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ASYMPTOTIC NORMALITY OF THE MAXIMUM-LIKELIHOOD
ESTIMATOR FOR GENERAL HIDDEN MARKOV MODELS

By Peter J. Bickel,1 Ya’acov Ritov1 and Tobias Rydén2

University of California, Hebrew University and Lund University

Hidden Markov models (HMMs) have during the last decade become
a widespread tool for modeling sequences of dependent random variables.
Inference for such models is usually based on the maximum-likelihood esti-
mator (MLE), and consistency of the MLE for general HMMs was recently
proved by Leroux. In this paper we show that under mild conditions the
MLE is also asymptotically normal and prove that the observed informa-
tion matrix is a consistent estimator of the Fisher information.

1. Introduction. A hidden Markov model (HMM) is a discrete-time
stochastic process ��Xk�Yk�� such that (i) �Xk� is a finite-state Markov
chain, and (ii) given �Xk�, �Yk� is a sequence of conditionally independent
random variables with the conditional distribution of Yn depending on �Xk�
only through Xn. The Markov chain �Xk� is sometimes called the regime.
The name HMM is motivated by the assumption that �Xk� is not observable,
so that inference and so on has to be based on �Yk� alone. HMMs have
during the last decade become widespread for modeling sequences of weakly
dependent random variables, with applications in areas such as speech
processing [Rabiner (1989)], neurophysiology [Fredkin and Rice (1992)] and
biology [Leroux and Puterman (1992)]. See also the monograph by MacDonald
and Zucchini (1997). Commonly, the conditional distributions of Yn given Xn

belong to a single parametric family, such as the normal or Poisson families,
so that Xn selects the parameter used to generate Yn. The distribution of
Yn, that is, the marginal distribution of �Yk�, will then be a finite mixture
from the parametric family. Mixtures are frequently used in i.i.d. settings
to increase the dispersion governed by a specific parametric family, and this
effect is obviously found in the marginal distribution of an HMM as well. In
addition, �Yk� is dependent. HMMs can thus be viewed as an extension of
Markov chains, but also as an extension of mixture models.

Inference for HMMs was first considered by Baum and Petrie, who treated
the case when �Yk� takes values in a finite set. In Baum and Petrie (1966),
results on consistency and asymptotic normality of the maximum-likelihood
estimator (MLE) are given, and the conditions for consistency are weakened in
Petrie (1969). In the latter paper the identifiability problem is also discussed,
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that is, under what conditions there are no other parameters that induce the
same law for �Yk� as the true parameter does. For general HMMs, Lindgren
(1978) constructed consistent and asymptotically normal estimators of the
parameters determining the conditional densities of Yn given Xn, but he did
not consider estimation of the transition probabilities. Later, Leroux (1992)
proved consistency of the MLE for general HMMs under mild conditions, and
local asymptotic normality (LAN) has been proved by Bickel and Ritov (1996).

The topic of the present paper is asymptotic normality of the MLE. Al-
though Bickel and Ritov (1996) prove that an estimator similar to the MLE is
asymptotically normal and achieves the information bound, their result falls
short of proving that the likelihood function has a second derivative and that
the MLE itself is asymptotically normal. Asymptotic normality of the MLE
can be inferred from their paper, but an extra argument is needed; see Ritov
(1996). In this paper we show that the curvature of the likelihood function is,
asymptotically, equal to the information bound and hence the MLE is asymp-
totically normal. We also work with conditions that are weaker than those in
Bickel and Ritov (1996).

Before we proceed, we need to introduce some notation. We let �Xk�∞k=1 be a
stationary Markov chain on �1� � � � �K� with transition probabilities α�a� b� =
P�Xk+1 = b � Xk = a�. We also let �Yk� be an � -valued sequence such
that given �Xk�, �Yk� is a sequence of conditionally independent random
variables, Yn having (conditional) density g�y�Xn� with respect to some σ-
finite measure ν on � . Usually � is a subset of R

q for some q, but it may also
be a higher dimensional space. Moreover, both �α�a� b�� and �g�·�a�� depend
on a parameter ϑ, that is α�a� b� = αϑ�a� b� and g�·�a� = gϑ�·�a�, where ϑ
is to be estimated from a realization of �Yk�. The set to which ϑ belongs is
denoted by �, and we assume � ⊆ R

d. Note that the stationary distribution
of �Xk�, denoted by �π�a��Ka=1, does also depend on ϑ.

The most common set-up is that where ϑ contains the transition proba-
bilities themselves, together with some parameters characterizing the g’s. In
particular, it is often the case that gϑ�y�a� = f�y�φ�a�� for some parametric
family f�y�φ�. We refer to this situation as the “usual parametrization.” We
now give a few examples of HMMs.

Example 1 (Mixture of normal distributions). Let K = 2, ϑ = �α�1�2��
α�2�1�� µ�1�� µ�2�� σ2� and gϑ�y�a� = σ−1ϕ��y − µ�a��/σ�, where ϕ�·� is the
standard normal density. Hence, � = R and ν is Lebesgue measure. The
distribution of Yn is a mixture of two normal distributions with different
means but equal variances. This model has been used to model electric current
through channels in ion membranes; see Guttorp [(1995), page 109], for a short
description and Fredkin and Rice (1992) for a fuller treatment.

Example 2 (Mixture of Poisson distributions). Let K = 2, ϑ = �α�1�2��
α�2�1�� µ�1�� µ�2��, and let gϑ�y�a� be the Poisson density with mean µ�a�.
Hence, � = �0�1�2� � � �� and ν is counting measure. The distribution of Yn

is a mixture of two Poisson distributions. Albert (1991) proposed this HMM
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as a model for series of daily counts of epileptic seizures in one patient [see
also Le, Leroux and Puterman (1992) and MacDonald and Zucchini (1997),
page 146], Leroux and Puterman (1992) used it for modeling fetal lamb move-
ments.

Example 3 (Markov-modulated Poisson process). Let �X�t�� be a contin-
uous-time Markov chain on �1� � � � �K� with intensity matrix Q = �q�i� j��, let
λ�1�� � � � � λ�K� be nonnegative numbers and let �N�t�� be a doubly stochastic
Poisson process (or Cox process) with random intensity function �λ�X�t���;
that is, given �λ�X�t���, �N�t�� has conditionally independent increments and
N�t + s� −N�t� has a Poisson distribution with mean

∫ t+s
t λ�X�u��du. Such

processes are called Markov-modulated Poisson processes, and they have been
proposed for modeling traffic streams in complex telecommunication networks.
See, for example, Heffes and Lucantoni (1986). The parameters of the model
are the q’s and the λ’s. To make the connection to discrete-time HMMs, let
T0 = 0, let Tk be the time of the kth event in �N�t��, Yk = Tk − Tk−1
and Xk = X�Tk�. Then ��Xk�Yk�� is an HMM, except that given �Xk�,
the distribution of Yn depends on both Xn−1 and Xn. Replacing �Xk� by
�X′

k� = ��Xk−1�Xk�� takes us back to the standard set-up, however.
The joint density of �X1� � � � �Xn�Y1� � � � �Yn� [with respect to (counting

measure)n × νn] is given by

pϑ�x1� � � � � xn� y1� � � � � yn� = πϑ�x1�
n−1∏
k=1

αϑ�xk� xk+1�
n∏

k=1

gϑ�yk�xk��

and the joint density of �Y1� � � � �Yn� (with respect to νn) is

pϑ�y1� � � � � yn� =
K∑

x1=1

· · ·
K∑

xn=1

pϑ�x1� � � � � xn� y1� � � � � yn��(1)

here, as well in the sequel, p is used as a generic symbol for densities. Looking
at (1), one might think that the complexity for computing pϑ�y1� � � � � yn� is
exponential in n. Fortunately, we can compute the likelihood much faster by
introducing the matrix Gϑ�y� = diag �gϑ�y�a�� and noting that

pϑ�y1� � � � � yn� = πϑ

{ n∏
k=1

Gϑ�yk�Aϑ

}
1�(2)

where Aϑ = �αϑ�a� b�� and 1 is a K × 1-vector of ones. The computational
complexity of (2) is only linear in n. A further useful observation is that con-
ditional on the Y’s, �Xk� is still a Markov chain, although nonhomogeneous.
It mixes geometrically fast, however, and this is the key to our analysis below.

The MLE, denoted by ϑ̂n, maximizes pϑ�Y1� � � � �Yn� over the parameter
set �. In many cases we may renumber the state space of �Xk� and the g’s,
leaving the likelihood unchanged, and the MLE is then not unique. In partic-
ular we may do so if the usual parametrization is employed. This ambiguity
is obviously not a big concern, though.
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In practice, the MLE is often computed using the EM (expectation-
maximization) algorithm; �Xk� then play the role as missing data. In the
context of HMMs, the EM algorithm was formulated by Baum and co-workers;
see, for example, Baum, Petrie, Soules and Weiss (1970). A recent general
reference is the monograph by McLachlan and Krishnan (1997). For HMMs
with the usual parametrization, the M-step, in which the parameters are
updated, is always explicit in the transition probabilities; that is, the new α’s
are obtained without a numerical search. If the parametric family f�y�φ�
is an exponential family, the M-step is often explicit in the φ’s as well.
The E-step, in which conditional expectations are evaluated, is computa-
tionally more demanding. In most cases it is carried out using the so-called
forward–backward algorithm, the complexity of which is linear in n; we refer
to Rabiner (1989) and Leroux and Puterman (1992) for details. The major
drawback of the EM algorithm is its rate of convergence, which is only linear
in the vicinity of the MLE. Various modifications of the basic algorithm
have been suggested to improve on this; see, for example, Jamshidian and
Jennrich (1997), Meng and van Dyk (1997) and references therein. Little
has been published on which of these modifications perform well for HMMs,
however.

Alternatively, one may maximize (2) with respect to ϑ directly, using any
standard numerical optimization scheme. The downhill simplex algorithm [see
for example Press, Flannery, Teukolsky and Vetterling (1989)], is particularly
attractive since it does not require any derivatives of the objective function,
and derivatives of (2) are time-consuming to compute.

Whatever optimization algorithm is used, one always faces the problem that
the likelihood surface of an HMM in general is multimodal. Any algorithm,
including EM, may thus converge towards a local maximum or even a saddle
point. Today there are no methods guaranteed to find the MLE, but the best
advice available is to start the optimization algorithm from several different,
possibly random, points in �.

2. Further notation and assumptions. The true parameter is denoted
by ϑ0. We deliberately replace the subindex ϑ0 by ‘0’ in notation like Pϑ0

(becoming P0) and so on. The Lq�P0�-norm will be denoted �� · ��q; that is,
�� · ��q = �E0� · �q�1/q. Sometimes Ym� � � � �Yn will be abbreviated Yn

m, with an
entirely similar notation for the X-process. The symbol D denotes differen-
tiation with respect to ϑ, with D forming the gradient and D2 forming the
Hessian. Occasionally we will use a dot instead of D and two dots instead of
D2. Finally, C denotes a generic constant, finite and nonnegative, whose value
may change from one expression to another.

The following assumptions will be referred to in the sequel.

(A1) The transition probability matrix �α0�a� b�� is ergodic, that is, irreducible
and aperiodic.

(A2) For all a and b, the maps ϑ �→ αϑ�a� b� and ϑ �→ πϑ�a� have two con-
tinuous derivatives in some neighborhood �ϑ − ϑ0� < δ of ϑ0. For all a
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and y ∈ � , the map ϑ �→ gϑ�y�a� has two continuous derivatives in the
same neighborhood.

(A3) Write ϑ = �ϑ1� � � � � ϑd�. There exists a δ > 0 such that (i) for all 1 ≤ i ≤ d
and all a,

E0

[
sup

�ϑ−ϑ0�<δ

∣∣∣∣ ∂

∂ϑi

log gϑ�Y1�a�
∣∣∣∣
2]

< ∞�

(ii) for all 1 ≤ i, j ≤ d and all a,

E0

[
sup

�ϑ−ϑ0�<δ

∣∣∣∣ ∂2

∂ϑi∂ϑj

log gϑ�Y1�a�
∣∣∣∣
]
< ∞�

(iii) for j = 1�2, all 1 ≤ il ≤ d, l = 1� � � � � j, and all a,∫
sup

�ϑ−ϑ0�<δ

∣∣∣∣ ∂j

∂ϑi1
· · · ∂ϑij

gϑ�y�a�
∣∣∣∣ ν�dy� < ∞�

(A4) There exists a δ > 0 such that with

ρ0�y� = sup
�ϑ−ϑ0�<δ

max
1≤a� b≤K

gϑ�y�a�
gϑ�y�b�

�

P0�ρ0�Y1� = ∞ � X1 = a� < 1 for all a.
(A5) ϑ0 is an interior point of �.
(A6) The maximum-likelihood estimator is strongly consistent.

Without loss of generality, we assume that the δ’s in (A2)–(A4) agree.

Remark. If (A1) holds, �Xk� is ergodic under P0. This implies that �Yk�
is ergodic as well; see Leroux [(1992), page 130]. (A2) and (A3) are essentially
regularity conditions of “Cramér type,” that we cannot expect to weaken con-
siderably. (A4) fails to hold if there are two g0’s with disjoint support; let, for
example, the g’s be location shifts of Beta densities. Heuristically, the result
is a gain of information, however, rather than a loss, and it is possible that
our results could be refined to include also this case.

In (A6) we assume that ϑ̂n → ϑ0� P0-a.s. as n → ∞ (up to a possible
permutation of states). Consistency of the MLE is discussed by Leroux (1992),
and the conditions needed to ensure (A6) are essentially the following: (i) (A1);
(ii) for all a and b, the map ϑ �→ αϑ�a� b� is continuous on �; (iii) for all a
and y ∈ � , the map ϑ �→ gϑ�y�a� is continuous on �; (iv) � is compact
(this assumption can be relaxed somewhat; see Leroux’s paper); (v) for each
a, E0� log g0�Y1�a�� < ∞; (vi) For each a and ϑ there is a δ > 0 such that
E0�sup�ϑ′−ϑ�<δ�log gϑ′ �Y1�a��+� < ∞; (vii) for each ϑ such that the laws Pϑ

and P0 agree, ϑ = ϑ0 (up to a possible permutation of states).
Obviously, conditions (ii), (iii) and (vi) are global, whereas conditions (A2)–

(A4) are all local. Condition (vii) holds, for example, if the HMM has the usual
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parametrization, finite mixtures of the parametric family �f�y�φ�� are iden-
tifiable and the φ0’s are distinct. Families of which finite mixtures are identi-
fiable include the normal distribution, the Poisson distribution and the expo-
nential distribution.

Example 1 (Continued). We may define � by α�1�2�� α�2�1� ∈ �0�1�,
µ�a� ∈ �−1/ε�1/ε�, and σ2 ∈ �ε�1/ε� for some small ε > 0. Conditions (A2)–
(A4) are then all satisfied, as are the conditions for consistency listed above
provided α0�1�2�� α0�2�1� ∈ �0�1� [implying (A1)].

Example 2 (Continued). We define � by α�1�2�� α�2�1� ∈ �0�1� and µ�a� ∈
�0�1/ε� for some small ε > 0. Then (A2)–(A4) and the consistency conditions
are satisfied provided (A1) also holds.

Example 3 (Continued). Define � by Q having off-diagonal elements
bounded by 1/ε and λ�a� ∈ �0�1/ε� for some small ε > 0. Then (A2)–(A4) and
the consistency conditions are satisfied provided (A1) also holds; it does if Q0
is irreducible and all λ0�a� > 0. Parameter estimation and consistency of the
MLE are further discussed in Rydén (1994).

3. Main results. To prove asymptotic normality of the MLE, we need
two lemmas which themselves are of considerable interest. These lemmas
involve the loglikelihood, denoted by Ln�ϑ� = log pϑ�Y1� � � � �Yn�, and the
Fisher information matrix for �Yk�, denoted by �0. Intuitively, �0 may
be thought of as the limiting covariance matrix of either n−1/2L̇n�ϑ0� or
D log pϑ0

�Yn�Yn−1� � � � �Y1�. In Section 4 we show that both of these defini-
tions are valid.

The first lemma is a central limit theorem for the score function at ϑ0.

Lemma 1. Assume that (A1)–(A4) hold. Then n−1/2L̇n�ϑ0� → � �0��0� P0-
weakly as n →∞.

We prove this lemma in Section 4. The second lemma is a law of large
numbers for the Hessian of the log likelihood.

Lemma 2. Assume that (A1)–(A4) hold and let ϑ∗
n be any, possibly stochas-

tic, sequence in � such that ϑ∗
n → ϑ0� P0-a.s. as n →∞. Then n−1L̈n�ϑ∗

n� →
−�0 in P0-probability as n →∞.

This result will be proved in Section 5. Note that Lemma 2 shows that
if (A1)–(A4) and (A6) hold, the observed information, that is −n−1L̈n�ϑ̂n�,
converges to �0 in P0-probability. The main result is now as follows.

Theorem 1. Assume that (A1)–(A6) hold and that �0 is nonsingular. Then

n1/2�ϑ̂n −ϑ0� → � �0��−1
0 �� P0-weakly as n →∞.
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Proof. The proof essentially uses the approach introduced by Cramér. For
n large enough, ϑ̂n is an interior point of � and �ϑ̂n −ϑ0� < δ, and we can then
make a Taylor expansion of L̇n about ϑ0,

0 = L̇n�ϑ̂n� = L̇n�ϑ0� + L̈�ϑn��ϑ̂n −ϑ0��

where ϑn is a point on the line segment between ϑ0 and ϑ̂n. Rewriting this
expression, we obtain

n1/2�ϑ̂n −ϑ0� =
[−n−1L̈n�ϑn�

]−1
n−1/2L̇n�ϑ0��

The result now follows from the above lemmas. ✷

Remark. Lemmas 1 and 2 also imply LAN of our model. In fact, they even
imply uniform LAN, that is, that in the expansion

Ln�ϑ0 + n−1/2u� −Ln�ϑ0� = n−1/2uTL̇n�ϑ0� + n−1 1
2u

TL̈n�ϑ0�u+Rn�u��

Rn�u� tends to zero in P0-probability uniformly over compact subsets of R
d.

The superindex T denotes transpose.

Throughout the remainder of the paper, we shall make two assumptions
that simplify the notation but do not remove any principal difficulties. The first
assumption is that ϑ is one-dimensional, which saves us from using notation
like uuT. At one instance we do use this notation, namely, in the definition
of the Fisher information matrix below. Our second assumption concerns the
transition probabilities. By (A1), there exists a positive integer r such that
all r-step transition probabilities α

�r�
0 �a� b� = P0�Xr = b � X0 = a� > 0.

The assumption we make is that this inequality is satisfied with r = 1. We
comment on the general case after Lemma 3.

4. A central limit theorem for the score function. Since the bivariate
process ��Xk�Yk�� is stationary, we may extend it to a doubly infinite sta-
tionary sequence ��Xk�Yk��∞k=−∞, a feature that we will use frequently. Let
pϑ�Y1�Y0� � � � �Y−n� denote the conditional density of Y1 given Y0� � � � �Y−n.
By the very definition of an HMM,

pϑ�Y1�Y0
−n� =

K∑
a=1

gϑ�Y1�a�Pϑ�X1 = a � Y0
−n��(3)

By a martingale convergence theorem by Lévy [see, e.g., Shiryayev (1984),
page 478], Pϑ�X1 = a � Y0

−n� → Pϑ�X1 = a � Y0
−∞� Pϑ-a.s. as n →∞. Thus, if

we define pϑ�Y1�Y0�Y−1� � � �� in analogy with (3), pϑ�Y1�Y0
−n� → pϑ�Y1�Y0

−∞�
Pϑ-a.s.
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Now, by a general identity for models with missing data [see Louis (1982),
page 227], valid in our case because the X’s take values in a finite set,

D log pϑ�Y1�Y0� � � � �Y−n�
= D log pϑ�Y−n� � � � �Y1� −D log pϑ�Y−n� � � � �Y0�
= Eϑ�D log pϑ�X−n� � � � �X1�Y−n� � � � �Y1� � Y−n� � � � �Y1�

−Eϑ�D log pϑ�X−n� � � � �X1�Y−n� � � � �Y0� � Y−n� � � � �Y0��

(4)

note that in the second term on the right-hand side, we consider X1 as miss-
ing despite that Y1 is not observed, a trick that will simplify the follow-
ing computations slightly. Thus, writing λϑ�a� b� = D log αϑ�a� b�, γϑ�y�a� =
D log gϑ�y�a�, and τϑ�a� = D log πϑ�a�, we have

D log pϑ0
�Y1�Y0� � � � �Y−n�

=
0∑

k=−n

{
E0�γ0�Yk�Xk� + λ0�Xk�Xk+1� � Y1

−n�

−E0�γ0�Yk�Xk� + λ0�Xk�Xk+1� � Y0
−n�

}
+E0�γ0�Y1�X1� � Y1

−n� +E0�τ0�X−n� � Y1
−n� −E0�τ0�X−n� � Y0

−n��

(5)

Define

η1 =
0∑

k=−∞

{
E0�γ0�Yk�Xk� + λ0�Xk�Xk+1� � Y1

−∞�

−E0�γ0�Yk�Xk� + λ0�Xk�Xk+1� � Y0
−∞�

}
+E0�γ0�Y1�X1� � Y1

−∞��

(6)

The sum in (6) is absolutely convergent in L2�P0�, so that the right-hand side
of (6) defines a random variable in L2�P0�. We do not show this here, but it
follows from the proof of Lemma 6 below. Under somewhat stronger conditions,
the result η1 ∈ L2�P0� is shown in Lemma 2.3 in Bickel and Ritov (1996). We
now define the Fisher information matrix as �0 = E0�η1η

T
1 �. Before proving

Lemma 1, we give some additional notation and lemmas.
Note that if (A1) and (A2) hold, there exist a δ > 0 and a σ0 > 0 such that

inf�αϑ�a� b�� a� b� �ϑ−ϑ0� < δ� ≥ σ0, inf�α∗ϑ�a� b�� a� b� �ϑ−ϑ0� < δ� ≥ σ0 and
inf�πϑ�a�� a� �ϑ−ϑ0� < δ� ≥ σ0, where α∗ϑ�a� b� = πϑ�b�/πϑ�a� × αϑ�b� a� are
the transition probabilities of the time-reversed version of �Xk� (recall that
we assume r = 1). Without loss of generality, we assume that this δ agrees
with the one in (A2)–(A4). Let

µ0�y� =
{
1+ �K− 1�σ−2

0 ρ0�y�
}−1�
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if (A4) holds, P0�µ0�Y1� > 0 � X1 = a� > 0 for all a. For further reference, we
cite the following result from Bickel and Ritov (1996); it is their Lemma 3.3.

Lemma 3. Let −n ≤ l < k ≤ 0 and let Hk be an event defined in terms of
Xk�Xk+1� � � � �X0 and Yk�Yk+1� � � � �Y0 only. Then for all ϑ such that �ϑ −
ϑ0� < δ,

max
a

Pϑ�Hk � Y0
−n�Xl = a� −min

a
Pϑ�Hk � Y0

−n�Xl = a�

≤
k−1∏

i=l+1

�1− 2µ0�Yi��

≤
k−1∏

i=l+1

exp�−2µ0�Yi���

Remark. If r > 1, the result corresponding to Lemma 3 (and with an
entirely similar proof) reads

max
a

Pϑ�Hk � Y0
−n�Xk−qr = a� −min

a
Pϑ�Hk � Y0

−n�Xk−qr = a�

≤
q∏

i=2

exp�−2µ0�Yk−ir+1� � � � �Yk−ir+2r−1���
(7)

where now

µ0�y1� � � � � y2r−1� =
1

1+ �K− 1�σ−2
0

∏2r−1
i=1 ρ�yi�

�

and with σ0 defined as above but in terms of the r-step transition probabil-
ities. By deleting every second factor in (7) we obtain a bound with factors
containing disjoint blocks of Y’s. The proofs below then go through as when
r = 1, except for some very minor changes caused by the need to work with
the Y’s in blocks of size r.

Lemma 4. Let −n ≤ k ≤ 0 and define

Sϑ�n�k� = max
a� b� c

∣∣Pϑ�Xk = a � Y0
−n� X1 = b� −Pϑ�Xk = a � Y0

−n� X1 = c�∣∣�
Then, for any ϑ such that �ϑ−ϑ0� < δ,

Sϑ�n�k� ≤
0∏

i=k+1

exp�−2µ0�Yi���

The proof follows from Lemma 3 and the observation that the time-reversed
version of ��Xk�Yk�� is an HMM as well.
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Lemma 5. Let −m ≤ −n ≤ k ≤ 0. Then, for any ϑ such that �ϑ−ϑ0� < δ,

max
a

∣∣Pϑ�Xk = a � Y1
−n� −Pϑ�Xk = a � Y0

−n�
∣∣ ≤ 0∏

i=k+1

exp�−2µ0�Yi���

max
a� b

∣∣Pϑ�Xk = a� Xk+1 = b � Y1
−n� −Pϑ�Xk = a� Xk+1 = b � Y0

−n�
∣∣

≤
0∏

i=k+2

exp�−2µ0�Yi���

max
a

∣∣Pϑ�Xk = a � Y1
−n� −Pϑ�Xk = a � Y1

−m�
∣∣ ≤ k−1∏

i=−n+1

exp�−2µ0�Yi���

max
a� b

∣∣Pϑ�Xk = a�Xk+1 = b � Y1
−n� −Pϑ�Xk = a� Xk+1 = b � Y1

−m�
∣∣

≤
k−1∏

i=−n+1

exp�−2µ0�Yi���

The first two conclusions hold true Pϑ-a.s. also if −n is replaced by −∞, and
the last two conclusions hold true Pϑ-a.s. also if −m is replaced by −∞.

In the last two parts we may also replace Y1
−n and Y1

−m by Y0
−n and Y0

−m,
respectively, and also, as above, extend these statements to infinite m.

Proof. First assume that n and m are finite. The first part of the lemma
can be proved using Lemma 4 and arguing as in (h), (i) and (j) in the proof of
Lemma 2.3 in Bickel and Ritov (1996).

For the second part, note that∣∣Pϑ�Xk = a� Xk+1 = b � Y1
−n� −Pϑ�Xk = a� Xk+1 = b � Y0

−n�
∣∣

= ∣∣Pϑ�Xk = a � Xk+1 = b�Y1
−n�Pϑ�Xk+1 = b � Y1

−n�
−Pϑ�Xk = a � Xk+1 = b�Y0

−n�Pϑ�Xk+1 = b � Y0
−n�

∣∣
= ∣∣Pϑ�Xk = a � Xk+1 = b�Yk

−n�Pϑ�Xk+1 = b � Y1
−n�

−Pϑ�Xk = a � Xk+1 = b�Yk
−n�Pϑ�Xk+1 = b � Y0

−n�
∣∣

≤ ∣∣Pϑ�Xk+1 = b � Y1
−n� −Pϑ�Xk+1 = b � Y0

−n�
∣∣

and use the first part (for k = 0 this argument is not valid, but the result is
then trivially true).

Since∣∣Pϑ�Xk = a � Y1
−n� −Pϑ�Xk = a � Y1

−m�
∣∣

=
∣∣∣∣ K∑
b=1

Pϑ�Xk = a � X−n = b�Y1
−n+1�Pϑ�X−n = b � Y1

−n�

−
K∑
c=1

Pϑ�Xk = a � X−n = c�Y1
−n+1�Pϑ�X−n = c � Y1

−m�
∣∣∣∣
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≤ max
b� c

∣∣Pϑ�Xk = a � X−n = b�Y1
−n+1� −Pϑ�Xk = a � X−n = c�Y1

−n+1�
∣∣

≤
k−1∏

i=−n+1

exp�−2µ0�Yi���

the third part holds; the last inequality follows from Lemma 3. When Y1
−n

and Y1
−m are replaced by Y0

−n and Y0
−m, respectively, the bound follows in a

completely similar fashion.
The last part is proved using part three and an argument like the one used

to prove part two. Finally, if n or m is infinite, use the fact that Pϑ�Xk = a �
Y1
−n� → Pϑ�Xk = a � Y1

−∞� Pϑ-a.s. and so on. ✷

We are now ready to prove the following result.

Lemma 6. There exist constants β0 ∈ �0�1� and C0 such that

�D log pϑ0
�Y1�Y0� � � � �Y−n� − η1�2 ≤ C0β

n
0 �

Proof. Comparing (5) and (6), we see that it is sufficient to prove that
there are β0 ∈ �0�1� and C0 such that∣∣∣∣E0�τ0�X−n� � Y1

−n�−E0�τ0�X−n� � Y0
−n�

∣∣∣∣
2 ≤ C0β

n
0 �(8)

∣∣∣∣E0�γ0�Y1�X1� � Y1
−n�−E0�γ0�Y1�X1� � Y1

−∞�
∣∣∣∣

2 ≤ C0β
n
0 �(9)

∣∣∣∣
∣∣∣∣ 0∑
k=−�n/2�

{
E0�γ0�Yk�Xk� � Yj

−n�−E0�γ0�Yk�Xk� � Yj
−∞�

}∣∣∣∣
∣∣∣∣
2
≤ C0β

n
0 �(10)

∣∣∣∣
∣∣∣∣ 0∑
k=−�n/2�

{
E0�λ0�Xk�Xk+1� � Yj

−n�−E0�λ0�Xk�Xk+1� � Yj
−∞�

}∣∣∣∣
∣∣∣∣
2
≤ C0β

n
0 �(11)

∣∣∣∣
∣∣∣∣
−�n/2�−1∑
k=−n

{
E0�γ0�Yk�Xk� � Y1

−n�−E0�γ0�Yk�Xk� � Y0
−n�

}∣∣∣∣
∣∣∣∣
2
≤ C0β

n
0 �(12)

∣∣∣∣
∣∣∣∣
−�n/2�−1∑
k=−n

{
E0�λ0�Xk�Xk+1� � Y1

−n�−E0�λ0�Xk�Xk+1� � Y0
−n�

}∣∣∣∣
∣∣∣∣
2
≤ C0β

n
0 �(13)

∣∣∣∣
∣∣∣∣
−�n/2�−1∑
k=−∞

{
E0�γ0�Yk�Xk� � Y1

−∞�−E0�γ0�Yk�Xk� � Y0
−∞�

}∣∣∣∣
∣∣∣∣
2
≤ C0β

n
0 �(14)

∣∣∣∣
∣∣∣∣
−�n/2�−1∑
k=−∞

{
E0�λ0�Xk�Xk+1� � Y1

−∞�−E0�λ0�Xk�Xk+1� � Y0
−∞�

}∣∣∣∣
∣∣∣∣
2
≤ C0β

n
0(15)

for j = 0�1, where �·� denotes the integer part.
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We start with (8). By the first part of Lemma 5 we have∣∣E0�τ0�X−n� � Y1
−n� −E0�τ0�X−n� � Y0

−n�
∣∣

=
∣∣∣∣ K∑
a=1

τ0�a� �P0�X−n = a � Y1
−n� −P0�X−n = a � Y0

−n��
∣∣∣∣

≤ max
a

τ0�a�C
0∏

i=−n+1

exp�−2µ0�Yi���

Thus, by the definition of an HMM,∣∣∣∣E0�τ0�X−n� � Y1
−n� −E0�τ0�X−n� � Y0

−n�
∣∣∣∣2

2

≤ CE0

[ 0∏
i=−n+1

exp�−4µ0�Yi��
]

= CE0

[
E0

[ 0∏
i=−n+1

exp�−4µ0�Yi��
∣∣X0

−n+1

]]

= CE0

[ 0∏
i=−n+1

E0
[
exp�−4µ0�Yi��

∣∣Xi

]]

≤ CE0

[ 0∏
i=−n+1

max
a

E0
[
exp�−4µ0�Yi��

∣∣Xi = a
]]

= Cβn

for some β ∈ �0�1� and (8) follows. A similar argument shows (9).
We now turn to (10). By the third part of Lemma 5, with m = ∞,∣∣E0�γ0�Yk�Xk� � Yj

−n� −E0�γ0�Yk�Xk� � Yj
−∞�

∣∣
=

∣∣∣∣ K∑
a=1

γ0�Yk�a� �P0�Xk = a � Yj
−n� −P0�Xk = a � Yj

−∞��
∣∣∣∣

≤ max
a

�γ0�Yk�a��C
k−1∏

i=−n+1

exp�−2µ0�Yi��

P0-a.s. Thus,∣∣∣∣E0�γ0�Yk�Xk� � Yj
−n� −E0�γ0�Yk�Xk� � Yj

−∞�
∣∣∣∣2

2

≤ E0

[
Cmax

a
�γ0�Yk�a��2

k−1∏
i=−n+1

exp�−4µ0�Yi��
]

≤ CE0

[
E0

[
max

a
�γ0�Yk�a��2

k−1∏
i=−n+1

exp�−4µ0�Yi��
∣∣Xk

−n+1

]]
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= CE0

[
E0

[
max

a
�γ0�Yk�a��2

∣∣Xk

] k−1∏
i=−n+1

E0
[
exp�−4µ0�Yi��

∣∣Xi

]]

≤ Cmax
b

E0

[
max

a
�γ0�Yk�a��2

∣∣Xk = b
]
βk−1+n�

so that ∣∣∣∣
∣∣∣∣ 0∑
k=−�n/2�

{
E0�γ0�Yk�Xk� � Yj

−n� −E0�γ0�Yk�Xk� � Yj
−∞�

}∣∣∣∣
∣∣∣∣
2

≤ C
0∑

k=−�n/2�
β�k−1+n�/2 ≤ Cβ�−�n/2�−1+n�/2�

and (10) follows. Also (11)–(15) follow in an entirely similar fashion, using
other parts of Lemma 5. Note that (14) and (15) show that η1 ∈ L2�P0�. ✷

Proof of Lemma 1. Let ξk = D log pϑ0
�Yk�Yk−1� � � � �Y1�, so that L̇n�ϑ0�

=∑n
k=1 ξk, and let

ηk =
k−1∑

i=−∞

{
E0

[
γ0�Yi�Xi� + λ0�Xi�Xi+1� � Yk

−∞
]

−E0
[
γ0�Yi�Xi� + λ0�Xi�Xi+1� � Yk−1

−∞
]}

+E0
[
γ0�Yk�Xk� � Yk

−∞
]
�

Using (A3)(iii), it readily follows that

E0
[
γ0�Y1�X1� � Y0

−∞
] = E0

[
E0�γ0�Y1�X1� � Y0

−∞�X1� � Y0
−∞

]
= E0

[
E0�γ0�Y1�X1� � X1� � Y0

−∞
] = 0�

so that �ηk� is a stationary and ergodic (because �Yk� is ergodic) martingale
increment sequence with respect to �σ�Yk

−∞�� in L2�P0�. Its covariance matrix
is �0. By the central limit theorem for martingales [see, e.g., Durrett (1991),
page 375], we obtain

n−1/2
n∑

k=1

ηk → � �0��0��(16)

Finally, Lemma 6 shows that∣∣∣∣
∣∣∣∣n−1/2

n∑
k=1

ξk−n−1/2
n∑

k=1

ηk

∣∣∣∣
∣∣∣∣
2
≤ n−1/2

n∑
k=1

��ξk−ηk��2

= n−1/2
n∑

k=1

��D log pϑ0
�Y1�Y0� � � � �Y−k+2�−η1��2�

where the last equality follows by stationarity. By Lemma 6, the expression
on the right-hand side tends to zero as n →∞, whence the result follows from
(16). ✷
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5. A law of large numbers for the observed information. In this
section we prove Lemma 2 via a uniform law of large numbers for the Hessian
of the loglikelihood. Our approach is similar to the one used in Section 4, but
the derivation is more delicate. First, again by a general identity for models
with missing data [see Louis (1982), page 227], valid in our case because the
X’s take values in a finite set,

D2 log pϑ�Y1�Y0� � � � �Y−n�
= D2 log pϑ�Y−n� � � � �Y1� −D2 log pϑ�Y−n� � � � �Y0�
= Eϑ

[
D2 log pϑ�X−n� � � � �X1�Y−n� � � � �Y1� � Y1

−n

]
+Eϑ

[�D log pϑ�X−n� � � � �X1�Y−n� � � � �Y1��2 � Y1
−n

]
− {

Eϑ

[
D log pϑ�X−n� � � � �X1�Y−n� � � � �Y1� � Y1

−n

]}2

−Eϑ

[
D2 log pϑ�X−n� � � � �X1�Y−n� � � � �Y0� � Y0

−n

]
−Eϑ

[�D log pϑ�X−n� � � � �X1�Y−n� � � � �Y0��2 � Y0
−n

]
+ {

Eϑ

[
D log pϑ�X−n� � � � �X1�Y−n� � � � �Y0� � Y0

−n

]}2

=
0∑

k=−n

{
Eϑ

[
γ̇ϑ�Yk�Xk� + λ̇ϑ�Xk�Xk+1� � Y1

−n

]
−Eϑ

[
γ̇ϑ�Yk�Xk� + λ̇ϑ�Xk�Xk+1� � Y0

−n

]}
+Eϑ

[
γ̇ϑ�Y1�X1� � Y1

−n

]+Eϑ

[
τ̇ϑ�X−n� � Y1

−n

]−Eϑ

[
τ̇ϑ�X−n� � Y0

−n

]
+

0∑
k=−n

0∑
l=−n

{
Eϑ

[
γϑ�Yk�Xk�γϑ�Yl�Xl� � Y1

−n

]
−Eϑ

[
γϑ�Yk�Xk� � Y1

−n

]
Eϑ

[
γϑ�Yl�Xl� � Y1

−n

]
−Eϑ

[
γϑ�Yk�Xk�γϑ�Yl�Xl� � Y0

−n

]
+Eϑ

[
γϑ�Yk�Xk� � Y0

−n

]
Eϑ

[
γϑ�Yl�Xl� � Y0

−n

]
+Eϑ

[
λϑ�Xk�Xk+1�λϑ�Xl�Xl+1� � Y1

−n

]
−Eϑ

[
λϑ�Xk�Xk+1� � Y1

−n

]
Eϑ

[
λϑ�Xl�Xl+1� � Y1

−n

]
−Eϑ

[
λϑ�Xk�Xk+1�λϑ�Xl�Xl+1� � Y0

−n

]
+Eϑ

[
λϑ�Xk�Xk+1� � Y0

−n

]
Eϑ

[
λϑ�Xl�Xl+1� � Y0

−n

]
+ 2Eϑ

[
γϑ�Yk�Xk�λϑ�Xl�Xl+1� � Y1

−n

]
− 2Eϑ

[
γϑ�Yk�Xk� � Y1

−n

]
Eϑ

[
λϑ�Xl�Xl+1� � Y1

−n

]
− 2Eϑ

[
γϑ�Yk�Xk�λϑ�Xl�Xl+1� � Y0

−n

]
+ 2Eϑ

[
γϑ�Yk�Xk� � Y0

−n

]
Eϑ

[
λϑ�Xl�Xl+1� � Y0

−n

]}
+Eϑ

[
γ2
ϑ�Y1�X1� � Y1

−n

]− {
Eϑ

[
γϑ�Y1�X1� � Y1

−n

]}2(17)
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+
0∑

k=−n

{
2Eϑ

[
γϑ�Y1�X1�γϑ�Yk�Xk� � Y1

−n

]
− 2Eϑ

[
γϑ�Y1�X1� � Y1

−n

]
Eϑ

[
γϑ�Yk�Xk� � Y1

−n

]
+ 2Eϑ

[
γϑ�Y1�X1�λϑ�Xk�Xk+1� � Y1

−n

]
− 2Eϑ

[
γϑ�Y1�X1� � Y1

−n

]
Eϑ

[
λϑ�Xk�Xk+1� � Y1

−n

]}
+Eϑ

[
τ2
ϑ�X−n� � Y1

−n

]− {
Eϑ

[
τϑ�X−n� � Y1

−n

]}2

−Eϑ

[
τ2
ϑ�X−n� � Y0

−n

]+ {
Eϑ

[
τϑ�X−n� � Y0

−n

]}2

+
0∑

k=−n

{
2Eϑ

[
τϑ�X−n�γϑ�Yk�Xk� � Y1

−n

]
− 2Eϑ

[
τϑ�X−n� � Y1

−n

]
Eϑ

[
γϑ�Yk�Xk� � Y1

−n

]
− 2Eϑ

[
τϑ�X−n�γϑ�Yk�Xk� � Y0

−n

]
+ 2Eϑ

[
τϑ�X−n� � Y0

−n

]
Eϑ

[
γϑ�Yk�Xk� � Y0

−n

]
+ 2Eϑ

[
τϑ�X−n�λϑ�Xk�Xk+1� � Y1

−n

]
− 2Eϑ

[
τϑ�X−n� � Y1

−n

]
Eϑ

[
λϑ�Xk�Xk+1� � Y1

−n

]
− 2Eϑ

[
τϑ�X−n�λϑ�Xk�Xk+1� � Y0

−n

]
+ 2Eϑ

[
τϑ�X−n� � Y0

−n

]
Eϑ

[
λϑ�Xk�Xk+1� � Y0

−n

]}
+ 2Eϑ

[
τϑ�X−n�γϑ�Y1�X1� � Y1

−n

]
− 2Eϑ

[
τϑ�X−n� � Y1

−n

]
Eϑ

[
γϑ�Y1�X1� � Y1

−n

]
�

Again, we need some additional lemmas before we look closer at this ex-
pression.

Lemma 7. Let −m ≤ −n ≤ k, l ≤ 0. Then for any ϑ such that �ϑ−ϑ0� < δ,

max
a� b

∣∣Pϑ�Xk = a� Xl = b � Y1
−n� −Pϑ�Xk = a� Xl = b � Y0

−n�
∣∣

≤
0∏

i=k∨l+1

exp�−2µ0�Yi���

max
a� b

∣∣Pϑ�Xk = a� Xl = b � Y1
−n� −Pϑ�Xk = a� Xl = b � Y1

−m�
∣∣

≤
k∧l−1∏
i=−n+1

exp�−2µ0�Yi���

The second conclusion holds true also if Y1
−n and Y1

−m are replaced by Y0
−n and

Y0
−m, respectively.

The proof is entirely similar to the proofs of parts two and four of Lemma 5.



ASYMPTOTIC NORMALITY FOR HMM’S 1629

Lemma 8. Let −n ≤ k, l ≤ 0. Then for any ϑ such that �ϑ−ϑ0� < δ,

max
a� b

∣∣Pϑ�Xk = a� Xl = b � Y1
−n� −Pϑ�Xk = a � Y1

−n�Pϑ�Xl = b � Y1
−n�

∣∣
≤

k∨l−1∏
i=k∧l+1

exp�−2µ0�Yi���

The conclusion holds true also if Y1
−n is replaced by Y0

−n.

Proof. Assume that k ≥ l. Then∣∣Pϑ�Xk = a� Xl = b � Y1
−n� −Pϑ�Xk = a � Y1

−n�Pϑ�Xl = b � Y1
−n�

∣∣
=

∣∣∣Pϑ�Xk = a � Xl = b�Y1
−n�Pϑ�Xl = b � Y1

−n�

−Pϑ�Xk = a � Y1
−n�Pϑ�Xl = b � Y1

−n�
∣∣∣

≤ ∣∣Pϑ�Xk = a � Xl = b�Y1
−n� −Pϑ�Xk = a � Y1

−n�
∣∣

=
∣∣∣∣ K∑
c=1

�Pϑ�Xk = a � Xl = b�Y1
−n�

−Pϑ�Xk = a � Xl = c�Y1
−n��Pϑ�Xl = c � Y1

−n�
∣∣∣∣

≤ max
a� b� c

∣∣Pϑ�Xk = a � Xl = b�Y1
−n� −Pϑ�Xk = a � Xl = c�Y1

−n�
∣∣

≤
k−1∏

i=l+1

exp�−2µ0�Yi���

where the last inequality follows from Lemma 3. The proof with Y0
−n is anal-

ogous. ✷

Let G denote the neighborhood �ϑ� �ϑ−ϑ0� < δ� of ϑ0.

Lemma 9. As m�n →∞,∣∣∣∣∣∣sup
ϑ∈G

∣∣D2 log pϑ�Y1�Y1
−m� −D2 log pϑ�Y1�Y1

−n��
∣∣∣∣∣∣

1
→ 0�

Proof. Considering (17), we see that we must prove, for example,∣∣∣∣
∣∣∣∣sup
ϑ∈G

∣∣∣∣ 0∑
k=−m

0∑
l=−m

{
Eϑ�γϑ�Yk�Xk�γϑ�Yl�Xl� � Y1

−m�

−Eϑ�γϑ�Yk�Xk� � Y1
−m�Eϑ�γϑ�Yl�Xl� � Y1

−m�
−Eϑ�γϑ�Yk�Xk�γϑ�Yl�Xl� � Y0

−m�
+Eϑ�γϑ�Yk�Xk� � Y0

−m�Eϑ�γϑ�Yl�Xl� � Y0
−m�

}
(18)
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−
0∑

k=−n

0∑
l=−n

{
Eϑ�γϑ�Yk�Xk�γϑ�Yl�Xl� � Y1

−n�

−Eϑ�γϑ�Yk�Xk� � Y1
−n�Eϑ�γϑ�Yl�Xl� � Y1

−n�
−Eϑ�γϑ�Yk�Xk�γϑ�Yl�Xl� � Y0

−n�

+Eϑ�γϑ�Yk�Xk� � Y0
−n�Eϑ�γϑ�Yl�Xl� � Y0

−n�
}∣∣∣∣

∣∣∣∣
∣∣∣∣
1
→ 0

as m�n →∞. Other statements, similar to (18) and which together with (18)
prove the lemma, can be shown using slight variations of the technique used
below. In order to prove (18), it is sufficient to show that (assuming m ≥ n)
for j = 0�1,

−�n/2�∑
k=−m

�k/2�∑
l=k

∣∣∣∣∣∣ sup
ϑ∈G

∣∣Eϑ�γϑ�Yk�Xk�γϑ�Yl�Xl� � Y1
−m�

−Eϑ�γϑ�Yk�Xk�γϑ�Yl�Xl� � Y0
−m�

∣∣∣∣∣∣∣∣
1
→0�

(19)

−�n/2�∑
k=−m

�k/2�∑
l=k

∣∣∣∣∣∣ sup
ϑ∈G

∣∣Eϑ�γϑ�Yk�Xk� � Y1
−m�Eϑ�γϑ�Yl�Xl� � Y1

−m�

−Eϑ�γϑ�Yk�Xk� � Y0
−m�Eϑ�γϑ�Yl�Xl� � Y0

−m�
∣∣∣∣∣∣∣∣

1
→0�

(20)

−�n/2�∑
k=−n

�k/2�∑
l=k

∣∣∣∣∣∣ sup
ϑ∈G

∣∣Eϑ�γϑ�Yk�Xk�γϑ�Yl�Xl� � Y1
−n�

−Eϑ�γϑ�Yk�Xk�γϑ�Yl�Xl� � Y0
−n�

∣∣∣∣∣∣∣∣
1
→0�

(21)

−�n/2�∑
k=−n

�k/2�∑
l=k

∣∣∣∣∣∣ sup
ϑ∈G

∣∣Eϑ�γϑ�Yk�Xk� � Y1
−n�Eϑ�γϑ�Yl�Xl� � Y1

−n�

−Eϑ�γϑ�Yk�Xk� � Y0
−n�Eϑ�γϑ�Yl�Xl� � Y0

−n�
∣∣∣∣∣∣∣∣

1
→0�

(22)

0∑
k=−�n/2�

0∑
l=−�n/2�

∣∣∣∣∣∣ sup
ϑ∈G

∣∣Eϑ�γϑ�Yk�Xk�γϑ�Yl�Xl� � Yj
−m�

−Eϑ�γϑ�Yk�Xk�γϑ�Yl�Xl� � Yj
−n�

∣∣∣∣∣∣∣∣
1
→0�

(23)

0∑
k=−�n/2�

0∑
l=−�n/2�

∣∣∣∣∣∣ sup
ϑ∈G

∣∣Eϑ�γϑ�Yk�Xk� � Yj
−m�Eϑ�γϑ�Yl�Xl� � Yj

−m�

−Eϑ�γϑ�Yk�Xk� � Yj
−n�Eϑ�γϑ�Yl�Xl� � Yj

−n�
∣∣∣∣∣∣∣∣

1
→0�

(24)
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−�n/2�∑
k=−m

0∑
l=−�k/2�

∣∣∣∣∣∣ sup
ϑ∈G

∣∣Eϑ�γϑ�Yk�Xk�γϑ�Yl�Xl� � Yj
−m�

−Eϑ�γϑ�Yk�Xk� � Yj
−m�Eϑ�γϑ�Yl�Xl� � Yj

−m�
∣∣∣∣∣∣∣∣

1
→0�

(25)

−�n/2�∑
k=−n

0∑
l=−�k/2�

∣∣∣∣∣∣ sup
ϑ∈G

∣∣Eϑ�γϑ�Yk�Xk�γϑ�Yl�Xl� � Yj
−n�

−Eϑ�γϑ�Yk�Xk� � Yj
−n�Eϑ�γϑ�Yl�Xl� � Yj

−n�
∣∣∣∣∣∣∣∣

1
→0�

(26)

as m�n → ∞; compare Figure 1. The idea of splitting up the sum (18) goes
back to Baum and Petrie (1966).

Starting with (19), by the first part of Lemma 7 we have that

sup
ϑ∈G

∣∣Eϑ�γϑ�Yk�Xk�γϑ�Yl�Xl� � Y1
−m� −Eϑ�γϑ�Yk�Xk�γϑ�Yl�Xl� � Y0

−m�
∣∣

≤ sup
ϑ∈G

K∑
a� b=1

�γϑ�Yk�a�� �γϑ�Yl�b��
∣∣Pϑ�Xk = a� Xl = b � Y1

−m�

−Pϑ�Xk = a�Xl = b � Y0
−m�

∣∣
≤ C

(
sup
ϑ∈G

max
a

�γϑ�Yk�a��
)(

sup
ϑ∈G

max
a

�γϑ�Yl�b��
) 0∏

i=k∨l+1

exp�−2µ0�Yi���

By conditioning on the X’s, we obtain that the L1�P0�-norm of the above
expression is bounded by Cβ�k�∧�l� for some β ∈ �0�1�, whence the left-hand

Fig. 1. Illustration of how the sum in (18) is split into subregions. In region A, Eϑ�· � Y1
−m� is

compared to Eϑ�· � Y 0
−m� etc. In region B, Eϑ�· � Y1

−m� is compared to Eϑ�· � Y1
−n� etc. In region C,

Eϑ�· × · � Y1
−m� is compared to Eϑ�· � Y1

−m� ×Eϑ�· � Y1
−m� and so on.
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side of (19) is bounded by

C
m∑

k=�n/2�

m∑
l=�k/2�

βl ≤ C
m∑

k=�n/2�
β�k/2� ≤ Cβ�n/4��

Here, the right-hand side tends to zero as m�n → ∞, and (19) follows; (21)
follows similarly.

For (20), the first part of Lemma 5 shows that for any ϑ ∈ G,

max
a� b

∣∣Pϑ�Xk = a � Y1
−m�Pϑ�Xl = b � Y1

−m�

−Pϑ�Xk = a � Y0
−m�Pϑ�Xl = b � Y0

−m�
∣∣

≤ max
a� b

∣∣Pϑ�Xk = a � Y1
−m�Pϑ�Xl = b � Y1

−m�

−Pϑ�Xk = a � Y1
−m�Pϑ�Xl = b � Y0

−m�
+Pϑ�Xk = a � Y1

−m�Pϑ�Xl = b � Y0
−m�

−Pϑ�Xk = a � Y0
−m�Pϑ�Xl = b � Y0

−m�
∣∣

≤ max
b

�Pϑ�Xl = b � Y1
−m� −Pϑ�Xl = b � Y0

−m��

+max
a

�Pϑ�Xk = a � Y1
−m� −Pϑ�Xk = a � Y0

−m��

≤ 2
0∏

i=k∨l+1

exp�−2µ0�Yi���

(27)

so that

sup
ϑ∈G

∣∣Eϑ�γϑ�Yk�Xk� � Y1
−m�Eϑ�γϑ�Yl�Xl� � Y1

−m�

−Eϑ�γϑ�Yk�Xk� � Y0
−m�Eϑ�γϑ�Yl�Xl� � Y0

−m�
∣∣

≤ sup
ϑ∈G

K∑
a� b=1

�γϑ�Yk�a�� �γϑ�Yl�b��

× ∣∣Pϑ�Xk = a � Y1
−m�Pϑ�Xl = b � Y1

−m�
−Pϑ�Xk = a � Y0

−m�Pϑ�Xl = b � Y0
−m�

∣∣
≤ C

(
sup
ϑ∈G

max
a

�γϑ�Yk�a��
)(

sup
ϑ∈G

max
a

�γϑ�Yl�a��
) 0∏

i=k∨l+1

exp�−2µ0�Yi���

Now (20) follows as above, and (22) follows similarly.
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Further, the second part of Lemma 7 shows that the left-hand side of (23)
is bounded by

C
0∑

k=−�n/2�

0∑
l=−�n/2�

βn+k∧l−1 = C
�n/2�∑
k=0

�n/2�∑
l=0

βn−k∨l−1

≤ 2C
�n/2�∑
k=0

�n/2�∑
l=k

βn−l−1

≤ C
�n/2�∑
k=0

β�n/2� ≤ C��n/2� + 1�β�n/2��

The right-hand side vanishes as n → ∞, whence (23) follows; (24) follows
using a bound similar to (27).

Finally, by Lemma 8 the left-hand side of (25) is bounded by

C
−�n/2�∑
k=−m

0∑
l=�k/2�

βk∨l−k∧l−1 = C
m∑

k=�n/2�

�k/2�∑
l=0

βk∨l−k∧l−1

= C
m∑

k=�n/2�

�k/2�∑
l=0

βk−l−1

≤ C
m∑

k=�n/2�
βk−�k/2�−1 ≤ Cβ�n/4��

whence (25) follows; (26) follows similarly, and the proof is complete. ✷

Thus, �D2 log pϑ�Y1�Y0� � � � �Y−n�� is a “uniform Cauchy sequence” in
L1�P0�, and the following result is then immediate.

Lemma 10. There is a continuous function ζ1�ϑ� from G to L1�P0� such
that ∣∣∣∣∣∣ sup

ϑ∈G
�D2 log pϑ�Y1�Y0� � � � �Y−n� − ζ1�ϑ��

∣∣∣∣∣∣
1
→ 0

as n →∞.

Remark. Assuming the MLE to be consistent, that is, that (A6) holds,
any subset of the sample space with Pϑ-measure one for some ϑ �= ϑ0 has P0-
measure zero, whence Lemma 5 does not guarantee that any of the statements
with infinite n or m holds P0-a.s. for any ϑ other than ϑ0. This is the reason
for working with Cauchy sequences in this section, rather than with an explicit
representation of ζ1�ϑ� similar to (6).

Proof of Lemma 2. Define ζk�ϑ� as the L1�P0�-limit of

D2 log pϑ�Yk�Yk−1
−n �
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and let G′ be an arbitrary neighborhood of ϑ0 such that G′ ⊆ G. We then have

lim sup
n→∞

P0

(∣∣∣∣n−1L̈n�ϑ∗
n� − n−1

n∑
k=1

ζk�ϑ0�
∣∣∣∣ > ε

)

= lim sup
n→∞

P0

(∣∣∣∣n−1
n∑

k=1

{
D2 log pϑ∗

n
�Yk�Yk−1� � � � �Y1� − ζk�ϑ0�

}∣∣∣∣ > ε

)

≤ lim sup
n→∞

P0

(
n−1

n∑
k=1

sup
ϑ∈G′

∣∣D2 log pϑ�Yk�Yk−1� � � � �Y1� − ζk�ϑ0�
∣∣ > ε

)

+ lim sup
n→∞

P0�ϑ∗
n �∈ G′�

≤ lim sup
n→∞

n−1ε−1
n∑

k=1

∣∣∣∣∣∣ sup
ϑ∈G′

∣∣D2 log pϑ�Y1�Y0� � � � �Y−k+2� − ζ1�ϑ0�
∣∣ ∣∣∣∣∣∣

1

≤ lim sup
n→∞

n−1ε−1
n∑

k=1

∣∣∣∣∣∣ sup
ϑ∈G′

∣∣D2 log pϑ�Y1�Y0� � � � �Y−k+2� − ζ1�ϑ�
∣∣ ∣∣∣∣∣∣

1

+ lim sup
n→∞

n−1ε−1
n∑

k=1

∣∣∣∣∣∣ sup
ϑ∈G′

∣∣ζ1�ϑ� − ζ1�ϑ0�
∣∣ ∣∣∣∣∣∣

1

= ε−1
∣∣∣∣∣∣ sup

ϑ∈G′

∣∣ζ1�ϑ� − ζ1�ϑ0�
∣∣ ∣∣∣∣∣∣

1
�

where the third step follows by Markov’s inequality and stationarity, and the
last one by Lemma 10. Let G′ ↓ �ϑ0� and use continuity of ζ�·� to conclude
that

(28) n−1L̈n�ϑ∗� − n−1
n∑

k=1

ζk�ϑ0� → 0 in P0-probability

as n →∞.
Now, because �Yk� is ergodic, so is �ζk�ϑ0��, whence n−1 ∑n

1 ζk�ϑ0� → J
P0-a.s. for some matrix J = E0ζ1�ϑ0�. The proof is thus complete if we can
show that J = −�0.

Using (A3)(iii) it readily follows that

E0
[−D2 log gϑ0

�Y1�X1�
] = E0

[�D log gϑ0
�Y1�X1��2]�

which together with the representations (4) and (17) show that

E0
[
D2 log pϑ0

�Y1�Y0� � � � �Y−n�
] = −E0

[(
D log pϑ0

�Y1�Y0� � � � �Y−n�
)2]

for each n. Hence, by Lemma 6 and Lemma 10, J = −�0. ✷

Acknowledgments. Many thanks to Jens Ledet Jensen and Niels Væver
Petersen, who did not only carefully read an earlier version of this paper and
found four errors (in Assumption A2 and the proofs of Lemmas 1, 2 and 9),
but who also provided solutions to these errors.

REFERENCES

Albert, P. S. (1991). A two-state Markov mixture model for a time series of epileptic seizure
counts. Biometrics 47 1371–1381.



ASYMPTOTIC NORMALITY FOR HMM’S 1635

Baum, L. E. and Petrie, T. (1966). Statistical inference for probabilistic functions of finite state
Markov chains. Ann. Math. Statist. 37 1554–1563.

Baum, L. E., Petrie, T., Soules, G. and Weiss, N. (1970). A maximization technique occurring in
the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Statist.
41 164–171.

Bickel, P. J. and Ritov, Y. (1996). Inference in hidden Markov models I: local asymptotic nor-
mality in the stationary case. Bernoulli 2 199–228.

Durrett, R. (1991). Probability: Theory and Examples. Wadsworth & Brooks/Cole, Pacific Grove,
CA.

Fredkin, D. R. and Rice, J. A. (1992). Maximum likelihood estimation and identification directly
from single-channel recordings. Proc. Royal Soc. London Ser. B 249 125–132.

Guttorp, P. (1995). Stochastic Modeling of Scientific Data. Chapman & Hall, London.
Heffes, H. and Lucantoni, D. (1986). A Markov modulated characterization of packetized voice

and data traffic and related statistical multiplexer performance. IEEE J. Select. Areas
Comm. 4 856–867.

Jamshidian, M. and Jennrich, R. I. (1997). Acceleration of the EM algorithm by using quasi-
Newton methods. J. Royal Statist. Soc. Ser. B 59 569–587.

Le, N. D., Leroux, B. G. and Puterman, M. L. (1992). Reader reaction: exact likelihood evaluation
in a Markov mixture model for time series of seizure counts. Biometrics 48 317–323.

Leroux, B. G. (1992). Maximum-likelihood estimation for hidden Markov models. Stochastic Pro-
cess. Appl. 40 127–143.

Leroux, B. G. and Puterman, M. L. (1992). Maximum-penalized-likelihood estimation for inde-
pendent and Markov-dependent mixture models. Biometrics 48 545–558.

Lindgren, G. (1978). Markov regime models for mixed distributions and switching regressions.
Scand. J. Statist. 5 81–91.

Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm.
J. Royal Statist. Soc. Ser. B 44 226–233.

MacDonald, I. L. and Zucchini, W. (1997). Hidden Markov and Other Models for Discrete-valued
Time Series. Chapman & Hall, London.

McLachlan, G. J. and Krishnan, T. (1997). The EM Algorithm and Extensions. Wiley, New York.
Meng, X.-L. and van Dyk, D. (1997). The EM algorithm—an old folk-song sung to a new fast

tune (with discussion). J. Royal Statist. Soc. Ser. B 59 511–567.
Petrie, T. (1969). Probabilistic functions of finite state Markov chains. Ann. Math. Statist. 40

97–115.
Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. (1989). Numerical

Recipes. Cambridge Univ. Press.
Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech

recognition. Proc. IEEE 77 257–284.
Ritov, Y. (1996). Uniform convergence of quasi-convex functions with applications to missing

data and hidden Markov models. Preprint.
Rydén, T. (1994). Parameter estimation for Markov modulated Poisson processes. Stochastic Mod-

els 10 795–829.
Shiryayev, A. N. (1984). Probability. Springer, New York.

P. J. Bickel
Department of Statistics
University of California
Evans Hall
Berkeley, California 94720

Y. Ritov
Department of Statistics
Hebrew University
Jerusalem 91905
Israel

T. Rydén
Department of Mathematical Statistics
Lund University
Box 118
S-221 00 Lund
Sweden
E-mail: tobias@maths.lth.se


