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ASYMPTOTIC NORMALITY OF SIMPLE LINEAR RANK
STATISTICS UNDER ALTERNATIVES'
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0. Summary. Results of Chernoff-Savage (1958) and Govindarajulu-LeCam-
Raghavachari (1966) are extended from the two-sample case to the general
regression case and, simultaneously, the conditions on the scores-generating
function are relaxed. The main results are stated in Section 2 and their proofs
are given in Section 5. Sections 3 and 4 contain auxiliary propositions, on which
the methods of the present paper are based. Section 6 includes a counterexample,
showing that the theorem cannot be extended to discontinuous scores-generating
functions.

1. Introduction. Simple linear rank statistics, given by (2.3) below, besides
being essential in non-parametric theory also provide a key to solving some
problems of general theory such as establishment of asymptotically most power-
ful tests for some problems. Under the alternative, the distribution of a simple
linear rank statistic is determined by the following three entities: first, regression
constants ¢;, - -+, ¢v, second, distribution funetions of individual observations
Fy, --+, Fy, third, scores a(1), ---, a(N). The scores are usually assumed
generated by a function ¢, e.g. by (2.4) below. The same might be assumed con-
cerning the regression constants ¢i, - - -, cv. The distribution functions may be
derived from a parametric family F(z, 6), 6 Q. If ¢; = 1 or 0, we have the
so-called two-sample problem.

The central problem concerning simple linear rank statistics is their asymptotic
normality either with “natural” parameters (ES, var §) or with some other
parameters (g, ¢’). Under some regularity conditions the answer is positive.
And, as may be expected, less regularity in one entity may be counterbalanced
by more regularity in the other. The most regular (¢, - -, cv) are those gen-
erated by a linear function, i.e. ¢; = @ + b, 1 £ ¢ £ N; the next condition, in
descending restrictivity, is boundedness of N max ci<n (¢i — /> V(e — &)Y
the mildest condition yet used in the literature is the Noether condition
maxi<igy (€ — DY (e — &) — 0 (see Hajek (1961), (1962)).

The most regular (Fy, ---, Fy) correspond to the null hypothesis F, =
... = Fy; next comes the condition of contiguity (see [7]); finally, we may only
assume that the variance of S under (Fy, -+, Fy) is of the same order as
under F; = .-+ = Fy; or allow for some rate of degeneration of the variance.

The regularity conditions concerning the scores, generated by a function
o(t), 0 < t < 1, are expressed in terms of smoothness and boundedness of ¢.
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An ideal ¢ is linear; Dwass (1956) succeeded in treating polynomials; Chernoff-
Savage (1958) assumed two derivatives, the ith derivative being bounded by
B — 7,4 =10,1,2,8 > 0,0 < t < 1; Govindarajulu-LeCam-Raghava-
chari (1966) considered a larger class, removing the assumption of existence of a
second derivative and relaxing the boundedness.

The first general attempt to treat the asymptotiec distribution of simple
linear rank statistics in the two-sample case was made by Dwass (1956). As we
already mentioned, using the method of U-statistics, he was successful with
polynomial scores-generating functions only. Then Chernoff-Savage published
their pioneering paper (1958), which was a basis for all further developments
excepting those based on the contiguity approach. The Chernoff-Savage con-
ditions have been improved as recent as that by Govindarajulu-LeCam-Raghava-
chari (1966). In all papers mentioned above, the regularity condition concerning
the regression constants (boundedness) and the scores-generating function are
rather stringent, whereas the assumption concerning (#,, ---, Fy) are broad
enough (non-degeneration of variance only).

In contradistinetion to it, the papers by Hajek (1961), (1962) are concerned
with situations, where (F,, ---, Fy) is very regular (either null hypothesis
or contiguous alternatives) whereas the ¢’s satisfy the Noether condition only
and ¢ is square integrable only. Thus the existing literature has dealt with
somewhat extreme cases, leaving open intermediate ones. For example, one would
need a theorem concerning discrete ¢ for (Fy, - --, Fy) satisfying milder con-
ditions than contiguity.

Govindarajulu-LeCam-Raghavachari (1966) improved the Chernoff-Savage
(1958) method by considering the sample distribution functions as processes
and proving some refined limiting properties of these. The methods of the present
paper are quite elementary, although rather involved. Two new methodical
tools are used, first, the inequality of Theorem 3.1; and, second, the method of
projection. The inequality may be used as follows. Supposing Theorem 2.3 has
been proved for a certain class & = {@o} of scores-generating functions, it then
holds for the class ® = {¢} consisting of functions ¢ possessing the following
property: for every ¢ > 0 there is a ¢ £ & and non-decreasing funetions ¢, and
o2 such that ¢ = @9 + @1 — @2 and f (@ + %) dt < e For example, if &, con-
sists of polynomials ( as in Dwass (1956) ), ® encompasses all functions considered
in Govindarajulu-LeCam-Raghavachari (1966), and, a fortior:, in Chernoff-
Savage (1958).

The method of projection was born by observing that many successful methods
of deriving asymptotic normality of statistics, which do not have the standard
form of a sum of independent random variables, consisted in finding such a
standard approximation. This was the case with U-statistics, with the method of
Chernoff-Savage (1958) and also with H4jek (1961). The method of projection
. is based on Lemma 4.1 giving to any statistic 8 = s(X;, ---, X,), where the
X’s are independent, the best approximation of the form § = > Y, l(X;)
where the functions I; may be chosen arbitrarily except for El’(X;) < . In
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this way the due approximation may be found quite mechanically. This is
important namely in more complicated situations, where the intuition and good
luck may easily fail. Moreover, since, for best S, we have E(S — 8)* = var §
— var § the remainder 8 —S may be treated in terms of mean square con-
vergence, which is usually easier to handle than the convergence in probability.

The problem of a single simple linear rank statistic may be generalized to a
finite set of such statistics (needed in the ¢-sample problem) or to a continuous
parameter set of such statistics (needed in dealing with statisties of Kolmogorov-
Smirnov types). The former generalization is touched in Remark 2.4, the latter
is out of scope. Also the cases of simple linear statistics for the independence
problem (see Bhuchonghul (1964)) as well as the symmetry problem are not
considered here.

To keep touch with Héjek (1961), (1962), we use a different notation than
Chernoff-Savage: especially we use ¢(t), axj), S instead of J(u), Ex; and Ty,
respectively. They also use the indicators Zy; of the 7th order statistics being
included in the first sample instead of ranks. Their formula D i Ey:iZy: reads
> 7,a(R;) in our notation, m denoting the number of observations in the first
sample and Ey; = a(7), 1 £ 7 £ N. To avoid cumbersome subseripts connected
with sequences we give to the limiting assertions the e-form.

2. The main results. Let X;, : -+, Xy be independent random variables with
continuous distribution funections Fy, ---, Fy, and let Ry, -+, Rx denote
the corresponding ranks. Introducing the function
(2.1) u(z) = 1, rz0

=0, z <0,
we may write
(2.2) R = 2 au(X: — X)), 1<i=<N.

We are interested in asymptotic normality of simple linear rank statistics
(2.3) S = > ican(R:),
where ¢;, - -+, ¢y are arbitrary ‘‘regression constants”, and ax(1), -+, ax(N)

are “‘scores” generated by a function ¢(¢), 0 < ¢t < 1, in either of the following
two ways:

(2.4) ax(?) = o(¢/(N + 1)), 1=5¢
(2.5) ax(3) = Eo(Ux™), 154

Il
I\
IIA

N,
N,
where Uy'? denotes the 7th order statistic in a sample of size N from the uniform
distribution on (0, 1). Scores given by (2.5) occur in statistics yielding locally
most powerful rank tests. Scores (2.4) are distinguished by simplicity. In what

follows ¢ and the scores are assumed fixed, whereas N, (¢, -+, ¢v) and
(Fy, ---, Fx) are considered variable. Let

(26) ¢=N">T"e, &= [re(t)dt, H(z)= N2 IiF(z).

A
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TuroreM 2.1. Consider the statistic S of (2.3), where the scores are given either
by (2.4) or (2.5). Assume that ¢ has a bounded second derivative.
Then for every € > O there exists K. such thai

(2.7) var 8 > K. maxicicn (€ — )’

entails

(2.8) MAX_wcoce |P(S — ES < z(var 8)) — (2r) 7 [Zoexp (—3/) dy| < e
The assertion remains true, if we replace var 8 in (2.7) and 2.8) by

(2.9) ot = > ravar [l{X)]

where

(210) I(z) = N2 7k(e — e) [luly — @) — Fuy)le'(H(y)) dF(y)

with ¢ denoting the derivative of ¢ and u( -) given by (2.1).

In applications we usually assume that the distribution functions differ
only slightly. Then the following variation of Theorem 2.1 is useful.

TrreorEM 2.2. Under assumptions of Theorem 2.1, for every ¢ > 0 there exists
a 8. > 0 such that the joint satisfaction of

(2.11) 21 (ei — €)° > 8.7 maxigign (0: — £)°
and

(2.12) max;, ;. [Fi(z) — Fi(x)] < 8.
entails

(2.13) sup, |P(S — ES < zd) — (2m) " [Zwexp (—3)) dy| < ¢,
where
(2.14) & = 2% (e — &) [ole(t) — ol dt.

DeriniTioN. We shall say that ¢(¢), 0 < t < 1, is absolutely continuous inside
(0, 1), if for every ¢ > 0 and 0 < a < } there exists a 6 = (¢, &) such that for
each finite set of disjoint intervals (ax, bx) the relation

Dralby —a] <6 and a<a,bi<1—a
implies
Do le(be) — o(ar)] < e

Thus ¢ is absolutely continuous inside (0, 1), if it is absolutely continuous on
(¢, 1 — a) for every ac (0, 3).
It is a well-known theorem of calculus that ¢(¢) is absolutely continuous in-
side (0, 1) if and only if there exists a function ¢'(z) integrable on every in-
“terval (o, 1 — @), 0 < a < %, and such that

(2.15) o(b) — o(a) = [26'(8) dt, 0<a<b<l
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We further know that ¢'() represents the derivative of ¢(¢) almost everywhere.
However, the converse is not true, i.e. the existence of the derivative a.e. does
not generally entail (2.15). Of course if the derivative exists everywhere and is
integrable on every interval (@, 1 — @), 0 < a < 1, then ¢ is absolutely con-
tinuous inside (0, 1). There also may be a finite number of points possessing
only the left-hand and right-hand derivatives as, e.g., in ¢(f) = |t — 3|. Let us
emphasize that for ¢t — 0 or 1 the limit of a ¢(t), which is absolutely continuous
inside (0, 1), may not exist or be infinite. Consequently (2.15) may not have
even sense fora = Qord = 1.

Consider again the statistic (2.3) where the scores are given either by (2.4)
or (2.5).

TuroreMm 2.3. Let o(f) = @i(t) — @), 0 < ¢ < 1, where the o) both are
non-decreasing, square integrable, and absolutely continuous inside (0, 1),7 = 1, 2.

Then for every ¢ > 0 and ¢ > 0 there exists N, such that

(2.16) N > N, var S > 9N maxigign (¢i — )’

entails (2.8).
As in Theorem 2.1, var S may be replaced by o> of (2.9) in both (2.16) and (2.8).
TueoreMm 2.4. Under conditions of Theorem 2.3, for every ¢ > 0 and 9 > 0
there exist N, and 8., such that joint satisfaction of

(2.17) S a(e— &)} >N max;<i<w (€; — £)?,
(2.18) ¢ N > Ny,
(2.19) max;jz |[Fzx) — Fi(z)| < 8ey
entasl (2.13).
RemArk 2.1. The theorem also holds, if the scores are given by
(2.20) an(3) = [(Eniwe(t) dt, 1 €45 N

ReMARK 2.2. The variance d°, given by (2.14), is asymptotically equivalent
(in the ratio sense) to the variance of S under the null hypothesis F; = F,
1 = ¢ £ N, and, as a matter of fact, could be replaced by it as well. Theorem
2.1 is as powerful, as far as the ¢’s are concerned, as the corresponding theorem
under null hypothesis. In particular, for the two-sample case it provides asymp-
totic normality even for cases where m/n — 0 or «, and also for cases where var
8§ under the alternative is of smaller order then d’.

Remark 2.3. (Comparison with Chernoff-Savage and Govindarajulu-LeCam-
Raghavachari). If ¢; = 1,1 £ 7 < m,and = 0,if m < ¢ £ N,andif F; = F,
127i=m,and F; = G,m < 1 £ N, we have the problem considered by Chern-
off-Savage (1958) and by Govindarajulu-LeCam-Raghavachari (1966). In the
present paper the condition concerning the function ¢(t), denoted in the above
papers by J(u), is relaxed. Actually, taking a () satisfying the condition
)] £ K[t(1 — )7, 5 > 0, and putting

(221) @t) = o(3) + [imax[0,¢'(s)1ds, u(t) = fimax [0, —¢'(s)]ds
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we have () = ¢i1(t) — o(t), where ¢1 and ¢» are non-decreasing, square in-
tegrable and absolutely continuous on intervals (¢, 1 — €), 0 < e < %. Also if,
according to the assumptions of Govindarajulu-LeCam-Raghavachari, lo'(8)]
=< fo 4+ fg, where f; is integrable, f is integrable and U-shaped, and g is square
integrable and U-shaped, the functions (2.21) have the desired properties (see
Lemma 2 of [4]).

The present theorem surpasses the corresponding results of [2] and [4] in
the following further respects: first, the scores given by (2.5) are considered
throughout, second, a simplified variance is given under (2.12) or (2.19), and,
finally, it is shown that the asymptotic normality holds with natural parameters.

On the other hand, both papers [2] and [4] show that S is asymptotically
normal (g, ¢°) with

(2.22) p = 2 acEle(H(X)))

The present author did not succeed in showing that this is still true under con-
ditions of Theorems 2.3 and 2.4. From Theorem 4.2 it follows that ES is re-
placeable by u in Theorems 2.1 and 2.2 provided that > ¥.c¢l is bounded by
a multiple of X 1~ (¢i — €)%

In [4], Theorem 1, uniformity is also shown with respect to a class of ¢-func-
tions. This is missing in the present paper, though a similar extension is easily
possible. The corresponding class would consist of function ¢ = ¢, — ¢ such
that g1, ¢2 € ®*, ®* being a class of non-decreasing functions, which are uniformly
square integrable, absolutely continuous on intervals (¢, 1 — ¢), 0 < € < 3,
and compact with respect to the convergence such that ¢, — ¢ is equivalent
to [T Jer’ — ¢'| dt — O for every ¢ > 0.

ReMARk 2.4. (The c-sample problem). Theorem 2.1 contains all of the essen-
tials for providing the c-sample limit theorem considered in [4] and [8]. Let

8, -+, 8 be a decomposition of the set {1, ---, N}. Let n; = card s;,
1 £ j £ ¢, and consider statistics
(2.23) S; = Ziesi aN(Ri),

where the scores are given either by(2.4)or(2.5). Then any linear combination
of the statistics S;, say

(2.24) 8 = 251 NiS;
is of the form (2.3) with
(2.25) ci = MAj, if 1:88,', 1§j§c.

ReMARK 2.5. The constants K., 8., N.,, 8., appearing in the above theorems
depend on ¢.
REeMARK 2.6. By integration by parts we have

(2.26) [ lu(y — =) — Fy)le'(H(y)) dF(y)
= —[i,¢'(H(y)) dF(y) + const.
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8. Variance bound for monotone scores. We shall start with two elementary
lemmas.

Lemma 3.1. Let a(zy, -+ -, x1) be a real function, non-decreasing in each argu-
ment. Let Xy, -+, X, be arbitrary independent random variables such that
E,a(X13 e 7X’l)l < .

Then, for k < h, the function
(3.1) a(zy, -, m) = Bla(Xy, -+, X)) Xy =21, Xk = @)

1% non-decreasing tn each argument.

Moreover, if B(xr, -+, ax) 18 another real function, non-decreasing in each

argument, then

(3.2) cov [a(Xl y "t Xh)y B(Xl PR Xh)] Z 0)

provided the covariance is well-defined.
Proor. The first part is trivial. For the second part, if A = 1, (3.2)
follows from the identity

cov [a(X1), B(X1)] = $E{[a(X1) — a«(YD]B(X1) — B(YD],
where Y} is an independent copy of X; . Generally,
cov [a(X1, - -, Xn), B(Xy, -+, Xu)]
= cov[a(Xy), B(X)) + [ cov [z, Xz, -+, X1), B(2, Xz, -+, X)) dFy(z)

holds, where & (and also ) is defined by (3.1) with £ = 1. The functions @ and
B and also the functions a(z, - - -), and B(z, ---) are non-decreasing, so that the
assertion holds for A, if holding for A — 1. The proof is terminated. (Another
proof follows from Theorem 2 of [9].)

LemMa 3.2. Let Ry, -+ , By be ranks of a sequence of independent observations
Xy, -+, Xy possessing arbitrary continuous distribution functions Fy, --- ,Fx .
Let a(1), - -+ , a(N) be arbitrary scores and u(z) be given by (2.1). Then

Ela(R)| X = , X; = y] — Ela(R:)| X: = 2]
(3.3) = [u(z — y) — Fi(@)] Lizs (a(k) — a(k — 1))
'P(R,'= kIX1= CII,X,' = — 1), 175]

Proor. Specify ¢ = 1, j = 2 in order to simplify notations. Denote by
B(k|ps, --- , px) the probability of k& successes in N independent trials with re-
spective probabilities of success p1, - -+, p~ . Thus B(-|-) denotes the proba-
bilities of the Poisson binomial distribution. We obviously have, in view of (2.2),

(3.4) P(R1 = kIX1 = x,X2= y) =B(klls u(x - y)) F;;(Q}),"' )FN(x))

and
(35) P(Bi=k|Xy=2z) = B(k|l, Fu(z), Fo(2), -, Fn(2)).
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We easily see that
B(k|1, Fx(z), --- , Fn(2))
= Fu(2)B(k|1, 1, Fy(x), -+ , Fa()
(3.6) + (1 — F(2))B(k|1, 0, Fy(z), - -+, Fx(2))
= Fy(z)B(k|1, 1, Fs(x), - -+, Fx(2))
+ (1 — Fy(2))B(k + 1|1, 1, Fs(x), - -~ , Fa(x)).
Consequently, in accordance with (3.4) through (3.6),
P(Ri=Fk|X;i=2,Xs=y) — P(Ri = k| Xy = z)
= [u(z — y) — Fo(x)][B(k|1, 1, Fs(z), -+, Fu(x))
— B(k + 1|1, 1, Fy(z), - -+, Fx(2))]
=z —y) — Fz)][P(Ri=k| Xi=2,Xo=2—1)
— PR, =Fk+1Xs=2X,=2—1)],
where z — 1 could be replaced by any number smaller than z. Now the last rela-
tion entails
Ela(Ry)| X1 = 2z, X2 = y] — Ela(B)| X1 = 7]
= 2 a(k)[P(Ry = k| X1 = 2, X» = y) — P(By = k| X, = 2)]
= (e — ¥) — Fo(@)) Tl a(b)[P(R = k| Xa = 2, X2 = 2 — 1)
—PRi=k+1|Xi=2,X,=2—1)]
= [u(z — y) — Fo(z)] Dieala(k) —a(k — V)]P(Ry = k| X; =2, X; = z —1).
Q.E.D.

The inequality derived in the following theorem will remove troubles caused
by the fact that the scores-generating function ¢ may be unbounded in the
vicinities of 0 and 1, and may have no bounded second derivative in intervals
(,1 —¢€), 3 >e>0.

TuroreM 3.1. (Variance inequality). Let X, --- , Xy be independent random
variables with arbitrary continuous distribution functions Fy,---, Fy. Let
¢, - ,cy be arbitrary constants and a; £ - -- = ax be non-decreasing constants.
Let R; denote the rank of X;,1 < ¢ £ N.

Then, writing a; and a(<) interchangeably,

(3.7)  var [ ca(R)] £ 21 maxicizy (6 — ©)° 20a (@i — a),
‘where
¢=N"1 Zg;lc,-, a=N"'2taa:.
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Proor. Without losing generality, we may assume ¢ = @ = 0. Obviously
(3.8) var[X_imca(R)] = Shacl var [a(R3)]
4 s cov [a(R:), a(Ry)]
and
(3.9) S ¥.iclvar[a(R:)] € B{ 2t cid(R:)} < maxi<icw ¢PE{D 1 d’(RY)}
= MaXi<i<y cf Z?;l a¢2,

since D7y a*(R:) = D_i- al constantly.

The covariances are more tedious. (2.2) entails that R, is a non-decreasing
function of —X; (note the minus sign), j 7, and of X; " If X; = rand X; = y
are fixed, both R; and R; are non-decreasing functions of —Xj, k # 4, j, and the

same is true about a(R.) and a(R;), since &z = --- = an . Consequently, by
Lemma 3.1,
(3.10) cov[a(R:), a(R)| X =z, X; =9y 20, 1 2ij=<N.

Also E[a(R:)| X: = z, X; = y] as well as —E[a(R;)| X: = z, X; = y] are both
non-decreasing in x and —y, 7 5 j, according to the same lemma. Thus

(3.11) ~—cov{E[a(R:)| X:, Xj], Ela(R;)| X:, X5]} 20, 1 ¢ j = N.
Notice that
cov [a(R:), a(R;)] = E cov [a(R:), a(R;)| X, X}

+ cov {Ela(R:)| X:, X;], Ela(R;)| X, Xjl},
and

> i cov [a(R:), a(R;)] = — 21 var [a(R:)] £ 0,
which entails
(3.12) 2 2 e Ecovia(Ry), a(R)| X:, X))
S — 2. 2 sscov {Ela(R)| X, X)), Ela(R:)| Xy, X}
Furthermore, in view of (3.10), (3.11) and (3.12),
2= 2 eici cov [a(R:), a(R;)]
(3.13) =< maxigicy¢{D D i B covia(R:), a(R;)| X, Xj]
— 2. 2 wicov {Ela(R:)| X, X, Ela(R;)| X, X1}
< —2maxicien & D, seicov {Ela(R)| Xs, XJ), Ela(R)| X, X 1}

The last inequality together with (3.8) and (3.9) implies that (3.7) will be
proved, if we show that

(3.14) — > ouicov {Ela(R:)| X:, X, Ela(R;)| Xs, X1} £ 10 2Ll
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Note the identity
cov {Ela(R:)| X¢, X)), Ela(R;)| X, X}
(3.15) = cov {E[a(R:)| X, Ela(R;)| X0} + cov {E[a(R:)| XJ], Ela(R;)| X))
+ E{(Ela(R:)| X+, X;] — Ela(R:)IX])(E[a(R;)| X, Xi]
— E[a(R;)| X))}

We shall now try to obtain bounds for the sums of the right-hand side members
of (3.15) over all j 5 . The first two members give the same sum, which may be
bounded as follows:

— 2 2 cov {Ela(R:)| X ], Efa(R;)| X} .
(3.16) = 2 cov {Ela(R:)| X, B[~ 2 sei a(R))| X}
= X Yicov {Efa(R.)| X, Ela(R:) — 27| X4}
= Y lavar{Ela(R)| X1} £ 2l varla(R)] £ XVaal
In the following sum we shall utilize the relation (3.3), the self-evident fact
(X — X;) — Fi(X)lu(X; — Xo) — F(X)) £ 1,
and the inequality
PR,=Fk|Xi=2,X;=2—1)
SPR;.=k|Xi=2)+PR;=k—1|X;=1x),
entailed by (3.4) through (3.6). We thus obtain
-2 2w B{(Bla(R:)| X:, X;] — Ela(R:)| X)(Ela(Ry)| X, X,
— Efa(R;)| X3])}
< 2 i 2ok 2 (@ — ara)(an — a1) E{[P(R; = k| X))
+ P(R: =k — 1|X)IIP(R; = h|X;) + P(R; = h — 1] X}
(3.17) = Y — ae1)(an — @aa) Y Do [P(R: = k)P(R; = h)
+ P(R;=k — 1)P(R; =h — 1)+ P(R; =k — 1)P(R; = h)
~+ P(R: = k)P(R; = h — 1))
<4220 (e — a)(an — at) = 4ay — @)’
=8> Yial

‘Here we have used the fact that the events R; = k, 1 < i < N, are disjoint so
that > i P(R; = k) = 1. Now (3.14) follows from (3.15), (3.16) used twice,

and (3.17).
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4. Projection approximation for S with smooth and bounded scores. The
central limit theorem is concerned with sequences of sums of independent random
variables. Its scope may however be extended to statistics that are asymptotically
(as the number of observations increases) equivalent to such sums. Given a

statistic S = s(X;, --- , Xx), defined on a sequence of independent observations
X, -+, Xy, we shall try to approximate it by a statistic
(4.1) L= 20Xy,

where the functions /; may be chosen arbitrarily. Ovbiously, L is a sum of inde-
pendent random variables Y; = [;(X,),1 £ 7 = N. The set £ of statistics L such
that El*(X;) < w, 1 < ¢ < N, availed with the usual inner product
(L, ') = ELL, is a closed subspace of the Hilbert space of square integrable
statistics. The best approximation in the mean square is given by a projection
on the subspace £. It is worth noting that the possibility of a successful approxi-
mation of a statistic by an L-statistic is usually better than one would intuitively
expect. The projection may be obtained explicitly in terms of conditional ex-
pectations as is shown in the following.

Prosecrion LEMMma 4.1. Let X, , - -+, Xy be tndependent random variables and
8 = s(X1, -+, Xx) be a statistic such that ES* < . Let

(4.2) S=>YE8|X) - (N —1)ES.
Then
(4.3) ES = ES
and
(4.4) E(8S — 8)* = var 8 — var S.
Moreover, if L is given by (4.1) with E1}(X:) < «,1 <4 £ N, then
(4.5) E(S — L) = E(8 — 8)+ E(§ — L)~

Proor. (4.3) is obvious, and (4.4) follows from (4.5), if we take for L the
constant ES = ES and rearrange the formula. Thus it remains to prove (4.5).
Without loss of generality, we may assume that ES = ES = 0. We obviously
have

(4.6) EI(S — 8)(8 — L)] = LILEE(S — S| X)(E(8|X:) — (X))
Now, since X, --- , X» are independent,
E[E(S|X;)| X, = ES, if g4
= E(8|X,), if j=1.

Consequently, since ES = 0, E(SIXi) = > L E[E(S|X;)| X] = E(8| X)),
ie. -

(4.7) E(8 — 8|X,) =0, 1

IA
-,
IIA

N.
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By inserting (4.7) into (4.6), we obtain E[(S — 8)(§ — L)] = 0, which is
equivalent to (4.5). Q.E.D.
If S is a sum of simpler statistics, we may obtain the following upper bound

for the residual variance E(S — 8)% .
ResipuaL VARIANCE Lemma 4.2. Let 8 = D> Y1 S;and § = DL E(8|X5)
— (N — 1)ES. Then '

B(S — 8)* = X4 ElS: — E(8:| X))
(4.8) + 2 2 os {B([S: — E(8:| X)IIS; — E(S;] X3))
— Dieij cov [B(S: | Xa), B(S;| Xi)]}.
Proor. Utilizing (4.4) we obtain .

(49) E(S—8)*=varS — var 8 = 32 ¥ [var 8; — var 2_ia B(S:| Xi)]
+ Dieileov (8i, 8;) — 2k cov [E(S:| Xa), E(S; | X)]}.

Next

var 8; — var D B(8:| Xi) = var8; — 2 it var E(S:| X)
(4.10) < var 8; — var (8:| Xs)
E[8; — E(S:| X))

Further, obviously,
cov (S, 8;) = cov [E(8:| X.), BE(S;| X.)]
(4.11) + cov [B(S8:| X;), E(S;| X;)]
+ E{[S: — E(8:| X)IIS; — E(S;| Xj}}.

Now, (4.8) is an easy consequence of (4.9) through (4.11).

TursoreM 4.1. Let the scores-generating function ¢ possess a bounded second
derivative. Consider the statistic S8 = D imcip(R/(N + 1)) and put
S =Y, E(8|X:) — (N — 1)ES. Then there exists a constant K = K(g) such
that forany N, (e1, -+ ,cx) and (Fv, +++ , Fy)

(4.12) E(S —8)"' = KN 2 Va(ei — &)™
Proor. Without loss of generality we may assume ¢ = 0. Put
(4.13) pi = Bi/(N + 1), 1=7=ZN,

so that 8 = 2_1—; cee(p:). By Taylor expansion

(4.14) o(p:) = olE(p:| X)] + (pi — E(ps| X4))¢'IB(p:| X1)]

, + (pi — E(p:| X))k X)
where k() is bounded, say k’(z) < Ky, —o <z < »,1 < ¢ = N. Thus
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S =8 + 8 + S; where

S, = Eli\;l CiPMI[E(Pi|Xi)],

8e = 21 cifelB(pi | X:)] — E(ps | X:)o'TE(p: | X)),

8 = 2 Lacde: — E(ps| Xo)I'k« X2).
Now, denoting the projection of S; by S;, wehave 8 = 8 + & + S;. Now,
obviously S; = 8., so that
(4.15) E(S — 8)* £ 2B(8: — &)* + 2E(S; — Ss)*
2B(S, — §1)* + 2ESS.
Next, by the Schwartz inequality .

E832 = Z?;l Ci2 Zﬁ:l E{ [o: — E(Pi I X;)]4k¢2(X¢)}
< Ky il 2.V Elpe — E(pi| X9

As is seen from (2.2), for X; = z, B; = pi(N + 1) is a sum of N independent
zero-one random variables. Consequently

=
=

Elp: — E(p:| X' £ 3N + 1), 1<{=N,
and '
(4.16) ESe = Ki(N + 1) 2 el

Further we shall apply Lemma 4.2 to S; = Z'Ll Sii, S1i = ¢ oo [E(ps | X9
Let K, be an upper bound for [¢'(¢)], 0 < ¢ < 1. Then, obviously,

(417) E(Si — E(S1:| X)) £ (N + 1)°KiE var (R:| X3)
< 1¥(N + 1)7Ky.
The convariance term in (4.8) is somewhat more complicated. We have
E([S: — E(8:| X)IIS; — E(S;| X))
(4.18) = E cov (8S:, S;| X:, X;)
+ B{[E(S:| X:, X;) — E(8:| X:)IlE(S;| X:, X;) — E(8;| Xn)]}.
Now (2.2) entails, ¢ # j,
cov (8ui, S| Xs, Xj)
= cici(N + 1)_2Zk¢i,i{min Fi(X3), Fu(X;)] — FU(X)Fu(X)}e' (B(p:i| X3))
¢ (E(p;i| X3)),
and, consequently,
E cov (8u:, Su | X:, Xj)
» = ci(N + 1) Ypsi [ [{min [Fi(z), Fi(y)] — Fu(z)Fu(y)}
-0 (B(ps| Xs = 2))¢'(E(p:| X; = y)) dF (z) dF (y).
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The right side may be transformed as follows: Introducing
(419) la(s) = [lu(z — s) — Fu@)l'(B(p:|X: = z)) dF (),
we easily see that o
[ J {min [Fi(x), Fu()] — Fu(@)Fu(y)}e (Blpi] X = 2))¢'(B(p; | X; = 9))
-dF () dFi(y) = cov [La(Xx), Li( X))
Thus
(4.20) E cov (Sii, S| Xi, Xi) = cci(N + 1)7° D2t ov [a(Xa), Ln( X))
On the other hand, (3.3) yields
E(Su:| Xx) — E(81:)
= o[ [E(oi| Xe, Xi = ) — E(p:|Xi = 2)l'(E(p: | Xi = 2)) dF(x)
= (N + 17 [[u(z — X&) — Fu(@)le/(B(ps] X = z)) dF(2)
= c(N + 1)7la(Xx).
Consequently, ¢ #= j, k # 1, k # j,
(4.21) cov [E(Su:| Xi), E(Siy| Xe)] = cci(N + 1)7? cov [la(Xw), Lin(Xe)]
Again by (3.3),
(422) E(p:|X:, X5) — E(p:s| X5) = (N + )7 (X — X;) — Fi(X)]
Consequently,
\E{[E(Su|X:, X;) — E(Su| X)IE(Sy| X, X;) — E(8y| X))}
< Kiewi|(N + 1) E{u( X — X;) — Fi(X0)]w(X; — X5) — F{X7)]}]
(4.23) = Kilew|(N + 1) Bu(X: — X;) — E(X)I
E[u(X; — X2 — FX)I}}
< 1Kyleei|(N + 1)7
Now, combining (4.18) through (4.22), we obtain
|E{[S1: — E(Su:| X)lI8y — E(Sy | X))}
(4.24) — Dawi €0V [E(Su| Xi), E(Sy; | Xa)|
< 1K fec|(N + 1)
Applying (4.17) and (4.24) to (4.8), we obtain ,
(4.25) E(8 — $)' £ KN + )7 Xiaed + KN + 1720 2 is e
< 3K(N + )7 2l
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Finally, (4.15), (4.16) and (4.25) yield
E(S — 8) = (K + 3K)(N + 1) 2l

Thus (4.12) is proved with K = K; + §K:, K, and K being upper bounds for
the squared first and second derivatives, respectively.

ACKNOWLEDGMENT. In the original paper inequality (4.12) was proved for
¢ linear only, whereas for ¢" bounded a weaker version of (4.12) with N -
replaced by N ~* was proved. The present stronger result is based on a suggestion
kindly made to the author by Mr. Peter J. Huber.

TarorEM 4.2. Under conditions of Theorem 4.1 there exists a constant M = M ()

such that for any N, (a1, -+, ¢x) and (F1, -+, Fy)

(4.26) B(S — ES — >0z < MN ™ 2 V0 (e — )’
and

(4.27) (ES — p)* < MN ' 2 L,

where

(4.28) Z: = (X)) = N XHa(e; — ¢i) [lu(z — Xi) — Fy(z)]
-¢'(H(z))dFy(x), 1 <%= N,

and
u= Zi;lcif‘P(H(x)) dF (z),

with H(z) = N D11 Fi(z).
Proor. We have

8§ — BS = XL X YaclE(e(p) | X:) — Eelpy)).
Since, obviously,
> aele) = LiaBle(p) | X) = XiaBe(e) = Liae(i/(N + 1)),

we also have

(429) 8§ — BS = X0 Yia(e — colB(e(pi) | Xi) — Eolps)l-

Now (3.3) yields

E(p(pi) | Xs) — Eo(pj)
= [Iu(z — X:) — Fu@)] Zi=le(k/(N + 1)) — ((k — 1)/(N+1))]

(4.30) P(R; = k|X; = ¢, Xs = ¢ — 1) dFy(2)
= (N + D)7 [ [u(z — Xi) — F(@)1Ble'(p)) | Xj = 2, Xi =z —'1]
dFi(z) + (N + 1) Kia;, es] < 1.
Farther,

Blo'(0) | X; =z, X = 2. — 1] = ¢(H(z)) + 2N °K:6:, 8] =1,
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so that
E(e(p;) | Xs) — Be(ps) = (N + 1)7 [ [u(z — Xi) — Fy()]
@ (H(z))dFi(z) + 3N Kdy:, |vd = 1.
Consequently, since EZ; = 0,
ES — ES — YN, 7)) LB Y (¢ — ¢)3NTPRty,)?
S ON Ky 2 ia (2 5wl — )’
S 18VKe DT (o — 0

This together with (4.12) yields (4.26) with M = 2K + 36K,
Finally,

o(p:) = (H(X:)) + (ps — H(X:))e' (H(X:)) + 3(psi — H(X:))ki( X:)
yields, for proper Ky,

|Bo(p:) — Bo(H(X:))| S KN
Therefore,
(431) |BES — uf = (ZihcilBe(p:) — Eo(H(X:))D* £ KN 2 el
Obviously, (4.31) provides (4.27) with M = K, The proof is terminated.

5. The proofs to Section 2.

Proor oF TaroreM 2.1. Consider the random variables Z; given by (4.28)
and o* given by (2.9). Obviously, EZ; = 0 and o* = ) i varZ;. Choose a
¢ > 0. Then by the Lindeberg theorem, there exists a § > 0 such that the rela-
tion

(5.1) 2 flesse B dP(Z; S x) < 8
entails
(5.2) sups |P(D 11 Zi < 20) — &(z)| < %,

where ®(z) = (2r)* J2wexp (—%y") dy. Furthermore, there exists a 8 > 0
such that

(5.3) 2(2) — (z = B)| < 1 —w <7< w,
and, in turn,

(5.4) sups |[P(XY1Z: < 20 & Bo) — (z)] < de.

Now we shall show that (2.8) is entailed by

¢5.5) var 8 = [267" supcear [’ ()] + @77 + 1M maxigicw (¢ — ©)’,

where M is the constant appearing in (4.26). If the scores are generated from
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¢ by (2.4), Theorem 4.2 entails

(5.6) lo — (var 8)}| < M* max,cicn e — él,
and hence (5.5) entails .

(5.7) ¢ = 2 max [¢; — ¢ sup |¢'(2)].

On the other hand (4.28) implies that always

(5.8) |Z{ < 2 max |e; — & sup |o'(£)].

Putting together (5.7) and (5.8) we see that the left side of (5.1) is zero for o
satisfying (5.7). Thus (5.5) entails (5.1).
Further, by (4.26) and (5.4)

P(8 — ES < xs) £ P(2Y4Z; < 20 + Bo) + P(|S — ES — > Y. Z > Bo)

S ®(z) + 3+ E(S — BES — 2.N.1%:)Y/8%

< &(z) + }e + M maxicicn (¢i — 6)/8°0"
Now (5.5) and (5.6) entail

B%s® = 4 M max; i<y (¢i — €)%
Altogether we have
(5.9) P(8 — ES < z0) < &(2) + fe + 1 = &(2) + e
Similarly we would prove the opposite inequality leading to
(5.10) sup, [P(8 — ES < z0) — &(z)| < %e.
Finally, if ¢ < 1, then (5.5) and (5.6) entail
lo — (var 8)} < 8o,

which combined with (5.3) and (5.10) yields
(5.11) sup, |P(8 — ES <z (var 8)}) — &(z)| < e

In the course of the proof we have also proved that (5.10) is satisfied, if var S
is replaced by ¢* in (5.5).

If the scores were generated by (2.5), it suffices to note that, by the Taylor
expansion

Bo(Ux®) = ¢(i/(N + 1)) + xiw

where |kiv] < kN, where k does not depend from 7 nor from N. Thus, denoting
the statistic D1 cian(R;) by 8, if (2.4) holds, and by &', if (2.5) holds, we have

E(8 — ES — 8 + ES) = (N 2Liales — &)’ £ N2 Vales — &)

Consequently 8 — ES is equivalent to ' — ES’ in asymptotic considerations.
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Proor or TrEOREM 2.2. Obviously
%o (H(z)) dF ()

50 (Fi(2)) dFi(z) + Ri(y)

(512) = o(F;(y)) + const + Ri(y)
= ¢(Fi(y)) + const + Ri(y),
where
(5.13)  [Ri(y)| = [supele” (8)] + sup:le'(2) || maxiz [Fi(z) — Fiz)]
= L max;;.|F{(z) — Fiz)|, 1 =435 =N,
where I. = L(¢) is defined by the last equation. Let
(5:14) Vi= (¢ — c)p(F(X:))
and note, by inspection of (2.14), that
(5.15) & =2 avar V..
Now (2.26), (4.28), (5.12) and (5.14) entail
(5.16) Z:= V;+ const + R (X)N* 2 ule; — e,

where R.* is bounded by the right side of (5.13). Consequently, by (5.15),
lo — d = [(var 21 Zo)Y — (var 21V
(5.17) < (Xtavar (Z: — Va))?
< [ZL WV Xhale — o)L maxq 0 [Fi(z) — Fiz)|
< L2 XY (e — 6% max ;0 [Fi(z) — Fi(2)].
Now we find &, as follows. In accordance with Theorem 2.1, we choose Kj,
and « > 0 such that ¢ > Ky max;ci<n (¢ — €)° entails
sup; |[P(S — ES < zo(1 £ a) — &(z)| < e

Then we choose 8. so that, first, 5 > Kj., and, second, that (2.12) entails
[o/d — 1| < a. The last implication is for sufficiently small §. guaranteed by
(5.17) and (2.14). The rest easily follows.

Proor or THEOREM 2.3. We shall start with the following

LamMma 5.1, If ¢ satisfies the conditions of Theorem 2.3, then for any o > 0
there exists a decomposition

(5.18) e(t) = $(t) + en(t) — @), 0<it<1,
such that ¥ is a polynomial, ¢1 and @2 are non-decreasing, and
-(5.19) Joo'(t) dt + [10'(1) dt < @,

Proor. Without losing generality, we may assume that () itself is non-
decreasing. Take an ¢ > 0 and put
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eo(t) = o(e), 0<t<yg
(5.20) = (1), esSt<1l—eg
=p(l—¢), 1l—e<t<]l;

(5.21) es(t) = min [0, o(¢) — e(e)];
(5.22) ea(t) = max [0, o(t) — ¢(1 — €)].
Obviously,

(5.23) o(t) = leo(t) + ea(t) + es(t)],

where ¢3 and ¢, are non-decreasing. As ¢(t) is absolutely continuous on (¢, 1 — ¢),
eo(t) is absolutely continuous on the whole interval (0, I). Consequently, there
exists a derivative o (¢) such that

(5.24) oo(t) = o(e) + [1e0'(s) ds, 0=s¢t=1
Further to every 8 > 0 there exists a polynomial ¢(s) such that
(5.25) Joled(s) — a(s)| ds < 8,

h ]

because the set of polynomials is a dense subset of the L;-space of integrable

functions.
Putting

(5.26) ¥(t) = (o) + [1q(s) dt,

(5.27) ei(t) = es(t) + ou(t) + [omax [0, ¢o'(8) — g(s)] ds,
(5.28) ex(t) = [omax [0, ¢(s) — ¢0'(s)]ds,

we easily see that

(5.29) e(t) = ¥(t) + eu(t) — exl8),

where ¥(¢) is a polynomial, ¢,(¢) and ¢x(¢) are non-decreasing and (5.20) may
be satisfied by taking ¢ and 8 in the above construction sufficiently small. Q.E.D.
Now take ¢ > 0 and n > 0. Then choose 8 > 0 and ¥ > 0 such that

(5.30) |B(z) — ®[(z = B (1 £ 7)7]| < %e
and « > 0 such that
(5.31) a < g min (v, 15%)/84.

Subsequently, we decompose ¢ according to (5.18) with a satisfying (5.19)
and (5.31). We denote

(5:82) 8y = 2 taca(R/(N + 1)),
Si = Yl cwd Bi/(N + 1)), i=1,2.

Obviously S = S, + 81 — S:. As the functions ¢; are non-decressing, we have,
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in Yiew of Theorem 3.1,
(5.33) |(var 8) — (var 8y)Y| £ (var (S — ) = (var Si)! + (var S)?

' < (42) maxigigr los = 6l T (ehal /(N + 1)) + ¢2a(3/(N + 1))
Now, it may be easily shown that for a non-decreasing ¢
(5:34) 2 Ld'G/(N + 1)) £ (N + 1) [id (1) dt < 2N [16°(t) dt.
Combining (2.16) and (5.31) through (5.34), we obtain
(5.35) |(var 8)! — (var 8y)* = [var (8 — 8y)' £ (var S)! min (v, 18¢).

Finally, let Ky = K;.(¢) be the constant, the existence of which was established
in Theorem 2.1. ( Note that ¢ is a polynomial, and hénce has a bounded second
derivative.) Then put N, = (1 — ¥) n'Kj. so that (2.16) in conjunction
with (5.35) entails var Sy > Kj(¥) maxicicn (¢; — ¢)°. Consequently, by
Theorem 2.1, (5.30) and (5.35)

P(S — ES < z(var 8)})
< P(8y — ESy < (z + B)(var 8)}) + P(|S — ES — 8, + ESy| > 8(var 8)*)
< P(Sy — ESy < (z + B)(var 8)*) + var (8 — S,)/8" var (8)
< P(8y — ESy < (z + B)(1 — ) '(var §,)%) + e
SP((z+ (1 —7)) + 2= 8(2) +e

Similarly we would prove the opposite inequality needed in (2.8).

The version of the theorem, in which var S is replaced by ¢°, may again be
shown by a decomposition of ¢*, corresponding to the decomposition ¢ = ¢ +
o — 2. If we define o,%, o and o2’ by (2.9) and (2.10) where ¢ is replaced by
¥, o and ¢, respectively, we obtain

(5.36) o — oy] £ 01+ 0,
Now, if ¢ in (2.10) is non-decreasing then the random variables
Jlu(z — X3) — F2)l'(H(z)) dF (), 1<j=<N,
are (see Lemma 3.1) non-negatively correlated. Consequently,
on’ £ 4 maxy<icn (¢; — €)°
2lavar IN? 20 [z — Xo) — Fo@)le' (H(z)) dF (z)]
(5.37) S 4maxigicy (6 — €)°
iavar (Jlu(z — X)) — Foz)lew (H(z)) dH(z)
= 4 maxigi<n (€ — &) D Vavar ew(H(X:))
< 4N maxigigr (i — €)° [oen(2) dt, h=1,2.
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Further, in view of (5.36), (5.37) and (5.19),
lo — oy’ £ 8N maxigicn (s — &)’

Thus, for « sufficiently small, ¢ — oy| may be made negligible in comparison
with N maxic;<v (¢; — ¢)°. Since, as we see from (5.6) and (5.35),
[(var 8p)} — oy| as well as |(var S)} — (var 8y)} are under control, too, the
difference |0 — (var S )} must be negligible with respect to o if

0'2 > "IN ma;X]_éiéN (C,‘ —_— 6-)2

and N is sufficiently large.
The case of the scores given by (2.5) could be treated similarly as in the

proof of Theorem 2.1, with help of the inequality
2 i [Bo(Uy®) £ N [o6°(1) dt

holding for any ¢.
Proor oF THEOREM 2.4. We omit this proof because it consists in the combina-

tion of methods used in the proof of Theorems 2.2 and 2.3.

6. A counterexample. The conditions concerning ¢ in Theorems 2.3 and 2.4
geem to be close to what is necessary, if the other conditions are unchanged. If ¢
is discontinuous, asit occurs with the median test and in the first stage of the
study of the Kolmogorov-Smirnov test, the assertion of the theorems is not valid,
as we now show. Particularly, we shall assume that

(6.1) (1) =0, 0<t<4,
=1, $=t<1,

and that the scores are given by (2.4). Further, let ¢; = 1,1 £ ¢ £ 1N, and
=0,IN<iSN;F,=F,1 <1 £ iN, where F is a uniform distribution on
(t,1) and, F; = G, iN < i £ N, where G is uniform on (0, 1) u (3, 1). Then, if
N is a multiple of 4,

(62) 8= 2Ziacw(R/(N +1)) = max {0, Lo [u(} — X:) — 3}

with u given by (2.1). Since S is a truncated binomial random variable, the order
of var S is N, say var 8 > bN, N = 1. Further, max; <i<y (¢; — €)° = 9/16, s0
that varS > gN maxicign (¢; — ¢)® if 9 £ (16/9)b. On the other hand
P(8 = 0) — 1, so that (2.8) is not implied by (2.16) for any N, , provided that
e< tfandn £ 0.
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