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ASYMPTOTIC-NUMERICAL SOLVERS FOR LINEAR NEUTRAL DELAY
DIFFERENTIAL EQUATIONS WITH HIGH-FREQUENCY EXTRINSIC

OSCILLATIONS

Hajar Ait el bhira1, Mustapha Kzaz2,* and Fatna Maach2

Abstract. We present a method to compute efficiently and easily solutions of systems of linear neutral
delay differential equations with highly oscillatory forcing terms. This method is based on asymptotic
expansions in inverse powers of a perturbed oscillatory parameter. Each term of the asymptotic expan-
sion is derived by recursion. The cost of the computation is essentially independent of the oscillatory
parameter. Numerical examples are provided and show that with few terms of the asymptotic expansion,
the solutions are approximated with high accuracy.
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1. Introduction

An important and rich source of oscillatory problems with high-frequency extrinsic oscillations is computa-
tional electronic engineering. Indeed, the modeling of highly oscillating electronic circuits leads to differential
equations, in particular, delay differential equations. The reason for this is that the delay occurs wherever sig-
nals are transmitted along a finite distance from one point to another. Thus, when one wishes to obtain precise
communication systems, one must imperatively model the problem with delay differential equations. A wide
range of applications in engineering of DDEs with highly oscillatory forcing terms can be found in [2, 7, 9].
Among these applications, we can cite for example coupled microwave oscillators ([3,12]), laser dynamics ([11])
and the related secure communication techniques using chaos ([10]).

In this paper, we are concerned with systems of linear neutral delay differential equations (NDDEs) with
highly oscillatory forcing terms of the form:{︂

𝑦
′
(𝑡) = 𝐴𝑦(𝑡) + 𝐵𝑦(𝑡− 1) + 𝐶𝑦′(𝑡− 1) + ℎ(𝑡) + 𝑎(𝑡)𝑒𝑖𝜔𝑡, 0 ≤ 𝑡 ≤ 𝑇

𝑦(𝑡) = 𝜑(𝑡), −1 ≤ 𝑡 ≤ 0
(1.1)

where 𝑦, ℎ, 𝑎 : R → C𝑑, 𝐴, 𝐵 and 𝐶 are 𝑑× 𝑑 constant matrices and 𝜔 >> 1.
There exist numerous methods for the numerical solution of neutral delay differential equations, mostly based

upon an extension of Runge-Kutta, collocation and multistep methods, see [1]. However, the highly oscillatory
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nature of the solution imposes a very small stepsize on standard numerical methods for solving ODEs. In effect,
as has been extensively explained in [4,6,7], in any standard numerical method of order 𝑝 with step ℎ, the error
scales roughly like ℎ𝑝+1𝑦(𝑝+1)(𝑡). Since the derivatives of highly oscillatory functions grow very fast, typically
𝑦(𝑝+1)(𝑡) = 𝑂

(︀
𝜔𝑝+1

)︀
, we are compelled to choose a very small ℎ𝜔, and therefore to require ℎ to be extremely

small in order to keep the error down to an acceptable size.
The method we propose consists in solving (1.1) recursively and this on each interval [𝑘, 𝑘 + 1] , 𝑘 ∈ N. Thus,

on each interval [𝑘, 𝑘 + 1], we get a linear ordinary differential equation of the form:{︂
𝑦
′

𝑘(𝑡) = 𝐴𝑦𝑘(𝑡) + ℎ𝑘(𝑡) + 𝑎(𝑡)𝑒𝑖𝜔𝑡, 𝑘 ≤ 𝑡 ≤ 𝑘 + 1
𝑦𝑘(𝑘) = 𝜑𝑘,

. (1.2)

Thanks to ODE solving techniques, the solution of such equation is given by:

𝑦𝑘 (𝑡) = ∆𝑘 (𝑡) + Ψ𝑘(𝑡, 𝜔), 𝑡 ∈ [𝑘, 𝑘 + 1] , 𝑘 ∈ N

where ∆𝑘 (𝑡) is the solution of the equation 𝑦
′

𝑘(𝑡) = 𝐴𝑦𝑘(𝑡)+ℎ𝑘(𝑡) (which itself is the sum of the general solution
of the homogeneous equation and a particular solution of the complete equation), while Ψ𝑘(𝑡, 𝜔) is a particular
solution of the equation (1.2). In other words, the term ∆𝑘 (𝑡) represents the non-oscillatory part while Ψ𝑘(𝑡, 𝜔)
represents the oscillatory part of the solution of (1.2) on the interval [𝑘, 𝑘 + 1].

The term ∆𝑘 (𝑡) is the solution of the sequence of the following first order linear ODE’s with non-oscillatory
forcing term: {︂

∆
′

𝑘(𝑡) = 𝐴∆𝑘(𝑡) + 𝐵∆𝑘−1(𝑡− 1) + 𝐶∆′𝑘−1(𝑡− 1) + ℎ(𝑡) 𝑘 ≤ 𝑡 ≤ 𝑘 + 1
∆−1(𝑡) = 𝜑(𝑡), −1 ≤ 𝑡 ≤ 0

. (1.3)

Each equation of this sequence, can be solved numerically by standard numerical solvers of first order linear
ODE’s, see [8]. Note also that the non-oscillatory term of the solution can also be seen as the solution of the
neutral delay differential equation:{︂

∆
′
(𝑡) = 𝐴∆(𝑡) + 𝐵∆(𝑡− 1) + 𝐶∆′(𝑡− 1) + ℎ(𝑡), 0 ≤ 𝑡 ≤ 𝑇

∆(𝑡) = 𝜑(𝑡), −1 ≤ 𝑡 ≤ 0
. (1.4)

This type of equations can be solved thanks to the numerical methods specific to the differential equations with
delay, see [1].

The second term Ψ𝑘(𝑡, 𝜔), representing the oscillatory part of the solution of (1.2) on the interval [𝑘, 𝑘 + 1],
corresponds to the solution of the sequence of the following first order linear ODE’s endowed with highly
oscillatory forcing term:{︂

Ψ
′

𝑘(𝑡, 𝜔) = 𝐴Ψ𝑘(𝑡, 𝜔) + 𝐵Ψ𝑘−1(𝑡− 1, 𝜔) + 𝐶Ψ′𝑘−1(𝑡− 1, 𝜔) + 𝑎(𝑡)𝑒𝑖𝜔𝑡, 𝑘 ≤ 𝑡 ≤ 𝑘 + 1
Ψ−1(𝑡, 𝜔) = 0, −1 ≤ 𝑡 ≤ 0

. (1.5)

Recall that the resolution of the equation (1.1) has been studied in [6], in the following restricted framework,{︂
𝑦
′
(𝑡) = 𝐴𝑦(𝑡) + 𝐵𝑦(𝑡− 1) + ℎ(𝑡) + 𝑎(𝑡)𝑒𝑖𝜔𝑡, 0 ≤ 𝑡 ≤ 𝑇

𝑦(𝑡) = 𝜑(𝑡), −1 ≤ 𝑡 ≤ 0
. (1.6)

The main result of this paper is to resolve (1.5). The approach we take is to divide the whole interval into
the subintervals [𝑘, 𝑘 + 1]. On each subinterval [𝑘, 𝑘 + 1], the oscillatory term of the solution is obtained by a
succession of integrations by parts of (1.5). It is written by distinguishing two cases: the case where (1.1) is a
scalar equation and the case where (1.1) is a system of equations. Indeed, we show that Ψ𝑘(𝑡, 𝜔) is of the form:

Ψ𝑘(𝑡, 𝜔) =
∞∑︁

𝑟=1

𝑒𝑖𝜔𝑡Ω𝑘,𝑟 (𝑡, 𝜔)− 𝑒𝐴(𝑡−𝑘)Φ𝑘,𝑟 (𝑡, 𝜔)
(𝑖𝜔 −𝐴)𝑟

, 𝑡 ∈ [𝑘, 𝑘 + 1] (1.7)
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if (1.1) is a scalar differential equation, and of the form

Ψ𝑘(𝑡, 𝜔) =
∞∑︁

𝑟=1

𝑒𝑖𝜔𝑡Ω𝑘,𝑟 (𝑡, 𝜔)− Φ𝑘,𝑟 (𝑡, 𝜔)
(𝑖𝜔)𝑟

, 𝑡 ∈ [𝑘, 𝑘 + 1] (1.8)

if (1.1) is a system of equations of dimension 𝑑 ≥ 2, and we give the exact expression of the terms Ω𝑘,𝑟 (𝑡, 𝜔)
and Φ𝑘,𝑟 (𝑡, 𝜔) appearing in (1.7) and (1.8).

The current approach allows us to determine the coefficients Ω𝑘,𝑟 (𝑡, 𝜔) and Φ𝑘,𝑟 (𝑡, 𝜔) of (1.7), Ω𝑘,𝑟 (𝑡, 𝜔) of
(1.8) recursively and to determine the coefficient Φ𝑘,𝑟 (𝑡, 𝜔) of (1.8) by solving a single non-oscillatory ODEs. This
represents a great advantage in terms of computational cost compared to conventional solving methods. Indeed,
unlike the classical methods, the current approach is completely independent of the size of 𝜔. On the contrary, it
becomes more precise when the frequency 𝜔 is increased since once (1.7) (resp. (1.8)) is truncated for 𝑟 ≥ 1, we
obtain a numerical approximation whose error, 𝑂

(︀
1/𝜔𝑟+1

)︀
, actually improves for growing frequency. Moreover,

we show in the scalar case, when the function 𝑎(𝑡) appearing in (1.1) is a polynomial of degree 𝑝, the exact solu-

tion is obtained in the form of a finite sum. More precisely, we obtain Ψ𝑘(𝑡, 𝜔) =
𝑘+𝑝+1∑︀

𝑟=1

𝑒𝑖𝜔𝑡Ω𝑘,𝑟(𝑡,𝜔)−𝑒𝐴(𝑡−𝑘)Φ𝑘,𝑟(𝑡,𝜔)
(𝑖𝜔−𝐴)𝑟

where the Φ𝑘,𝑟 (𝑡) and the Ω𝑘,𝑟 (𝑡, 𝜔) are given recursively.
Finally, let us recall that the idea which consists in not using the classical methods of resolution of NDDEs, but

rather to write the solution in the asymptotic form 𝑦(𝑡, 𝜔) =
∞∑︀

𝑟=0

𝑦𝑟(𝑡,𝜔)
𝜔𝑟 and then, determining the 𝑦𝑟 (𝑡, 𝜔), has

been widely and successfully used in solving some differential equations with high-frequency extrinsic oscillations,
see [4, 5].

The paper is organized as follows: In Section 2, we justify that the Ψ𝑘 (𝑡, 𝜔) actually have the forms (1.7) and
(1.8). In Section 3, we deal with the case where (1.1) is a scalar differential equation. We give all the terms of
the asymptotic development (1.7). We show that these terms have a very simple expression on [0, 1] and that
on the other intervals, these terms are obtained recursively without having to solve any differential equation. In
Section 4, we treat in a similar way the case where (1.1) is a system of differential equations, then we study the
stability of the proposed algorithm. At the end of each of Sections 3 and 4, we give several numerical examples,
computed by MATLAB, to show the efficiency of the proposed algorithms.

Remark 1. If we have to resolve an equation with several oscillatory source terms, i.e., equation of the form⎧⎨⎩ 𝑦
′
(𝑡) = 𝐴𝑦(𝑡) + 𝐵𝑦(𝑡− 1) + 𝐶𝑦′(𝑡− 1) +

𝑁∑︀
𝑚=1

𝑎𝑚(𝑡)𝑒𝑖𝜔𝑚𝑡, 0 ≤ 𝑡 ≤ 𝑇

𝑦(𝑡) = 𝜑(𝑡), −1 ≤ 𝑡 ≤ 0

the oscillatory term of the solution, thanks to the superposition of solutions, is in the scalar case of the form:

Ψ𝑘(𝑡, 𝜔) =
∞∑︁

𝑟=1

𝑁∑︁
𝑚=1

𝑒𝑖𝜔𝑚𝑡Ω𝑘,𝑟,𝑚 (𝑡, 𝜔𝑚)− 𝑒𝐴(𝑡−𝑘)Φ𝑘,𝑟,𝑚 (𝑡, 𝜔𝑚)
(𝑖𝜔𝑚 −𝐴)𝑟

, 𝑡 ∈ [𝑘, 𝑘 + 1] (1.9)

and in the vectorial case of the form

Ψ𝑘(𝑡, 𝜔) =
∞∑︁

𝑟=1

𝑁∑︁
𝑚=1

𝑒𝑖𝜔𝑚𝑡Ω𝑘,𝑟,𝑚 (𝑡, 𝜔𝑚)− Φ𝑘,𝑟,𝑚 (𝑡, 𝜔𝑚)
(𝑖𝜔𝑚)𝑟

, 𝑡 ∈ [𝑘, 𝑘 + 1] . (1.10)

Remark 2. In order to simplify the writing, we omit to write the second parameter 𝜔, in Ψ𝑘,𝑟 (𝑡, 𝜔) , Ω𝑘,𝑟 (𝑡, 𝜔)
and Φ𝑘 (𝑡, 𝜔) .
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2. General setting

As it was announced in the introduction, we write the solution of equation (1.1) in the form:

𝑦𝑘(𝑡) = ∆𝑘(𝑡) + Ψ𝑘(𝑡), 𝑡 ∈ [𝑘, 𝑘 + 1] ,

where ∆𝑘(𝑡) (respectively Ψ𝑘(𝑡)) represents the non-oscillatory part (respectively the oscillatory part) of the
solution on [𝑘, 𝑘 + 1]. The oscillatory part of the solution, verifies for 𝑘 = 0, the first order linear ODEs:{︂

Ψ′0(𝑡) = 𝐴Ψ0(𝑡) + 𝑎(𝑡)𝑒𝑖𝜔𝑡, 0 ≤ 𝑡 ≤ 1
Ψ0(0) = 0,

(2.1)

and for 𝑘 ≥ 1, the perturbed linear ODEs:{︂
Ψ′𝑘(𝑡) = 𝐴Ψ𝑘(𝑡) + 𝐵Ψ𝑘−1(𝑡− 1) + 𝐶Ψ′𝑘−1(𝑡− 1) + 𝑎(𝑡)𝑒𝑖𝜔𝑡, 𝑘 ≤ 𝑡 ≤ 𝑘 + 1
Ψ−1(𝑡) = 0, 0 ≤ 𝑡 ≤ 1 . (2.2)

The solution of equation (2.1) is given by:

Ψ0(𝑡) = 𝑒𝑡𝐴

∫︁ 𝑡

0

𝑒−𝑥𝐴𝑎(𝑥)𝑒𝑖𝜔𝑥𝑑𝑥. (2.3)

This result is obtained by multiplying the two members of equality (2.1), by 𝑒−𝐴𝑥 and by integrating between
0 and 𝑡 ∈ [0, 1].

A simple integration by parts of (2.3), gives us in the scalar case:

Ψ0(𝑡) =
∞∑︁

𝑟=1

𝑒𝑖𝜔𝑡Ω0,𝑟 (𝑡)− 𝑒𝐴𝑡Φ0,𝑟 (𝑡)
(𝑖𝜔 −𝐴)𝑟

(2.4)

and gives us in the vectorial case

Ψ0(𝑡) =
∞∑︁

𝑟=1

𝑒𝑖𝜔𝑡Ω0,𝑟 (𝑡)− Φ0,𝑟 (𝑡)
(𝑖𝜔)𝑟

(2.5)

where Ω0,𝑟 (𝑡) and Φ0,𝑟 (𝑡) can be obtained recursively.
For 𝑘 ≥ 1, by multiplying the two members of equality (2.2) by 𝑒−𝐴𝑥 and then by integrating between 𝑘 and

𝑡 ∈ [𝑘, 𝑘 + 1] , we get since Ψ𝑘(𝑘) = Ψ𝑘−1(𝑘):

Ψ𝑘(𝑡) = 𝐶Ψ𝑘−1(𝑡− 1) + 𝑒𝐴(𝑡−𝑘) (Ψ𝑘−1(𝑘)− 𝐶Ψ𝑘−1(𝑘 − 1))
+𝑒𝐴𝑡

∫︀ 𝑡

𝑘
𝑒−𝐴𝑥 (𝐵 + 𝐶𝐴) Ψ𝑘−1(𝑥− 1)𝑑𝑥 + 𝑒𝐴𝑡

∫︀ 𝑡

𝑘
𝑒−𝐴𝑥𝑎(𝑥)𝑒𝑖𝜔𝑥𝑑𝑥.

(2.6)

From (2.6), a reasoning by induction on 𝑘, suggests to us that in the scalar case, Ψ𝑘(𝑡) is of the form

Ψ𝑘(𝑡) =
∞∑︁

𝑟=1

𝑒𝑖𝜔𝑡Ω𝑘,𝑟 (𝑡)− 𝑒𝐴(𝑡−𝑘)Φ𝑘,𝑟 (𝑡)
(𝑖𝜔 −𝐴)𝑟

, 𝑡 ∈ [𝑘, 𝑘 + 1] (2.7)

and in the vectorial case, Ψ𝑘(𝑡) is of the form

Ψ𝑘(𝑡) =
∞∑︁

𝑟=1

𝑒𝑖𝜔𝑡Ω𝑘,𝑟 (𝑡)− Φ𝑘,𝑟 (𝑡)
(𝑖𝜔)𝑟

, 𝑡 ∈ [𝑘, 𝑘 + 1] . (2.8)
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3. Scalar case

3.1. Interval [0,1]

A simple integration by parts of (2.3), gives us:

Ψ0(𝑡) =
∞∑︁

𝑟=1

𝑒𝑖𝜔𝑡Ω0,𝑟 (𝑡)− 𝑒𝐴𝑡Φ0,𝑟 (𝑡)
(𝑖𝜔 −𝐴)𝑟

, 𝑡 ∈ [0, 1] (3.1)

with {︂
Ω0,𝑟 (𝑡) = (−1)𝑟+1

𝑎(𝑟−1)(𝑡)
Φ0,𝑟 (𝑡) = (−1)𝑟+1

𝑎(𝑟−1)(0)
. (3.2)

3.2. Interval [1, 2]

With (2.2) for 𝑘 = 1 and with (3.1), we get on [1, 2]:⎧⎨⎩Ψ
′

1(𝑡) = 𝐴Ψ1(𝑡) + 𝐵Ψ0(𝑡− 1) + 𝐶Ψ′0(𝑡− 1) + 𝑎(𝑡)𝑒𝑖𝜔𝑡

Ψ0(𝑡− 1) = 𝑒𝑖𝜔(𝑡−1)
∞∑︀

𝑟=1

Ω0,𝑟(𝑡−1)
(𝑖𝜔−𝐴)𝑟 − 𝑒𝐴(𝑡−1)

∞∑︀
𝑟=1

Φ0,𝑟(𝑡−1)
(𝑖𝜔−𝐴)𝑟

. (3.3)

From (2.7), we get for 𝑘 = 1,

Ψ1(𝑡) =
∞∑︁

𝑟=1

𝑒𝑖𝜔𝑡Ω1,𝑟 (𝑡)− 𝑒𝐴(𝑡−1)Φ1,𝑟 (𝑡)
(𝑖𝜔 −𝐴)𝑟

, (3.4)

which gives after differentiation:

Ψ′1(𝑡) = 𝑒𝑖𝜔𝑡Ω1,1 (𝑡) +
∞∑︁

𝑟=1

𝑒𝑖𝜔𝑡
(︀
Ω1,𝑟+1 (𝑡) + 𝐴Ω1,𝑟 (𝑡) + Ω′1,𝑟 (𝑡)

)︀
− 𝑒𝐴(𝑡−1)

(︀
Φ′1,𝑟 (𝑡) + 𝐴Φ1,𝑟 (𝑡)

)︀
(𝑖𝜔 −𝐴)𝑟

· (3.5)

We have with (3.2): Ω0,𝑟+1 (𝑡− 1) + Ω′0,𝑟 (𝑡− 1) = 0 and Φ′0,𝑟 (𝑡− 1) = 0. Thus, we obtain from (3.3), (3.4)
and (3.5),

𝑒𝑖𝜔𝑡Ω1,1 (𝑡) + 𝑒𝑖𝜔𝑡
∞∑︀

𝑟=1

Ω1,𝑟+1(𝑡)+Ω′1,𝑟(𝑡)

(𝑖𝜔−𝐴)𝑟 − 𝑒𝐴(𝑡−1)
∞∑︀

𝑟=1

Φ′1,𝑟(𝑡)

(𝑖𝜔−𝐴)𝑟

= 𝐶𝑒𝑖𝜔(𝑡−1)Ω0,1 (𝑡− 1) + (𝐵 + 𝐴𝐶) 𝑒𝑖𝜔(𝑡−1)
∞∑︀

𝑟=1

Ω0,𝑟(𝑡−1)
(𝑖𝜔−𝐴)𝑟 − 𝑒𝐴(𝑡−1)

∞∑︀
𝑟=1

(𝐵+𝐴𝐶)Φ0,𝑟(𝑡−1)
(𝑖𝜔−𝐴)𝑟 + 𝑎(𝑡)𝑒𝑖𝜔𝑡

which gives after identification, the following equalities:{︂
Ω1,1 (𝑡) = 𝑎(𝑡) + 𝑎 (𝑡− 1) 𝐶𝑒−𝑖𝜔

Ω1,𝑟+1 (𝑡) = −Ω′1,𝑟 (𝑡) + (𝐵 + 𝐴𝐶) 𝑒−𝑖𝜔Ω0,𝑟 (𝑡− 1) (3.6)

and
Φ′1,𝑟 (𝑡) = (𝐵 + 𝐴𝐶) Ω0,𝑟 (0) . (3.7)

Now, integrating between 1 and 𝑡, the last equality becomes:

Φ1,𝑟 (𝑡) = Φ1,𝑟 (1) + (𝐵 + 𝐴𝐶) Ω0,𝑟 (0) (𝑡− 1) . (3.8)

Since Ψ1(1) = Ψ0(1), we get with the expressions of Ψ0(𝑡) and Ψ1(𝑡) given respectively by (3.1) and (3.4) and
after identification,

Φ1,𝑟 (1) = 𝑒𝐴Φ0,𝑟 (1) + (Ω1,𝑟 (1)− Ω0,𝑟 (1)) 𝑒𝑖𝜔.
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Thus, (3.8) becomes
Φ1,𝑟 (𝑡) = 𝑞0

1,𝑟 + (𝑡− 1) 𝑞1
1,𝑟 (3.9)

with {︂
𝑞1
1,𝑟 = (𝐵 + 𝐴𝐶) Ω0,𝑟 (0)

𝑞0
1,𝑟 = 𝑒𝐴Φ0,𝑟 (1) + (Ω1,𝑟 (1)− Ω0,𝑟 (1)) 𝑒𝑖𝜔 . (3.10)

3.3. Interval [𝑘, 𝑘 + 1] , 𝑘 ≥ 1

We show by induction on 𝑘 ≥ 1, that on [𝑘, 𝑘 + 1]:

Ψ𝑘(𝑡) =
∞∑︁

𝑟=1

𝑒𝑖𝜔𝑡Ω𝑘,𝑟 (𝑡)− 𝑒𝐴(𝑡−𝑘)Φ𝑘,𝑟 (𝑡)
(𝑖𝜔 −𝐴)𝑟

(3.11)

with ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ω𝑘,1 (𝑡) =

𝑘∑︀
𝑗=0

𝐶𝑗𝑎(𝑡− 𝑗)𝑒−𝑖𝑗𝜔

Ω𝑘,𝑟+1 (𝑡) = −Ω′𝑘,𝑟 (𝑡) + (𝐵 + 𝐴𝐶) 𝑒−𝑖𝜔
𝑘−1∑︀
𝑗=0

(︀
𝐶𝑒−𝑖𝜔

)︀𝑗 Ω𝑘−1−𝑗,𝑟 (𝑡− 𝑗 − 1)
(3.12)

and

Φ𝑘,𝑟 (𝑡) =
𝑘∑︁

𝑙=0

(𝑡− 𝑘)𝑙
𝑞𝑙
𝑘,𝑟 (3.13)

where the 𝑞𝑙
𝑘,𝑟 verify the following equations:⎧⎨⎩

𝑞0
𝑘,𝑟 = 𝑒𝐴Φ𝑘−1,𝑟 (𝑘) + (Ω𝑘,𝑟 (𝑘)− Ω𝑘−1,𝑟 (𝑘)) 𝑒𝑖𝑘𝜔

𝑞𝑙
𝑘,𝑟 = 1

𝑙 (𝐵 + 𝐴𝐶) 𝑞𝑙−1
𝑘−1,𝑟 + 𝐶𝑞𝑙

𝑘−1,𝑟, 𝑙 = 1, ..., 𝑘 − 1
𝑞𝑘
𝑘,𝑟 = 1

𝑘 (𝐵 + 𝐴𝐶) 𝑞𝑘−1
𝑘−1,𝑟

. (3.14)

Let 𝑡 ∈ [𝑘 + 1, 𝑘 + 2] . We get with (2.2) and (3.11)⎧⎨⎩Ψ
′

𝑘+1(𝑡) = 𝐴Ψ𝑘+1(𝑡) + 𝐵Ψ𝑘(𝑡− 1) + 𝐶Ψ′𝑘(𝑡− 1) + 𝑎(𝑡)𝑒𝑖𝜔𝑡

Ψ𝑘(𝑡− 1) = 𝑒𝑖𝜔(𝑡−1)
∞∑︀

𝑟=1

Ω𝑘,𝑟(𝑡−1)
(𝑖𝜔−𝐴)𝑟 − 𝑒𝐴(𝑡−𝑘−1)

∞∑︀
𝑟=1

Φ𝑘,𝑟(𝑡−1)
(𝑖𝜔−𝐴)𝑟

(3.15)

and with (2.7), we get

Ψ𝑘+1(𝑡) =
∞∑︁

𝑟=1

𝑒𝑖𝜔𝑡Ω𝑘+1,𝑟 (𝑡)− 𝑒𝐴(𝑡−𝑘−1)Φ𝑘+1,𝑟 (𝑡)
(𝑖𝜔 −𝐴)𝑟

·

Thus, we obtain with (3.15) and the last equality:

𝑒𝑖𝜔𝑡Ω𝑘+1,1 (𝑡) + 𝑒𝑖𝜔𝑡
∞∑︀

𝑟=1

Ω𝑘+1,𝑟+1(𝑡)+Ω′𝑘+1,𝑟(𝑡)

(𝑖𝜔−𝐴)𝑟 − 𝑒𝐴(𝑡−𝑘−1)
∞∑︀

𝑟=1

Φ′𝑘+1,𝑟(𝑡)

(𝑖𝜔−𝐴)𝑟

= 𝐶𝑒𝑖𝜔(𝑡−1)Ω𝑘,1 (𝑡− 1) + 𝑒𝑖𝜔(𝑡−1)
∞∑︀

𝑟=1

(𝐵+𝐴𝐶)Ω𝑘,𝑟(𝑡−1)+𝐶(Ω𝑘,𝑟+1(𝑡−1)+Ω′𝑘,𝑟(𝑡−1))
(𝑖𝜔−𝐴)𝑟

−𝑒𝐴(𝑡−𝑘−1)
∞∑︀

𝑟=1

(𝐵+𝐴𝐶)Φ𝑘,𝑟(𝑡−1)+𝐶Φ′𝑘,𝑟(𝑡−1)

(𝑖𝜔−𝐴)𝑟 + 𝑎(𝑡)𝑒𝑖𝜔𝑡.

After identification, we get three equalities:
1) Ω𝑘+1,1 (𝑡) = 𝑎(𝑡) + 𝐶𝑒−𝑖𝜔Ω𝑘,1 (𝑡− 1). This gives immediately from (3.12),

Ω𝑘+1,1 (𝑡) =
𝑘+1∑︁
𝑗=0

𝐶𝑗𝑎(𝑡− 𝑗)𝑒−𝑖𝑗𝜔 (3.16)



ASYMPTOTIC-NUMERICAL SOLVERS FOR LINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS 233

which proves the first equality of (3.12).
2)

Ω𝑘+1,𝑟+1 (𝑡) = −Ω′𝑘+1,𝑟 (𝑡) + (𝐵 + 𝐴𝐶) Ω𝑘,𝑟 (𝑡− 1) 𝑒−𝑖𝜔

+𝐶
(︁

Ω𝑘,𝑟+1 (𝑡− 1) + Ω′𝑘,𝑟 (𝑡− 1)
)︁

𝑒−𝑖𝜔 , 𝑟 ≥ 1. (3.17)

3)
Φ′𝑘+1,𝑟 (𝑡) = (𝐵 + 𝐴𝐶) Φ𝑘,𝑟 (𝑡− 1) + 𝐶Φ′𝑘,𝑟 (𝑡− 1) . (3.18)

Let’s start by looking at the expression of Ω𝑘+1,𝑟+1 (𝑡) .
By using the equality (3.17) for 𝑗 ∈ {1, ...., 𝑘} , we obtain:

Ω𝑗+1,𝑟+1 (𝑡) + Ω′𝑗+1,𝑟 (𝑡) = (𝐵 + 𝐴𝐶) 𝑒−𝑖𝜔Ω𝑗,𝑟 (𝑡− 1) + 𝐶𝑒−𝑖𝜔
(︀
Ω𝑗,𝑟+1 (𝑡− 1) + Ω′𝑗,𝑟 (𝑡− 1)

)︀
.

Now, multiplying each of the precedent 𝑘 equalities by
(︀
𝐶𝑒−𝑖𝜔

)︀𝑘−𝑗
, and then summing these 𝑘 equalities, (from

𝑗 = 1 to 𝑘), we obtain:

Ω𝑘+1,𝑟+1 (𝑡) + Ω′𝑘+1,𝑟 (𝑡) = (𝐵 + 𝐴𝐶) 𝑒−𝑖𝜔
𝑘−1∑︀
𝑗=0

(︀
𝐶𝑒−𝑖𝜔

)︀𝑗 Ω𝑘−𝑗,𝑟 (𝑡− 𝑗 − 1)

+
(︀
𝐶𝑒−𝑖𝜔

)︀𝑘 (︀
Ω1,𝑟+1 (𝑡− 𝑘) + Ω′1,𝑟 (𝑡− 𝑘)

)︀
.

(3.19)

Now, according to the second equality of (3.6), we get for 𝑡 ∈ [𝑘 + 1, 𝑘 + 2]:

Ω1,𝑟+1 (𝑡− 𝑘) + Ω′1,𝑟 (𝑡− 𝑘) = (𝐵 + 𝐴𝐶) 𝑒−𝑖𝜔Ω0,𝑟 (𝑡− 𝑘 − 1) .

Thus, the equality (3.19) becomes:

Ω𝑘+1,𝑟+1 (𝑡) = −Ω′𝑘+1,𝑟 (𝑡) + (𝐵 + 𝐴𝐶) 𝑒−𝑖𝜔
𝑘∑︁

𝑗=0

(︀
𝐶𝑒−𝑖𝜔

)︀𝑗
Ω𝑘−𝑗,𝑟 (𝑡− 𝑗 − 1) ,

which proves the second equation of (3.12).
Let us now focus on the expression of Φ𝑘+1,𝑟 (𝑡) .

By induction hypothesis, Φ𝑘,𝑟 (𝑡) =
𝑘∑︀

𝑙=0

(𝑡− 𝑘)𝑙
𝑞𝑙
𝑘,𝑟 where the

(︁
𝑞𝑙
𝑘,𝑟

)︁
𝑙=0,..,𝑘

are given by (3.14). Thus, (3.18)

becomes: Φ′𝑘+1,𝑟 (𝑡) = (𝐵 + 𝐴𝐶)
𝑘∑︀

𝑙=0

(𝑡− 𝑘 − 1)𝑙
𝑞𝑙
𝑘,𝑟 + 𝐶

𝑘∑︀
𝑙=1

𝑙 (𝑡− 𝑘 − 1)𝑙−1
𝑞𝑙
𝑘,𝑟.

Now, integrating on [𝑘 + 1, 𝑡] ⊂ [𝑘 + 1, 𝑘 + 2] , the precedent equation becomes:

Φ𝑘+1,𝑟 (𝑡) = Φ𝑘+1,𝑟 (𝑘 + 1) +
𝑘∑︀

𝑙=1

(︁
1
𝑙 (𝐵 + 𝐴𝐶) 𝑞𝑙−1

𝑘,𝑟 + 𝐶𝑞𝑙
𝑘,𝑟

)︁
(𝑡− 𝑘 − 1)𝑙

+ 1
𝑘+1 (𝐵 + 𝐴𝐶) 𝑞𝑘

𝑘,𝑟 (𝑡− 𝑘 − 1)𝑘+1
.

(3.20)

On the other hand, we have Ψ𝑘+1(𝑘 + 1) = Ψ𝑘(𝑘 + 1), which gives by using the expressions of Ψ𝑘(𝑡) and
Ψ𝑘+1(𝑡) given by (3.11) and after identification

Φ𝑘+1,𝑟 (𝑘 + 1) = 𝑒𝐴Φ𝑘,𝑟 (𝑘 + 1) + (Ω𝑘+1,𝑟 (𝑘 + 1)− Ω𝑘,𝑟 (𝑘 + 1)) 𝑒𝑖𝜔(𝑘+1).

Thus, we obtain from (3.20) and the last equality,

Φ𝑘+1,𝑟 (𝑡) =
𝑘+1∑︁
𝑙=0

(𝑡− 𝑘 − 1)𝑙
𝑞𝑙
𝑘+1,𝑟
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Figure 1. (resp. Fig. 1b): The minus of decimal logarithm of absolute values of the errors in the
oscillatory term of the solution of (3.21) on the interval [0,10] with 𝑤 = 100, (resp. 𝑤 = 1000)
using the equations (3.1) and (3.2) on [0,1], and the equations (3.11)–(3.14) on [1,10] with
𝑟 = 1−12 (resp. 𝑟 = 1−8) from bottom row to top row. If we subtract the computation time of
the exact solution given by (2.3) and (2.6), the execution time of the twelve curves in Figure 1a
was 40.66 seconds while that of the eight curves of Figure 1b was 27.6 seconds.

with ⎧⎪⎨⎪⎩
𝑞0
𝑘+1,𝑟 = 𝑒𝐴Φ𝑘,𝑟 (𝑘 + 1) + (Ω𝑘+1,𝑟 (𝑘 + 1)− Ω𝑘,𝑟 (𝑘 + 1)) 𝑒𝑖𝜔(𝑘+1)

𝑞𝑙
𝑘+1,𝑟 = 1

𝑙 (𝐵 + 𝐴𝐶) 𝑞𝑙−1
𝑘,𝑟 + 𝐶𝑞𝑙

𝑘,𝑟, 𝑙 = 1, ...., 𝑘

𝑞𝑘+1
𝑘+1,𝑟 = 1

𝑘+1 (𝐵 + 𝐴𝐶) 𝑞𝑘
𝑘,𝑟

which proves (3.13) and (3.14).

Remark 3. When 𝑎(𝑡) is a polynomial of degree 𝑝, the oscillatory term Ψ𝑘(𝑡) is given by:

Ψ𝑘(𝑡) =
𝑘+𝑝+1∑︁

𝑟=1

𝑒𝑖𝜔𝑡Ω𝑘,𝑟 (𝑡)− 𝑒𝐴(𝑡−𝑘)Φ𝑘,𝑟 (𝑡)
(𝑖𝜔 −𝐴)𝑟

, 𝑡 ∈ [𝑘, 𝑘 + 1]

where the Ω𝑘,𝑟 (𝑡) and Φ𝑘,𝑟 (𝑡) are given by (3.2) for 𝑘 = 0, and by (3.12) and (3.13) for 𝑘 ≥ 1.

Remark 4. If 𝑎(𝑡) is of the form 𝑎(𝑡) = 𝑒𝛼𝑡𝑔(𝑡), it is preferable to replace in the expansions (3.1), (3.4) and
(3.11), 𝑖𝜔 by 𝑖𝜔 + 𝛼 and to replace in (3.2), (3.6) and (3.12), 𝑎(𝑡) by 𝑔(𝑡) .

3.4. Numerical examples

Let us consider the following example:{︂
𝑦
′
(𝑡) = −𝑦(𝑡) + 2𝑦(𝑡− 1) + 3𝑦′(𝑡− 1) + 𝑒−𝑡𝑒𝑖𝜔𝑡, 0 ≤ 𝑡 ≤ 10

𝑦(𝑡) = 0, −1 ≤ 𝑡 ≤ 0
. (3.21)

With the help of MATLAB software, the exact oscillatory part of the solution of this equation is determined by
(2.3) and (2.6). Thus, we are able to compare it with the approximate oscillatory term of the solution proposed
in this section. See Figures 1a and 1b. As it is seen from these figures, the asymptotic error decreases for
increasing 𝑟. Furthermore, the accuracy of the asymptotic method increases greatly for the same number of 𝑟
levels for higher values of 𝜔.
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Figure 2. (resp. Fig. 2b): The minus of decimal logarithm of absolute values of the errors in
the oscillatory term of the solution of (3.21) on the interval [0,10], using the same equations
and parameters used to obtain Figures 1a and 1b, but this time taking into account Remark 4.

Remark 5. For equation (3.21), we would obtain the exact oscillatory part of the solution if we take into
account Remark 4 with 𝛼 = −1 and 𝑔(𝑡) = 1 as it is shown in Figures 1a and 2b.

Let us now consider the second example:{︂
𝑦
′
(𝑡) = −𝑦(𝑡) + 2𝑦(𝑡− 1) + 3𝑦′(𝑡− 1) + (1 + 𝑡)2𝑒𝑖𝜔𝑡, 0 ≤ 𝑡 ≤ 10

𝑦(𝑡) = 0, −1 ≤ 𝑡 ≤ 0
(3.22)

and let us compare the results given by the current algorithm and the MATLAB routine ddensd, whether in
terms of accuracy or in terms of execution time. See Figures 3a and 3b.

As seen in Figure 3b, the MATLAB routine ddensd gives a worse and worse approximation as one moves away
from 0. Also, the execution time becomes longer and longer when 𝜔 becomes very large. On the other hand,
we note on Figure 3a, an undeniable superiority of the current algorithm compared to the MATLAB routine
ddensd, whether on the accuracy or on the execution time. This feature makes the current algorithm most
suitable for simulation of linear neutral delay differential equations with high-frequency extrinsic oscillations.

4. Vectorial case

4.1. Interval [0,1]

The solution of equation (2.1) is given by: Ψ0(𝑡) =
∫︀ 𝑡

0
𝑒(𝑡−𝑥)𝐴𝑎(𝑥)𝑒𝑖𝜔𝑥𝑑𝑥. A simple integration by parts, gives

us

Ψ0(𝑡) =
∞∑︁

𝑟=1

𝑒𝑖𝜔𝑡Ω0,𝑟 (𝑡)− Φ0,𝑟 (𝑡)
(𝑖𝜔)𝑟

, (4.1)

which gives after differentiation:

Ψ′0(𝑡) = 𝑒𝑖𝜔𝑡Ω0,1 (𝑡) +
∞∑︁

𝑟=1

𝑒𝑖𝜔𝑡
(︀
Ω0,𝑟+1 (𝑡) + Ω′0,𝑟 (𝑡)

)︀
− Φ′0,𝑟 (𝑡)

(𝑖𝜔)𝑟
.
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Figure 3. (resp. Fig. 3b): The minus of decimal logarithm of absolute values of the errors in
the oscillatory term of the solution of (3.22) on the interval [0,10] with 𝑤 = 200, using our
algorithm, with 𝑟 = 1−12 from bottom row to top row (resp. the Matlab routine ddensd). If
we subtract the computation time of the exact solution given by (2.3) and (2.6), the execution
time of the twelve curves in Figure 3a was 40.18 seconds while that of the curve of Figure 3b
was 278.36 seconds.

With (2.1), (4.1) and the last equality, we obtain:

𝑒𝑖𝜔𝑡Ω0,1 (𝑡) +
∞∑︁

𝑟=1

𝑒𝑖𝜔𝑡
(︀
Ω0,𝑟+1 (𝑡) + Ω′0,𝑟 (𝑡)

)︀
− Φ′0,𝑟 (𝑡)

(𝑖𝜔)𝑟
= 𝐴

∞∑︁
𝑟=1

𝑒𝑖𝜔𝑡Ω0,𝑟 (𝑡)− Φ0,𝑟 (𝑡)
(𝑖𝜔)𝑟

+ 𝑎(𝑡)𝑒𝑖𝜔𝑡.

The identification gives three equalities:
a) Ω0,1 (𝑡) = 𝑎(𝑡),
b) Ω0,𝑟+1 (𝑡) + Ω′0,𝑟 (𝑡) = 𝐴Ω0,𝑟 (𝑡) ,
c) Φ′0,𝑟 (𝑡) = 𝐴Φ0,𝑟 (𝑡) .

Moreover, we have from (2.1), Ψ0(0) = 0, which gives Φ0,𝑟 (0) = Ω0,𝑟 (0) . Thus, Ω0,𝑟 (𝑡) and Φ0,𝑟 (𝑡) are given
by: {︂

Ω0,1 (𝑡) = 𝑎(𝑡)
Ω0,𝑟+1 (𝑡) = −Ω′0,𝑟 (𝑡) + 𝐴Ω0,𝑟 (𝑡) (4.2)

and
Φ0,𝑟 (𝑡) = 𝑒𝐴𝑡Ω0,𝑟 (0) . (4.3)

4.2. Interval [1, 2]

With (2.2) for 𝑘 = 1 and with (4.1), we get on [1, 2]:⎧⎨⎩Ψ
′

1(𝑡) = 𝐴Ψ1(𝑡) + 𝐵Ψ0(𝑡− 1) + 𝐶Ψ′0(𝑡− 1) + 𝑎(𝑡)𝑒𝑖𝜔𝑡

Ψ0(𝑡− 1) =
∞∑︀

𝑟=1

𝑒𝑖𝜔(𝑡−1)Ω0,𝑟(𝑡−1)−Φ0,𝑟(𝑡−1)
(𝑖𝜔)𝑟

. (4.4)

From (2.8), we get for 𝑘 = 1,

Ψ1(𝑡) =
∞∑︁

𝑟=1

𝑒𝑖𝜔𝑡Ω1,𝑟 (𝑡)− Φ1,𝑟 (𝑡)
(𝑖𝜔)𝑟

, (4.5)
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which gives after differentiation:

Ψ′1(𝑡) = 𝑒𝑖𝜔𝑡Ω1,1 (𝑡) +
∞∑︁

𝑟=1

𝑒𝑖𝜔𝑡
(︀
Ω1,𝑟+1 (𝑡) + Ω′1,𝑟 (𝑡)

)︀
− Φ′1,𝑟 (𝑡)

(𝑖𝜔)𝑟
.

Thus, (4.4), (4.5) and the last equality give:

𝑒𝑖𝜔𝑡Ω1,1 (𝑡) +
∞∑︀

𝑟=1

𝑒𝑖𝜔𝑡(Ω1,𝑟+1(𝑡)+Ω′1,𝑟(𝑡))−Φ′1,𝑟(𝑡)

(𝑖𝜔)𝑟

= 𝐴
∞∑︀

𝑟=1

𝑒𝑖𝜔𝑡Ω1,𝑟(𝑡)−Φ1,𝑟(𝑡)
(𝑖𝜔)𝑟 + 𝐵

∞∑︀
𝑟=1

𝑒𝑖𝜔(𝑡−1)Ω0,𝑟(𝑡−1)−Φ0,𝑟(𝑡−1)
(𝑖𝜔)𝑟

+ 𝐶
∞∑︀

𝑟=1

𝑒𝑖𝜔(𝑡−1)(Ω0,𝑟+1(𝑡−1)+Ω′0,𝑟(𝑡−1))−Φ′0,𝑟(𝑡−1)

(𝑖𝜔)𝑟 + 𝐶𝑒𝑖𝜔(𝑡−1)Ω0,1 (𝑡− 1) + 𝑎(𝑡)𝑒𝑖𝜔𝑡.

The identification gives three equalities:
a) Ω1,1 (𝑡) = 𝐶𝑒−𝑖𝜔Ω0,1 (𝑡− 1) + 𝑎(𝑡).
b) Ω1,𝑟+1 (𝑡) = −Ω′1,𝑟 (𝑡) + 𝐴Ω1,𝑟 (𝑡) + 𝑒−𝑖𝜔𝐵Ω0,𝑟 (𝑡− 1) + 𝑒−𝑖𝜔𝐶

(︀
Ω0,𝑟+1 (𝑡− 1) + Ω′0,𝑟 (𝑡− 1)

)︀
.

c) Φ′1,𝑟 (𝑡) = 𝐴Φ1,𝑟 (𝑡) + 𝐵Φ0,𝑟 (𝑡− 1) + 𝐶Φ′0,𝑟 (𝑡− 1) .

On one hand, we have from (4.2), Ω0,𝑟+1 (𝑡) + Ω′0,𝑟 (𝑡) = 𝐴Ω0,𝑟 (𝑡) . Thus, the equalities a) and b) become{︂
Ω1,1 (𝑡) = 𝑎(𝑡) + 𝐶𝑒−𝑖𝜔Ω0,1 (𝑡− 1) .
Ω1,𝑟+1 (𝑡) = −Ω′1,𝑟 (𝑡) + 𝐴Ω1,𝑟 (𝑡) + 𝑒−𝑖𝜔 (𝐵 + 𝐶𝐴) Ω0,𝑟 (𝑡− 1) . (4.6)

On the other hand, we have from (4.3), Φ′0,𝑟 (𝑡− 1) = 𝐴Φ0,𝑟 (𝑡− 1). Moreover, Ψ1(1) = Ψ0(1). Thus, we
get with the expressions of Ψ0(𝑡) and Ψ1(𝑡) given respectively by (4.1) and (4.4) and after identification:
Φ1,𝑟 (1) = 𝑒𝑖𝜔 (Ω1,𝑟 (1)− Ω0,𝑟 (1)) + Φ0,𝑟 (1) . Therefore, we get with the equality c):{︂

Φ′1,𝑟 (𝑡) = 𝐴Φ1,𝑟 (𝑡) + (𝐵 + 𝐶𝐴) Φ0,𝑟 (𝑡− 1)
Φ1,𝑟 (1) = Φ0,𝑟 (1) + 𝑒𝑖𝜔 (Ω1,𝑟 (1)− Ω0,𝑟 (1)) . (4.7)

4.3. Interval [𝑘, 𝑘 + 1] , 𝑘 ≥ 1

We show by induction on 𝑘 ≥ 1, that on [𝑘, 𝑘 + 1]:

Ψ𝑘(𝑡) =
∞∑︁

𝑟=1

𝑒𝑖𝜔𝑡Ω𝑘,𝑟 (𝑡)− Φ𝑘,𝑟 (𝑡)
(𝑖𝜔)𝑟 (4.8)

with ⎧⎨⎩
Ω𝑘,1 (𝑡) = 𝑎(𝑡) + 𝐶𝑒−𝑖𝜔Ω𝑘−1,1 (𝑡− 1)

Ω𝑘,𝑟+1 (𝑡) = −Ω′𝑘,𝑟 (𝑡) + 𝐴Ω𝑘,𝑟 (𝑡) +
𝑘∑︀

𝑗=1

𝑒−𝑗𝑖𝜔𝐶𝑗−1 (𝐵 + 𝐶𝐴) Ω𝑘−𝑗,𝑟 (𝑡− 𝑗) (4.9)

and ⎧⎨⎩Φ′𝑘,𝑟 (𝑡) = 𝐴Φ𝑘,𝑟 (𝑡) +
𝑘∑︀

𝑗=1

𝐶𝑗−1 (𝐵 + 𝐶𝐴) Φ𝑘−𝑗,𝑟 (𝑡− 𝑗)

Φ𝑘,𝑟 (𝑘) = Φ𝑘−1,𝑟 (𝑘) + 𝑒𝑘𝑖𝜔 (Ω𝑘,𝑟 (𝑘)− Ω𝑘−1,𝑟 (𝑘))
. (4.10)

For 𝑘 = 1, the previous equalities have been proved in paragraph 4.2.
Let 𝑘 ≥ 1 and let 𝑡 ∈ [𝑘, 𝑘 + 1] . We get with (2.2) and (4.8)⎧⎨⎩Ψ

′

𝑘+1(𝑡) = 𝐴Ψ𝑘+1(𝑡) + 𝐵Ψ𝑘(𝑡− 1) + 𝐶Ψ′𝑘(𝑡− 1) + 𝑎(𝑡)𝑒𝑖𝜔𝑡

Ψ𝑘(𝑡− 1) = 𝑒𝑖𝜔(𝑡−1)
∞∑︀

𝑟=1

Ω𝑘,𝑟(𝑡−1)
(𝑖𝜔)𝑟 −

∞∑︀
𝑟=1

Φ𝑘,𝑟(𝑡−1)
( 𝑖𝜔)𝑟 (4.11)
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and with (2.8), we get

Ψ𝑘+1(𝑡) =
∞∑︁

𝑟=1

𝑒𝑖𝜔𝑡Ω𝑘+1,𝑟 (𝑡)− Φ𝑘+1,𝑟 (𝑡)
(𝑖𝜔)𝑟

.

Thus, we obtain with (4.11) and the last equality,

𝑒𝑖𝜔𝑡Ω𝑘+1,1 (𝑡) +
∞∑︀

𝑟=1

𝑒𝑖𝜔𝑡(Ω𝑘+1,𝑟+1(𝑡)+Ω′𝑘+1,𝑟(𝑡))−Φ′𝑘+1,𝑟(𝑡)

(𝑖𝜔)𝑟

= 𝐴
∞∑︀

𝑟=1

𝑒𝑖𝜔𝑡Ω𝑘+1,𝑟(𝑡)−Φ𝑘+1,𝑟(𝑡)
(𝑖𝜔)𝑟 + 𝐵

∞∑︀
𝑟=1

𝑒𝑖𝜔(𝑡−1)Ω𝑘,𝑟(𝑡−1)−Φ𝑘,𝑟(𝑡−1)
(𝑖𝜔)𝑟 + 𝐶𝑒𝑖𝜔(𝑡−1)Ω𝑘,1 (𝑡− 1)

+ 𝐶
∞∑︀

𝑟=1

𝑒𝑖𝜔(𝑡−1)(Ω𝑘,𝑟+1(𝑡−1)+Ω′𝑘,𝑟(𝑡−1))−Φ′𝑘,𝑟(𝑡−1)

(𝑖𝜔)𝑟 + 𝑎(𝑡)𝑒𝑖𝜔𝑡.

After identification, we get three equalities:
a) Ω𝑘+1,1 (𝑡) = 𝐶𝑒−𝑖𝜔Ω𝑘,1 (𝑡− 1) + 𝑎(𝑡).

b) Ω𝑘+1,𝑟+1 (𝑡) + Ω′𝑘+1,𝑟 (𝑡) = 𝐴Ω𝑘+1,𝑟 (𝑡) + 𝐵𝑒−𝑖𝜔Ω𝑘,𝑟 (𝑡− 1) + 𝐶𝑒−𝑖𝜔
(︁

Ω𝑘,𝑟+1 (𝑡− 1) + Ω′𝑘,𝑟 (𝑡− 1)
)︁

.
c) Φ′𝑘+1,𝑟 (𝑡) = 𝐴Φ𝑘+1,𝑟 (𝑡) + 𝐵Φ𝑘,𝑟 (𝑡− 1) + 𝐶Φ′𝑘,𝑟 (𝑡− 1) .
Now, with the induction hypothesis (4.9), the equality b) becomes:

Ω𝑘+1,𝑟+1 (𝑡) = −Ω′𝑘+1,𝑟 (𝑡) + 𝐴Ω𝑘+1,𝑟 (𝑡) +
𝑘+1∑︁
𝑗=1

𝑒−𝑗𝑖𝜔𝐶𝑗−1 (𝐵 + 𝐶𝐴) Ω𝑘−𝑗−1,𝑟 (𝑡− 𝑗)

which proves the equation (4.9) for Ω𝑘+1,𝑟+1 (𝑡).
Let us now focus on the expression of Φ𝑘+1,𝑟 (𝑡) .

With the first equation of the induction hypothesis (4.10), the equality c) becomes:

Φ′𝑘+1,𝑟 (𝑡) = 𝐴Φ𝑘+1,𝑟 (𝑡) +
𝑘+1∑︁
𝑗=1

𝐶𝑗−1 (𝐵 + 𝐶𝐴) Φ𝑘−𝑗,𝑟 (𝑡− 𝑗) ,

which proves the first equation of (4.10) for Φ′𝑘+1,𝑟 (𝑡).
On the other hand, we have Ψ𝑘+1(𝑘 + 1) = Ψ𝑘(𝑘 + 1), which gives after using the expressions of Ψ𝑘(𝑡) and

Ψ𝑘+1(𝑡) given by (2.8) and after identification:

Φ𝑘+1,𝑟 (𝑘 + 1) = Φ𝑘,𝑟 (𝑘 + 1) + 𝑒(𝑘+1)𝑖𝜔 (Ω𝑘+1,𝑟 (𝑘 + 1)− Ω𝑘,𝑟 (𝑘 + 1)) ,

which proves the second equation of (4.10) for Φ𝑘+1,𝑟 (𝑘 + 1).

4.4. Stability

As a direct consequence of the construction of the method in this paper, we obtain 𝑦𝑘(𝑡) − ∆𝑘(𝑡) = 𝑂( 1
𝜔 ),

where 𝑦𝑘(𝑡) is the solution of the perturbed system on the interval [𝑘, 𝑘 + 1] and ∆𝑘(𝑡) is the solution of the
unperturbed one on the interval [𝑘, 𝑘 + 1] . More precisely, we write{︂

𝑦𝑘(𝑡) = ∆𝑘(𝑡) + Ψ𝑘(𝑡), 𝑘 ≤ 𝑡 ≤ 𝑘 + 1
𝑦−1(𝑡) = 𝜑(𝑡), −1 ≤ 𝑡 ≤ 0

where ∆𝑘(𝑡) is the solution of the first order linear differential equation (1.3) and Ψ𝑘(𝑡) is the solution of the
perturbed linear differential equation:{︂

Ψ′𝑘(𝑡) = 𝐴Ψ𝑘(𝑡) + 𝐵Ψ𝑘−1(𝑡− 1) + 𝐶Ψ′𝑘−1(𝑡− 1) + 𝑎(𝑡)𝑒𝑖𝜔𝑡, 𝑘 ≤ 𝑡 ≤ 𝑘 + 1
Ψ−1(𝑡) = 0 −1 ≤ 𝑡 ≤ 0 . (4.12)
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We compare (4.12) with the system{︂
𝑍
′

𝑘(𝑡) = 𝐴𝑍𝑘(𝑡), 𝑘 ≤ 𝑡 ≤ 𝑘 + 1
𝑍𝑘 (𝑘) = Ψ𝑘−1(𝑘)

having constant solution 𝑍𝑘 ≡ Ψ𝑘−1(𝑘) on [𝑘, 𝑘 + 1] .

Theorem 1. If
a) all the eigenvalues of the matrix 𝐴, say 𝜆𝑗 , 𝑗 = 1, ..., 𝑑 satisfy that 𝑅𝑒𝜆𝑗 ≤ 0 and those eigenvalues with

zero real part are simple.
b) ∃𝑐𝑘 > 0,∀𝑡 ∈ [𝑘, 𝑘 + 1] ,

∫︀ 𝑡

𝑘
‖𝑎(𝑥)‖ 𝑑𝑥 ≤ 𝑐𝑘.

Then, the constant solution 𝑍𝑘 (𝑡) = Ψ𝑘−1(𝑘) is stable in the sense of Lyapunov and Ψ𝑘(𝑡) is bounded.

Proof. Because of the first condition, we have: ∃𝑐 > 0,∀𝑥 ≥ 0,
⃦⃦
𝑒𝐴𝑥

⃦⃦
≤ 𝑐. Thus, we get from (2.6) with the

second condition:

‖Ψ𝑘‖ ≤ ‖𝐶‖ ‖Ψ𝑘−1‖+ 𝑐 ‖Ψ𝑘−1‖ (1 + ‖𝐶‖) + 𝑐 ‖𝐵 + 𝐶𝐴‖ ‖Ψ𝑘−1‖+ 𝑐𝑐𝑘. (4.13)

Since Ψ−1 = 0, we get from (4.13)
‖Ψ0‖ ≤ 𝑐𝑐0 = 𝐶0. (4.14)

From (4.13), we have for 𝑘 = 1

‖Ψ1‖ ≤ ‖𝐶‖ ‖Ψ0‖+ 𝑐 ‖Ψ0‖ (1 + ‖𝐶‖) + 𝑐 ‖𝐵 + 𝐶𝐴‖ ‖Ψ0‖+ 𝑐𝑐1

which gives with (4.14),

‖Ψ1‖ ≤ ‖𝐶‖𝐶0 + 𝑐 (1 + ‖𝐶‖) 𝐶0 + 𝑐 ‖𝐵 + 𝐶𝐴‖𝐶0 + 𝑐𝑐1 = 𝐶1.

Let us now suppose ‖Ψ𝑘‖ ≤ 𝐶𝑘. With this induction hypothesis, we obtain with (4.13):

‖Ψ𝑘+1‖ ≤ ‖𝐶‖𝐶𝑘 + 𝑐 (1 + ‖𝐶‖+ ‖𝐵 + 𝐶𝐴‖) 𝐶𝑘 + 𝑐𝑐𝑘+1 = 𝐶𝑘+1.

�

4.5. Numerical examples

Let us consider the system modelled by the following second order linear ODE:{︂
𝑥
′′
(𝑡) + 2𝑥

′
(𝑡) + 2𝑥(𝑡) = 𝑥(𝑡− 1) + 𝑥

′
(𝑡− 1) + 𝑥′′(𝑡− 1) + 1

2𝑒𝑖𝜔𝑡, 𝑡 ∈ [0; 𝑇 ]
𝑥(𝑡) = 1, 𝑥

′
(𝑡) = 0 𝑡 ∈ [−1; 0]

.

In a matrix form, we get:{︂
𝑦
′
(𝑡) = 𝐴𝑦(𝑡) + 𝐵𝑦(𝑡− 1) + 𝐶𝑦′(𝑡− 1) + 𝑎(𝑡)𝑒𝑖𝜔𝑡, 0 ≤ 𝑡 ≤ 𝑇

𝑦(𝑡) = 𝜑(𝑡), −1 ≤ 𝑡 ≤ 0
(4.15)

with: 𝑦(𝑡) =
(︂

𝑥 (𝑡)
𝑥′ (𝑡)

)︂
, 𝐴 =

(︂
0 1
−2 −2

)︂
, 𝐵 =

(︂
0 0
1 1

)︂
, 𝐶 =

(︂
0 0
0 1

)︂
, 𝑎(𝑡) = 1

2

(︂
0
1

)︂
, 𝜑(𝑡) =

(︂
1
0

)︂
.

The real parts of both eigenvalues of the matrix 𝐴 are negative. Thus, we have asymptotic stability according
to Theorem 1.

For this particular example, thanks to (2.3) and (2.6), we can compute exactly the Ψ𝑘(𝑡) with MATLAB
software and compare it to the approximate solution proposed in this section. See Figures 4a–5b. As in the
scalar case, we observe from these figures, the asymptotic error decreases for increasing 𝑟 and the accuracy of
the asymptotic method increases greatly for the same number of 𝑟 levels for higher values of 𝜔.
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Figure 4. (resp. Fig. 4b): The minus of decimal logarithm of absolute values of the errors
in the oscillatory term of the solution of (4.15) in x(t) (resp. x’(t)) on the interval [0,5] with
𝑤 = 100, using the equations (4.1)–(4.3) on [0,1], and the equations (4.8)–(4.10) on [1,5] with
𝑟 = 1−12 from bottom row to top row.

Figure 5. (resp. Fig. 5b): The minus of decimal logarithm of absolute values of the errors in
the oscillatory term of the solution of (4.15) in x(t) (resp. x’(t)) on the interval [0,5], using
the same equations and parameters used to obtain Figure 4a (resp. Fig. 4b), but this once for
𝑊 = 1000.

5. Conclusion

We have shown that the solution of the equation 𝑦
′
(𝑡) = 𝐴𝑦(𝑡)+𝐵𝑦(𝑡−1)+𝐶𝑦′(𝑡−1)+ℎ(𝑡)+

𝑁∑︀
𝑚=1

𝑎𝑚(𝑡)𝑒𝑖𝜔𝑚𝑡,

can be written as the sum of two terms. The first term represents the non-oscillatory part of the solution and
is solution of a certain ODE which can be resolved by one of the classical methods of resolution of ODEs. The
second term is the oscillatory part of the solution that we have expanded into asymptotic series in inverse powers
of the frequencies 𝜔𝑚. We have shown that each term of the asymptotic series is obtained recursively. We have
seen that with few terms of this asymptotic expansion, the oscillatory part of the solution is approximated with
highly accuracy and at a lower cost.
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