →∞
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
g1

g2

...
gm

...
↓

g(R)

y

Y
(1)
1 Y

(2)
1 · · · Y

(K)
1 · · · → Y1

Y
(1)
2 Y

(2)
2 · · · Y

(K)
2 · · · → Y2

...
...

...
...

Y
(1)
m Y

(2)
m · · · Y

(K)
m · · · → Ym

...
...

...
...

↓ ↓ ↓ ↓
Y (1) Y (2) · · · Y (K) · · · → Y


Gaussian

Fig. 2. Convergence of output distributions.

The proof of Lemma 6 is in Appendix IV. The idea is
illustrated in Fig. 2. Each row corresponds to a particular
polynomial receiver, whose output converges to a Gaussian
random variable in distribution. Each column corresponds
to a sequence of polynomial receivers for a particular sys-
tem size. The sequences of {Y (K)} and {Ym} converge in
distribution to the same Gaussian law.

We are now equipped to prove the asymptotic normality
for linear detectors of the form G = g(R).

Proof: [Theorem 4] For clarity, we explicitly label
relevant variables with their corresponding system dimen-
sion. Take a sequence εm → 0. For each m, by Lemma 5,
there exists a polynomial receiver

{
G(K)

m

}
determined by a

polynomial gm such that for sufficiently large K and almost
all spreading sequences,

E

{∣∣∣y(K)
1 − y

(K)
m1

∣∣∣2} < εm (73)

where y
(K)
1 and y

(K)
m1 are the output of G and G(K)

m for user
1 respectively.

Let Y (K) = y
(K)
1 and Y

(K)
m = y

(K)
m1 . Due to the presence

of noise, Y
(K)
m are continuous random variables. Equa-

tion (73) implies (71). Also, by Theorem 1, for every m,
Y

(K)
m converge as K →∞ to some Gaussian random vari-

able, defined as Ym. Hence (72) is satisfied. Note that a
sequence of Gaussian distribution functions converge also
to a Gaussian law. Invoking Lemma 6, we have that Y (K)

converge in distribution to a Gaussian law. Equation (69)
is straightforward by noting that for gm(λ) =

∑m
i=1 xiλ

i−1,

m∑
i=1

xiMi = E

{
m∑

i=1

xiλ
i

}
(74)

= E {gm(λ) · λ} (75)

=
∫

gm(λ) · λdFΛ(λ). (76)

Equation (70) can be obtained analogously.

V. Asymptotic Normality for Unequal Powers

We have established asymptotic normality of linear re-
ceiver outputs assuming perfect power control. In fact,
the normality principle holds for very general scenarios. In
this section we generalize the normality results to the case
where the received energies from all users are not equal. We
assume that the energies are independent of the spreading
sequences and that in the large-system limit, the empirical
distributions of the energies converge to the energy distri-
bution FP .

It is important to note that Proposition 1 still holds in
this case, as is proved in Appendix II. Therefore, Theo-
rem 1 and 3 also hold, since the proof still applies in prin-
ciple. The complication here is that (28) is no longer true
and Mi does not have a simple expression. We can follow
the approach in [29] to obtain each moment by exploiting
the structure of

[
Ri
]
11

as a sum of products of random
chips as in (34). For instance, assuming binary spreading,
the first 4 Mi’s are

M1 = P1, (77)
M2 = P1 [P1 + β] , (78)
M3 = P1

[
P 2

1 + 2βP1 + βE
{
P 2
}

+ β2
]
, (79)

M4 = P1

[
P 3

1 + 3βP 2
1 + (2βE

{
P 2
}

+ 3β2)P1

+(βE
{
P 3
}

+ 3β2E
{
P 2
}

+ β3)
]
, (80)

where the expectations are taken over the energy distribu-
tion. In this way, the mean and variance of the limiting
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output distribution of a polynomial receiver can be deter-
mined.

Furthermore, we can still approximate a linear receiver
determined by a continuous function g by a series of poly-
nomial receivers. Indeed, the asymptotic normality is true
for an arbitrary receiver G = g(R) without the assumption
that all users are received at the same energy. Unfortu-
nately, the mean and the variance of the limiting distribu-
tion do not allow simple expression as in Theorem 4. In
principle, the mean and variance can be well-approximated
by that of a polynomial receiver output, which can be ob-
tained by (24)–(25). It is often easier, however, to find the
mean and the variance using properties of the particular
receiver of interest. Some useful results on popular linear
receivers are listed in Section VI.

In summary, we have the following theorem.
Theorem 5: For every continuous function g, the output

decision statistic of linear receiver G = g(R) has asymp-
totically the same Gaussian distribution conditioned on al-
most all spreading sequences.

This theorem states that the output of a large family
of linear receivers has the same asymptotic Gaussian dis-
tribution conditioned on almost every spreading sequence
assignment, which is nothing but the asymptotic uncondi-
tional distribution. This somewhat surprising result may
be understood as follows. First, under mild conditions, all
interfering users have “comparable” and uniformly small
contributions in interference to the desired user as the sys-
tem size gets larger and larger. So the total contribution
turns out to be Gaussian in the limit. Second, a large sys-
tem is self-averaging, i.e., a particular realization of the
covariance matrix is almost surely “sufficiently represen-
tative” of the whole ensemble. In other words, empirical
averaging is the same as ensemble averaging in the large-
system limit. As the system size increases, a short-code
system where the spreading sequences are randomly cho-
sen behaves more and more like a long-code system. In-
terestingly, the fundamental law underlying this principle
is statistical physics. A multiuser system is equivalent to
a thermodynamic system, whose fluctuation vanishes and
the emerging stable macroscopic properties dominate in the
large-system limit [19], [30], [31].

VI. Multiuser Efficiency

The asymptotic normality of linear receiver outputs al-
lows the multiuser efficiency [1, page 121], which uniquely
characterizes the uncoded bit-error-rate for an arbitrary
noise level, to be completely determined by the signal-to-
interference ratio in the large-system limit.

For a receiver of the form in (12) determined by g, we
have its large-system limit of the SIR expressed as

γ =
µ2

g

σ2
g

(81)

where µg and σ2
g are the mean value and the variance of the

limiting distribution respectively. Assuming threshold de-
tection, we have the uncoded probability of error expressed

as a single Q-function of the square root of the SIR, i.e.,

P = Q (
√

γ) . (82)

The multiuser efficiency, defined as the ratio between the
energy that a user would require to achieve the same BER
in absence of interfering users and the actual energy, is then

η =
µ2

gσ
2

P1σ2
g

. (83)

For a polynomial receiver given as (22) we have

η(p) =
σ2

P1
·

(
∑m

i=1 xiMi)
2∑m

i=1

∑m
j=1 xixj [Mi+j −MiMj + σ2Mi+j−1]

(84)

where Mi, defined in (26), can be obtained by (21) for
the equal-energy case, or as (77)–(80) by following the ap-
proach in [29] otherwise.5 A trivial example of a polyno-
mial receiver is the single-user matched filter, whose large-
system multiuser efficiency is obtained as

η(mf) =
σ2

P1

M2
1

M2 −M2
1 + σ2M1

(85)

=
1

1 + β
σ2

. (86)

Another popular receiver, the decorrelator, is determined
by (13). In case of β < 1, the MAI term is 0 with proba-
bility 1 and hence

η(dec) = 1− β, β < 1. (87)

In case of β > 1, the MAI is nontrivial but the asymptotic
normality is still true. The multiuser efficiency is obtained
in [19], which, in the equal-energy case can be simplified
to [32]

η(dec) =
(β − 1)σ2

(β − 1)2 + σ2β
, β > 1. (88)

The MMSE receiver is determined by g(λ) = (λ+σ2)−1.
It is hard to obtain µg and σ2

g directly. Applying the known
Stieltjes transform of the eigenvalue distribution function,
the multiuser efficiency can be obtained as the positive so-
lution to the Tse-Hanly fixed-point equation [18], [13], [33]

η + β E

{
P η

P η + σ2
0

}
= 1, (89)

where the expectation is taken over the random variable P
drawn according to the energy distribution.

VII. Numerical Results

Fig. 3 shows convergence to a Gaussian distribution of
the output decision statistics. Chips and symbols are BPSK
modulated. Perfect power control and an SNR of 5 dB are

5Mi can also be obtained using other dedicated numerical ap-
proaches.
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assumed for all users. We plot the histograms of the output
statistics of a linear polynomial receiver

G(R) = 2.24I− 1.61R + 0.345R2, (90)

which is the 3-stage parallel interference canceler that gives
asymptotically the least achievable output mean square er-
ror [16]. The number of users considered are K = 1, 2,
16 and 256 respectively, and K/N = 1/2 is assumed in all
cases. The predicted asymptotic Gaussian distribution for
an infinite number of users is also plotted for reference. It is
evident that the distribution of the output decision statis-
tics converges to the Gaussian distribution as the system
size increases. For sixteen users or more, the approxima-
tion is excellent. Note that the area under each curve on
the left half plane (< 0) corresponds to the uncoded bit-
error-rate of the receiver.
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Fig. 3. Distribution of output decision statistics. The 2-user, 16-user
and 256-user cases are shown as well as the single-user case (K = 1).
They are compared with the asymptotic Gaussian distribution.

In Fig. 4 we plot the BER of various linear receivers av-
eraged over spreading sequences and observe the trend as
the system size increases. This corresponds to long-code
system performance. BERs of the single-user matched fil-
ter, the decorrelator, the MMSE receiver, and two polyno-
mial receivers of order 3 and 6 respectively are obtained
through Monte Carlo simulation. As in the previous fig-
ure, the polynomial receivers are chosen as the ones that
give asymptotically the least achievable mean square error
as suggested in [16]. The ratio K/N is always 1/2 but the
SNR is assumed to be 10 dB for all users. Asymptotic es-
timates using the results in Section VI are marked by solid
triangles on the right border of the figure for reference.
It is clear that for all receivers the BERs converge to the
asymptotic estimates.

For Fig. 5 we do the simulation in the same setting as in
Fig. 4 except for that a particular choice of spreading se-
quences is used to simulate a short-code system. The BER
varies much more than in Fig. 4, depending on whether the
particular set of spreading sequences is favorable or unfa-
vorable for the system size. Nevertheless, as the system
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Fig. 4. BER vs. the number of users (long sequences). The asymp-
totic estimates are marked by solid triangles on the right border of
the plot.
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Fig. 5. BER vs. the number of users (short sequences). The asymp-
totic estimates are marked by solid triangles on the right border of
the plot.

size increases, the BERs converge to asymptotic predic-
tions, which are marked by the solid triangles. The con-
vergence speed to a Gaussian law is much slower than for
long sequences under the same system setting.

VIII. Conclusion

In this paper, we have proved asymptotic normality of
the output decision statistics of a large family of linear
receivers, which can be arbitrarily well approximated by
polynomial receivers. The limiting output distribution of
the decision statistics conditioned on almost all choices of
spreading sequences is asymptotically the same as the un-
conditional distribution. The normality principle shows
that the signal-to-interference ratio is a decisive index of
uncoded system performance for linear receivers. The large-
system limits of the multiuser efficiency of the single-user
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matched filter, the decorrelator, the MMSE receiver as well
as the polynomial receivers are determined by way of eval-
uating the large-system SIR. We can further conclude that,
if single-user decoding is used, error-control codes that are
optimal for Gaussian channels will also be asymptotically
optimal for a multiuser channel.

Appendices

I. Proof of Proposition 1

We develop a combinatorial proof for Proposition 1 based
on the simple fact of Lemma 2.

We first introduce some notation. Define a random vari-
able

S(i) =
K∑

k1=1

· · ·
K∑

ki=1

·
N∑

n1=1

· · ·
N∑

ni=1

sn1k1sn1k2sn2k2sn2k3 · · · sni−1ki−1sni−1ki
sniki

snik1 .

(91)

Let I(i) denote a vector of indexes, [k1, · · · , ki, n1, · · · , ni],
and A(i) = {1, · · · ,K}i × {1, · · · , N}i. S(i) can then be
written as a single summation

S(i) =
∑

I(i)∈A(i)

sn1k1sn1k2sn2k2sn2k3 · · · sni−1ki−1sni−1kisnikisnik1 .

(92)

We are also interested in cases when some of the indexes
in I(i) are fixed. We define for k = 1, 2,

Sk(i) =
∑

J (i)∈B(i)

sn1ksn1k2sn2k2 · · · sni−1ki
sniki

snik (93)

where J (i) = [k2, · · · , ki, n1, · · · , ni] and B(i) = {1, · · · ,K}i−1×
{1, · · · , N}i. Clearly, this is equivalent to evaluating the
sum of S(i) with k1 in I(i) forced to take the value of
k = 1 (or 2). Similarly, we define

T (i) =
∑

J (i)∈B(i)

sn11sn1k2sn2k2 · · · sni−1ki
sniki

sni2. (94)

Interestingly, each of the above defined variables is a sum
of products of the form in Lemma 2. For S(i) and Sk(i),
the indexes in each product term always form a closed loop,
whereas the indexes in T (i) form an open loop.

To keep the presentation clear, we introduce an equiva-
lent notation (see [34] for a similar technique). Instead of
writing S(i) as a sum of products as in (92), we record the
topology of the indexes in a two-row array:〈

n1 n2 · · · ni

k1 k2 · · · ki

〉
. (95)

The way to understand it is to look upon it as a sum of
a product of indexed s variables with their indexes zig-
zagging through the array, i.e., sn1k1 , sn1k2 , sn2k2 , sn2k3 ,
· · · , sniki

and finally snik1 to close the loop. It would be
helpful to take the indexes as vertices and the snk variables
as edges of a graph. Also, S1(i) is denoted by〈

n1 n2 · · · ni

1 k2 · · · ki

〉
, (96)

S2(i) denoted similarly, and T (i) denoted by〈
n1 n2 · · · ni

1 k2 · · · ki 2

〉
. (97)

T (i) has one more element in the second row since it is an
open loop. Its last variable in its corresponding product
is sni2 instead of sni1. This angle bracket notation is very
illustrative and greatly simplifies our task of estimating the
size of interesting variables.

The reader may have noticed that[
Ri
]
11

= N−iS1(i) (98)

and [
Ri
]
12

= N−iT (i). (99)

Hence studying the statistical properties of S1(i) and T (i)
is sufficient for Proposition 1.

In the following we prove Proposition 1 assuming perfect
power control and antipodal spreading, i.e., all snk’s are
independent chips that take on values ±1 only. The proof is
generalized to non-binary spreading with no power control
in Appendix II.

The following intermediate result is useful.
Lemma 7: For p ≥ 1 and integers i1, · · · , ip ≥ 1,

E

{
p∏

w=1

S(iw)

}
(100)

is a polynomial in K of degree D =
∑p

w=1(iw + 1).
Proof: Let Θ denote the product of the S(iw)’s inside

the expectation brackets in (100). Let
∑p

w=1(iw + 1) be
the size of Θ. This lemma is equivalent to saying that the
degree of E {Θ} is equal to the size of Θ, or, in other words,
each factor S(iw) in Θ contributes to the overall degree of
E {Θ} by (iw + 1). The proof is by induction on the size of
Θ.

The smallest size Θ may take is 2, where p = 1 and
i1 = 1. Thus

E {Θ} = E {S(1)} (101)

= E

{
N∑

n=1

K∑
k=1

snksnk

}
(102)

= β−1K2. (103)

It is a polynomial of degree D = 2 as predicted.
Suppose now the lemma is true for the sizes of 2, · · · , D−

1. We show that it must also be true for a size of D.
Let Iw = (nw

1 , · · · , nw
iw

, kw
1 , · · · , kw

iw
). E {Θ} can be writ-

ten as

E


p∏

w=1

∑
Iw∈A(iw)

snw
1 kw

1
snw

1 kw
2
· · · snw

iw
kw

iw
snw

iw
kw
1


=

∑
I1∈A(i1)

· · ·
∑

Ip∈A(ip)

E
{

sn1
1k1

1
· · · sn1

i1
k1
1
· · · snp

1kp
1
· · · snp

ip
kp
1

}
.

(104)
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By the simple fact of Lemma 2, for each product to have
nonzero expectation, the indexes must be such that the s
variables form complete pairs, in which case the product
term is 1. The value of E {Θ} is therefore the number of
occurrences of such cases.

Consider adding an extra constraint on the indexes: for
each w ∈ {1, · · · , p}, nw

1 = nw
2 = · · · = nw

iw
. The s variables

then trivially form complete pairs. The number of such
occurrences is β−pKD. Hence (104) is lower bounded by a
polynomial of degree D. Surprisingly, even if all possible
combinations of the indexes are counted, which appears to
significantly increase the number of terms, this sum is still
a polynomial of degree D.

To show this, we study the matching problem of a vari-
able sn1k1 , the first term of some S(i). It must be paired
with some other s variable, which either comes from S(i)
itself, or from another S(i′). In either case, the two in-
dexes, n1 and k1 are replaced by another two and can be
dropped, but with the topology of the summation still in
the form of Θ, i.e., a product of S(iw)’s. However, the size
of the problem can be reduced by one and therefore solved
by the induction hypothesis. We develop this idea in full
in the following.

Suppose this other s variable comes from S(i) itself. Four
possibilities arise:
(1) n1 = ni so that sn1k1 = snik1 , ∀k1;
(2) k1 = k2 so that sn1k1 = sn1k2 , ∀n1;
(3) n1 = nu, k1 = ku for some u 6= 2, i, so that sn1k1 =
snuku

;
(4) n1 = nu, k1 = ku+1 for some u 6= 1, i, so that sn1k1 =
snuku+1 .
We show that with each of the above four constraints Θ
can be reduced to a variable of the same topology as the
unconstrained Θ but of a smaller size.

In case of (1), sn1k1 is paired with snik1 for every choice
of k1. The product of the two is 1 and can be dropped.
k1 becomes an index of complete freedom, by summing
over which a multiplicative factor K is contributed to the
remaining sum. With this constraint, S(i) becomes

K ·
〈

n2 · · · ni

k2 · · · ki

〉
. (105)

It is easily identified as K · S(i − 1). Consequently, Θ is
reduced to K · Θ′ where Θ′ has the same topology as Θ
but is one less in size than Θ. By the induction hypothesis,
E {Θ′} has a degree of (D−1), so E {Θ} with this constraint
is a polynomial in degree D.

Case (2) is similar to case (1) and results in N ·S(i− 1),
which is also a polynomial of degree D.

In case of (3), sn1k1 couples with snuku
and both terms

are dropped. Indexes n1 and k1 are replaced by nu and ku

respectively. The S(i) becomes〈
n2 · · · nu−1 ni ni−1 · · · nu

k2 · · · ku−1 ku ki · · · ku+1

〉
= S(i− 1).

(106)

Clearly, with this constraint, Θ is reduced to the same
topology but with a size of (D − 1). E {Θ} is a polyno-
mial of degree (D − 1) in this case.

In case of (4), sn1k1 couples with snuku+1 and both terms
are dropped. Indexes n1 and k1 are replaced by nu and
ku+1 respectively. S(i) becomes〈

n2 · · · nu

k2 · · · ku

〉
×
〈

nu+1 · · · ni

ku+1 · · · ki

〉
=S(u− 1) · S(i− u).

(107)

Thus under this constraint, S(i) is split into two uncon-
strained S variables of the same form. Consequently Θ is
reduced to some Θ′ of the same topology. Although two
indexes are dropped, the size of the resulting Θ′ is the same
as that of Θ, so the induction hypothesis does not directly
apply in this case. However, we can take S(u− 1) in Θ′ as
S(i) and go over the above reduction procedure recursively.
One of the other cases must happen after some iterations
since each splitting eliminates two of the less than 2p in-
dexes. Hence, the induction applies indirectly in this case.

We now consider the situation that sn1k1 is coupled to
an s variable from S(i′). Two possibilities arise:
(5) n1 = n′u, k1 = k′u for some u, so that sn1k1 = sn′uk′u ;
(6) n1 = n′u, k1 = k′u+1 for some u, so that sn1k1 =
sn′uk′u+1

.
In case of (5), sn1k1 and sn′uk′u are both dropped. Indexes

n1 and k1 are replaced by n′u and k′u. Then,

S(i) · S(i′) =
〈

n1 · · · ni

k1 · · · ki

〉
×
〈

n′1 · · · n′i′
k′1 · · · k′i′

〉
(108)

becomes〈
n2 · · · ni n′u · · · n′1 n′i′ · · · n′u+1

k2 · · · ki k′u · · · k′1 k′i′ · · · k′u+1

〉
=S(i + i′ − 1).

(109)

With this constraint, Θ is reduced in size by two while
maintaining the same topology. The resulting expectation
is a polynomial of degree (D − 2) in degree, two less than
it could if the two variables from different S(·)’s were not
forced to be paired.

Case (6) is similar to case (5) and the resulting contri-
bution is also a polynomial of degree (D − 2).

The overall value of E {Θ} is the sum of the above six
cases. Some subtlety arises since the six cases overlap.
With some patience the overlapping parts can be identi-
fied as polynomials of smaller degrees so there is essentially
no over-counting by ignoring the overlap. The reader may
have noticed that cases (3), (4), (5) and (6) may happen
for multiple choices of u. However, u may take at most
p different values in each case, which is fixed and not de-
pendent on K. The sum over all possible choices of u is
still a polynomial in K of the given degree. We can in fact
neglect case (3), (5) and (6) when estimating E {Θ} since
they contribute a degree less than D. We can also conclude
that the cases of matching variables from different S(i)’s
can be neglected.

In all, the overall sum is a polynomial of degree D. The
induction holds and the proof is complete.
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Equipped with the techniques developed above, we solve
a harder problem where some of the indexes in the sum are
forced to take fixed values. We have the following result.

Lemma 8: Let p, q, r, t ≥ 0 be integers. Let i1, · · · , ip,
j1, · · · , jq, l1, · · · , l2r and m1, · · · ,mt be positive integers.
Then

E

{
p∏

w=1

S(iw)
q∏

w=1

S1(jw)
2r∏

w=1

T (lw)
t∏

w=1

S2(mw)

}
(110)

is a polynomial in K of degree

D =
p∑

w=1

(iw + 1) +
q∑

w=1

jw +
2r∑

w=1

(lw −
1
2
) +

t∑
w=1

mw.

(111)

Proof: Let Θ denote the product in the expectation
in (110). The size of Θ is defined as the right hand side
of (111). The lemma is equivalent to saying that the degree
of E {Θ} is equal to the size of Θ. In other words, each
S(i) in Θ contributes (i + 1) to the degree of E {Θ}, each
S1(j) contributes j, each T (l) contributes (l− 1

2 ), and each
S2(m) contributes m. Note that we have an even number
of T (lw)’s so the size is always an integer. The proof is also
by induction on the size of Θ.

We take a variable snk in the expansion of Θ and discuss
all possible ways of matching it with another s variable.
Upon a match, coinciding indexes merge into one. Equiv-
alently, under the constraint that some indexes coincide,
the s variables match and can be dropped. The resulting
unconstrained sum, denoted as Θ′, remains in the same
topology with the same or a reduced size. If Θ′ is of the
same size as Θ, it may go through the reduction recursively
until the size is reduced. In particular, if snk is matched
to an immediate neighbor in the topology, a free index is
produced, which contributes a degree of one to the over-
all sum, and the resulting unconstrained sum is one less in
size. By the induction hypothesis, E {Θ′} can be obtained
as a polynomial and the degree of E {Θ} can be deduced.

Consider the basis case of the induction: Θ has a size of
one. Three possibilities arise:
(1) q = 1. Then p = r = t = 0 and j1 = 1. Trivially,

E {Θ} = E {S1(1)} = β−1K. (112)

(2) t = 1. Similar to case (1). E {Θ} takes the same value
β−1K.
(3) r = 1. Then p = q = t = 0 and m1 = m2 = 1. Hence,

E {Θ} = E {T (1)T (1)} (113)

=
N∑

n=1

N∑
n′=1

E {sn2sn1sn′2sn′1} (114)

= β−1K. (115)

The lemma is therefore true for a size of one.
Suppose that the lemma is true for sizes of 1, · · · , D− 1.

We show that it is also true for a size of D. Take arbitrarily
an indexed s variable, say snk from the expansion of Θ. The

variable must be in one of three forms: sn2, sn1, or snk,
with n and k as variable indexes. If no s variable of the first
two forms exists, (110) is reduced to the form of (100) and
the lemma holds trivially by Lemma 7. We assume that
there exists a variable sn11 (if not, there must exist an sn12,
which has no statistical difference to sn11 by homogeneity
of the users).

sn11 is either from some S1(j) or from some T (l). We
consider both cases. Whichever the case, for sn11 to con-
tribute nonzero to the expectation, it must be coupled with
another s variable.

Suppose first that sn11 is from some S1(j). Six possibil-
ities arise:
(1) sn11 is paired with a variable from S1(j) itself. Simi-
lar to discussions in the proof of Lemma 7, the size of Θ
remains unchanged or is reduced.
(2) sn11 is paired with sn′11

in some S1(j′). Under this
constraint, S1(j) · S1(j′) is reduced to〈

n′j′ n′j′−1 · · · n′1 n2 · · · nj

1 k′j′ · · · k′2 k2 · · · kj

〉
=S1(j + j′ − 1).

(116)

The size of Θ is reduced by one.
(3) sn11 is paired with sn′uk′u in some S1(j′). Under this
constraint, S1(j) · S1(j′) is reduced to〈

n′1 n′2 · · · n′u−1

1 k′2 · · · k′u−1

〉
×〈

n′j′ n′j′−1 · · · n′u n2 · · · nj

1 k′j′ · · · k′u+1 k2 · · · kj

〉
=S1(u− 1) · S1(j + j′ − u).

(117)

The size of Θ is reduced by one.
(4) sn11 is paired with sn′uk′u in some S(i). Under this
constraint, S1(j) · S(i) is reduced to〈

n′u−1 n′u−2 · · · n′1 n′i n′i−1 · · · n′u n2 · · · nj

1 k′u−1 · · · k′2 k′1 k′i · · · k′u+1 k2 · · · kj

〉
=S1(j + j′ − 1).

(118)

The size of Θ is reduced by two.
(5) sn11 is paired with sn′uk′u in some T (l). Under this
constraint, S1(j) · T (l) is reduced to〈

nj nj−1 · · · n2 n′u n′u+1 · · · n′l
1 kj · · · k3 k2 k′u+1 · · · k′l 2

〉
×〈

n′1 · · · n′u−1

1 · · · k′u−1

〉
=T (j + l − u) · S1(u− 1).

(119)

The size of Θ is reduced by one.
(6) sn11 is paired with sn′uk′u in some S2(m). Under this
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constraint, S1(j) · S2(m) is reduced to〈
n′u−1 n′u−2 · · · n′1

1 k′u−1 · · · k′2 2

〉
×〈

nj nj−1 · · · n2 n′u n′u+1 · · · n′m
1 kj · · · k3 k2 k′u+1 · · · k′m 2

〉
=T (u− 1) · T1(j + m− u).

(120)

The size of Θ is reduced by two.
For similar reasons as in the proof of Lemma 7, contri-

butions of (2)–(6) can be neglected since case (1) has a
higher degree in K and hence dominates. Note that case
(1) becomes a trivial after a finite number of splitting and
results in a degree of j. The induction is then verified for
the case that sn11 comes from some S1(j).

Assume that sn11 is from some T (l) for some l. Six
possibilities arise:
(1) sn11 is paired with a variable from T (l) itself. Similar
to discussions in possibility (1) in the previous case study.
The size of Θ is either of the same or a reduced size.
(2) sn11 is paired with sn′11

from some T (l′). Under this
constraint, T (l) · T (l′) is reduced to〈

nl nl−1 · · · n2 n′1 n′2 · · · n′l′
2 kl · · · k3 k2 k′2 · · · k′l′

〉
= S2(l + l′ − 1). (121)

The size of Θ remains unchanged.
(3) sn11 is paired with sn′uk′u from some T (l′). Under this
constraint, T (l) · T (l′) is reduced to〈

n′1 n′2 · · · n′u−1

1 k′2 · · · k′u−1

〉
×〈

n′l′ n′l′−1 · · · n′u n2 · · · nl

2 k′l′ · · · k′u+1 k2 · · · kl

〉
=S1(u− 1) · S2(l + l′ − u).

(122)

The size of Θ remains unchanged.
(4) sn11 is paired with sn′uk′u from some S(i). Under this
constraint, T (l) · S(i) is reduced to〈

n′u−1 n′u−2 · · · n′1 n′i n′i−1 · · · n′u n2 · · · nl

1 k′u−1 · · · k′2 k′1 k′i · · · k′u+1 k2 · · · kl 2

〉
=T (l + i− 1)

(123)

The size of Θ is reduced by one.
(5) sn11 is paired with sn′uk′u from some S1(j). Under this
constraint, T (l) · S1(j) is reduced to〈

n′1 n′2 · · · n′u−1

1 k′2 · · · k′u−1

〉
×〈

n′j n′j−1 · · · n′u n2 · · · nl

1 k′j · · · k′u+1 k2 · · · kl 2

〉
=S1(u− 1) · T (l + j − u)

(124)

The size of Θ is reduced by one.

(6) sn11 is paired with sn′uk′u from some S2(m). Under this
constraint, T (l) · S2(m) is reduced to〈

n′u−1 n′u−2 · · · n′1
1 k′u−1 · · · k′2 2

〉
×〈

n′m n′m−1 · · · n′u n2 · · · nl

2 k′m · · · k′u+1 k2 · · · kl

〉
=T (u− 1) · S2(l + m− u).

(125)

The size of Θ is reduced by one.
Again, in none of the above six cases, the size of Θ is

increased. Cases (4)–(6) can be neglected and cases (1)–
(3) can be reduced to trivial cases after a finite number
of iterations. It is not difficult to see by the induction
hypothesis that the overall expectation of Θ is a polynomial
of degree D. The induction is therefore also verified for the
case that sn11 comes from some T (l).

The induction holds, thus the proof is complete.
We need a further result on the constrained sum where

certain patterns of the indexes are prohibited. Define

S′1(i) =
∑

J∈B(i)−C(i)

sn11sn1k2sn2k2 · · · sni−1ki
sniki

sni1

(126)

where C(i) = {J |J is such that the indexed s variables
in (126) form complete pairs}.

Lemma 9: Let p, q, r ≥ 0 be integers. Let i1, · · · , ip,
j1, · · · , jq and l1, · · · , l2r be positive integers. Then

E

{
p∏

w=1

S(iw)
q∏

w=1

S1(jw)
2r∏

w=1

S′1(lw)

}
(127)

is a polynomial in K of degree

D =
p∑

w=1

(iw + 1) +
q∑

w=1

jw +
2r∑

w=1

(lw −
1
2
). (128)

Proof: If r = 0, the lemma is trivial by Lemma 8.
Suppose r ≥ 1. Take any S′1(l) and convert it to the form
of S(i) or S1(j). Since the s variables in S′1(l) are not
allowed to form complete pairs, there must be a snk from
it that is paired with either a variable from S(i) for some
i, S1(j) from some j, or S′1(l

′) for some l′. In the first two
cases we can look upon S′1(l) as if it is a larger S1(l). Note
that by adding more terms to S′1(l) we will only increase the
overall expectation. By similar arguments as in the proof
of Lemma 8, the resulting contribution has one degree less.
Consequently, these two cases can be neglected. In the last
case, S′1(l) · S′1(l′) is reduced to S1(u − 1) · S1(l + l′ − u)
for some u. By the same method, all S′1(l) variables can
be converted to the form of S1(i). The resulting problem
is solved by Lemma 8 and we have the desired result.

With the above lemmas established, we can prove Propo-
sition 1.

Proof: [Proposition 1] For an odd p, the pth-order
moment is always zero by symmetry of the distribution of
the random chips. Note also that

{[
Ri
]
1k

}K

k=2
is a set of
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identically distributed random variables. Hence it suffices
to show the finiteness of the moments for k = 1, 2 and all
even p.

Consider first the case of k = 2. By (99),

E
{(√

K
[
Ri
]
12

)p}
=
(
βiK

1
2 K−i

)p

E {T p(i)} . (129)

By Lemma 8, E {T p(i)} is a polynomial in K of degree
p(i− 1

2 ). Equation (129) is therefore a polynomial fraction
whose numerator and denominator have the same degree.
Its convergence as K →∞ is evident.

Consider now the case of k = 1. Clearly,
[
Ri
]
11

=
N−iS1(i). Note that[

Ri
]
11
− E

{[
Ri
]
11

}
= βpiK−i

∑
J∈B(i)−C(i)

sn11sn1k2 · · · snikisni1 (130)

= βiK−iS′1(i) (131)

since for the product terms of
[
Ri
]
11

to have nonzero ex-
pectation, the indexes must be such that the s variables
form complete pairs. Therefore,

E
{[√

K
([

Ri
]
11
− E

{[
Ri
]
11

})]p}
=βiK−p(i− 1

2 )E
{
[S′1(i)]

p} (132)

converges as K →∞ by Lemma 9.

II. Non-binary Spreading With No Power
Control

We now drop the perfect power control assumption and
allow non-binary spreading sequences. Define a set of an-
tipodal spreading sequences induced from the non-binary
chips {snk} by taking the sign of each chip,

ŝnk = sgn(snk). (133)

Therefore,

snk =
√

Pk · ank · ŝnk (134)

where ank = |s̄nk| is the amplitude of a chip of the normal-
ized spreading sequence. Note that the three variables on
the right hand side of (134) are independent.

Let S(i) be defined as in (92). Consider the expectation
of each summand,

E
{
sn1k1sn1k2sn2k2 · · · sni−1kisnikisnik1

}
=E
{√

Pk1Pk2 · · ·Pki

}
×

E
{
an1k1an1k2an2k2 · · · ani−1kianikianik1

}
×

E
{
ŝn1k1 ŝn1k2 ŝn2k2 · · · ŝni−1ki ŝniki ŝnik1

}
.

(135)

Note that the first expectation on the right hand side of (135),
i.e., the expectation of the product of energies, is a product
of moments of Pk’s dependent on the values of k1, . . . , ki.
It is a deterministic number independent of K. Similarly,
the second expectation is a product of moments of |s̄nk|’s,

or equivalently of s̄nk’s, for every possible combination
of n1, . . . , ni, k1, . . . , ki. For the final expectation to be
nonzero, these moments are non-negative since the vari-
ables appear in pairs. Hence it is also some known number
independent of K under our assumption of finite moments.

It is easy to show that Corollary 1 still holds by noting
that the moments of the energies as well as the moments
of the non-binary chips are bounded by some numbers in-
dependent of K, so that the problem is reduced to the case
of binary spreading with perfect power control.

Moreover, we can exploit the structure of S(i) in the
same way as in Lemma 7. The result is nonetheless a
polynomial of the same degree in K. For similar reasons,
Lemma 8 and 9 also hold. Therefore, Proposition 1 can be
proved for this case, i.e., the central moments of

√
K
[
Ri
]
1k

converge to deterministic constants as K → ∞, even with
non-binary spreading and no power control.

III. Proof of Lemma 5

Proof: [Lemma 5] Fix the dimension K. Let G̃ =
g̃(R) be a polynomial receiver. Let y and ỹ denote the
vector of output decision statistics of receiver G and G̃
respectively. Then

y − ỹ = (G− G̃) · yMF. (136)

Focusing on user 1,

E
{

(y1 − ỹ1)
2
∣∣∣ R}

= E
{[

(y − ỹ)(y − ỹ)>
]
11

∣∣ R} (137)

= E
{[(

G− G̃
)
yMFy>MF

(
G− G̃

)]
11

∣∣∣ R}(138)

=
[(

G− G̃
)

(R + σ2)R
(
G− G̃

)]
11

(139)

=
[
U (g(Λ)− g̃(Λ))2 (Λ + σ2I)ΛU>

]
11

(140)

=
K∑

k=1

|u1k|2 (g(λk)− g̃(λk))2 (λk + σ2)λk (141)

where u1k is the kth element on the first row of U. By
choosing the polynomial g̃ to be within a distance of ε to g
on the support of FΛ, we have

E
{

(y1 − ỹ1)
2 |R

}
< ε2 ·

K∑
k=1

|u1k|2(λk + σ2)λk(142)

= ε2 · [R(R + σ2I)]11 (143)
→ ε2 · (M2 + σ2M1) (144)

with probability 1 as K →∞. Hence the mean square error
of (y1 − ỹ1) can be made arbitrarily small for sufficiently
large K for almost all spreading sequences.

IV. Proof of Lemma 6

Proof: [Lemma 6] We first show that Fm(a) is a
Cauchy sequence for every a. Since mean square conver-
gence implies convergence in distribution at all points of
continuity, we have

lim
m→∞

lim
K→∞

∣∣∣F (K)(a)− F (K)
m (a)

∣∣∣ = 0, ∀a (145)
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by (L6.1). Also, ∀a, ∀ε > 0, ∀p > 0, and ∀K,

|Fm+p(a)− Fm(a)|

≤
∣∣∣Fm+p(a)− F

(K)
m+p(a)

∣∣∣+ ∣∣∣F (K)
m+p(a)− F (K)(a)

∣∣∣
+
∣∣∣F (K)(a)− F (K)

m (a)
∣∣∣+ ∣∣∣F (K)

m (a)− Fm(a)
∣∣∣ .

(146)

Taking the limit K → ∞ and then m → ∞, we have all
four terms converging to 0 and so

lim
m→∞

|Fm+p(a)− Fm(a)| = 0, ∀a,∀p > 0. (147)

Therefore Fm converge pointwise. Furthermore, for every
a, ∣∣∣F (K)(a)− Fm(a)

∣∣∣
≤
∣∣∣F (K)(a)− F (K)

m (a)
∣∣∣+ ∣∣∣F (K)

m (a)− Fm(a)
∣∣∣ . (148)

Taking the limit K →∞ and then m →∞, we have

lim
K→∞

F (K)(a) = lim
m→∞

Fm(a). (149)
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[11] S. Verdú and S. Shamai, “Spectral efficiency of CDMA with
random spreading,” IEEE Trans. Inform. Theory, vol. 45, no.
2, pp. 622–640, March 1999.

[12] H. Vincent Poor and Sergio Verdú, “Probability of error in
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[19] D. Guo and S. Verdú, “Multiuser detection and statistical me-
chanics,” in Communications, Information and Network Secu-
rity (V. Bhargava, H. V. Poor, V. Tarokh, and S. Yoon, eds.),
ch. 13, pp. 229–277, Kluwer Academic Publishers, 2002. [On-
line]. Available: http://www.princeton.edu/˜dguo/research/.

[20] V. A. Marcenko and L. A. Pastur, “Distribution of eigenvalues
for some sets of random matrices,” Math. USSR-Sbornik 1, pp.
457–483, 1967.

[21] J. W. Silverstein and Z. D. Bai, “On the empirical distribution
of eigenvalues of a class of large dimensional random matrices,”
Journal of Multivariate Analysis, vol. 54, no. 2, pp. 175–192,
Aug. 1995.

[22] Dag Jonsson, “Some limit theorems for the eigenvalues of a
sample covariance matrix,” Journal of Multivariate Analysis,
vol. 12, pp. 1–38, Dec. 1982.
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