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ASYMPTOTIC NORMALITY OF THE MAXIMUM LIKELIHOOD
ESTIMATOR IN STATE SPACE MODELS

By Jens Ledet Jensen and Niels Væver Petersen

University of Aarhus

State space models is a very general class of time series models capable
of modelling dependent observations in a natural and interpretable way.
Inference in such models has been studied by Bickel, Ritov and Rydén,
who consider hidden Markov models, which are special kinds of state space
models, and prove that the maximum likelihood estimator is asymptotically
normal under mild regularity conditions. In this paper we generalize the
results of Bickel, Ritov and Rydén to state space models, where the latent
process is a continuous state Markov chain satisfying regularity conditions,
which are fulfilled if the latent process takes values in a compact space.

1. Introduction. A state space model is a discrete time model for depen-
dent observations �Yk�, where the dependence is modelled via an unobserved
Markov process �Xk� such that, conditionally on �Xk�, the Yk’s are indepen-
dent, and the distribution of Yk depends on Xk only. The unobserved process
�Xk� is often referred to as the latent process. The state space framework
encompasses the classical ARMA models, but, more interestingly, nonlinear
and non-Gaussian models can be formulated in this framework as well.

We will consider inference in state space models by the likelihood method.
The likelihood function cannot always be calculated explicitly in these mod-
els; however, for linear state space models with Gaussian errors, the likeli-
hood function can be calculated by the Kalman filter. There is an extensive
literature on Kalman filtering; see, for instance, West and Harrison (1989)
who give a comprehensive treatment of linear state space models with many
examples.

For nonlinear state space models and for state space models with non-
Gaussian errors, the likelihood function can rarely be calculated explicitly. In-
stead, different approximations to the likelihood function have been proposed.
Kitagawa and Gersch (1996) discuss an approximation to the likelihood func-
tion based on numerical integration techniques, an approach which is also
studied in Frühwirth-Schnatter (1994). However, with these techniques the
likelihood function can only be approximated to a certain degree of accuracy.
Alternatively, the likelihood function can be approximated to any degree of
accuracy by simulation techniques. This approach is investigated by Durbin
and Koopman (1997), Shephard and Pitt (1997) and references therein.

Inference in state space models has mainly been studied in the case of
hidden Markov models where the latent process takes values in a finite set.
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Leroux (1992) proved consistency of the maximum likelihood estimator and
Bickel, Ritov and Rydén (1998) (henceforth designated BRR) proved asymp-
totic normality. The purpose of this paper is to extend the results of BRR to
cover more general state space models where the latent process is a continu-
ous Markov process. We show that the distributional inequality in Lemma 4
in BRR is valid in our setup also, under regularity conditions which can be
fulfilled if the state space of the latent process is a compact set. The inequal-
ity states a mixing property of the latent process, given the observed process,
and is the main key to proving asymptotic normality. Having established this
mixing result, we follow BRR in their proof of the central limit theorem for
the score function and in the proof of the uniform law of large numbers for
the observed information.

In Section 2 we state the model and the assumptions we will work under.
In Section 3 we state our main results, the central limit theorem for the score
function, the uniform law of large numbers for the observed information and,
finally, asymptotic normality of the maximum likelihood estimate. In Section 4
we prove the central limit theorem, and in Section 5 we prove the law of large
numbers.

2. Notation and assumptions. Let �Xk� denote a stationary homoge-
nous Markov chain on the measurable space �� �� � µ�. Here � may be con-
tinuous or discrete. A typical setting fulfilling our assumptions below is where
� is a compact set. Let αθ�x� z� denote the transition densities with respect to
µ, which are parametrized by a parameter θ ∈ 
 ⊆ R

d. Let �Yk� be a sequence
of stochastic variables on the measurable space �� ��� ν� such that given �Xk�
the Yk’s are independent, and the distribution of Yi depends through �Xk� on
Xi only and has density gθ�yi�xi� wrt ν. The model can thus be formulated as

Yk �Xk ∼ gθ�yk �xk��
Xk �Xk−1 ∼ αθ�xk−1� xk��

We will let πθ denote the density wrt µ of the stationary distribution of X.
We observe values Y1�Y2� � � � �Yn of the process �Yk� while �Xk� remains

unobserved, and we wish to estimate θ by the maximum likelihood method.
We will let ln�θ� denote the log likelihood function based on Y1� � � � �Yn. In
Section 4 an expression for this function is derived. For the moment we only
give the expression for the simultaneous density of �X1� � � � �Xn�Y1� � � � �Yn�
wrt µn × νn,

pθ�x1� � � � � xn� y1� � � � � yn�

= πθ�x1�gθ�y1 �x1�
n∏

k=2

�αθ�xk−1� xk�gθ�yk�xk���
(1)

Above, as everywhere else in this paper, we use the sloppy, but, we hope,
clear notation pθ�z� for the density of a stochastic vector Z with respect to a
measure given by the context.
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We will let Dgθ denote the gradient of gθ wrt θ and D2gθ will denote
the Hessian, and we will let τθ�x� = D logπθ�x�� λθ�x� z� = D log αθ�x� z�
and γθ�y�x� = D loggθ�y�x�. The true parameter will be denoted θ0 and a
notation like τ0 is short for τθ0

. Throughout the paper Xn
1 will denote the

vector �X1� � � � �Xn� and c will denote an unspecified finite constant. In the
assumptions below we will let � · � denote the max-norm of a d × d matrix,
�A� = maxi� j �Aij�.

We will assume that there exists a δ > 0 such that with B0 = �θ ∈ 
 � �θ−
θ0� < δ� the following conditions hold.

(A1) There exists a σ > 0 and an M < ∞ such that σ ≤ αθ�x� z� ≤ M for all
x� z ∈ � and all θ ∈ B0�

(A2) For all x� z ∈ � , the maps θ �→ αθ�x� z� and θ �→ πθ�x� are twice contin-
uously differentiable on B0. Likewise, for all x ∈ � and y ∈ � , the map
θ �→ gθ�y�x� is twice continuously differentiable on B0.

(A3) Define ρ�y� = supθ∈B0
supx� z∈� gθ�y�z�/gθ�y�x�� then

inf
x∈�

∫
�
g0�y�x�/ρ�y� ν�dy� > 0�

(A4) (i) supθ∈B0
supx� z∈� �λθ�x� z�� < ∞ and supθ∈B0

supx∈� �τθ�x�� < ∞.
(ii) supθ∈B0

supx� z∈� �Dλθ�x� z�� < ∞ and supθ∈B0
supx∈� �Dτθ�x��

<∞�
(iii) Define γ∗�Y1� = supθ∈B0

supx∈� �γθ�Y1�x�� then γ∗�Y1� ∈ L
2�P0� and

supθ∈B0
supx∈� �Dγθ�Y1�x�� ∈ L

1�P0��
(A5) (i) For ν-almost all y ∈ � there exists a function hy� � → R+ in L

1�µ�
such that �gθ�y�x�� ≤ hy�x� for all θ ∈ B0.

(ii) For µ-almost all x∈� there exist functions h1
x� � → R+ and h2

x�
� → R+ in L

1�ν� such that �Dgθ�y�x�� ≤h1
x�y� and �D2gθ�y�x�� ≤

h2
x�y� for all θ ∈ B0�

(A6) θ0 ∈ int�
��

Remark. Note that if supx� z∈� �λθ�x� z�� < ∞ for a θ ∈ B0 and
supx∈� �τθ�x�� < ∞ for a θ ∈ B0 then (A4)(ii) implies (A4)(i). Likewise in
(A5)(ii), the local dominated ν-integrability assumption of y �→ �D2gθ�y�x��
for µ-almost all x implies a similar property of y �→ �Dgθ�y�x��� provided that
�Dgθ�y�x�� ∈ L

1�P0� for a θ ∈ B0.

Remark. By assumptions (A5)(i), (A1) and (A4), the function xn1 �→
Dipθ�xn1 � yn1� is locally dominated µn-integrable around θ0 for νn-almost all
yn1 , any n ∈ N and i = 1�2. This is seen by noting that by (1) Dpθ�xn1 � yn1�
consists of a sum of terms, such as

πθ�x1�gθ�y1�x1�
n−1∏

k=2� k �=j
�αθ�xk−1� xk�gθ�yk�xk��αθ�xj−1� xj�Dgθ�yj�xj��
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By (A1) and (A5)(i), this term is absolutely dominated by

Mn
n∏

k=1

hyk�xk��D loggθ�yj�xj�� ≤ Mn sup
θ∈B0

sup
x∈�

�γθ�yj�x��
n∏

k=1

hyk�xk��

which for almost all fixed yn1 is a µn-integrable function, by assumption
(A4)(iii). The domination of the second derivative is similar. The local integra-
bility assumption is needed to “interchange integration and differentiation”
in some expressions below.

Remark. The process Y is ergodic under (A1). To see this, we observe that
Yk can be described as Yk = g�Xk�Uk� θ0�, where U1�U2� � � � are uniformly
distributed U�0�1�, and independent of X. Now ��Xk�Uk�� is a stationary
Markov chain, with transition density p�x1� u1 �x0� u0� = α0�x0� x1� and hence
ergodic by (A1). Thus Y is also ergodic.

Remark. The assumptions (A1), (A3) and (A4) are restrictive and are not
fulfilled in a general state space model. A typical example where (A1) to (A5)
are fulfilled is the following. Suppose � is a compact set in R

q and µ is the
Lebesgue measure. If the transition density αθ�x� z� and the stationary density
πθ�x� are positive and satisfy (A2) and if αθ�x� z�, πθ�x� and their first and
second derivatives are continuous functions of �θ� x� z� and �θ� x�, respectively,
then (A1), (A4)(ii) and (A4)(i) are satisfied. Suppose, furthermore, that gθ�y�x�
is an exponential family density,

gθ�y�x� = exp�φ�x� θ�t�y� − κ�φ�x� θ����

Here κ denotes the cumulant transform of t�Y� defined on the full parameter
space , ⊆ R

k, and φ�x� θ� ∈ ,0 where ,0 is a subset of int�,�. Suppose
that φ�x� θ� is twice differentiable wrt θ and that φ and its derivatives are
continuous functions of �x� θ�, then φ�x� θ�� � × B̄0 → ,0 takes values in a
compact set. By continuity of κ we have

gθ�y�x�/gθ�y�z� = exp
[�φ�x� θ� −φ�z� θ��t�y� − �κ�φ�x� θ�� − κ�φ�z� θ���]

≤ c1 exp�c2�t�y����

Then

inf
x∈�

∫
�
g0�y�x�/ρ�y� ν�dy�

≥ c−1
1 inf

x∈�

∫
�

exp�φ�x� θ0�t�y� − κ�φ�x� θ0��� exp�−c2�t�y��� ν�dy�

≥ c3 inf
x∈�

∫
�

exp�−�φ�x� θ0�� �t�y��� exp�−c2�t�y��� ν�dy�

≥ c3

∫
�

exp�−c4�t�y��� ν�dy� > 0�
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hence (A3) is fulfilled. As for (A4)(iii), we have

D loggθ�y�x� = D�φ�x� θ�t�y� − κ�φ�x� θ��� = ∂φ�x� θ�
∂θT

�t�y� − τ�φ�x� θ����

where τ�φ� = ∂κ�φ�/∂φ is the mean of t�Y� under Pφ and ∂φ�x� θ�/∂θT de-
notes the d × k matrix of partial derivatives of φ wrt θ. Then because of
compactness of � × B̄0, we get

sup
θ∈B0

sup
x∈�

�D loggθ�y�x�� ≤ c1 + c2�t�y���

and hence

E0

(
sup
θ∈B0

sup
x∈�

�D loggθ�y�x��2
)

≤ 2c2
1 + 2c2

2E0��t�Y��2� < ∞�

The second derivative D2 loggθ�y�x� can be dominated in the same way, and
hence (A4) follows. Assumption (A5)(i) follows again by compactness of the
parameter space and finally (A5)(ii) follows by the continuity of φ.

3. Main results. Our main results are stated in this section. These are
a central limit theorem for the score function and a uniform law of large
numbers for the observed information. As a consequence of these, we find that
with a probability that tends to 1 as n tends to infinity, there exists a (local)
maximum point of the likelihood function, which is consistent in probability
and asymptotically normal. If especially the maximum likelihood estimator
exists and is consistent, it is asymptotically normal.

Let ln�θ� denote the log likelihood function based on observations Y1� � � � �
Yn. Below, �0 will denote a Fisher information matrix given by

�0 = E0�ηηT� where η = lim
n→∞D logp0�Y1 �Y0

−n��

This will be formally defined in Section 4, but, as the following theorems show,
it can be thought of as the asymptotic covariance matrix of the score function
or the limit of the normed observed information as the number of observations
tends to infinity.

Theorem 3.1. As n tends to infinity, n−1/2Dln�θ0� → N�0��0�� P0-weakly.

This theorem is proved in Section 4.

Theorem 3.2. Let �θ∗
n� denote any stochastic sequence in 
 such that θ∗

n →
θ0 in P0-probability as n → ∞. Then n−1D2ln�θ∗

n� → −�0 in P0-probability
as n → ∞.

This theorem is proved in Section 5. Having established these two results,
the following result is proved in Jensen (1986) [see also Sweeting (1980)].
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Theorem 3.3. Assume that �0 is positive definite. With a P0-probability
that tends to 1 as n tends to infinity, there exists a sequence of local maximum
points of the likelihood function �θ̂n� such that θ̂n → θ0 in P0-probability, and

√
n�θ̂n − θ0� → N�0�� −1

0 ��P0-weakly�

If, especially, the maximum likelihood estimator exists and is consistent in
P0-probability, then this estimator has the same limit distribution.

The proof of the second part of the theorem follows by a Taylor expansion
of the likelihood function around θ0, as in the proof of Theorem 1 in BRR. The
proof of the first part relies on the assumption that �0 is positive definite,
thus in the limit the likelihood function has negative curvature and hence a
local maximum at θ0.

4. A central limit theorem for the score function. In this section we
prove the central limit theorem for the score function stated in Theorem 3.1.
BRR proved the same result in the case where the state space of the latent
process is finite. Here we start with some lemmas which will replace Lemmas 4
and 5 in BRR. For notational reasons we will assume that d is equal to 1 in
the rest of this paper. If derivatives are replaced by gradients and second
derivatives by Hessians all results are valid for general d.

Lemma 4.1. Let J ⊆ Z be an integer set and let θ ∈ B0� Conditionally
on YJ = �Yj � j ∈ J�, X constitute an inhomogeneous Markov chain with
pθ�Xk�Xk−1�YJ� ≥ ωk, where

ωk =
{
σ2/�Mρ�Yk��� if k ∈ J�

σ2/M� if k �∈ J�

The inequality is also true for the reversed chain �X−k�k∈Z.

Proof. The Markov property is proved by considering n < k < m, assum-
ing for simplicity that n ≤ j ≤ m for all j ∈ J. Then

pθ�Xk−1
n �Xm

k+1 �Xk�YJ�

= πθ�Xn�
m−1∏
i=n

αθ�Xi�Xi+1�
∏
j∈J

gθ�Yj�Xj�/pθ�Xk�YJ�

= h1�Xk
n�YJ�h2�Xm

k �YJ��

where h1 and h2 are functions of �Xk
n�YJ� and �Xm

k �YJ�, respectively. It
follows that Xk−1

n and Xm
k+1 are conditionally independent given �Xk�YJ�.

Suppose k ∈ J. Conditionally on Xk−1 and Xk+1, Xk and YJ\�k� are inde-
pendent by definition of the state space model. Hence the conditional density
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of Xk given �Xk−1�Xk+1�YJ� is

pθ�Xk�Xk−1�Xk+1�YJ� = αθ�Xk−1�Xk�αθ�Xk�Xk+1�gθ�Yk�Xk�∫
� αθ�Xk−1� x�αθ�x�Xk+1�gθ�Yk�x�µ�dx�

≥ σ2
(
M

∫
�
αθ�Xk−1� x� gθ�Yk�x�

gθ�Yk�Xk�
µ�dx�

)−1

≥ σ2/�Mρ�Yk���

(2)

Integrating the conditional density wrt pθ�Xk+1�Xk−1�YJ� gives the stated
result. When k �∈ J, the term gθ�Yk�Xk� vanishes.

The proof of the statement for the reversed chain follows by integrating (2)
wrt pθ�Xk−1 �Xk+1�YJ� instead. ✷

We state the following lemma for future reference, leaving the proof to the
reader.

Lemma 4.2. Let �� �� � µ� be a measure space and let h� � → R be a
measurable function on � . Let ν1 and ν2 be two measures dominated by µ
with ν1�� � = ν2�� �. Then

∣∣∣∣
∫
�
hdν1 −

∫
�
hdν2

∣∣∣∣ ≤
{

sup
x∈�

h�x� − inf
x∈�

h�x�
}
�ν1�S+� − ν2�S+���

where S+ = ��dν1/dµ� − �dν2/dµ� > 0��

In the next lemma, we will let �Xk�k∈Z denote any inhomogenous Markov
chain; that is, �Xk� is not necessarily the latent process in the model.

Lemma 4.3. Let �Xk�k∈Z be a Markov chain with state space �� �� � µ�.
Assume

dPXk�Xk−1

dµ
�x�z� = pk�z� x� ≥ δk�

for all x� z ∈ � and k ∈ Z, where PXk�Xk−1
denotes the conditional distribution

of Xk given Xk−1. Then for any A ∈ � ,

sup
ξ∈�

P�Xn ∈ A�X0 = ξ� − inf
η∈�

P�Xn ∈ A�X0 = η� ≤
n∏

k=1

�1 − δkµ�� ���

Proof. Let S+
k = �x ∈ � � pk�ξ� x� − pk�η�x� > 0� for fixed ξ and η in

� , and let S−
k = �S+

k �c� Define M�k�
A = supξ∈� P�Xn ∈ A�Xk = ξ� and m

�k�
A =



ASYMPTOTICS IN STATE SPACE MODELS 521

infη∈� P�Xn ∈ A�Xk = η�� Then

M
�k−1�
A −m

�k−1�
A

= sup
ξ�η

(
P�Xn ∈ A�Xk−1 = ξ� −P�Xn ∈ A�Xk−1 = η�)

= sup
ξ�η

∫
�
P�Xn ∈ A�Xk = z��pk�ξ� z� − pk�η� z��µ�dz�

≤ sup
ξ�η

�P�Xk ∈ S+
k �Xk−1 = ξ� −P�Xk ∈ S+

k �Xk−1 = η���M�k�
A −m

�k�
A �

= sup
ξ�η

�1 −P�Xk ∈ S−
k �Xk−1 = ξ� −P�Xk ∈ S+

k �Xk−1 = η���M�k�
A −m

�k�
A �

≤ �1 − δkµ�� ���M�k�
A −m

�k�
A ��

where the first inequality follows from Lemma 4.2. The result now follows
by induction with k = n, n − 1� � � � �1. [This proof is based on Doob (1953),
page 198.] ✷

We are now ready to prove a result corresponding to Lemma 4 in BRR. Let
ω�y� = µ�� �σ2/�Mρ�y��.

Lemma 4.4. Let k < l and let J ⊆ Z such that �k� k+1� � � � � l−1� ⊆ J. Let
YJ = �Yj � j ∈ J�, then for any θ ∈ B0,

sup
A∈�

sup
ξ�η∈�

∣∣Pθ�Xk ∈ A �YJ�Xl = ξ� −Pθ�Xk ∈ A �YJ�Xl = η�∣∣
≤

l−1∏
i=k

�1 −ω�Yi���

Likewise, if l < k and �l+ 1� l+ 2� � � � � k� ⊆ J then

sup
A∈�

sup
ξ�η∈�

∣∣Pθ�Xk ∈ A �YJ�Xl = ξ� −Pθ�Xk ∈ A �YJ�Xl = η�∣∣
≤

k∏
i=l+1

�1 −ω�Yi���

Proof. Consider the case k < l. Applying Lemma 4.1 on the reversed
chain �X−k�k∈Z we get

pθ�Xi �Xi+1�YJ� ≥ σ2/�Mρ�Yi�� = ω�Yi�/µ�� � for i = k� � � � � l− 1�

Using Lemma 4.3 with δi = ω�Yi�/µ�� �, we get the stated result. The proof
is similar when l < k, applying Lemma 4.1 on the original chain �Xk�k∈Z. ✷



522 J. L. JENSEN AND N. V. PETERSEN

Lemma 4.5. Let −m ≤ −n ≤ k ≤ 0. For any θ in B0 and any A�B ∈ � , we
have

∣∣Pθ�Xk ∈ A �Y1
−n� −Pθ�Xk ∈ A �Y0

−n�
∣∣ ≤

0∏
i=k

�1 −ω�Yi���
∣∣Pθ�Xk ∈ A�Xk+1 ∈ B �Y1

−n� −Pθ�Xk ∈ A�Xk+1 ∈ B �Y0
−n�

∣∣
≤

0∏
i=k+1

�1 −ω�Yi���

∣∣Pθ�Xk ∈ A �Y1
−n� −Pθ�Xk ∈ A �Y1

−m�∣∣ ≤
k∏

i=−n
�1 −ω�Yi���

∣∣Pθ�Xk ∈ A�Xk+1 ∈ B �Y1
−n� −Pθ�Xk ∈ A�Xk+1 ∈ B �Y1

−m�∣∣
≤

k∏
i=−n

�1 −ω�Yi���

The first and second expression hold Pθ-almost surely if n is replaced by ∞.
The third and fourth hold Pθ-almost surely if m is replaced by ∞ and for both
we can replace Y1

−n and Y1
−m by Y0

−n and Y0
−m, respectively.

Proof. The first expression can be evaluated as∣∣Pθ�Xk ∈ A �Y1
−n� −Pθ�Xk ∈ A �Y0

−n�
∣∣

=
∣∣∣∣
∫
�
Pθ�Xk ∈ A �Y0

−n� x1��pθ�x1 �Y1
−n� − pθ�x1 �Y0

−n��µ�dx1�
∣∣∣∣

≤ sup
ξ∈�

Pθ�Xk ∈ A �Y0
−n�X1 = ξ� − inf

η∈�
Pθ�Xk ∈ A �Y0

−n�X1 = η�

≤
0∏

i=k
�1 −ω�Yi���

where the inequalities follow from Lemmas 4.2 and 4.4, respectively.
As for the second expression,∣∣Pθ�Xk ∈ A�Xk+1 ∈ B �Y1

−n� −Pθ�Xk ∈ A�Xk+1 ∈ B �Y0
−n�

∣∣
=

∣∣∣∣
∫
B
Pθ�Xk ∈ A�xk+1�Y

k
−n�

× �Pθ�xk+1 �Y1
−n� −Pθ�xk+1 �Y0

−n��µ�dxk+1�
∣∣∣∣

≤ ∣∣Pθ�Xk+1 ∈ S+ �Y1
−n� −Pθ�Xk+1 ∈ S+ �Y0

−n�
∣∣

≤
0∏

i=k+1

�1 −ω�Yi���
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Here S+ is a set chosen as in Lemma 4.2 and the second inequality follows
from above.

By a martingale convergence theorem by Levy [Hoffmann-Jørgensen (1994),
page 505], we get, for instance, that Pθ�Xk ∈ A �Y1

−n� → Pθ�Xk ∈ A �Y1
−∞�

Pθ-almost surely as n → ∞. This result shows that we can replace n by ∞ in
the inequalities above.

The third expression is proved as the first by conditioning on X−n−1 =
x−n−1 in the integral, and the fourth expression follows from the third by an
argument similar to the one used to deduce the second from the first. The
arguments are identical when replacing Y1

−n and Y1
−m with Y0

−n and Y0
−m,

and the extension to the case m = ∞ follows from the martingale convergence
argument above. ✷

Lemma 4.5 corresponds to Lemma 5 in BRR. Having established this result,
the rest of the proof of the CLT for the score function follows the line of these
authors closely. However, we will repeat some of the arguments here since
there are some differences due to our latent process being continuous.

We will for notational reasons denote our observations Y−n� � � � �Y1. The
score function Dl�θ� is then given by

Dl�θ� =
1∑

k=−n
D logpθ�Yk �Yk−1

−n ��

where pθ�Yk �Yk−1
−n � denotes the conditional density of Yk given Yk−1

−n and

D logpθ�Yk �Yk−1
−n � = D logpθ�Yk

−n� −D logpθ�Yk−1
−n ��

Using assumption (A5)(i) to interchange integration and differentiation below
we find that for any j = k− 1� k,

D logpθ�Yj
−n� = Eθ�D logpθ�Yj

−n�X
k
−n� �Yj

−n��
Hence D logpθ�Yk �Yk−1

−n � is given by

D logpθ�Yk �Yk−1
−n � = Eθ�D logpθ�Yk

−n�X
k
−n� �Yk

−n�
−Eθ�D logpθ�Yk−1

−n �X
k
−n� �Yk−1

−n ��
(3)

Using the expression for pθ�Yk
−n�X

k
−n� in (1) we find

D logpθ�Yk �Yk−1
−n �

=
k−1∑
i=−n

{
Eθ�λθ�Xi�Xi+1� + γθ�Yi�Xi��Yk

−n�

−Eθ�λθ�Xi�Xi+1� + γθ�Yi�Xi��Yk−1
−n �}

+Eθ�τθ�X−n� �Yk
−n� −Eθ�τθ�X−n� �Yk−1

−n �
+Eθ�γθ�Yk�Xk� �Yk

−n��

(4)
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Now, let

η1 =
0∑

i=−∞

{
E0�λ0�Xi�Xi+1� + γ0�Yi�Xi��Y1

−∞�

−E0�λ0�Xi�Xi+1� + γ0�Yi�Xi��Y0
−∞�}

+E0�γ0�Y1�X1� �Y1
−∞��

(5)

The infinite sum is absolutely convergent in L
2�P0�, as will be shown in

Lemma 4.6, so η1 is a well-defined variable in L
2�P0�. Let

�0 = E0�η2
1��

Letting �� · ��2 denote the L
2�P0�-norm, we have the following lemma.

Lemma 4.6. There exists a β ∈ �0�1� and a constant c such that∣∣∣∣D logp0�Y1 �Y0
−n� − η1

∣∣∣∣
2 ≤ cβn�

for all n.

Proof. Let

Zk = λ0�Xk�Xk+1� + γ0�Yk�Xk��
By splitting the sums in (4) and (5) we can dominate ��D logp0�Y1 �Y0

−n�−η1��2
by the sum of the following terms:

��E0�τ0�X−n� �Y1
−n� −E0�τ0�X−n� �Y0

−n���2�(6)

��E0�γ0�Y1�X1� �Y1
−n� −E0�γ0�Y1�X1� �Y1

−∞���2�(7)

0∑
k=−�n/2�

��E0�Zk �Yj
−n� −E0�Zk �Yj

−∞���2� j = 0�1�(8)

−�n/2�−1∑
k=−n

��E0�Zk �Y1
−n� −E0�Zk �Y0

−n���2�(9)

−�n/2�∑
k=−∞

��E0�Zk �Y1
−∞� −E0�Zk �Y0

−∞���2�(10)

where �·� denotes the integer part. We will show that each of the terms (6)–(10)
can be dominated by cβn, where 0 ≤ β < 1, which proves the lemma. Further-
more, the domination of (10) shows that the sum in (5) is absolutely convergent
as stated earlier.

We will show the domination of (9) and leave the remaining terms to the
reader. We will first consider the part of Zk given by γ0�Yk�Xk� in (9). By
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applying Lemma 4.2 and 4.5 we have the following inequality:∣∣E0�γ0�Yk�Xk� �Y1
−n� −E0�γ0�Yk�Xk� �Y0

−n�
∣∣

=
∣∣∣∣
∫
�
γ0�Yk�xk��p0�xk �Y1

−n� − p0�xk �Y0
−n��µ�dxk�

∣∣∣∣
≤ 2 sup

x∈�
�γ0�Yk�x��

0∏
i=k+1

�1 −ω�Yi���

Hence the L
2-norm can be dominated as

��E0�γ0�Yk�Xk� �Y1
−n� −E0�γ0�Yk�Xk� �Y0

−n���22

≤ 4E0

(
E0

(
sup
x∈�

γ0�Yk�x�2
0∏

i=k+1

�1 −ω�Yi��2

∣∣∣∣X0
k

))

= 4E0

(
E0

(
sup
x∈�

γ0�Yk�x�2�Xk

) 0∏
i=k+1

E0��1 −ω�Yi��2�Xi�
)

≤ cβ−k�

(11)

where the equality follows by definition of the state space model and where β
is given by

β = sup
x∈�

∫
�

(
1 − µ�� �σ2

Mρ�y�
)2

g0�y�x� ν�dy�

≤ sup
x∈�

∫
�

(
1 − µ�� �σ2

Mρ�y�
)
g0�y�x� ν�dy�

= 1 − µ�� �σ2

M
inf
x∈�

∫
�
g0�y�x�/ρ�y� ν�dy� < 1�

by assumption (A3). The constant in (11) is finite by assumption (A4). For a
sum of L

2-norms we get,

−�n/2�−1∑
k=−n

��E0�γ0�Yk�Xk� �Y1
−n� −E0�γ0�Yk�Xk� �Y0

−n���2

≤ c
−�n/2�−1∑
k=−n

β−k/2 ≤ cβ�n/2�/2�

The part of (9) involving λ0�Xk�Xk+1� can be dominated in a similar way,
using (A4) and the second inequality in Lemma 4.4. Hence we have proved
the claimed domination of (9). ✷

Lemma 4.6 is the final brick needed to prove Theorem 3.1; it tells us
that in the limit the score function is equivalent to a sum of terms like η1.
These constitute a stationary martingale increment sequence, and hence by
a martingale central limit theorem we obtain the stated limit distribution of
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the score function. The proof is identical to the proof of Lemma 1 in BRR,
page 1626.

5. A law of large numbers for the observed information. In this
section we will show Theorem 3.2. As in the previous section we will start with
some lemmas providing inequalities for conditional probabilities. Lemmas 5.1
and 5.3 are multivariate versions of Lemma 4.5.

Lemma 5.1. Let −m ≤ −n ≤ k ≤ l ≤ 0, and let θ ∈ B0. Then for all
C ∈ σ��Xt�Yt�� t ≤ l� we have

�Pθ�C �Y1
−n� −Pθ�C �Y0

−n�� ≤
0∏
i=l

�1 −ω�Yi���

Likewise for all C ∈ σ��Xt�Yt�� t ≥ k� and for j = 0�1 we have

�Pθ�C �Yj
−n� −Pθ�C �Yj

−m�� ≤
k∏

i=−n
�1 −ω�Yi���

Proof. Let C ∈ σ��Xt�Yt�� t ≤ l�. Then

�Pθ�C �Y1
−n� −Pθ�C �Y0

−n��

=
∣∣∣∣
∫
�
Pθ�C �xl�Yl

−n��pθ�xl �Y1
−n� − pθ�xl �Y0

−n��µ�dxl�
∣∣∣∣

≤ Pθ�Xl ∈ S+ �Y1
−n� −Pθ�Xl ∈ S+ �Y0

−n� ≤
0∏
i=l

�1 −ω�Yi���

where S+ = �xl ∈ � � pθ�xl �Y1
−n� − pθ�xl �Y0

−n� > 0� is chosen as in Lemma
4.2, and the last inequality follows from Lemma 4.5. The second inequality is
derived by a similar argument, by conditioning on Xk instead of Xl. ✷

In the next lemma, �Xk� denotes any inhomogenous Markov chain, as in
Lemma 4.3.

Lemma 5.2. Let the setup be as in Lemma 4.3. Let n ∈ Z and let Q be the
measure on � ⊗ � defined by

Q�A×B� = P�X0 ∈ A�P�Xn ∈ B��

for A�B ∈ � . Then for all C ∈ � ⊗ � ,

�P��X0�Xn� ∈ C� −Q�C�� ≤
n∏

k=1

�1 − δkµ�� ���
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Proof. Let Cx0
= �xn ∈ � � �x0� xn� ∈ C�� then

�P��X0�Xn� ∈ C� −Q�C��

=
∣∣∣∣
∫
�

�P�Xn ∈ Cx0
�X0 = x0� −P�Xn ∈ Cx0

��PX0
�dx0�

∣∣∣∣
≤

n∏
k=1

�1 − δkµ�� ���

Here the last inequality follows from Lemma 4.3 since

�P�Xn ∈ A �X0 = ξ� −P�Xn ∈ A��

=
∣∣∣∣
∫
�

�P�Xn ∈ A �X0 = ξ� −P�Xn ∈ A �X0 = η��PX0
�dη�

∣∣∣∣
= sup

ξ∈�
P�Xn ∈ A �X0 = ξ� − inf

η∈�
P�Xn ∈ A �X0 = η�

≤
n∏

k=1

�1 − δkµ�� ��� ✷

Lemma 5.3. Let −m ≤ −n ≤ k ≤ l ≤ 0. Let Q
j
θ�−n be the measure on � ⊗�

defined by

Q
j
θ�−n�A×B� = Pθ�Xk ∈ A �Yj

−n�Pθ�Xl ∈ B �Yj
−n�

for j = 0�1 and A�B ∈ � . Then for all θ ∈ B0, for C ∈ � ⊗� and for j = 0�1,

�Pθ��Xk�Xl� ∈ C �Yj
−n� −Q

j
θ�−n�C�� ≤

l−1∏
i=k

�1 −ω�Yi���

�Q1
θ�−n�C� −Q0

θ�−n�C�� ≤ 2
0∏
i=l

�1 −ω�Yi���

�Qj
θ�−n�C� −Q

j
θ�−m�C�� ≤ 2

k∏
i=−n

�1 −ω�Yi���

Proof. The first inequality follows from Lemmas 5.2 and 4.1. To prove the
second expression we will let Cy = �x ∈ � � �x�y� ∈ C�, C′

x = �y ∈ � � �x�y� ∈
C� and proceed as follows:

�Q1
θ�−n�C� −Q0

θ�−n�C��

=
∣∣∣∣
∫
C
�pθ�xk �Y1

−n�pθ�xl �Y1
−n� − pθ�xk �Y0

−n�pθ�xl �Y0
−n��µ�dxk�µ�dxl�

∣∣∣∣
≤

∣∣∣∣
∫
C
�pθ�xk �Y1

−n� − pθ�xk �Y0
−n��pθ�xl �Y1

−n�µ�dxk�µ�dxl�
∣∣∣∣

+
∣∣∣∣
∫
C
�pθ�xl �Y1

−n� − pθ�xl �Y0
−n��pθ�xk �Y0

−n�µ�dxl�µ�dxk�
∣∣∣∣
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≤
∫
�

�Pθ�Xk ∈ Cxl
�Y1

−n� −Pθ�Xk ∈ Cxl
�Y0

−n��pθ�xl�Y1
−n�µ�dxl�

+
∫
�

�Pθ�Xl ∈ C′
xk

�Y1
−n� −Pθ�Xl ∈ C′

xk
�Y0

−n��pθ�xk�Y0
−n�µ�dxk�

≤
0∏

i=k
�1 −ω�Yi�� +

0∏
i=l

�1 −ω�Yi�� ≤ 2
0∏
i=l

�1 −ω�Yi���

where the third inequality is given by Lemma 4.5.
The third expression is proved as the second. ✷

Having established these inequalities, we are ready to prove the law of large
numbers for the observed information. Using (A5)(i) to interchange integration
and differentiation we find

D2 logpθ�Y1 �Y0
−n� = D2 logpθ�Y1

−n� −D2 logpθ�Y0
−n�

= Eθ�D2 logpθ�X1
−n�Y

1
−n� �Y1

−n�
−Eθ�D2 logpθ�X1

−n�Y
0
−n� �Y0

−n�
+ varθ�D logpθ�X1

−n�Y
1
−n� �Y1

−n�
− varθ�D logpθ�X1

−n�Y
0
−n� �Y0

−n��

(12)

Define, for notational reasons,

Zθ�k = λθ�Xk�Xk+1� + γθ�Yk�Xk� and Żθ� k = Dλθ�Xk�Xk+1� +Dγθ�Yk�Xk��
Inserting expression �1� in (12), we get

D2 logpθ�Y1 �Y0
−n�

= Eθ�Dτθ�X−n� �Y1
−n� −Eθ�Dτθ�X−n� �Y0

−n�

+Eθ�Dγθ�Y1�X1� �Y1
−n� +

0∑
k=−n

�Eθ�Żθ� k �Y1
−n� −Eθ�Żθ� k �Y0

−n��

+ varθ�γθ�Y1�X1� �Y1
−n� + varθ�τθ�X−n� �Y1

−n� − varθ�τθ�X−n� �Y0
−n�

+
0∑

k=−n

0∑
l=−n

{
covθ�Zθ�k�Zθ� l �Y1

−n� − covθ�Zθ�k�Zθ� l �Y0
−n�

}

+ 2
0∑

k=−n

{
covθ�τθ�X−n��Zθ�k �Y1

−n� − covθ�τθ�X−n��Zθ�k �Y0
−n�

}

+ 2
0∑

k=−n
covθ�γθ�Y1�X1��Zθ�k �Y1

−n�

+ 2 covθ�γθ�Y1�X1�� τθ�X−n� �Y1
−n��

(13)

We then have the following convergence result.
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Lemma 5.4. As m�n → ∞,∣∣∣∣
∣∣∣∣sup
θ∈B0

�D2 logpθ�Y1 �Y0
−n� −D2 logpθ�Y1 �Y0

−m��
∣∣∣∣
∣∣∣∣
1

→ 0�

where �� · ��1 denotes the L
1�P0�-norm.

This lemma states that �D2 logpθ�Y1 �Y0
−n�� is a uniform Cauchy sequence

in L
1�P0�. This is important because it proves the existence of a limit in L

1�P0�
of D2 logpθ�Y1 �Y1

−n� as n → ∞ for any θ ∈ B0, and not only θ = θ0. In the
proof we will need the following lemma.

Lemma 5.5. Let −m ≤ −n ≤ k ≤ l ≤ 0 and let Zθ�k be defined as above.
Then there exists a β ∈ �0�1� such that the following inequalities hold for
j = 0�1:∣∣∣∣

∣∣∣∣sup
θ∈B0

� covθ�Zθ�k�Zθ�l �Y1
−n� − covθ�Zθ�k�Zθ�l �Y0

−n��
∣∣∣∣
∣∣∣∣
1

≤ cβ−l�(14)

∣∣∣∣
∣∣∣∣sup
θ∈B0

� covθ�Zθ�k�Zθ�l �Yj
−n� − covθ�Zθ�k�Zθ�l �Yj

−m��
∣∣∣∣
∣∣∣∣
1

≤ cβk+n�(15)

∣∣∣∣
∣∣∣∣sup
θ∈B0

� covθ�Zθ�k�Zθ�l �Yj
−n��

∣∣∣∣
∣∣∣∣
1

≤ cβl−k�(16)

Above, Zθ� i may be replaced by τθ�Xi� or γθ�Yi �Xi� for i = k� l.

Proof. Recall that Zθ�k = λθ�Xk�Xk+1� + γθ�Yk �Xk�. Thus the covari-
ance of Zθ�k and Zθ� l splits into the sum of four covariance terms involving
λθ and γθ. We will show that covθ�γθ�Yk �Xk�� γθ�Yl �Xl� �Y� satisfies the
claimed inequalities. The three remaining terms are similar.

To show the first inequality we will consider the expression

sup
θ∈B0

∣∣Eθ�γθ�Yk �Xk�γθ�Yl �Xl� �Y1
−n� −Eθ�γθ�Yk �Xk�γθ�Yl �Xl� �Y0

−n�
∣∣

= sup
θ∈B0

∣∣∣∣
∫
� 2

γθ�Yk �xk�γθ�Yl �xl�

× �pθ�xk� xl �Y1
−n� − pθ�xk� xl �Y0

−n��µ�dxk�µ�dxl�
∣∣∣∣

≤ 2γ∗�Yk�γ∗�Yl� sup
θ∈B0

∣∣Pθ��Xk�Xl� ∈ S+ �Y1
−n�

−Pθ��Xk�Xl� ∈ S+ �Y0
−n�

∣∣
≤ 2γ∗�Yk�γ∗�Yl�

0∏
i=l

�1 −ω�Yi���
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Here γ∗�Yk� = supθ∈B0
supx∈� �γθ�Yk�x�� as defined in assumption (A4), and

the inequalities follow from Lemmas 4.2 and 5.1, respectively. The L
1�P0�-

norm of such a term is thus less than

2E0

(
γ∗�Yk�γ∗�Yl�

0∏
i=l

�1 −ω�Yi��
)

= 2E0

(
E0

(
γ∗�Yk�γ∗�Yl�

0∏
i=l

�1 −ω�Yi��
∣∣X0

k

))

≤ 2E0

(
E0�γ∗�Yk��Xk�E0�γ∗�Yl��Xl�

0∏
i=l+1

E0�1 −ω�Yi��Xi�
)

≤ 2E0�γ∗�Y1�2�β−l = cβ−l�

where the first inequality follows by definition of the state space model, and
where β is given by

β = sup
x∈�

E0�1 −ω�Yi��Xi = x� = sup
x∈�

∫
�

(
1 − µ�� �σ2

Mρ�y�
)
g0�y�x� ν�dy� < 1�

by assumption (A3). Assumption (A4) assures that the constant c above is
finite.

The expression∣∣∣∣
∣∣∣∣ sup
θ∈B0

∣∣Eθ�γθ�Yk �Xk� �Y1
−n�Eθ�γθ�Yl �Xl� �Y1

−n�

−Eθ�γθ�Yk �Xk� �Y0
−n�Eθ�γθ�Yl �Xl� �Y0

−n�
∣∣ ∣∣∣∣
∣∣∣∣
1

can be dominated by the same technique, using the second expression in
Lemma 5.3. Hence (14) is proved.

The second inequality (15) is proved as (14) using the second expression in
Lemma 5.1 and the third expression in Lemma 5.3, respectively. As for (16)
we have

sup
θ∈B0

� covθ�γθ�Yk �Xk�� γθ�Yl �Xl� �Yj
−n��

= sup
θ∈B0

∣∣∣∣
∫
� 2

γθ�Yk �xk�γθ�Yl �xl�

× �pθ�xk� xl �Yj
−n� − pθ�xk �Yj

−n�pθ�xl �Yj
−n��µ�dxk�µ�dxl�

∣∣∣∣
≤ 2γ∗�Yk�γ∗�Yl�

l−1∏
i=k

�1 −ω�Yi���

by the first expression in Lemma 5.3. The claimed domination of the L
1�P0�-

norm of this term is proved as above. ✷
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Proof of Lemma 5.4. Considering the expression for D2 logpθ�Y1 �Y0
−n�

in (13), we will show that the term∣∣∣∣
∣∣∣∣ sup
θ∈B0

∣∣∣∣
0∑

k=−m

0∑
l=−m

{
covθ�Zθ�k�Zθ� l �Y1

−m� − covθ�Zθ�k�Zθ� l �Y0
−m�}

−
0∑

k=−n

0∑
l=−n

{
covθ�Zθ�k�Zθ� l �Y1

−n� − covθ�Zθ�k�Zθ� l �Y0
−n�

}∣∣∣∣
∣∣∣∣
∣∣∣∣
1
→ 0

(17)

as n�m → ∞. The remaining terms in (13) can be treated with similar argu-
ments.

Suppose m > n. By symmetry of k and l in the sum in (17) it suffices to
consider the sum over the region where k ≤ l. This region can be further
divided into five subregions,

D1 = ��k� l� ∈ Z
2 � − �n/2� ≤ k ≤ 0� k ≤ l ≤ 0��

D2 = ��k� l� ∈ Z
2 � − n ≤ k ≤ −�n/2�� �k/2� ≤ l ≤ 0��

D3 = ��k� l� ∈ Z
2 � −m ≤ k ≤ −n� �k/2� ≤ l ≤ 0��

D4 = ��k� l� ∈ Z
2 � − n ≤ k ≤ −�n/2�� k ≤ l ≤ �k/2���

D5 = ��k� l� ∈ Z
2 � −m ≤ k ≤ −n� k ≤ l ≤ �k/2���

We will show that the sum over each of these regions tends to zero in L
1�P0�

as n�m → ∞, hence proving (17). Using (15) we find that

∑
�k� l�∈D1

∣∣∣∣
∣∣∣∣ sup
θ∈B0

∣∣�covθ�Zθ�k�Zθ� l �Y1
−m� − covθ�Zθ�k�Zθ� l �Y0

−m��

− �covθ�Zθ�k�Zθ� l �Y1
−n� − covθ�Zθ�k�Zθ� l �Y0

−n��
∣∣ ∣∣∣∣
∣∣∣∣
1

≤ c
0∑

k=−�n/2�

0∑
l=k

βk+n�

Using (16) we find that the corresponding sums over D2 and D3 are less than

c
−�n/2�∑
k=−n

0∑
l=�k/2�

βl−k and c
−n∑

k=−m

0∑
l=�k/2�

βl−k�

respectively, and by (14) the sums over D4 and D5 are dominated by

c
−�n/2�∑
k=−n

�k/2�∑
l=k

β−l and c
−n∑

k=−m

�k/2�∑
l=k

β−l�

respectively. Since 0 ≤ β < 1 these sums all tend to zero as n�m → ∞ and
the proof is complete. ✷
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Lemma 5.6. The map θ �→ D2 logpθ�Y1�Y0
−n� from B0 to L

1�P0� is contin-
uous.

Proof. Let �θm� ⊆ B0 be a sequence such that θm → θ as m → ∞. We will
show that E0��D2 logpθm

�Y1 �Y0
−n� − D2 logpθ�Y1 �Y0

−n��� → 0� as m → ∞�
Considering the expression in (13) we must show that terms such as

E0
[�Eθm

�γθm�Yk�Xk�γθm�Yl�Xl� �Y1
−n� −Eθ�γθ�Yk�Xk�γθ�Yl�Xl� �Y1

−n��
]

tend to zero as m → ∞. The integrand can be evaluated as∣∣Eθm
�γθm�Yk�Xk�γθm�Yl�Xl� �Y1

−n� −Eθ�γθ�Yk�Xk�γθ�Yl�Xl� �Y1
−n�

∣∣
≤

∣∣∣∣
∫
� 2

γθm�Yk�xk�γθm�Yl�xl�

× �pθm
�xk� xl �Y1

−n� − pθ�xk� xl �Y1
−n��µ�dxk�µ�dxl�

∣∣∣∣
+

∣∣∣∣
∫
� 2

�γθm�Yk�xk�γθm�Yl�xl� − γθ�Yk�xk�γθ�Yl�xl��

× pθ�xk� xl �Y1
−n�µ�dxk�µ�dxl�

∣∣∣∣�
The first term is less than

γ∗�Yk�γ∗�Yl�
∫
� 2

∣∣pθm
�xk� xl �Y1

−n�

− pθ�xk� xl �Y1
−n�

∣∣µ�dxk�µ�dxl�
(18)

= γ∗�Yk�γ∗�Yl�
pθm

�Y1−n�
∫
� 2

∣∣pθm
�xk� xl�Y1

−n�

− pθ�xk� xl �Y1
−n�pθm

�Y1
−n�

∣∣µ�dxk�µ�dxl��
(19)

The integral tends to zero as m → ∞ as can be seen by considering the
simultaneous density

pθm
�xk� xl�Y1

−n� =
∫
� n

πθm�x−n�gθm�Y−n�x−n�

×
1∏

i=−n+1

�αθm�xi−1� xi�gθm�Yi�xi��
1∏

i=−n
i�=k� l

µ�dxi��
(20)

Since the integrand here is continuous and can be dominated by

Mn+2
1∏

i=−n
hYi

�xi� ∈ L
1�µn��(21)
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by assumptions (A1) and (A5), we have from Lebesgue’s dominated conver-
gence theorem that

pθm
�xk� xl�Y1

−n� → pθ�xk� xl�Y1
−n� as m → ∞�

Likewise pθm
�Y1

−n� → pθ�Y1
−n� as m → ∞, and hence the integrand in (19)

tends to zero. By (21) the integrand can be dominated in L
1�µ2�, and therefore

(19) tends to zero.
Since the expression in (18) is less than

γ∗�Yk�γ∗�Yl�
∫
� 2

�pθm
�xk� xl�Y1

−n� + pθ�xk� xl�Y1
−n��µ�dxk�µ�dxl�

= 2γ∗�Yk�γ∗�Yl��
(22)

it is dominated in L
1�P0� and hence tends to zero in L

1�P0� as m → ∞�
The second term can be dominated similarly and tends to zero P0-almost

surely, and therefore also in L
1�P0�, by the continuity of γθ. ✷

Lemmas 5.4 and 5.6 show that �D2 logpθ�Y1�Y0
−n��n∈N is a uniform Cauchy

sequence of continuous functions in L
1�P0�, which proves Lemma 10 of BRR.

The final lemma states a usual property of the Fisher information. With this
result, the remaining part of the proof of Theorem 3.2 is now identical to the
proof of Lemma 2 in BRR, page 1633.

Lemma 5.7. For any n,

E0�D2 logp0�Y1�Y0
−n�� = −E0��D logp0�Y1�Y0

−n��2��

Proof. By (3) and (12) we have

�D logp0�Y1 �Y0
−n��2 +D2 logp0�Y1 �Y0

−n�
= 2

[
E0�D logp0�X1

−n�Y
0
−n� �Y0

−n�2

−E0
(
D logp0�X1

−n�Y
1
−n� �Y1

−n
)

×E0
(
D logp0�X1

−n�Y
0
−n� �Y0

−n
)]

+E0��D logp0�X1
−n�Y

1
−n��2 �Y1

−n�
−E0��D logp0�X1

−n�Y
0
−n��2 �Y0

−n�
+E0�D2 logp0�X1

−n�Y
1
−n� �Y1

−n�
−E0�D2 logp0�X1

−n�Y
0
−n� �Y0

−n��

(23)

The expression enclosed by parantheses has zero mean. This follows by noting
from (1) that

D logp0�X1
−n�Y

1
−n� = D logp0�X1

−n�Y
0
−n� + γ0�Y1�X1��(24)
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thus

E0
[
E0�D logp0�X1

−n�Y
1
−n� �Y1

−n�E0�D logp0�X1
−n�Y

0
−n� �Y0

−n�
]

= E0
{
D logp0�X1

−n�Y
1
−n�E0�D logp0�X1

−n�Y
0
−n� �Y0

−n�
}

= E0
{
D logp0�X1

−n�Y
0
−n�E0�D logp0�X1

−n�Y
0
−n� �Y0

−n�
}

+E0
{
γ0�Y1�X1�E0�D logp0�X1

−n�Y
0
−n� �Y0

−n�
}

= E0
{
D logp0�X1

−n�Y
0
−n�E0�D logp0�X1

−n�Y
0
−n� �Y0

−n�
}

+E0
{
E0

[
γ0�Y1�X1��X1

]
E0

[
E0�D logp0�X1

−n�Y
0
−n� �Y0

−n� �X1
]}

= E0
{
D logp0�X1

−n�Y
0
−n�E0�D logp0�X1

−n�Y
0
−n� �Y0

−n�
}
�

where the third equality follows from the conditional independence of Y0
−n and

Y1 given X1, and the last equality from the fact that E0�γ0�Y1�X1� �X1� = 0
by (A5)(ii). The mean of the square bracketed term in (23) is then

2E0
{
E0�D logp0�X1

−n�Y
0
−n� �Y0

−n�
× [

E0�D logp0�X1
−n�Y

0
−n� �Y0

−n� −D logp0�X1
−n�Y

0
−n�

]} = 0�

By (24) the mean of the sum of the four last terms is given by

E0
{
D2 logg0�Y1 �X1�

} +E0
{�D logg0�Y1 �X1��2}

+ 2E0
{
γ0�Y1 �X1�D logp0�X1

−n�Y
0
−n�

}
�

The last term is zero, which is seen by conditioning on X1 and using the
argument from above. The sum of the two first terms is zero by assumption
(A5)(ii), which completes the proof. ✷
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