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ABSTRACT

This paper establishes the asymptotic normality of series estimators for nonpar-
ametric regression models. Gallant’s Fourier flexible form estimators, trigonometric series
estimators, and polynomial series estimators are prime examples of the estimators covered
by the results. The results apply to a wide variety of estimands in the regression model
under consideration, including derivatives and integrals of the regression function. The
errors in the model may be homoskedastic or heteroskedastic.

The paper also considers series estimators for additive interactive regression (AIR),
semiparametric regression, and semiparametric index regression models and shows them to
be consistent and asymptotically normal. All of the consistency and asymptotic normality

results in the paper follow from one set of general results for series estimators.



1. INTRODUCTION

Recently, series estimators of different sorts and for different models have received
considerable attention in the econometric and statistical literature. Gallant has introduced
a class of Fourier flezible form (FFF) series estimators and has used them in a number of
applications, see Gallant (1987) for references. Trigonometric series estimators of nonpar-
- ametric regression models have been analyzed by numerous researchers, e.g., see Geman
and Hwang (1982), Bergstrom (1985), Eastwood and Gallant (1987), Eastwood (1987,
1988), Severini and Wong (1987), Eubank (1988), and Cox (1988). Similarly, polynomial
series estimators for various models have been considered, e.g., see Kendall and Stuart
(1979, p. 380), Bergstrom (1985), Cox (1988), Fabian (1988), and Newey (1988a, b).

The purpose of this paper is to establish some asymptotic distribution theory for
such series estimators in nonparametric regression models and several semiparametric
models. Some asymptotic distribution theory is already available for these estimators.
Most of the results concern the asymptotic distribution of trigonometric series estimators of
the regression function in a particular nonparametric regression model, see Eastwood (1987,
1988), Eastwood and Gallant (1987), and Eubank (1988). The model in question has a
single regressor that takes on equi—spaced values in {0, 27), a regression function that is
periodic on [0, 2x], and errors that are independent and identically distributed (iid).
Fastwood’s (1987, 1988) and Eastwood and Gallant’s (1987) results also cover the
estimation of derivatives of the regression function in this model.

Other asymptotic distributional results in the literature for series estimators include
those of Chamberlain (1986), who considers a semiparametric regression model, Souza
(1987), who considers a nonparametric multivariate regression model, and Newey (1988b),
who considers a sample selectivity model. The other papers referred to above do not give

distributional results for series estimators.



In this paper, we establish the asymptotic normality of series estimators in various
nonparametric and semiparametric regression models. Fourier flexible form (FFF), trigon-
ometric, and polynomial series estimators are covered by the results. Multiple regressors
are allowed, the values of the regressors are not restricted, and the errors may be indepen-
dent non—identicaily distributed (inid). Both fixed and adaptive truncation sequences are
considered. Results for the latter follow the approach of Eastwood and Gallant (1987), but
are more general.

The estimands considered here are diverse. They include the regression function
itself, derivatives of the regression function, integrated values of the regression function,
average values of the derivatives of the regression function over the points in the sample,
and smooth functions of the aforementioned estimands. Consistent covariance matrix esti-
mators are provided.

The models considered here include the standard nonparametric regression model,
additive interactive regression (AIR) models (also known as interaction spline models, see
Barry (1983, 1986) and Wahba (1986)), the semiparametric regression model (e.g., see
Robinson (1988) and Chamberlain (1986, 1987)), and semiparametric index regression
models {e.g., see Ruud (1986) and Stoker (1986)).

One of the attributes of this paper is that the asymptotic normality results for the
different estimands, estimators, and models considered are all obtained from a single set of
results for series estimators.

The remainder of this paper is organized as follows: Section 2 deals with nonpar-
ametric regression models and treats series estimators that are based on non—random
regressors and non—-random tiruncation sequences. Section 3 presents results that extend
the asymptotic normality results of Section 2 to models with random regressors. Section 4
extends the results of Section 2 to series estimators that are based on certain random, data-
dependent truncation sequences. Section 5 considers series estimators of AIR models,

semiparametric regression models, and semiparametric index regression models. Section 6



considers the estimation of covariance matrices of series estimators for each of the above
models when the errors are homoskedastic or heteroskedastic. An Appendix contains

proofs of results stated in the text.

2. ASYMPTOTIC NORMALITY IN NONPARAMETRIC REGRESSION MODELS

This section is divided into three subsections. The first defines the model, the esti-
mands, and the estimators of interest, the second presents the assumptions used and the

asymptotic normality results, and the third discusses the assumptions.

2.1. Definstion of the Model, Estimands, and Estimators

The model considered here is given by
(2‘1) Yi=g(xj)+Ui:i=1:"':n:

where Y,U,eR, x;el¢ rd , g(*}Y€G, and ¢ is a class of continuous functions from
£ to R.
The objective is to estimate various functions of g(-), such as g(x) and deriva-

tives of g(x) for arbitrary x € #. The approach taken is to approximate g(-) by a series

K
n

I z(-)0,, where {zs(-) :8§=1,2, ...} is a prespecified family of functions from 7 to
s=1

R, g”n = ( bys «oes Bnn)' is an unknown parameter vector, and &, 1is the number of
summands in the series when the sample size is n . In this section Ky is taken to be non-
random. In Section 4, random data—dependent values of K, are considered. The results
given below are stated so that they apply to any family {zs(-)} that satisfies certain
properties. Families of particular interest include the Fourier flexible form (FFF),
trigonometric, and polynomial families.

The FFF family contains linear, quadratic, and trigonometric functions of the

regressar vector x = (x;, ..., xq)" - Thus, z(x) for 821 is of the form:



1, x, forr=1,...,d, XX, for r,{=1,...,d, or

(2.2)
cos(b‘x) or sin(b’x} for some vector b € RY with integer elements.

A precise enumeration and ordering of the functions in the FFF family is given in Gallant
(1981, p. 219). The trigonometric family is the same as the FFF family except the linear
and quadratic functions of the elements of x are omitted. The polynomiai family contains
polynomial functions of the elements of the regressor vector x . |

The FFF and trigonometric families are designed to approximate functions over the
domain [0, 21r]d . Hence, one has to shift and rescale the regressors so that each element of
the regressor vector lies in [0, 2] before carrying out the estimation procedure.

The parameter vector gﬁ is estimated by least squares (LS). To define the LS
n

estimator, we introduce some notation: Throughout this paper, k denotes some fixed ele-

ment of 1”+, +_to I+. K

is called a truncation sequence because «(n) (= ) denotes the number of terms to be

the set of positive integers, and x denotes a function from I

included in the series expansion when the sample sizeis n. Let
k
Z(-) = (2(), -er 2 (-))" € 6K,
. vk
(2.3) Zow = (Zy(x))s <5 Zy(x)))” € RVE,

Y=(Y,...,Y) €R", and U=(U;, ..., U )" €eR".

For a truncation sequence %, let Znn abbreviate Znn . When the sample size n and
n

the truncation sequence x are evident from the context, let Z abbreviate Z .-

The LS estimator of # is
Nﬁn

2 — (7.7t
(2.4) b= @nt2Y,

where (-)+ denotes the Moore—-Penrose inverse. The corresponding series estimator § of

g is



(2.5)

g(.) = Zlﬁn(')’ann'

Next we describe the functions of g that we wish to estimate. Let Fn(g) denote

the estimand, where T_(.) is a function from § to RY. Let Aj = (A

jl, " ey Ajd), m

a vector of non—negative integers. Define

(2.6)

d y il
i ’\jr and D g(xc)z A_l A g(xc)’

=1 ]
3‘{:1

13 =

where x, = (X g, o0y X c a)’ € ¥. Thefunction T () is defined so as to include the fol-

lowing examples:

Lol

@7 4

I' (g) = g(x) for some x€ X,

(e = (8(x})s ---, 8(x,))’ forsome (xi, ..., x;)" €2,
I‘n(g) = Lg(x)dn(x) for some probability distribution 7(-) on Z,

A A,
r (g)=(D 1g(xl), .oy D vg(xv))’ for some (x{, ..., x;) € x,

A
(D 1g(xi), veey D Vg(xi))' for the observed regressor vectors

’

A A
J D 1g(x)dq1(x), ceny J D vg(x)dqv(x)] for some probability
P 4 F 4

distributions 7, ..., n on & (which could depend on n ).

See Stoker (1986, 1987), Powell, Stock, and Stoker (1989), Hardle and Stoker (1987), and

Section 5.3 below for index model examples that motivate interest in Example 5 and for

alternative estimation methods for it.

The estimator of T (g) that we consideris T (g). Since the functional T (.) is

assumed below to be linear, we have



T, (&)= Fn(zﬂn(.)’ bax) = Taxlns+ Where

(2.8) v . kuV
1,8 =T (Z(-)) €R" Vs 21, 7, =(1,(1), ..., 7,(k)) €R",
and Tox abbreviates Yo For example, in Example 1 of (2.7)
n
Yok = (zl(x), caey an(x))' , in Example 2 the jth column of Yok I8
(zl(xj), ceny znn(xj))' for i=1l, ciay v, in Example 3

Yok = U zl(x)dn(x), ceny J z, (x)dr](x)] , and in Example 4 the j—th column of 7,
r 4 4 n
A Aj _
is (D le(xj), ooy D 7z, (xj))' for j=1, ..., v.
n

2.2. Assumptions and Asymptotic Normality Results
First we introduce some notation and definitions used in the assumptions and

2

Theorem 1 below. Let o} denote the variance of Ui for i=1,...,n. Let

Q =d.iag{a%, caey 0121} (= EUU’). Define

- o [——— ’ + I ’ +
vV, = Var(T,(8)) = 7, (2°2) 2+ 02(2 2) and

29) Tx

2.9
_u-1/2 2

A =V e

For any g, € ¢, let ||g1|] 4ol denote the supremum Sobolev norm of derivative order q

for some nonnegative integer q . That is,

A
2.10 = X sup |D"g,(x}] ,
@10 llger=, 3 s D)

where X (€ Ii) , |A]l, and D’\gl(x) are as in (2.6). If partial derivatives of g;(x} do
not exist up to order q, then ||g1||q o2=0"

Let PZ ,(i) denote the i~th diagonal element of the n xn projection matrix
an(ZI'lank)+Zl'1k. Let PZ (i) abbreviate Pznnn(i) for any truncation sequence « .

Let ¢(-):1I 4+ * R U {n} bea non-decreasing function for which



(2.11) ¢(s) 2 sup |z (x)| Vs21.
xed

For example, one could take ((s) = max sup |z_(x)| . For certain results below, (s) is
m<s xed

assumed to be finite for all s> 1. In fact, for each of the families of series functions
referred to above, ¢(-) can be taken to be a finite constant provided Z is bounded.

Let 11 +” | + denote the inverse function of the truncation sequence x. It is
defined such that K 7(x )2 n Vn2 1. In particular, let

(2.12) n_l(k)=min{nEI+:nm>ka>n} Vk>1.

If kK #o as n-w, then x~1 is well—defined on I 4+ - For example, if & = [nf] vr>1
for some 1€ (0,1), where [-] denotes the integer part of -, then n_l(k) = [kl/ T+ b

Yk > 1, where 6]: =0 if ]:1/I €I, and '51: = 1 otherwise.

+

For any finite dimensional vector or matrix b, let [[b]] denote the Euclidean
norm of b. For any square matrix B, let Amin(B) and Apax(B) denote the min-
imum and maximum eigenvalues of B respectively.

We now state the assumptions——each of which is discussed below in Section 2.3.
The first three assumptions, A—C, are sufficient for asymptotic normality of
AT 11(g)—-EI‘n(g)); the first four, A-D, are sufficient for asymptotic normality of
A (T (8) - T (8)) - The fifth, E, is necessary and sufficient for the variance of I' () to
go to zero as n-aw. The final two assumptions, F and G, each provide easily verifiable
sufficient conditions for Assumptions C and E.

ASSUMPTION A: {U,:i2 1} are independent rv's with (1) EU; =0 Vi,

(i) 0 <inf a? < sup a? <o, and (iii) sup EU?I(lUiI >c¢)-0 as cHm.
ix1 17 i21

{x;:12 1} are non—stochastic regressor vectors in 7cRY.



ASSUMPTION B: (i) T (+) s a linear functional.
(ii) For some C1 <w, €>0, and integer q20, I‘n(-) satisfies: Vg, €6 with
I1llgaz < ¢+ N (8l < Cyllgylly o 7 for ol m large
(iif) lim A . (773 Ypy) >0 forsome k2 1.
D> :
ASSUMPTION C: (i) & ~® as n-w. (i) maxPZ (i)-0 as noo. (i) Either

i<n

Z . i fullrank K for n large or T (g) = g(xj) Jor some regressor X that is observed

for n large and zs(xj) #0 forsome s>1.
ASSUMPTION D: The regression  function g satisfies: Yk>1
36, = (81, ---» Bg)’ € RX such that

(2.13) [,rl(k)k] Y 2((k)||s§1zs(- g ~ g(-)” qug0 8 koo

| 4172
If lim A min(7ﬂn(z'z/n)+7nn) >0, then [x, l(k)k] ¢(k) can be replaced by

I-wo

)2 in(2.13)3

ASSUMPTION E: 7; (2'Z)"y, 40 s n~w.

711&

We now introduce two upper bound functions %, and nit'; such that (i) if fy € S
for all n large, I‘n(g) = g(xj) for some observed regressor X and Assumption F
(below) holds, then Assumptions C and E hold and (ii) if Ky $apy forall n large and
Assumption G (below) holds, then Assumptions C and E hold. Suppose b(-) is a positive
real function that satisfies b(x)-+0 as x-+w. Define the function Myl I, as

follows:

(2.14) Ky = max{k € I : rlng.i PZ . (i) < b(k)}

and k, =1 if the set in (2.14) is empty. Under Assumption F below, for each fixed k

the set in (2.14) is non—empty for n large. In consequence, Kpp " ® 38 Do,



Define the function nl"; 3 | 4+ I 4 38 follows:

(215) K} = max{kel_ : max P2, (i) < b(k), max e Yem ZhmZam) | Yo € b,
and Z_ is full rank k}

and "En =1 if the set in (2.15) is empty. When I‘n(g) = g(xj) for some regressor X;

that is observed for n large, the full rank condition in (2.15) is deleted. Under

Assumption G below, xf - o 38 n~wo (for the same reason as for x ).

ASSUMPTION F: (i) Pn(g) = g(xj) for some regressor X that is observed for n large

and zs(xj) #0 forsomes>1.

(ii) sy < Ky, forall n largeand K ~o as n-w.
n
(iii) %E 2y ()2 (%)) -oLZk(x)Zk(x)'dF(x) as n-o VYk>1 for some distribution
i=1
function F(-) on 7. _
(iv) If J (c'Zk(x))zdF(x) =0 forsome k>1 and c¢ R , then ¢ Zy (%) =0 Vi2 1.
) 4

(v) sup ]zs(x)l <w Vs>1.
xed

ASSUMPTION G: (i) Ky < nl";n Jor all 0 large and K +o asn-o.

(iii) sup |z(x)| <o Vs21.
xed

max('T:'lk'Ynk) <o Vk21.

{iv) Tim A
-
THEOREM 1: (a) Under Assumptions A—C,
AT (®) —EL @) < N@ L) o9 nva.
{b) Under Assumptions A-D,

Ap(To(8) ~Tp(e)) ~H N 1) as n-va.
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(¢) Under Assumptions A-D,

Ty(@) ~Ty® 240 s 0o

2
if and only if Assumption E holds. The same is true with n_P,v replaced by " Lo,

(d) Assumption F implies Assumptions C and E.

(¢) Assumption G implies Assumptions C and E.

COMMENTS: 1. The conditions of Assumptions A, B, F, and G are quite mild. In conse-
guence, Theorem l(a;), (d), and (e) show that under mild conditions it is always possible to
obtain truncation sequences « such that T _(g) is asymptotically normal with centering
at its expectation for a wide variety of estimands I‘n(g) . Purthermore, Assumption D is a
smoothness condition on the regression function g (see Section 2.3 below) that is always
satisfied for an infinite class of functions in ¢ . Thus, parts (b), (c), (d), and (e) of
Theorem 1 can be interpreted as saying: Under mild conditions there exist truncation
sequences x such that rn(g) is consistent and asymptotically normal with centering at
the estimand T (g) for a wide variety of estimands T (g), provided g is sufficiently
smooth. An important practical consequence of Theorem 1(d) and (e) is that such trunca-
tion sequences & are easily obtainable in practice. Given a function b(-) as above, the
upper bounds Khn and n;n on K, are obseﬁable and readily computable, since they
only depend on the regressor values, the prespecified series functions, and the known func-
tion T (-) that defines the estimand.

2. A drawback of Theorem 1(c), on the other hand, is that the smoothness Assump-
tion D can be difficult to interpret. If the rate of increase of K, or of a lower bound on
Ky is not known explicitly, then one cannot be explicit regarding the necessary rate of
decay of the series coefficients of g for Assumption D to hold. For example, if one
imposes Assumptions C and E by requiring Ky $ Ky OF K < n;n and the rate of increase
of s, or &} = isnot explicit (but rather, is only known as a function of b(:), PZ (1),

and 1ﬁk(Z'Z)+7 o for k21 ), then a rate of increase of x  or of a lower bound on &
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cannot be made explicit. Section 3 below is devoted to obtaining sufficient conditions
under which more explicit growth rates of s are obtained.

3. Although Assumption A takes the regressors {x;} to be non-—random, Theorem 1
also holds for random regressors {X.} if the assumptions of the Theorem hold conditional
on {X;} ={x;} with probability one In this case, a% denotes Var(U j|{Xi} = {x;})
and all expectations that appear in the assumptions are conditional expectations given
{X;} = {x;} . For example, if T (g)= g(xj) for some observed X; then Assumption B
necessarily holds and Assumption F holds with probability one if the regressors {Xi} are
bounded iid v’s and FFF, trigonometric, or polynomial series functions are used (see Sec-
tion 2.3 below). No other assumptions on the regressors are needed for the results of
Theorem 1. For more general éstimands, Assumption G holds with probability one under
the same conditions plus EZ, (X,)Z,(X;)" is nonsingular for all k> 1 (see Section 2.3).

4. By applying the delta method, Theorem 1 yields the asymptotic normality of

series estimators of nonlinear functions h(-): RY RY of {I'.(g)}. Consider the esti-
n

mators {h(T' (§))} . Suppose -a%,h(-) exists, is full rank w (< v), and is uniformly con-

. A—1/2
tinuous at the points {I‘n(g) :n21}. Let B = [—a%h(l"n(g))vn[-ag—;h(l"n(g))] ] :
Then, under Assumptions A—E, we have h(T n(g)) - h(l"n(g)) 2, 0 as n~w and

(2.16) Bn[h(l‘n(g)) - h(I‘n(g))] 4N, 1) as n-a.
This is proved using the same argument as is used to prove the delta method (e.g., see
Bishop, Fienberg, and Holland (1975, pp. 486-497)).

5. The results of Theorem 1 and (2.16) above (coupled with the consistent covar-
jance matrix estimators given in Section 6) allow one to construct Wald tests of a wide
variety of nonlinear restrictions on the estimands under consideration. For example, one
can test a number of different derivative constraints discussed by Stoker (1987).

6. The closer & isto & = or 'elk)n of Assumptions F and G, the weaker is the

n
smoothness assumption on g (i.e., Assumption D) that is needed for asymptotic normality
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of T',(8)- I' (g) . This does not mean, however, that one should necessarily choose &/
close to or equal to Kpp ©F ";n . Such a choice may yield a slow rate of convergence of
T (8)-T,(e) to Q.

7. If the estimand I‘n(g) is the regression function evaluated at a point X that is
observed for some n large, i.e., T' (g) = g(xj) , then the assumptions above are coordin-
ate free. That is, they only concern the linear space spanned by the columns of Z for n
large and the linear space spanned by the functions {z(-):8=1, ..., k} for k large.
They do not concern the particular vectors and functions used to describe these spaces.
Also, for this estimand, Assumption E is implied by Assumption C(ii) and the minimum
eigenvalue condition in Assumption D holds provided {zs(- )} contains a constant function
(since ejZ(Z'Z)'*'Z'e. > eé},(}";)_lyej >1/n).

8. If the errors {U.} are normally distributed, then the exact distribution of T ()
is multivariate normal with mean EI‘n(g) and covariance matrix A;z . Thus, the normal

approximation suggested by Theorem 1 will be quite accurate in many cases with respect

to the variance and shape of the density of T (g) .

2.8. Discussion of the Assumptions

Here we discuss the strength and verifiability of Assumptions A—G. Assumption A
allows for inid errors with finite variances. For cross—sectional situations, these assump-
tions are quite weak. Among others, they allow for applications to limited dependent
variable regression models in which the errors are naturally heteroskedastic. As noted in
Comment 3 following Theorem 1, random regressors can be handled by conditioning on the
regressors. (This precludes, however, dynamic regression models.)

For time series situations, the independence assumption on the errors could be
replaced by an assumption that allows for asymptotically weak temporal dependence. The
conditions required in this case would be more complicated and the estimation of covari-

ance matrices of the estimators would be more difficult. The proof of the results, however,
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could be extended by using an appropriate central limi¢ theorem.

The linearity of T (-) in Assumption B(i) is basic to the approach taken here. All
of the examples in (2.7) satisfy this assumption. In addition, by using the delta method,
countless nonlinear differentiable functions h(-): RY + R¥ of the estimands {T 2(8)} can
be shown to be asymptotically normal, see Comment 4 following Theorem 1.

Assumption B(ii) requires the linear functions T _(-) to satisfy a Lipschitz condi-
tion at ( uniformly over n and I‘n(O) =0 . This assumption is usually easy to verify.
For example, all of the examples of (2.7) satisfy it trivially. The integer q is equal to 0, 0,
0, |A], max ]Aj| , and max |A j| in Examples 1-6 of (2.7) respectively.

gy
Assumption B(iii) implies that Theorem 1 only applies to vectors of estimands

j<v

whose asymptotic distribution is nonsingular. If the estimand is vector—valued and
Assumption B(iii) does not hold, then one or more elements of the estimand T _(g) need
to be dropped before applying Theorem 1. If the estimand is a scalar, then B(iii) usually is
trivial to verify. For example, if T (-) does not depend on =, then B(iii} holds if
P (z,(-)) £ 0 for some 82 1.

Assumptions C and E are discussed only briefly here, since either of Assumptions F
and G is sufficient for both to hold and Assumption H of Section 3 below is sufficient for
both to hold with probability one when the regressors are random. For convenience,
Assumption D is discussed following the discussion of Assumptions C, E, F, and G.

Assumption C(i) is quite natural. Either g can be represented by a finite expan-
sion in the series functions or the bias of I () converges to zer0 as n-a only if
LR The former case is covered by standard linear regression results and the latter case
requires Assumption C(i).

Assumption C(ii) restricts the growth rate of x . More precisely, it restricts the
growth rate of the number of linearly independent columns of Z , which equals « if

Z'7 is nonﬁingular. If Z‘Z is nonsingular, Assumption C(ii) implies that nn/n -0 as
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n-o, since maxPZ_ (i)2 tr(Z(Z'Z)—lz’)/n =K /n. Note that Assumption C(ii) is
i<n

coordinate free, since max PZ_ (i} depends on Z only through the projection matrix

i<n
Z(Z'Z)+Z' . Assumption C(ii) cannot be relaxed appreciably since it is a necessary condi-

il

tion for L2—consistency and asymptotic normality of certain sequences of estimators.

A sufficient condition for Assumption C(ii) is
(2.17) Apin(Z2/(k (5 ) = a5 Row.

This conrdition is satisfied in the model and estimation procedure analyzed by Eastwood

and Gallant (1987) provided & /n-o as n-w, since sup |((5)] <o and
521

Z'Z = diag(n, nf2, ..., n/2). Also, condition (2.17) holds with the choice of K, given
in Theorem 2 of Section 3 below. Alternative (and more primitive) sufficient conditions for
Assumption C(ii) are given in Assumptions F and G.

Assumption C(jii) guarantees that the LS estimator of T (g) is unique. If

r (g) = g(xj) for some observed x;, then T (§)= = e:iZ(Z’Z)"'Z’Y and the

Tax’nx
value of rn(g) does not depend on the arbitrary choice of g—inverse (-)+ . For other

estimands, however, rn(g) = Z'Z)+Z'Y generally does depend on the choice of

Kl
g—inverse unless Z is of full column rank.

Like Assumption C(ii), Assumption E restricts the growth rate of %, . In some
cases (see Comment 7 following Theorem 1), Assumption E is implied by Assumption
C(ii). In other cases, s, must be chosen with both C(ii) and E in mind.

Next, we discuss Assumptions F and G. Assumption F applies only to estimands of
the form T (g) = g(xj) , whereas Assumption G applies more gemerally. Truncation
sequences x that satisfy Assumptions F(ii) and G(i) always exist, since the upper bounds
Ko and ”En on s go toinfinity as n-+o. These assumptions still may be restrictive,
_ however, since they may impose a slow growth rate on k, - The slower the growth rate of

K, » the smaller is the class of functions for which Assumption D holds.
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Assumption F(iii} and (iv) hold with probability one if {}:Ci} is an iid or stationary
ergodic sequence (using the strong law of large numbers, the boundedness assumption of
F(v), and the fact that a rv with second moment zero equals zero with probability one).
Furthermore, Assumption F(v) holds for most series functions defined on bounded sets.
For example, if holds for FFF, trigonometric, and polynomial functions defined on bounded
gsets. More generally, it holds whenever Z is compact and zs(x) is continuous in x for
all s> 1. (Note that Assumption F(v) does not require z.(x) to be bounded uniformly
over x and s.) In sum, Assumption F is quite weak and easily verifiable. It holds for
typical realizations of iid regressor sequences for any of the common choices of series func-
tions.

Next, consider Assumption G. Assumption G(ii) is the well known necessary and
sufficient condition for (weakly) consistent estimation of the parameters in a linear regres-
sion model with a8 fixed number of regressors k , regressor matrix 2.y » 8ud iid mean
zero square integrable errors (see Drygas (1976, Thm. 3.1(a))) for each k> 1. It is
implied by the standard assumption for linear regression models that zﬁkznk/n converges
to a positive definite matrix. If this condition is violated, then redundant series functions
can be eliminated to make it hold. If the regressors {X;} are iid (or stationary and
ergodic), then Assumption G(ii) holds with probability one if EZk(Xi)Zk(Xi)’ is non-
singular for all X > 1 (by the strong law of large numbers and Assumption G(iii)). Again,
if the latter condition is violated, then series functions that are redundant in the limit can
be eliminated. Knowledge of a lower bound on the density of X, (with respect to some
measure) can be used to determine which functions are redundant.

Assumption G(iii} is the same as Assumption F(v), which is discussed above.
Assumption G(iv) is automatically satisfied in the common case where Fn(') does not

depend on n (see Examples 1—4 and 6 of (2.7)). Evenif T (-) dependson n, Assump-

A
tion G(iv) is usually satisfied. In Example 5 of (2.7), it holds if sup % X (D -'zs(xi))2 <w
n>] Ti=1
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Vs> 1. The latter holds for FFF, trigonometric, and polynomial functions defined on
bounded sets.

In sum, Assumption G is fairly weak and easily verified (when it holds). It is
stronger than Assumption F in that redundant series functions need to be eliminated for it
to be satisfied. For estimands not of the form Pn(g) = g(xj) , redundant series functions
generally cause non—uniqueness of the LS estimator T (g) (see the discussion above of
Assumption C(iii)}. For such estimands, the elimination of redundant series functions
seems difficult to avoid.

A final comment on Assumptions F and G: Although these conditions are reason-
ably weak, are not difficult to verify, and lead to easily implementable restrictions on Ky
that guarantee that Assumptions C and E hold, they do suffer from the drawback noted in
Comment 2 following Theorem 1. Section 3 below gives some alternative sufficient condi-
tions for Assumptions C and E, which are more restrictive than Assumptions F and G, but
which lead to explicit expressions for n_l( ).

We now discuss the second part of Assumption D, viz., the condition, call it (M),

that lim A_. (77 (Z°Z/n)"7,,) > 0. Under Assumption A, condition (M) is equiv-

n~+m

alent to the requirement that the variance of rn(g) decreases as n - o at a rate no faster
than 1/n, which is not restrictive. Hence, in most cases, one only needs Assumption D to

hold with the multiplicative factor x1(k)!/2

in {2.13).

As noted in Comment 7 following Theorem 1, condition (M) is automatically satis-
fiedif T (g) = g(xj) for some x; that is observed for n large and {z (-)} contains a
constant function. Thus, it holds under Assumption F, provided {zs(-)} contains a con-
stant function. In addition, Theorem 2 of Section 3 below gives conditions under which
condition (M) holds with probability one when the regressors are random.

For non-random regressors, sufficient conditions for condition (M) are:

TimA_, (2: 2 )<s, T

e nxlnx is full rank & for n large, and Assumption B(iii) holds.

nx
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Condition (M) is guaranteed to hold if s < for n large, Assumption B(iii) holds,

Assumption G kolds, D; = 15‘1;11) 11I : 21 ’\ma.x(zﬁkznk/n) <w, and &} is redefined as:

wpy =max{k el : rlnzé.:; PZ_, (i) < b(k), gg ﬁm(zl':mznm)+7nm < b(k),

(2.18) _
Zy is full rank k, and A maxZarZak/m) ¢ 2D}

and &f =1 if the set in (2.18) is empty. When T (g)= g(xj) for some observed X
the full rank condition in (2.18) is deleted. Under the assumptions, for each fixed k the
conditions in (2.18) are met for n large,s0 A7 ~w 88 D-w.

We now discuss the main part of Assumption D. In almost all cases, the series func-
tions {z.(-)} are ordered such that higher values of s correspond to less smooth functions
(for s large). In consequence, the smoother is g, the faster the coefficients die off in the
series expansion of g in terms of {zs(-)} and vice versa. Hence, Assumption D is a
smoothness condition. Note that for any given & there are an infinity of different func-
tions g€ ¢ such that Assumption D holds. Thus, Theorem 1(c) always has content—
given x, Assumption D holds if g is suffidently smooth.

In some cases, it is possible to relate Assumption D to other smoothness conditions.

For this purpose, we define the Sobolev smoothness indezof g on theset D C X to be
(2.19) Sg(T) = max{c > 0: ||g|lc’m,,‘.) < o} .

Suppose « satisfies

w
(2.20) &, 2 Cn 1 for some wy €(0,1) and some C<w.

1/w
1 for some C* < o . Depending upon the regressor values and the

Then, n-l(k) < C*n
choice of series functions, the satisfaction of (2.20) may or may not be consistent with «
satisfying Assumptions C and E. In Section 3 below we provide some results for random
regressors where they are conmsistent with probability ome. These results include

(a) trigonometric series functions with 7 = [0, 21r]d and regressors with (Lebesgue) density
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d
bounded away from zero and (b) polynomial series functions with & = Xl[ar, b] and

regressors with {Lebesgue) density bounded below by some weight function.

Consider series functions from the FFF or trigonometric family and suppose 2 is
either [0, 2';r]d or an open bounded set whose closure lies in (0, 21r)d and whose boundary
is minimally smooth in the sense of Stein (1970, pp. 181, 189). (Alternatively, see
Edmunds and Moscatelli (1977, p. 8) for the definition of minimally smooth.) When
=10, 21r]d , assume g is periodic on [0, 2x] in each coordinate. In these cases,
Assumption D is satisfied if x satisfies (2.20) and either

. d . d(w; + 1)
(2.21) (i) Ss('p) >q+ Qu—l or (ii) Sg(?) >q+ T )

where (i) applies if condition (M) holds and (ii) applies otherwise and 2= R it
Z=[0, 2':r]d and D=2 otherwise.’ Clearly, the periodicity condition used when
Z=10, 2‘J!']d can be quite restrictive.

For trigonometric series, the result above follows from Edmunds and Moscatelli
(1977, Cor. 1, p. 28). For FFF series, it follows from the trigonometric series result, since
the addition of a finite number of non—trigonometric functions can only improve the
approximation given by a trigonometric expansion without denigrating its rate.

As a second example, consider polynomial series functions defined on & = [a,b] for

«o < a3 <b<wo. Inthis case, Assumption D holds provided x satisfies (2.20) and either

) _ 1 . w + 1
(2.22) (i) Sg(a,bl) >q + Ta; (i) Sy(fa,b]) >a+ o

where (i) applies if condition (M) holds and (ii) applies otherwise. This result can be
established using a polynomial approximation result given in Powell (1981, Thm. 3.2, p.
26). As stated, Powell’s result only yields Assumption D for the case q = 0 . His proof
can be altered, however, to obtain the desired result for arbitrary integer q > 0. These

results apply only when x is scalar. Analogous approximation results for multivariate



19

polynomials (d > 1) may exist, but are not known to the author.

Lastly, we note that for notational simplicity Assumptions A—G are concerned with
a sequence of regressors {xi :12 1} . They can be generalized straightforwardly to the case
of a triangular array of regressors {xm. :i<m,n21} and the results above and below and
their proofs hold without change. Eastwood and Gallant’s (1987) regression model, for

example, is one in which the regressor variables form a triangular array.

3. RANDOM REGRESSORS

This section presents conditions under which (a) the key Assumptions C and E of
Section 2 hold with probability one when the regressors are random and (b) explicit bounds
on the growth rate of K, are obtained. Trigonometric and polynomial series functions and
the estimands given in Examples 1-6 of (2.7) are treated in detail to exemplify the more

general sufficient conditions given.

EXAMPLEI. This example considers trigonometric series functions defined on [0, 21r]d
(see (2.2) for their definition). The random regressors {X;:i2 1} are assumed to be inde-
pendent with (Lebesgue) densities f(x) whose averages over i =1, ..., n are bounded
above and bounded away from zero for n large. That is, for some N < o,

n

n
(3.1) 0<inf inf %QB f(x)<sup  sup IEE f(x)<o.
N ce0,2m8 =1 RN g gqd i=1

Example I is quite similar to Example 2 of Cox (1988, pp. 716, 717, 721, 722) except
that Cox considers the case of a scalar regressor (d =1) with uniform distribution.®
Cox’s results are quite complementary to those of this paper, since he gives rates of con-

vergence of derivative estimates in L, norms and establishes consistency in supremum

norm, whereas we establish asymptotic normality.
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d
EXAMPLEII. This example considers polynomial series functions on X [a.r, br]
r=1

(=lap byl x -+ xfay, byl) for w<a < b, <w. That is, the k—vector of series func-

tions Z,(x;) is of the form

Zy(x) = (2} (x)@ -+ o % (%)

Zir(xr) = (1, Xy ooy X ) VI=1,...,d,x= (xl, ceey xd)’ € 1-}=(1[ar, b,

d
for some positive integers kl’ ceny kd that satisfy 1II kl_ >k , where Sk is a
=1

d
kx(II k) selection matrix for which S5 5{ = I, . We assume that the polynomial series
r=1

d
functions are ordered such that every function in the II (k, —1)—vector
r=1

Z]’:I__I(xl) ®...0 Zid_l(x g) 18 included in the sequence before any of the additional

functions in Zf (x;}®..-® Z§ (x4) are included. In the univariate case, this means
1 d

, d
. A consequence of this assumption is that k > II (k. /2),
=1

that Z,(x)=(1,x, ..., xk)

where k,, ..., k; are the smallest integers for which Z,(-) can be written as in (3.2).

In this example, the random regressors {Xi :12 1} are assumed t6 be independent
with (Lebesgue) densities on X 2, b ] whose averages over i =1, ..., n are bounded
=1

above and bounded below by some constant times a "beta" weight function for n large.

In particular, we assume: Forsome ¢ >0, N <w, and a., ﬂl_>—1 Vr=1,...,4d,
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d d
1
inf = Efx)l'lw X )e ¥x=(xy, ..., x;)’€ X [a,b] and
n>Nn1— () r=1 c"’ﬁr( r) (1, , d) r=1[I r]
1B
(3.3) sup sup I £{x)<w, where
n>N d i=1

xerzl [ar’brl
@ B
r T

d
When a =0 and b =1 ¥r, O w, 8 (x ) is proportional to the product of d beta
=1 %"r

densities. By taking a, = ﬁr = 0 Vr one obtains a uniform weight function.
Example II is similar to Example 1 of Cox (1988, pp. 715, 716, 722—725) except that

Cox considers the case of a scalar regressor on {0,1] with beta distribution.”
We return now to the general case and introduce the following assumptions:

ASSUMPTION H: (i) {X pji¢mmn2 1} i3 a trianguler array of RI_valued rv's that are
tndependent across i for each fized n.

(ii) For some N <o, 11115T ’\mln[ E EZk(X D2 (X5) ] >0 Vk>1.

(iii) sup fz(x)] <w V821.
xed

(iv) For some non—decreasing function of-):1, - [0,0), E ilg.x A nax( Tk Yok / K))

<m.

ASSUMPTIONL:  Either (a) limA . (75,7,) >0 Jfor some k21 and

Lim
n

TiT max ) [l):Ez X B (X)) <o or () Limmin A (0 7,)/K) > 0

n~o k<n max ni:l k( m) k( m) ® () n+o k<n Imn( nk nk)/)

end  sup [z(x)| <w.
xed, 821

None of the conditions in Assumptions H and I is restrictive except the indepen-
dence requirement of Assumption H(i} and the nonsingularity requirement of Assumption

H(ii). In fact, with m—dependent regressors the proof of Theorem 2 below goes through
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with only minor alterations. In addition, the proof can be extended to cover strong mixing
regressors without too much difficulty. Thus, independence is not crucial.

In the iid case, Assumption H(ii) requires EZ (X ,)Z, (X .)’ tobe nonsingular for
all k> 1. This is likely to be violated by FFF series for some k sufficiently large, since
trigonometric functions are orthogonal and periodic on [0, 27] but the regressors are often
scaled such that their support has closure contained in (0, 27) (see Gallant (1981, p. 217))
in order to avoid Gibb’s phenomena at the endpoints. When Assumption H(ii) fails some
series functions are redundant and need to be eliminated to make it hold.

Assumption H(iv) is quite weak. For example, if I‘n(-) does not depend on n,

then it is satisfied with a(k) = max Agax T o) - In 2ddition, it is always satisfied in

Examples 1-6 of (2.7) provided Assumption H(iii) holds. In Examples 1-3 of (2.7), if

Assumption H(iii) holds, then || 7n(s)||2 < vsup ZE(X) ¥s 2 1 and omne can take
xed
(3.4) ofk) = k¢3(k) Vk>1.

| A.
In Examples 4—6 of (2.7), H'rn(s)"2 < v max sup|D st(x)|2 and one can take
jsvxel

A
(3.5) ofk) =k max sup|D % (x)|® Vk>1.
5¢k,j<v xed

Three functions ¢(-), o(-), and A(-) are used in the main result of this section,
i.e. Theorem 2 below. ¢((-) is defined in (2.11) and of-) is defined in Assumption H(iv).
Their values in Examples I and II are discussed below. Whenr Assumption H(ii) holds A(-)

is defined to be a non—decreasing function from I 4 to [1,0) such that for some N < w

. 13 ,
(3.6) A@iat ,\min[iiilEzk(xnj)zk(xm) ] >1 Vk>1.
: . - , : Iy
The simplest choice of A(-), of course, is A(k) =1/ 1111>1 IET Amin[iiﬁlEZk(an)Zk(Xni)'] :
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EXAMPLEI (cont.). Assumption H(i) holds in this example by assumption. Assumption
H(ii) also holds, because for all n > N and some §, § € {0,1],

n -
(3.7) '\minU[o,zf]d Zk(x)zk(x)'-ill-ii lfi(x)dxl > .uminU 025 Z,(x)Zy (x) dx| 2 6

by the lower bound on = }3 f (x) and the orthogonality of trigonometric functions on

[0, 21r]d. Thus, one can ta.ke AMk)=1/6 Vk>1. Since sup IzS(x)| <1, Assump-
s21,xel

tion H(iii) holds and one can take ((k}=1 Vk)>1. Assumption H(iv) holds for the

estimands of Examples 1-6 of (2.7) by the comments above regarding of-) . In particular,
14+2max | Aj| /d
one can take ok) =k in Examples 1-3 by (3.4) and ok)=k 1&¥ in

Examples 4—6 by (3.5) (when square, spherical, diamond, or equivalent pa.rtia.l sums are

A
used in Examples 4-6, since in this case max lup|D 3 5 (x)] € C max I'I (slld)
j¢v xed j<vm=1
max[)\ |/d

=gl for some C < o).
Assumption I(a) holds for Examples 16 of (2.7) in Example I provided no two of

the vectors Xys oeey X, ar€ equal in Examples 2 or 4, no two of the vectors ’\1’ ceey A

v v

are equal in Example 5, and no two of the pairs (Al, nl), ceny (Av, n, ) are equal in

Example 6. This follows because with trigonometric series functions lim Amm(fy nk7nk)
n-w

> 0 for some k > 1 in Examples 1-6 under the provisos listed above and

n "~
(3.8) Amax[J de(x)Zk(x)'!l—lizlfi(x)dx} 5DAmu[J[O’%]de(x)Zk(x)'dx <D<s

[0,27]

. n
forall n> N and some D, D < o, using the upper bound on -lﬁ )y fi(x) .
i=1
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EXAMPLE II (cont.). It is advantageous in this example to establish Assumptions C and

E for orthonormalized polynomials rather than the simple polynomials given in (3.2). The

shift to orthonormalized polynomials is innocuous because the replacement of Z_ (-) by
n

G, Z, (+) in the calculation of g, where G is a nonsingular & x & matrix, leaves
n n n

g, and hence I‘n(g) , unchanged. Thus, for theoretical purposes only, we can suppose
that Z,(-) is as defined in (3.2) but with
ARG CONSRE SO

B
(3.9) z¥(x ) = car,ﬁr(s-a)ng; ’)(2(xr -a)/(b —a)-1), and

(+0+8)/2 (9524 a_+8_+1)(s) T(s+a,+6,)) /2
[ Uls+a )l(s+5,)

1
1} =
car:ﬂr(s— ) [5 —a

I r

for r=1,...,d and §=1,2, ..., where {P

(a,.8,)
; T(x):52 1} are the Jacobi poly-

R
nomials on [-1,1] with parameters (a,, 5,), see Szegd (1939, Ch. 4) or Abramowitz and

Stegun (1964, p. 775, eqn. 22.3.1), and T'(-) is the gamma function.

If Assumptions C and E are verified using the orthonormalized polynomials of (3.9),
then 80 must the other assumptions in A—E that involve the series functions, viz., Assump-
tions B(iii) and D. This is not a problem, because Assumption B(iii) is implied by
Assumption I (with both defined using the orthonormalized polynomials) and Assumption
D holds with the orthonormalized polynomials of (3.9) if and only if it holds with the
simple polynomials of (3.2).

As shown in the Appendix (following the proof of Theorem 1), the orthonormal
polynomials of (3.9) satisfy Assumptions H(ii) and H(iii) with A(-) and {(-) given by

(3.10) Ak)=1 Vk>1 and

(3.11) ((k) = Ck* for ¢ =max{a, +1/2, 8, +1/2, ..., ay+ 1/2, By +1/2,0}
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for some C < o. By (3.4), Assumption H(iv) holds in Examples 1-3 of (2.7) with
(3.12) o(k) = k¢3(k) = Ok 28 vy 1.

By (3.5) and calculations in the Appendix, Assumption H(iv) holds in Examples 4—6 of
(2.7) with
ofk) =k'? vk > 1, where

(3.13)
= 1 1 o= Ci
u—ma.x{max[ar+2/\jr+§,ﬂr+2Ajr+2-,/\jr] cr=1, ..., d;j=1, ...,v}.

Assumption I(a) holds for Examples 1-6 of (2.7) in Example II (using the ortho-
normalized polynomials of (3.9)) under the same provisos as given in Example I above and

for the same reasons.

We now state the main result of this section:
THEOREM 2: {a) Under Assumption H, if x is nondecreasing, & ~o 45 Do, and
(3.14) ma.x{niz\z(nn)(‘"(n ) Ak )a(s )} /n < Do~ forall n large,

for some 0 < 7<1 and some D<o, then Assumptions C and E hold with probability
one when the regressors {xni} are random. ,

. . . . , (. +
(b) Under Assumptions H and 1, if & is as above, then Ill_:% A min(Th(Z’ Z/0) Toe) 2 C
for some constant C > 0 with probability one when the regressors {an} are random. In

addition, Assumption B(iii) holds.

COMMENTS: 1. For any given functions A(-), ¢(-), and of-), truncation sequences
k that satisfy the conditions of Theorem 2 always exist. For example, the truncation

-~

sequence k satisfies these conditions, where

(3.15) R, = ma.x{k €1, : max{kA2(k) ¢4 (k), A(kK)e{k)}/n ¢ Dn“f}

+
and k) =1 if the set above is empty. More importantly, if A(-), ¢(-), and of-) are

bounded by powers of k, then truncation sequences & exist that satisfy the conditions of
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Theorem 2 and grow as fast as a power of n.

2.If A(-) and ((-) are bounded above and a{k) < Ck? for some & <w, then
(3.14) requires &y < Dn? for w< 1/4 and some D < . This is the fastest rate allow-
able in Theorem 2. When these conditions do not hold, the maximum rate is slower.
These maximum rates may be restrictive, especially when d is large, and it would be
desirable to increase them. On the other hand, they are much faster than some rates that
appear in the literature. For example, Newey (1988a) requires his polynomial series esti-
mators to satisfy & & s = o(& n) (whereas the polynomial series estimators of Example
Il may have x grow as a power of n, see below).

3. The proof of Theorem 2 shows that if A(-) is bounded, as it is in Examples I and

11, then l11__i'%.xmin(zl'mz nx/n) >0 with probability one under the assumptions of

Theorem 2. (See Lemma A—1(b) in the Appendix.) This result is useful for several pur-
poses, including showing that series estimators of the parameters in semiparametric

regression models are yn—consistent, see Section 5.2 below.

EXAMPLET (cont.). Suppose the errors {Ui} satisfy Assumption A conditional on
{X;} ={x;} with probability one. (For example, this holds if the errors are iid, square
integrable, ard independent of the regres.sors.) From above, ((k)=46A(k)=1 and
ofk) =k ¥k21. Thus, condition (3.14) of Theorem 2 requires Ky & Dn“ for some
w<1f4 and D <o. Under this condition and the others stated above for Example I,
Assumptions C and E hold conditional on {Xi} with probability one. In addition, for

Examples 1-6 of (2.7}, Assumption B holds with q=0,0,0, ||, max |Aj| ,
jgv

max |)\j| respectively. Thus, the result of Theorem 1(a) holds conditionally on {x;}

v

with probability one and unconditionally.

and

If, in addition to the conditions above, g is periodic in each of its elements,
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Din "< <Dyn for 0 < w) $ Wy < 1/4 for n large, and
S g(R ) >q+ Tw—l
for some Dy, D2 < o, then Assumptions A—E hold conditional on {Xi} with probability
one for Examples 16 of (2.7) and the results of Theorem 1(b) and (c) hold conditional on
{Xi} with probability one and unconditionally (using (2.21) to verify Assumption D).

To contrast the asymptotic normality results here witk the mean squared error

results of Cox (1988), we note that in Cox’s Example 2 with uniform regressor distribution

w
%, has an upper bound of Dyn 2 for some wy < 1/3 and D,<w. (See Cox (1988, p.
722) and set p = 1/2 in the equation following his equation (3.6).) Thus, his results allow

a slightly faster growth rate of x than does Theorem 2.

EXAMPLEII (cont.). Suppose the errors {U;} satisfy Assumption A conditional on
{X,} = {x;} with probability one. From above, AMk)=1 and ((k)= cxé for £ asin
(3.11) for all k > 1. For the estimands of Examples 1-3 of (2.7), ok) = 2!t foran
k> 1. Thus, for Examples 1-3 of (2.7), condition (3.14) of Theorem 2 requires x_< Dn*
for some w < 1/(4+4¢). For example, for the uniform weight function (ie., a; =4,
=+++=f;=0), weneed w<1/6. Under the above condition on x  and the other
conditions stated above for Example II, Assumptions C and E hold conditionally on {Xi}
with probability one for Examples 1-3 of (2.7). In addition, Assumption B holds with
q=0. Hence, the result of Theorem 1(a) holds conditionally on {X.} with probability
one and unconditionally. '

If, in addition to the conditions above, we have a scalar regressor (d = 1) ,8

o
<Kk <D,n “ for 0 < w, <

9 1 $ wy < 1/(4+4§) for n large, and

(3.17) 1
sg([a’:b]) > m{



28

for some D;, D, < w, then Assumptions A—E hold conditional on {Xi} with probability
one for Examples 1-3 of (2.7) and the results of Theorem 1{b) and (c) hold conditional on
{X;} with probability one and unconditionally {using (2.22) to verify Assumption D).

For Examples 46 of (2.7), a(k) =k 12" for v asin (3.13). Thus, condition
(3.14) of Theorem 2 holds in this case if & < Dn? for w< 1/max{4+4¢, 1+20}. If

max A. <1 (i.e., the estimand only involves the 0—th and 1-6t order derivatives of
r<d, j<v

g ), then this upper bound on w equals 1/(4+4¢) as in Examples 1-3. For Examples
4-6 of (2.7), the results of the preceding paragraph hold provided 1/(4+4¢£) is replaced by
1/max{4+4¢, 1420} in (3.17).

In contrast to the results above, Cox (1988) requires £ < Dyn Y for w<1/(3+4¢)
for his polynomial series estimator. (See Cox (1988, p. 715, Ex. 1) and set p=1/2 and
h= ¢+ 1/2 in the equation preceding his equation (1.2).} For example, with the uriform
weight function, Cox requires w < 1/5 whereas Theorem 2 requires w<1/6. As
mentioned above, Newey (1988a) requires « /n x =o(fn) for his polynomial series

estimators, which corresponds to a much smaller upper bound on Ky than is needed here.

4. RANDOM TRUNCATION SEQUENCES

In this section we extend the asymptotic normality results of Section 2 to series esti-
mators that are based on certain data—dependent truncation sequences. The need for this
extension is due to the fact that a good choice of x_ depends on the unknown function g .
In consequence, one needs to use information in the data about g when choosing Ky -

Let k denote the random truncation sequence used to form the estimator g . That

is, g is asin (2.5) but with & in place of x. Let Z abbreviate Z : - Define

(4.1) Vi=1:(22)Y 2022 2) Ty, and A% = (v3)2,

‘TIIK
Note that V;‘; and A; are random, whereas Vn and An are non-random.

We require k fo satisfy an assumption that is quite similar to assumptions of
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Eastwood (1987) and Eastwood and Gallant (1987), but is more general. (It encompasses
two alternative assumptions regarding % that these authors consider.) Nevertheless, the
assumption is still restrictive and its relaxation would be desirable.

Let X denote a countable collection of truncation sequences o for j2 1 such that
Assumptions C and E hold for each Hek. Using Theorem 1(d) or (e} or Theorem 2, it is
possible to specify a class X that satisfies these conditions without great difficulty.

The random truncation sequence & is assumed to satisfy:

ASSUMPTION J: Fcn - ‘Fcn -2.0 as n- o for some random truncation sequence % that

takes values in X .

Examples of random truncation sequences X that satisfy Assumption J are Eastwood and
Gallant’s (1987) and Eastwood’s (1987, 1988) upward F—testing rules, where the F—tests
test upward from a random truncation sequence % that isrcountably—va.lued. See the ref-
erences above for details. Other examples of random truncation sequences that satisfy
Assumption J include those that only depend on discretized (i.e., rational—valued) versions

of the first N observations for some N < o (even as the sample size n goes to infinity).

THEQREM 3: Under Assumptions A, B, D, and J, the series estimator {rn(g)} based on

the random truncation sequence K satisfies
A3, (&)~ T,(8) +N@,1,) es nvo and
I‘n(g)—I‘n(g)—P—-O as n-w.

COMMENT: Random truncation sequences that are common in the literature include
those generated by Cp , cross—validation, and generalized cross—validation. See Li (1987)
and Andrews (1989) for analyses of the asymptotic optimality properties of these proce-
dures with respect to the minimization of average squared error. Assumption J and

Theorem 3 do not apply to these truncation rules. In fact, the asymptotic normality result
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of Theorem 3 cannot be expected to hold for these procedures because they do not drive the

ratio of the bias to the standard deviation of ' (g) to zero.

5. AIR, SEMIPARAMETRIC REGRESSION, AND INDEX MODELS

This section discusses the application of the results of Sections 2—4 to models other
than the fully nonparametric regression model considered above. AIR, semiparametric

regression, and semiparametric index regression models are discussed.

5.1. Additive Interactive Regression Models

This section considers series estimators of additive interactive regression (AIR)
models. These models are also known in the literature as interaction spline models.? They
bave been analyzed using spline estimators by Barry (1983, 1986), Wahba (1986), Gu,
Bates, Chen, and Wahba (1988), and Chen {1988). A special case of the AIR model is the
additive regression model that has been considered by Orcutt et al (1861, p. 243), Stone
(1985), Hastie and Tibshirani {1986, 1987), and Buja, Hastie, and Tibshirani (1989).

By definition, an AIR model of order two is a nonparametric regression model in

which the unknown regression function g is of the form

d d d
. J= X g.x.. z . (x.. x.
(5 1) g(xl) j=ng(le) + j=1 m=?+1g‘lm(xlj, xlm) H

where 8 and 8jm 3re unknown functions and x; = (xil’ R d)' 10" ATR models of

i
order p for integers p > 1 are defined analogously but with interactive functions that
include up to p regressor variables. Of course, an AIR model of order d is equivalent to
a fully nonparametric regression model.

AIR models lie between linear regression models and fully nonparametric regression
models in terms of the restrictions they place on the regression functions. Their atirac-

tiveness is due to the fact that they are considerably more general than linear regression

models, but they circumvent the "curse of dimensionality" that afflicts the estimation of
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fully nonparametric regression models. In particular, it is shown in Andrews and Whang
(1989) that the rate of convergence to zero of the mean average squared error of series
estimators of AIR models of order p (defined below) with regressors of arbitrary dimen-
sion is the same as that of series estimators of fully nonparametric regression models with
regressors of dimension p . Similar results for spline estimators (but under quite restric-
tive assumptions on the regressors) are obtained by Chen (1988).11

The AIR models described above are ssiurated AIR models. Unsaturated AIR
models, in which interactions are introduced between some regressors but not others, also
may be useful. This is especially true, of course, if the modelling context suggests which
interactions should be included and which should be excluded. If d is "large" relative to
n, ar unsaturated AIR model of order two may be as general a nonparametric regression
model as one can estimate with reasonable accuracy.

The estimation of additive regression and AIR models via series estimators is
straightforward. One merely takes a set of functions {z(-) : 821}, which is suitable for
estimating a fully nonparametric regression function, and eliminates those functions z s(-)
whose coefficients in an expansion of g in terms of {zs(-)} must necessarily equal zero
for any function g that is of the form specified by the model. For example, for an FFF-
series estimator of a second order AIR model, the functions z.(+) are of the form given in
(2.2) but the vectors b € RY that are used are restricted to vectors that have at most two
non—zero elements. If the original sequence of series functions is dense with respect to the
supremum Sobolev norm in a set ¢, then the new sequence is dense in the subset of func-
tions in § that satisfy the model.

A convenient property of the results of Sections 2—4 for fully nonparametric regres-
sion models is that they apply in the present context as well. To apply them, one makes
the same definitions and assumptions as in Sections 2-4 except the family of approxi-
mating functions {z(-)} is restricted as described in the paragraph above. As long as the

sequence {zs(-)} approximates g sufficiently well to satisfy Assumption D, there is no
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difference between applying Theorems 1-3 to AIR models than to fully nonparametric
regression models. In consequence, under the assumptions of Theorems 1 or 3, series esti-
mators of additive regression and AIR models are consistent and asymptotically normal.

Consistent estimators of their covariance matrices are provided in Section 6 below.

5.2. Semiparametric Regression Models

Next, we consider a semiparametric regression model. This model is of the form:
(5.2) Y, =x;8+g(x;)+ U fori=1,...,n,

where Yi’ X,
errors, and § and g, are unknown.
This model has been considered by Robinson (1988), Chamberlain (1986, 1987),

Wahba (1986), and Rice (1986) among others. See Engle et al. (1986) and Stock (1985) for

, and Xp; are observed, {Ui} are unobserved, independent, mean zero.

empirical applications of this model. Note that in addition to being used as models in their
own right, semiparametric regression models can be used ir constructing tests for omitted
variables iz fully nonparametric or linear regression models.

Robinson (1988) and Chamberlain (1986) are concerned with yn—consistent estima-
tion of f in the model (5.2). Here, we are interested in estimating both S and various
functions of 8, » such as those given in the examples of (2.7).

As in Chamberlain (1986), we consider estimating the regression function
g(x) =x;f + gy(x),) by a series estimator that takes account of the special structure of
g . In particular, the family of functions used to approximate g is taken to include the
elements of X, plusa family ot functions of xy that approximate g, -

The results of Sections 2—4 can be applied in the present context. To do so0, one
makes the same definitions and assumptions as in Sections 2—4 except that the family of
series functions is defined as above. The parameter vector § can be estimated by taking

r.(g) =%(x) forany x€Z, since a‘?—ag(x)=-af—a(x£ﬁ+ 8(x,,)) = f. This yields §



33

to be the vector of LS estimators of the coefficients on x, from the regression of Y. on
x,; and certain functions of Xpi - In addition to estimation of #, by appropriate choice
of T (-), thesame functions of g, can be estimated as in Sections 2—4. Assumption D
is satisfied in the present case if it is satisfied with g replaced by g, -

A consequence of the remarks above is that Theorems 1 and 3 establish the consis-
tency and asymptotic normality of the estimator T' () of I‘n(g) in the semiparametric
regression context and Section 6 below establishes the consistency of estimators of the
covariance matrix of I‘n(g) in this model. In the homoskedastic variance case, the covar-
iance matrix estimator for B is just the standard LS covariance matrix estimator for a
parameter seb—vector in a linear regression model.

An important question is whether an estimator of # in (5.2) can achieve the n
rate of consistency. Robinson (1988) establishes this result for a kernel-based LS estimator
and Chamberlain (1986) does likewise for a series estimator. In the present context, it is

not difficult to see that the series estimator § is A consistent and asymptotically normal

if le_ilf ,\ml.n(z;mzn K/n) > 0. For example, if Assumption G holds with Assumption

G(ii) replaced by lim AminlZayZny/n) 2 € Yk 21 for some ¢>0 and the condition
-

Amin(Gsyboy /D) 2 €/2 is added to the definition of n’t'; , then the sufficient condition

]11%:_1 M min(Zs Zn/B) > 0 holds. For iid regressors, the condition above holds with prob-

ability one if lim A . (EZ,(X)Z,(X;)’) 2 ¢ Vk2 1 for some ¢> 0. Alternatively, for
D-+m

inid regressors, lim A . (Z/,7 ,/n) >0 with probability one if Assumption H and

n-w

(3.14) hold and A(-) is bounded above (see Comment 3 following Thecrem 2).
We note that the results given here cover the case of heteroskedastic errors, as
occurs in sample selection examples among others. Robinson’s (1988) results do not cover

this case, but he conjectures that they can be extended in this direction.
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5.8. Semiparametric Indez Regression Models
A single indez regression (SIR) model for the random variables {Yi’ x;:1<i<n}

is any model in which
(5.3) E(Y;[x,) = F(x{f) for i=1, ..., n,

where f€ R4 is unknown and F(+) : R = R may be known, known up to a finite dimen-
sional parameter, or unknown. If F(-) is unknown, then the model is called a
semiparametric SIR model Examples of semiparametric SIR models are numerous. They
include a wide variety of limited dependent variable models, such as binary choice models,
in which latent errors have unspecified distributions. See Ruud (1986) and Stoker (1986).
A semiparametric SIR model is a special case of the nonparametric regression model

of (2.1): If (5.3) holds, then one can always write
(5.4) Yi=F(x{ﬂ)+Ui,i=1,...,n,

where the errors {U;} have conditional mean zero given {x;} and may be heteroskedas-
tic. In the notation of Section 2, g(:) = F((-)’f) . For present purposes, we assume that

(Y.

;»%;) (and hence, U, ) is independent across observations.

Following Stoker (1986), we note that the derivative with respect to x of the con-
ditional mean of Y; is proportional to # in SIR models.!? Thus, if T (-) is chosen as
in Example 5 of (2.7), then

5.5 roe)=13 ¢ - 2 ry(x

(5.5) 28 =352 Felx) = 3% (<i0)8,
o _ 1 n a ’ .

(56) Fn(g) = 71”‘0]1” = Elil [‘a;c—,znn(xl)] glln ’

and the vector T (g) is proportional to §, where F,(-) denotes the scalar derivative of
F(-). Under the assumptions of Theorem 1 or 3, rn(g) is consistent for # up to scale
and asymptotically norma.l.l3 Consistent estimators of its covariance matrix are provided

in Section 6. Computationally, I_(8) is quite simple, because it is just a linear
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combination of linear least squares estimators.

Alternative estimators of the semiparametric SIR model that are known to be
asymptotically normal include those of Powell, Stock, and Stoker (1989), Ichimura (1986),
and Hirdle and Stoker (1987). In fact, these estimators are also known to be
Jo—consistent, which has not been established for the series estimators considered here.

The estimators of Powell ef al (1989) and Hirdle and Stoker (1986) also can be
applied to the estimation of various sorts of weighted averages derivatives. For example,

Hirdle and Stoker (1986) consider estimating
(5.7) r () = JI 8 g(x)dH(x),

where the regressors {Xi} . are random with unknown distribution function H. The
results of Sections 2—4 do not apply to this estimand, but they do apply to the estimation
of in—sample average derivatives (see Example 5 of (2.7)) and to the estimation of
weighted average derivatives with known weight functions (see Example 6 of (2.7)).

A generalization of the semiparametric SIR model is the semiparametric multiple
indez regression (MIR) model. For 1v's {Y, x;: 1€ig n} , such models are charac-
terized by
(5.8) E(Yilxi) = F(xiiﬂl, xéiﬁZ’ ceey xf)iﬁp) fori=1, ..., n,

for some partition (xii’ . xl'ﬁ)' of x;, some unknown parameters (ﬁi, ceny ﬂI'))’ ,
and some unknown function F : RP - R . Multinomial discrete choice and sample selec-
tion models based on latent linear regression models with unknown error distributions are
examples of semiparametric MIR models. See Stoker (1986) for further discussion. The
extension of the results above to the estimation of the parameters (ﬂl, ceey P p) of the

semiparametric MIR model is straightforward.
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6. COVARIANCE MATRIX ESTIMATION

In this section we consider estimation of the covariance matrix vV, or V; of the
estimator I' (§) . The results apply to estimators based on random and non—random trun-
cation sequences. They apply in nonparametsic regression, additive regression, AIR, semi-
parametric regression, and semiparametric index regression models. The two cases of
homoskedastic and heteroskedastic error variances are treated.

First, we consider the case of homoskedastic errors. The following assumption
applies when the truncation seq1‘1ence k is random. It is imposed in conjunction with
Assumption J of Section 4.

2

ASSUMPTION K: (i) ¥ = >0 fori=1,2, ....
(ii) sup E]Ui|2+6< w forsome §>0.

i>1
(iii) For each Sek, "il: <Ry for alln , for some non—random iruncation sequence K

that satisfies & max PZ _{i)-0 ¢s n-w.
Dj¢n DU

A truncation sequence XK satisfies X max Pan(i) -0 as n- o under Assump-
i<n

tion F or G with x replaced by %, provided &, and nl"; are defined with PZ , (i)
replaced by kPan(i) . Alternatively, for random regressors, a truncation sequence &
satisfies K PZ _(i) - 0 as n -+ o with probability one if & satisfies (3.14) and
Assumption H holds. (This is proved analogously to the proof of Theorem 2(a) using
Lemma A—1(a) of tke Appendix.)

The case of a non—random truncation sequence x is covered by Assumption K by
taking X to have only one element, «, and by taking k = & = x . Then, Assumption

K(iii) reduces to & 1}1&(1; PZ (i)-0 as n-o.

Under Assumption K, the estimator of V; is given by

U — gt ’ + “2
(6.1) Vo = 1ilZaa%a) Tk
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n R
where &% = —1 T (Yi - g(xi))z. Correspondingly, the estimator A =~ of A} is
n - & i=l1
n

given by \7;1/ 2 Consistency of these estimators is established in the following theorem:

THEOREM 4: Suppose the series estimators {I' (g)} are based on @ random truncation
sequence Kk . Then, under Assumptions A, B, D, J, and K, we have Vn(V;)_l -2, Iv ,
. -1 : . d

A (AT 1, end A (T (8)-T (g) — N(Q, 1) as n~w.

Next, we consider the case of heteroskedastic errors. As above, we only treat esti-
mators based on random truncation sequences % . Results for estimators based on non-
random truncation sequences x are obtained as a special case. Five different estimators of

Vy and A} are considered. For w=1, ..., 5, let

=~ (TeVE aaeyt i o—1/2
wn = %)L LLL) Ty, and A =V_ /", where

a . - 2 - . - 2 - - . - 2
(62) 0, = diag(0?), f1, = diag(0%n/(n %), R, = diag(0%/(1-2),
-~ . s 9 2 -] ~= a . ~ 9

and where Z° denotes Zois fJi =Y, - §(x;) , z; denotes Pan(i) , fJi = ﬁi/(l —-z:),
and = (0, ..., T) .

The estimators vln’ veos V 4n € analogues of estimators that have been suggest-
ed in the literature for estimating the covariance matrix of the LS estimator in the
standard linear regression model. \71 q isan analogue of an estimator proposed by Eicker
(1963a, 1967) and popularized in the econometrics literature by White (1980). \72 , 18
variant of V.~ due to Hinckley (1977) that incorporates a simple degrees of freedom
adjustment. V3n is a variant of Vln proposed by Horn, Horn, and Duncan (1975) that
incorporates an alternative bias reduction adjustment. V 4p 18 the jack—knife estimator of
Vy (see equation (12) of MacKinnon and White (1985)).

The estimator \75 n I8 the analogue of the delete—one cross—validation estimator of

the covariance matrix of the LS estimator in the standard linear regression model. It has
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not been considered previously in the literature (to my knowledge). It has the attribute
that it is never downward biased (for any regressors and any 1) in the latter model, and

hence, t—statistics based on it over—reject less often than t-—statistics based on

vln, -ed ’ V4n - . ]
For each o € K, let V) denote 7/ .(Z'Z)+Z’QZ(Z’Z)+7 ., where Z

n
| 2 axd .
denotes Z .. VtJ1 is the covariance matrix of T (g) when I (§) is based on "‘ill

s

terms.

-

To establish the consistency of an and Awn , We assume:

ASSUMPTION L: (i) sup EU} <a.
i1

(i) Assumption K(iii) holds.
(iid) bIleIjl* Vj as n-o for some constants {bi :n > 1} and some positive definite
v x v malriz V.i , for each j> 1 that corresponds to e truncalion sequence & in k.

THEOREM 5: Suppose the estimators {T_(g)} are based on a random truncation rule k.
Then, under Assumptions A, B, D, J, and L, we have Vn(V;)_l -2, Iv'
i ~1 i « d

A (AT Rl , and A (T (8)-T,(8)) —N(Q, L) s n-o.

COMMENT: MacKinnon and White (1985) and Davidson and MacKinnon (1985) report
results from a number of Monte Carlo experiments comparing the performance of
t—statistics constructed using vln’ ceny V4n in the standard linear regression model.
They find that V 4n performs best in terms of the closeness of the true and nominal sizes

of the tests based on the t—statistics. Similar simulation results by the author show that
14

-

Ven outperforms V 4n USING the same criterion by a small but not insignificant margin.



APPENDIX

This Appendix contains proofs of the results stated in the text.

PROOF OF THEOREM 1: First we establish part (a). By Assumptions A(ii), B(iii), and
C(iii), V, is nonsingular and A  is well—defined for n sufficiently large. To see this,

note that either Z is full rank K, in which case
L]

. 2 -1
(A1) f\m,-n(Vn)Zglf oA min( T2 (Z72) 1y )>mf 0, Anin( %k T A max(Z72) > 0
for n large,or T (g) = g(x.), in which case

(A2) A_. (V. ))mf o2A g (e e B2 Z)” 17 e)>1nf 2 (x; I ay(Z°2) > 0

for n large, where €; is the j-th elementary n—vector, s is as in Assumption C(iii), and

Z isan nx '-‘h submatrix of Z of full rank Rn'

Consider any b e R' with b =1. Let n=12(Z'Z) 7. A beR®. To estab-
nKk n

lish part (a), it suffices to show that n’U 4, N(0,1) as n-w. By the central limit
theorem of Eicker (1963b, Thm. 1), this holds if (i) {U; : 12 1} are mean zero inid rv’s,

(ii)infa?>0, (m)supEU2(|U|>c)-'0 as ¢-o, and (1v)maxn/q n-0 as
il i<n

n-o . Conditions (1)—{111) hold by Assumptions A(i)—A(iii) respectively. Condition (iv)
holds if max |n | 0 as n-w and lim 5’7 > 0. We have

i<n n-w
- 2
(A.3) limnp'n>lim X o n /sup o = 1/sup 0 > 0
I~ w noi=1 '’ 1 J P14

using 7°Qn =1 and Assumption A(ii}. In addition, we have
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N 1/2 + 1/2
max| | <ma.x[Z (x) (2'2) 2, (xi)] [b'An'yl'm(Z'Z) 'ynKAnb]
i<n i<n n n

(A.4) < mzn:(PZlm(i))I/2 n /mf 02] i
i<n

| m=1 m “m j21

- 1/2
1/2 n’ Qn/finf cr?] -0 as n-w
S S R

< max(PZ (i)
i<n

by Assumptions A(ii) and C(ii). This establishes part (a).
To prove part (b), we show that for any be R’ with ||b] =1

(A.5) Q, = b’A_(ET (8) - F (g)-0 as n-ow.

Let g, =Z,(-)'§, , where § is asin Assumption D. Let g be the remainder
function from approximating g by g : gi: g—gy - Forany §eg, let g(X) denote
(&(x))s +--, E(x,))’ - Note that g (X)=2Z,6 . By Assumption C(i), '

'&'m(Z'Z)"'(Z'Z) = 'yl'm_for n large. Thus, for n large we have
ET (&) = 7,;,§(z'Z)+z'g,¢n(X) + 7,;K(z'Z)+z'g;n(X)

= 7ﬁ~(z'zﬁz'zgn + 'yl’lK(Z’Z)"'Z'g; (X)
n n

nKNK

— ’ ’ ’ + ’ r
= Tl *+ o292, (%),

(A8)
0y®) = s+ Tal8E)s Q= Qup= Q.

= b AN A - hr 4
Q,=b Anqnn(z Z)"Z gﬁn(x), and Q, =b Anl‘n(gnn).

To show an-»o as n-~+wo, we write
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1/2 1/2
1Qpy | < [br A 72,22 1, ] [g;n(X)'Z(z'Z)+z's;n(X)]

1/2
(A7) < [b' A (22 20z 7y y, Agdfint aﬂ nl/ 2?%? g ()|

1/2

e ote 1 12

< . -

< [1/;15 al] (s )" lle s,cnllq,m,, -0 as n-o,

where the convergence to zero uses Assumptions A(ii), C(i), and D.

To show anqo as n-+w, we write
1/2
(A8) Qp ¢ AaxAn I (8, N € 11/ gV, 20, lgy gz

for n large, using Assumption B(ii). In addition, we have
- (A.9) A a2 = % (¢ 7, x)) <n z sup 22(x) < i (X(y) -
cf|c cr—l i=1 xed
Thus, when Z is full rank « , by (A.1), (A.8), (A.9) and Assumptions B(iii), C(i), and

D, we have: For some constant C < o,

1 1/2
(A10) Q<O Mg sl llg g0 38 Bos
H lim Amin('y]'m(Z'Z/n)""y ) >0, then the right hand side of the first line of (A.1) is
n—~w
bounded below by inf ot C2/n for alll n large for some C,>0 and

il
-1 1/2 —1, \1/2
[n (nn)nn] ¢(s,) can be replaced by & (ry) in (A.10). In consequence,
Q,,n - 0 in this case with this same replacement made in Assumption D. When Z is not
of full rank &, (A.2) plus ;\mu(Z’Z) <A .5(Z'Z) must be used in place of (A.1) to
get (A.10).
To show part (c) of the Theorem, first suppose Assumption E holds. Then,

- -~ 2
Vi=1,...,v, Va.r(e:il"n(g)) < e'-'yl’m(Z’Z)'hrnneJ su;la 0;+0 as n-w, using Assump-

tions A(ii) and E, where € is the jth elementary v—vector. This result and (A.5) imply
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that the mean squared error of T (§) goes tozeroas n-~a.
Next, suppose T (§) =T _(g) —P-.g as n-wo and Assumption E does not hold.
Then, V, ~—~ 0 as n o and for some sequence of constants {c, € RV:n21} with

fle,ll =1 Vn, cﬁAﬁcn-»H © a§ n-o. Thus, we have

. 2 V2, .
A1) oAy T (@) TN € [cpAley]  IT,® - Ty R0
as n - o, which contradicts the result of Theorem 1 part (b). In consequence, Assump-
tion E is a necessary condition for weak consistency of T (g) under Assumptions A-D.

Since Var(b’T_(g)b) 2 inf ar?b"y' (Z’Z)+7 b for be RY with [[b]] =1, Assumption
n i>1 I n& nK

E is clearly a necessary condition for 1.2 consistency of rn(g).
Now, we prove part {d). Under Assumption F(i), Assumption C implies

Assumption E, because
’ ’ -_ ’ + I3 — 1
(A.12) 1220y, =e $2(2'2) 20e; = PZ, ()

for n large. Also, Assumptions F(i) and (ii) imply Assumptions C(iii) and (i) respec-
tively. Thus, it remains to show Assumption C(ii). For fixed k, if [Z,(x)Z%(x) dF(x)
is nonsingular, then Zﬁkznk/n is nonsingular for n large and

o1 ,n2 )
max PZ_, (i) Ering"znkei" A min(Zhx 2k /™)

1<$n
(A.13)

1
<=Z
Be—1

;13 zg(x)/,\min(zikznk/n) -+0 as n-o,
using Assumptions F(iii) and (v), where e, denotes the i—th elementary n—vector.

If /Z,(x)Z,(x) dF(x) is singular, we remove the minimal number of series func-
tions from the k—vector Z,(-) that yields a nonsingular integral. (If a nonsingular
integral cannot be obtained by removing functions from Z,(-), then it must be the case
that f (c'Zk(x))zdF(x) =0 VceRK v Li{x)=0 Vi21 by Assumption F(iv), and

PZ,(i))=0 Vi, Vn, asdesired.) The same functions can be removed from 2, with-
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out affecting the value of max Pan(i) , because Assumption F(iv) implies that the func-
i<n

tions removed correspond to redundant columns of Z . and max Pan(i) is a function of
i<n
an only through the space spanned by the columns of an . Now, the same argument as

in (A.13) applied to the transformed Z , matrices yields max Pznk(i) +0 a8 n-o.
i<n

The latter result implies that the set in (2.14) is non—empty for n large. Assumption

C(ii) follows, because (2.14) implies that
(A.14) max PZ_ (i) <b(x,) -0 as 2w,
1<n
Lastly, we establish part (e} of the Theorem. Assumptions G(i) and (ii) imply
Assumptions C(i) and (iii) respectively. Assumptions G(ii) and (iii) give: For n large,

;a2 ,
aneiIl / ’\min( anznk)

max PZ , (i) < max|
1<{n i<n

(A.15) k .
< ¥ sup zs(x)/,\min(zl’lkznk) -0 as noom,
s=1 xed

Assumptions G(ii) and (iv) give: For n large,
-1
(A.16) Ama.x('r;lk(zl’lkznk) 7nk) S '\max(7ﬁk7nk)/ '\min(zflkznk) =0

as n+o. (A.15), {A.16), and Assumption G(ii) imply that the set in (2.15) is non-empty

for n large. In consequence, (A.14) holds and
(A.17) ,\max('yl'm(Z'Z)'l"ynn) <b(k )0 as n-w.
Thus, Assumptions C(ii) and E hold. o

We now compute the functions A(-), ¢(-), and of-) for Example II of Section
3. The constants ¢, g (s—1) in (3.9) have beer chosen to normalize the given (shifted
T

and rescaled) sequences of Jacobi polynomials (see Szegd (1939, p. 67, eqn. 4.3.1) or
Abramowitz and Stegun (1964, p. 774, eqn. 22.2.1)):
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1if s =1t

z;(xr)z:(xr)w a, ﬂr(xr)dxr = Vr=1,...,d.

(A.18)
0 otherwise

NS

Since )\min(SDS')z.\min(SS'),\mjn(D) and Amin(DloDz)=,\min(DI)Amin(Dz) for
conformable matrices S and D and positive semidefinite matrices D, and D,),

equation (A.18) yields

1y .
’\min[ifizlESkzk(xi)zk(xi) Sk]
s) 112 ()28 (x) L 5 £
A9 zA.S'H.J Z¥ (x x)'= (x
( ) _ m.m( k kr=1 min [a'r’br] kI T kr oo, i
d
> I . J Z¥ (x )Z¥ (x )'w (x )dx ¢l =€¢> 0
B 0 00w 0]

forall n>N andall k>1. In conseciuence, Assumption H(ii) holds and we can take
A(+) asin (3.10).

We now establish Assumption H(iii) and determine ¢(-) for the orthonormalized
polynomials of (3.9). Standard results for the gamma function (see Abramowitz and
Stegﬁn (1964, p. 257, eqn. 6.1.46)) yield

(A.20) car,ﬂr(s——l) ~ 5 (ie, car’ﬁr(s—l)/ﬁ-o 1 as s~o).

In addition, standard inequalities for Jacobi polynomials (see Szegd (1939, p. 163, eqn.
7.32.2) or Abramowitz and Stegun (1964, p. 786, eqn. 22.14.1)) yield

. (a,8)1] o sm2x{a,5-1/2}
(A.21) xE?—-Il),I]IPs_l (x)| ~ 8

provided a, 8> -1. By the assumption concerning the ordering of the polynomials,

d
k2> II k /2. These results combine to give
r=1 '



max © sup  |z(x)] ¢ sup max IT |z} (x )]
s<k  d d s<kr=1 °r
| € X [ab € X [a_b
(A.22) x r=1[a'r N x r=1[a‘r ]

d
=1
for some C* <o, where h= max{al, Bis eees ay, By -1/2} (and s, denotes the
order of the polynomial in x_ whose product over r yields zs(x) ). Hence, Assumption

H(iii) holds and we can take {(-) asin (3.11).
To determine of-) for Examples 4~6 of (2.7) using (3.5), we need a bound on

A, 2
max sup lD st(x)l in terms of k. By (4.21.7) of Szegd (1939, p. 62),
<k, j¢v d

xerzl[ar,br]

(A.23) 4 p(®Px) = L5 + a + pR{oF 1A ().
Combined with (A.21) this gives

P(a ﬂ)(x) (Csmax{a+2t,ﬁ+2tt -1/2} ¢, t=0,1,

(A.24) [Bup

1,1)]dst 5=

for some C < o. Thus, we obtain

‘A-
A d h1s
d
dﬁup ID %z (x)] € 4P rE1 Tz-;r(xr)
T Hdx
xerﬁ1 [a,b,] xEr)___(l [a,.b] T
A
d i) ( :ﬁ) x. — a
d it S P + T
(A.2) B dsup r— r”3 Ge )—"—',];l:'sr'1 2b—r—:—a;—
dx
xE X [a'r’br] g
(c* 1'1 31/2 x:la.x{a +2A ﬂ+2A ,\ ~1/2}
r=1"

for some C* < o . By the assumption regarding the ordering of the polynomials,
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d
s> II-(s,/2), and hence,
r=1

\ X, ,
(A.26) sup [D st(x)| < C**s
d
xEI}__il [a,.b]

for v asin (3.13) and for some C** <. In consequence, for Example II with the
estimands of Examples 4—6 of (2.7) we can take of-) asin (3.13).
Next we prove Theorem 2. The proof uses the following lemma:

LEMMA A-1: Let & be as in Theorem 2. Then, for random regressors {xni} ,

(a) Assumption H implies

Z (X )Z (X )] - as,
[mu{n “Mx, )<4(~ ), ofky)}i=1

(b) Assumption H and A(-) bounded imply

>0 as., and

lim A ) Z (X )Z (X )
N=4m mn[nl =1 %

(c) Assumptions H and I(a) imply

n—'\ma.x[ ¥z, (X Iz (X )| <o as

n-a

PROOF OF THEOREM 2: First we prove part (a). By assumption, Assumption C(i)
kolds. By Lemma A-1, Assumption C(iii} holds with probability one. To establish

Assumption C(ii) we write: For n large,

’ 1 r
?i’: PZ; ) = ?i‘: & Znn(znnznn) Lokt
Ka

2 :
(A.27) < rlng.:]lznn N/ A L0 (B4 200 € 2 sugz (x)/Amm(Znn nx)

< 5 (R )M (% 20 )40 88 now as.

using Lemma A—1(a).
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To show that Assumption E holds, we write:

Iiﬁf\ [‘Y W Znlne 'Y ]<Eﬁ‘\max(7ﬁn7nn/ oy )l kp )/ Amin(Zg 2y )
(A.28)

$ Eﬁ: Ama.x('rnk'rnk/ a(k))a(n ) ’\mm(znn nn) 0 as.

using Assumption H(iv) and Lemma A—1(a).
Next, we establish part (b) of the Theorem. Suppose Assumption I(a) holds. Then,

(A20) - LimA_, (7, (Z°Z/n) "y 2 L A (7,7, 0/ Ay (2°2/2) > 0 2.

n-mw
using Lemma A-1(c).
Alternatively, suppose Assumption I(b) holds. Then,

K

(cZ (X )) -}?— Ensupz

(x) < o
n s=1 xelt

§

|I a2

(A.30) Am (ZM m“/(nn )= ”cr-
using the Cauchy—Schwartz inequality. Thus, we get

(A31) Lim Ay, (o7, (2 Z/n)t 9 2 L min Ay (70 T/ ) A2 Z/(nxy)) >

hal n-+m
using {A.30) and Assumption I(b).

Assumption B(iii) follows immediately from Assumption I(a) or I(b). o

PROOF OF LEMMA A-1: First, we establish parts (a) and (b). For any two psd k x k
matrics A and B, let ¢ be the unit k—vector defined by ¢’'Bc=2A_. (B) if

Apin(A) > Ayn(B) and c’Ac= Apin(A) otherwise. Then,

min

| A minlA) = Amin(B) € |e’Ac—c Be|

53 (ay—bg)ec,| € z ) |a

| .
s=1 t=1 1= Pt

Let X, abbreviate X .. Using (A.32) and Markov’s inequality, we get
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)

~ “‘min

[A(nn) n

a FalM(k ) n
[ 5 I (2(X,)(X;) — Bry(Xp)z(X;))

:

1/2

.4 [
n "n Xk )n
(A.33) <lg (%)

s(xi)zt(xi) - Ezs(xi)zt(xi)) I

n “n Az( )
. tzl —TE E(z (X, )zt(x) Ez (X )zt(X ))

1/2
3 LN OIS CATI

The "in probability" versions of Lemma A—1(a) and (b) follow from (A.33), because the

last line of (A.33) goes to zero as nL-w by  (3.14),
A )n
Amin 2 .E EZ_ (X,)Z, (X) >0 by definition of A(-) (using Assumption H(ii)),
*n

. [1/man{r (s, ) A, o DH/O(s)/2) + e by (3.14)
To obtain the "almost sure" results of Lemma A-—1{a) and (b), however, a more

complicated argument is needed. For any two truncation sequences 5y and Ko define

Alx 1n)

(A.34) £(kys Ko B) = (X;)Z n(Xi)’

SERR

We introduce a new truncation sequence % and an infinite subsequence {n,:m21} of

{n:n21} such that
() # 24, V021,

(ii) » satisfies condition (3.14) of Theorem 2,

(A.35) (iii) nmlnm_*_1 -1 as m-o,
(iv) lim é(k, k,n_)>0 as., and
m-w
(v) min &(k,6m) > §(n, kD ) Vm>1.
néln

m’ m+1
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Properties (iii )«v) yield:

n

(A.36) lim ¢(k,kn) = lLim min ¢(Fmn) 2 lim |- m ¢, %, n_)>0 as,
D~ m m-o IIE[Ilm,nm_}_1 m-p | m+1

which establishes part (b) of the Lemma. In addition, properties (i) and (ii) yield:

(A.37) 1 } ,["('“‘n)] , n |
max{siA(x )¢ r ) atm)l) U 2 )T max{ROA%(R)C (R AGR ) o))

as n-w. Combining (A.36) and (A.37) establishes part (a) of the Lemma.

=+ m

For parts (a) and (b), it remains to define % and {n_} and to prove (i)—(v) of

(A.35). Let p be an integer greater than 2/7. Define

(A.38) k=K Vo>1 and n_ =mP Vm>1,
B /PPy m
where [-] denotes the integer part of - . Property (i) holds immediately from the defini-

tion of % and the fact that « is non—decreasing. In fact, K satisfies the stronger
property

(A.39) kK _=kK >k Vn¢(m+1)P, vm> 1,
mP  (m41)P P

which is used below to establish property (v).
To establish property (ii), note that for all n greater than 2P and large enough
that {3.14) holds, we have

-

max{nﬁ,\2(ﬂn)c4(5n), A(,)a(x,)} € D[nl/p] p(1-7) ) D[2n1 o _ 2] p(1l-7)
(A.40)

_ D [nllp _ 1]I’(l—‘r) ,
where D* = p2P(1-7) Replacing n by [(nl/ P 4 1)P] in (A.40) yields
(A.41) max{kiA%(k )¢ (), Mk )e(k,)} < D+l

which establishes property (ii).
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Property (iii) follows immediately from the definition of {n_}.
Property (iv) is established using (A.33), the Borel-Cantelli Lemma, and Assump-
tion H(ii). Note that (A.33) holds with x replaced by & throughout. In addition,
© (4 9. . 1/2 /2
A42 E[n A%k )k )/n] ¢<D* I (mP) <o
( ) m=1¢ ®m m Ip™ I m=1 ’

using property (ii) and the fact that pr/2 > 1. Thus, the Borel—Cantelli Lemma gives
(A.43) £k, ko ) —E&(X, &0 )-0 as. a8 m-w.
By definition of A(-) (which relies on Assumption H(ii)),

(A.44) Lim E&(R, K, nm) >0.

m-
Equations (A.43) and (A.44) establish property (iv).
Property (v) is established as follows: By (A.39), Va ¢ [mP, (m+1)P],

mmll

P P
(A.45) m m

n
< Amin L£1Z Kn(xi)znn(xi)'

mp mp
A [E'ZE X))z (X,) gxmin[izlznn(xi)zﬂn(xi):]

Hence,
A(k ) n
min n“ Amin [_z Z, (X)Z, (xi)']
n€[mP?,(m+1)P] i=1 "n n
(A.46)
ME ) )
p P m
y—E .. I, [z Z. (X.)Zs (x.):J
(m+1)p mp min i=1 Kmp 1 Kmp 1

and property (v) holds. This completes the proof of parts (a) and (b).
To prove part (c) of the Lemma, note that (A.32) and (A.33) both hold with

Amip(*) replaced by Amax(*) throughout. Next, redefine £(x;, K9, m) with Amin(*)
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and A(x;,) replaced by Anax(®) and 1 respectively. Then, properties (i)—(iii) of
(A.35) hold as before and properties (iv) and (v) can be replaced by

(iv’) Tim é(k, k,n_) <o a.s.and
m-mw m
(A.47)

(v/) max  £(kmn) < €K Ko ) Ym2 1.
ne[nm ml

Properties (iv’) and (v’) combine to yield part (c) of the Lemma. Property (iv’) is estab-
lished in the same way as is property (iv) using the fact that Tim E{(k, %, nm) <o by

m-m

Assumption I(a). Given (A.39), property (v) is easily seen to hold. o
The proof of Theorem 3 uses the following lemma concerning Renyi—mixing. This
lemma is quite similar to Lemma 5 of Eastwood and Gallant (1887), but it covers inid as

well as iid random variables.

LEMMA A-2: Let {ei:izl} be o sequence of independent wvariables.  Let

{wp:i¢mmn2 1} be o triangular array of non—random weights such that max|w .| -0
i<n

as n-w. Let {{n} be a sequence of constanis such that £ +0 as n-w. Define

n
d
* _ *
Sn = iilw"iei +£n . Suppose Sn ——F as n-oo forsomedf F. Then,

P(S} <x|A)-2F(x) as n-o
for all continuity points x of F and for all events A with P(A) > 0.

COMMENT: When a sequence of random variables {S} :mn 2 1} satisfies the result of

Lemma A—2, it is said to be Renyi—mixing, see Renyi (1958).

PROOF OF LEMMA A—2: The proof follows that of Eastwood and Gallant’s (1987)
Lemma 5. If F(x) equals zero or ome, it is trivial to show the result of the Lemma. So
assume F(x) € (0,1) and x is a continuity point of F(x) . Let Q  be the event

S* ¢x). Using Rao (1984, Sec. 8.2, Prop. 2), if (i)limP(Q )=F(x), and
n 11

I-m
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(i) lim P(Q,|Q,) = F(x) foreach m with P(Q_)>0, then lim P(Q_ |A) = F(x)

g ] N=wm

for every event A with P(A) > 0.

m
Condition (i) holds by assumption. To obtain condition (i), let S = 2} Wi
=1

m
for m=1,...,n. Wehave |[S  |<sup|wy|Z |Ei|_p_'0 as n-wo. Hence,
i<n i=1

F{x) = lim P(Q ) = lim P(S3 —§__ <x) and lim P(Q,|Q,)

N-w - N-+mw n-m

— 1 i * - i
= Illix: P(S*—S_ _ <x|Q_) for every Q,, with P(Qm) >0. But,since S-S5 i

. * __ L 3
independent of Q_ , weget limP(Sf—S — <x)=1imP(SF -8 < $x|Q,) when-

n-=o -
ever P(Q_) > 0. These results combine to give condition (ii). o
PROOF OF THEOREM 3: First we establish the asymptotic normality result. Let
T = A;(I‘n(g)—l‘n(g)), where § and A} are as defined in Section 4. Let
ij1 = An(I‘n(g) —T_(g)), where § and A are as defined in (2.5) and (2.9) but with
k. replaced by "1j1' Let Bj be the event ({k } = {"ijl})' Let G_ be the event

n
s _ (1
(k, = k) . Note that (T;gy)nGnnBj— (Tnsy)nGnnBj. -
As shown below, Lemma A—2 and Theorem l(b) imply that {c”l‘]{l :n > 1}
Renyi—mixing sequence for each ¢ € RY and each j>1. This yields: Yce RY, VyeR,

and Vj> 1 such that P(B.) >0,

(A.48) lim P(c’ TJ <y|B;) = lim P(c T3<y) P(c'W<y),
n-o N-wm

where W~ N(Q,1.).

To see that Lemma A—2 applies to {C'Tiil} , let Zj abbreviate Z re] and write
n

{252 2R — e AT (e),

(A50) &, =c'A v nj(z Z)+ZJg(X) ¢’A T (g)+0 a5 n+a

: n
(A49) «'Tl= % c'A v (252 )+z ® e Ay
i=1 s n
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by equation (A.5), and

max w2, = max[c A (Z
i<n i<n T

(z Z, )+'r

2
+
AN n(x )]

AcmaxZ (x) (%5 Z)+z ()

A.51) <c’A_v
( o P i<n Hn

2K

Il

((lllnfcr )>maxPZ (i)-0 as n-w,
i21 i<a n

by Assumption A and the fact that {n]jl} satisfies Assumption C(ii). | Lastly,
c’TJ AW as now by Theorem 1(b).
Next, we have

P(c'TX<y) = 3 P(c T*<ynG |B)P(B)+ z P(c T*<ynGc|B)P(B)
J_

(A.52) -3 P(c T-l(ynG |B)P(B,) + P(c 'T* <y NG
J_

= J _ , ¢
JE P(c' Ty <y|B) (Bj) &, + P(c T;<ynGp),

where Gc denotes the complement of G and § = E P(c TJ <yn GclB )P(B)
J......
Using Assumption J we find that

=1
Thus, taking the limit a8 n~+o in (A.52) yields

1]
(A.53) 0¢6 ¢ 3 P(G;|Bj)P(Bj)=P(G§)-+0 as Do,

lim P(c'T < y) = lim 3 P(c TJ <yIB)P(B))
ot n-m ]—

(A.54)

m® .
= T limP(c'T) < y|B)P(B) = P(c'W ¢y),
j=1n-wo 3 J
forall ce R’ andall ye R, where the second equality holds by the bounded converg-

ence theorem, and the third equality holds by (A.48).
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Next, we establish the convergence in probability result. By Theorem 1(c),
c'A;ITJ 9,0 as n-w for all j2 1. In addition, the sequence {c’ Al ]'TJ n1} is
Renyi—mixing for each ¢ € RY and each j2 1, by an argument analogous to that given
above. In consequence, equations (A.48), (A.52}, (A.53) and (A.54) hold for all y#0
with T;il, T; , and c’W replaced by AanIJ1 , (A*)"IT* , and W, respectively,
where W is a random variable with point mass distribution at zero. o

The following lemma is used in the proofs of Theorems 4 and 5:
LEMMA A-3: Under Assumptions A, D, J, and K(iii),

max |§(x;) — g(x)| 2.0 as n-w.
i<n

PROOF OF LEMMA A-3: Let §(x) denote g(x) when g(x) is based on k, terms.
Since P(h =K )-+1 a n-o by Assumption J, it suffices to show that

:_nz.x| 8(x;) — g(x;)| —E,0 as n-o. By the triangle inequality and Chebyshev’s
i<n

inequality, this holds if

(A.55) M, = ma.le (x) (Z;22,2) 2 g(X) —g(x;)| 240 as 1o and
l
(A.56) M, = Ema.x[g(x) 2 (x) (zﬁnan)szMg(X)] 40 as nog.

First we establish (A.55). Conditional on B (&} = {n }), M, is non-

random and i converges to zero as n—wm by the proof of (A.5) with b=1, A =1,

n
— ’ + ’
I (e) =glx;), ET (g) replaced by Z ( ) (2 " n-‘) Z ’Jg(X) , %, replaced by
. 11
ni‘l, and max|-| added in the appropriate places. In consequence,
i<n

limP(M, > ¢)=1lim E P(M,, > ¢|B.)P(B))
(A57) n-m N-m j_l J J

E lim P(M; > ¢|B.)P(B.) =0,
_]—1 D~ w J J
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where the second equality holds by the bounded convergence theorem.

Next we establish (A.56). Note that e.'ian(Zl’ﬂ!an)'J"ane.j and
U’an(Zl'lank)+ZﬁkU are non—decreasing in k , since each is an explained sum of
squared from a projection onto the column space of an . Let Z denote an‘c . We have

2
M -Emax[Z- x) Z:. +Z’ ]
2n i<n n( ( nk nn)

[Fa

E max Z; (x,)"(Z;;

+ , , +q,
i<n nx nn) ZR (r‘i)'U Znn(znnznn) ZzY

(A.58) < E max e12(Z" AN A e;-U (2" )tzu
i<n
= max PZ__(i)-tr(%(Z°2) " 2+ Q)
i<n

< maxPZnR(l) K, Sup 0240 as n-wm,
i<n i21

using Assumption K(iii). o

PROOF OF THEOREM 4: It suffices to show that 3% —B+ 0% as n-o. We have

LE (0 + ) - &) -

1/2

+max| g(xi) - g(xi)l
1<n

(A59) ¢ 1z(U _pr) EU2

1_

+ ma.x(g(x ) — g(x )) + 2|=
i (n

=op(1) as n-o

using Lemma A-3 and the weak law of large numbers, which holds under Assumptions A,
K(i), and K(ii). Since (n- Rn)/n-' 1 as n-o under Assumption K(iii), the desired
result follows from (A.59). o

 Let ¥ snd Al ; -
PROOF OF THEOREM 5: Let Vo .a.nd Awn denote V_ and A Wi when the latter
are defined with {& } replaced by {nJ} . Suppose we can show that

(A.60) bﬁV{ln -2, V as n-aw



A-18

forall j21 and w=1, ..., 5. Then, Assumption L(iii) and standard arguments yield

-1/2 . : ~—1
A 1/2 Ad [A)
A2 wa A (A]] 2o

-1/2
|

wey ViV 21, [b]]

as n-w, forall j>1 and w=1, ..., 5, where AJ—[VJ
Let B be the event ({Tr.n} = {nl-l}). i P(B)>0, then limP(D )=0

N-wo

implies 1im P(D [B)-O for any sequence {D }, since P(Dj |B)<P(D )/P(B)

- w

In consequence, (A.61) implies that for all ¢ > 0
(A.62) limP

"vJ [VJ] -1 |l>e|B = lim
D—w N+ m

for all j such that P(Bj) =0.

R -] > an) -

By Assumption J and the bounded convergence theorem,

l=1limP(k =% )=1lim E P(k, =& IB)P(B)
I~m n-o j=1

(A.63)
= lim P(k, = &,|B,)P(B,) .

_]—1 n~4m
Hence, if P(B;) >0, then P(k, K.JIB)—P(n =%yIBj)+1 as n-o and (A.62)
4h VI i Al i * A *
holds with an ' Vn' Awn' and An replaced with an, Vn’ Awn’ and An
respectively. That is, if P(B.) >0,

(A.64) llmP[MV (V*)"l—l |[>e|B]—11mP[||A (A*)_I—I||>E|B]

I~wm n-+o

This result and the bounded convergence theorem give

1imp[||\‘r RUA IS P c] ~lim 3 p[uv o> e|B]P(B)
I~w n-o j=1

(A.65)

131 lim p[||v o> e]Bj]P(Bj) =0

forall e>0 and w=1, ..., 5, which establishes the first result of Theorem 5. The

second result of Theorem 5 is obtained by replacing ?wn and V; with A Wi and A; in



A-19

(A.65). The third result of Theorem 5 follows from the second result and Theorem 1(b).
It remains to establish (A.60). For the remainder of this proof all quantities that
depend on K , such as g(xi) , fJi , and § wn ' B€ taken to be defined with &n Te-

placed by the constant ) . In addition, Z and 7 are used to dencte 2 and 7.
n n

Consider a matrix ﬁn of the form dia.g({niﬁ?) for some constants

{€:i¢m,n21} that satisfy max|§ni—1|-0 a3 n-w. Since {ni} satisfies
i<n

Assumption C(ii) by the definition of X , the matrices ﬁwn are of this form for
w=1,2, 3,5 and so is the first term of f!4n .
Let \Aflj; = TE(Z’Z)+Z'ﬁnZ(Z'Z)+Tj . For arbitrary c e R® with [jcj =1, we

will show that
Jorfd _vive = B (S
(A.66) ble/(Vi-vle=bl¢/ (2 -0 )¢(-LP0 as 1w
where { = Z(Z’Z)+7jc € R" and
’ —_— J ’ ’ + ’ n_l FTYT - r + o
(A.67) cLc=c [bn*yj(z 7)tz [—n—I o0 ]Z(Z 7) 7j]c =0,(1)
as 0~ o. These results and Assumption L(iii) combine to give (A.60).
It remains to prove (A.66) and (A.67).- To show the former, let a_= (‘¢

n
= c’73(Z’Z)+7jc . Since Tim bl..!lAma.K(VIJl) <z, we have
n—-+o

. | .
(A88) b € O/ Ay (V) € CH/(Int o dp (7§(22)T 1) € O3/,

in
i>1
for some finite constants C‘; and CE )

With this result, we get
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bl (R —R)¢/Cyl < 1¢- (B, - A)¢/a,
= | 2 a0t - ey + 3 e-0delra,|
(o) < |2 el omy + R NACORTEN
#[23 60 ate) —s0x))/ny| + maxiy-lsmp A5 o,
- |i§1gm<f(uf ~ Dfay| +o (1) + op(1)i§1c‘i’ 1U;1 /2, + 05(1)

n
where the second equality uses the fact that max [{ .| <w, I (?
i{n,n>1 i=1

max|g(x;) —g(x;}| = op(l) by Lemma A-3.
1<n

The expression above is op(l) provided
b1l 9 2 n
(A.70) izlgnic?(ui — a?)[a, + o (1) and iilcﬁ Ul /ay = O(1) s nva.
To establish the two results of {A.70), we need the following inequality:

2
max g‘f = max|c'74(2'Z)7Z .(xi)]
i<n i<n J ni

(A.T1)

(FaY

a_-max Z (x)(Z Z)+Z %) = ag-0(1) -

<n
i Kn 11

Using this inequality and Assumption L(i), we get

n n 2
s izla,.jc?w?—a?van] =1y 2 ge(vi -]
= 1=
n

(A.72) 2
¢max { . (max(zla a. BczsupE[Uz——oz] -0 as n-w.
i<n J<Il ni=1 "jj>1 J

n
Since X fniC?(U? - ‘cr?)/aIl has mean zero and variance that goes to zero as n- o, it
i=1

converges in probability to zero, as desired.
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n
Next, we consider the rv _)3 (?lUi]/aIl . We have

(A.73) sup E T &1, /a, <sup E| U sup 3 Z/a <o and
n>l i=1 21 n2li=1

ar .3 Eu,l/a ] =.z c%w(mimaﬁ

(A.74)
(max C2/a )(sup var(|j)) B r §2/a 40 8 n-o.
jsa
Equations (A.73) and (A.74) yield the second result of (A.70). Thus, (A.66) holds for all
C.
We now prove (A.67). Let H = diag{1/(1—z;):i=1, ..., n}. Forany ce RY

with |lc]| =1, we have
1/2 i
('L )2 = [bJ(n 1)/n] o' 73(2-2)* 20|
(A1) < (i) e yi(ze 2y aemu) + (6] 2 (2 2 T2 BEX) - (X))

= W1n + W2n’

. 1/2
Wy, < [ble (2 2tz B2z 2) ] 7 [@00) - 8x)) (&) — (X))
1/2

(A.76) [ (vaJ)c[max (1 -2,) ] finf a] max|g(x,) - g(x;)|
i<n
—£,0 as n-o,
and
b'}
Var(Wy,) < gt ¢/ (2 7ytzaz(z:2)* 7je-max (1 - 2;)°
(ATT)

= Lo (pdvi)e max 1/(1 - 5,)* 40 a5 n 0.
n i<n

Since EW, =0, (A.77) implies that W, —P+0 as n-o. This result combined with
(A.75) and (A.76) yields ¢’L ¢ —£+0 as n-o, a5 desired. O
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Under the assumptions given below, v, is nonsingular and A is well—defined for
n large, see the proof of Theorem 1 given in the Appendix.

1/2
For the case where the multiplicand n_l(k)k) ¢(k) is used in Assumption D,
the appearance of ¢(k) implies that ¢(k) must be finite for all k > 1.

To see this, suppose that conditional on {Xi} = {xi} some sequence of random var-
iables {¢ } converges in distribution to a random variable { with probability one,
where ¢ does not depend on {x;} . This implies that for each bounded continuous
function f, E(f(fn)l{xi}) - Ef(¢§) as n-w. Taking the expectation over {X}
yields the unconditional convergence in distribution of {fn} to ¢.

Sirictly speaking, as used in (2.21), Sg(Rd) denotes the Sobolev smoothness index

of the periodic extension of g to RY rather than the Sobolev smoothness index of
g -

Cox (1988) actually considers non—random, rather than random, regressors, but re-
quires that they satisfy an asymptotic U[0,1] design. In Remark 3.1, p. 722, he
weakens the requirements on the finite sample design to the point where the regres-
sors could be a typical realization of an iid sequence of U[0,1] rv’s (provided
p < 1/2 in his equation (3.5)).

As in the previous footnote, Cox actually considers non—random regressors, but ones
that behave like typical regressors drawn from an iid sequence of rv’s with beta
distribution (provided p < 1/Z in his equation (1.2)).

The results given here for a scalar regressor also apply in the semiparametric regres-
sion model with multiple regressors provided the nonparametric part of the regres-
sion function depends on a scalar regressor (see Section 5.2 below). The results %or a
scalar regressor also apply in the additive regression model with multiple regressors
(see Section 5.1 below{

We prefer to call these models AIR models rather than interaction spline models
because the models need not be estimated by splines.
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If one wishes to estimate the individual functions {5j’ g:..} in (5.1), rather than

just the regression function g , then identifying restrictions need to be added to
these models. For example, one could require that the functions By --ey B4 inte-

grate to zero over £ (with respect to some measure) and that all the functions g im
integrate to zero over 2.

This is not to be interpreted to be a claim that the dimension d of the regressor
vector does not have an effect on the efficiency of estimators in AIR models.
Undoubtedly it does. The magnitude of d, however, does not have an effect on
the rate of convergence of series estimators in AIR models.

This holds provided F(-) is differentiable and the elements of x; are not function-
ally related with positive probability.

The parameters of these models are identified only up to scale. Hence, "consistency
up to scale" is the best one can do with respect to consistency.

I thank James MacKinnon for supplying the computer program that was used to
carry out these simulations. ‘
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