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ABSTRACT

Many communication networks use adaptive shortest path routing.

By this we mean that each network link is periodically assigned a

length that depends on its congestion level during the preceding period,

and all traffic generated between length updates is routed along a

shortest path corresponding to the latest link lengths. We show that

in certain situations, typical of networks involving a large number of

small users and utilizing virtual circuits, this routing method performs

optimally in an asymptotic sense. In other cases shortest path routing

can be far from optimal.
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I. Introduction

Most of the presently existing communication networks utilize shortest

path routing as evidenced by the recent survey paper [i]. This routing

method has gained popularity primarily because it is simple and handles

adequately link and node failures. Relatively little is known however

about the performance of shortest path routing under heavy traffic con-

ditions since most of the practical experience reported to date relates

to networks that are typically lightly loaded, e.g. the ARPANET [2].

It is customary to measure optimality of a routing scheme in terms

of an objective function of the form

Dij (F ij) (1)

where Fij denotes the arrival rate at the transmission queue of link (i,j).

Here Dij is a convex monotonicallyincreasing function such as for example

F..
D.i(Fij) = , Cij :capacity of (i,j) (2)

C..-F.. 13
13 1J

which corresponds to the Kleinrock independence assumption [3]. There is

extensive literature on the problem of minimizing (1) subject to known

offered traffic for each origin-destination pair 14]-[12]. It makes sense

to evaluate routing performance in terms of an objective function such as

(1), (2) in circumstances where the offered traffic statistics change

slowly over time and furthermore individual

offered traffic sample functions do not exhibit frequently large and

persistent deviations from their averages. A typical situation is a net-



-3-

work accomodating a large number of relatively small users for each origin-

destination pair in which a form of the law of large numbers approximately

takes hold (see Lemma A.1). This paper considers exclusively this type of

network and its conclusions do not apply at all to more dynamic situations

characterized by the presence of a few large users that can by themselves

overload the network over brief periods of time if left uncontrolled. For

such cases an objective function such as (1) is not appropriate and different

methods of analysis are called for (see e.g. [14], [15]).

The purpose of the paper is to evaluate the performance of shortest

path routing in terms of the objective function (1) when the length of each

link (i,j) is periodically calculated as Dj!(Fij)--the first derivative of

Di. evaluated at the average rate Fij at queue (i,j) during the preceding

period. The first derivative relation between link lengths and objective

function is motivated by the well known optimality condition that a rout-

ing optimizes the objective (1) if and only if it routes traffic exclusively

along paths of minimum first derivative length (see e.g. [4], [13]). It

is known that this type of shortest path routing is strictly suboptimal although

it is believed to be close to optimal for lightly loaded networks. Furthermore

for datagram networks shortest path routing is prone to oscillations which

can be severe if the length functions D!. are chosen poorly [17], [18].
13

Indeed the original adaptive shortest path algorithm implemented in 1969

on the ARPANET exhibited violent oscillatory behavior which was restrained

only after using the device of adding a bias to each link length at the

expense of considerable loss of adaptivity (116], 119], [20]).

A key feature of a datagram network is that each packet of a user

pair is not required to travel on the same path as the preceding packet.
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Therefore the "holding time of each -communication path" (the maximum time that

a user pair will continue to use the path after it 'is changed due to a

shortest path update) is one packet long. As a result a datagram network

reacts very fast to a shortest path update with all traffic switching to

the new shortest paths almost instantaneously.

The situation is quite different in a virtual circuit network where

every conversation is assigned a fixed communication path at the time it

is first established. There the "holding time of the communication path"

(as loosely described above) is often large relative to the shortest path

updating period. As a result the network reaction to a shortest path update

is much more gradual since old conversations continue to use their established

communication paths and only new conversations are assigned to the most

recently calculated shortest paths.

The main result of this paper is that the performance of shortest

path routing approaches the optimal achievable by any other method if

Shortest Path Updating Period 0 3
Average Holding Time of the Communication Path

and

nw +oo, Yw nwyw = constant (4)

where nw is the average number of active conversations for the generic

origin-destination pair w, and yw is the communication rate of each con-

versation. Assumptions (3), (4) together with additional Poisson-like

assumptions on the offered traffic statistics are formulated in the next

section. The main result in Section 3 provides also bounds on the sub-



optimality of the shortest path method when the assumptions (3) and (4)

are satisfied only approximately. Roughly speaking the theorem states that

the average value of the cost (1) of the shortest path method converges

to a neighborhood of the optimal cost at a natural rate which is independent

of how fast the shortest paths are updated. However the size of the neighbor-

hood is "proportional" to the extent of violation of assumptions (3) and (4).
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2. Problem Formulation

Consider a network with a set of nodes N and a set of directed links

L. We are given a set W of ordered node pairs referred to as origin-

destination (OD) pairs. For each OD pair w6W we are given a nonempty

set of directed paths Pw joining the origin node and the destination node

of w. Conversations for each woW arrive according to a Poisson process

with mean rate - where 2w is given and £ is a positive parameter the

effect of which we wish to study. Each conversation for OD pair w is

assigned upon arrival to a path peP according to a rule to be described

shortly and uses this path for the entire time of its duration assumed

to be exponentially distributed with mean P . We assume that the Poisson

arrival processes and duration times of conversations are independent, and

each path can carry unlimited conversations, so the number of active con-

versations for each OD pair evolves as in an M/M/- queueing system. It

follows ([2.1], p. 101) that if n (t) is the number of active- conversations

for w .at time t then its mean and variance satisfy

lim EB{n(t)} - W lim var {n(t)} = (5)
w t*w

Path assignment for each conversation is determined according to the

following shortest path rule:

At times t = kT secs, k = 0, 1, ... , where T > 0 is given, the length

of each link (i,j) is calculated as dij[Fij(t)] where Fij(t) is the com-

munication rate on link (i,j) given by

F. (t) = Y I n (t). (6)

P W Pw

(i,j) p
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Here n (t) is the number of active conversations assigned on path p at time

t, I n (t) is the total number of conversations of OD pair w using

PEP w P

(i, j) ep

(i,j) at time t, and ¥w is the communication rate per conversation.of OD

pair w. All conversations of OD pair w arriving at times te[kT,(k+l)T)

are assigned on a path peP W which is shortest relative to the link lengths

dij lFij (kT)]. C(Ties between paths are assumed resolved according to a

fixed deterministic rule).

We assume that dij (.) is a continuous strictly monotonically increas-

ing function of Fij satisfying dij (Fij) > 0 for all Fij > 0 and

!dij (F)-dij (F) I < LI F-FI , V F,F > O, (i,j)sL, (7)

where L is a given positive constant. This assumption is reasonable

once the length function d.. is assumed continuous. In practice the. length

function is sometimes taken discontinuous (e.g. the TYMNET [1]). We

do not know whether and in what form our main result holds for this case.

Note that the assumption (7) is not satisfied when d.. is the first derivative

of the function D.. of (2) since this derivative increases without bound as

Fij approaches the capacity Cij. As a practical matter this is not a problem

since flow control will ordinarily not allow a link flow to get too close to

capacity.

Regarding the communication rate yw we assume that it is of the form

Yw = LYw (8)

where yw is some constant. Thus we assume in effect that, even though

the real communication rate of a conversation will be a random process,

the rates yw used in the calculation of flows in (6) are obtained by



averaging the real rates over a long period of time and over all con-

versations of OD pair w so that the variance of yw is so small that y-

can be viewed as a deterministic quantity. Note that for each OD pair w

the product

(Mean arrival rate) · ( Communication rate) = Xw

is independent of s. We wish to study the effect on various stochastic

processes of interest of the parameters C and T particularly as

E + 0 and T + 0.

Taking c+ O implies that arrival rates tend to infinity while communication

rates tend to zero with the products staying constant, and approximates a

situation where there are many small conversations in the network [cf. (4)].

Taking T -* 0 approximates a situation where updating of shortest paths is

fast relative to the mean duration time of a conversation [cf.(3)].

The initial numbers n (O) of active conversations on each path p are

assumed given. These numbers together with the earlier assumptions on the

arrival processes, holding times, and the routing method completely

characterize the statistics of all processes of subsequent interest. Our

main result can be proved in essentially the same form if {np (0) are

random with given mean and variance (see Lemma A.1).

We will investigate the behavior of the processes F(t) = {Fij t) (i,j)EL}

and

D[F(t)] = Dij [F.ij(t)]
(i j)sL th

where D.. is some function such that
13
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A
dij(Fij) = D!.(Fij) = First derivative of D.. at F... (9)
13 13 13 13 13 13

Note that, in view of our earlier assumptions, dij(.) uniquely defines

Dij (.) as a strictly convex, monotonically increasing function up to an

additive constant.

There is a lower bound to the value of E{D[F(t)]} achievable in the

long run by any rule for assigning conversations to paths. This is

D* = min D(F) (10)
FcF

where F is the set of all total flows F = {Fij. (i,j)L}J of the form

Fi. = x , V (i,j)sL (1i)
WEW PEP P

(i,j)Ep

where xp are any nonnegative scalars satisfying

xw ¥w
Z x W VwrW. (12)

n other words F is the set of all possible average total link rates

In other words F is the set of all possible average total link rates

XwYw
resulting from the long term average input traffic rate at each OD

w

pair w (cf. (5), (8)). Note that the problem in (10) is the usual

deterministic multicommodity flow problem that has been studied extensively

in connection with optimal routing [4]-[13]. For any routing rule the in-

equality

D* < lim inf E{D[F(t)]}
twoo
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follows from the fact

D[E{F(t)}] < E{D[F(t)]}, V t > 0

which holds by the convexity of D, Jensen's inequality, and the fact

[cf. (5), (8)]

;wYw
E{nw(t)yw} + as t w X

Our main result is that as c-+O, T +- 0 and t - oo the expected cost

E{D[F(t)]} corresponding to the shortest path rule converges to the lower

bound D* while F(t) converges in mean square to the unique F* that achieves

the minimum in the deterministic optimal routing problem (10).



3. Main Result

We first introduce some notation:

A
x (t) = ywnp(t): The communication rate on path p at time t.

r (t) x (t): The total input rate of OD pair w at t.
pEP

w

- A XwYw
r = The long term average input rate of w.

Ar = max {rw}
R = rw(O) - rwl: The initial deviation of r from its long term average

R = max {fR}
w

M max fo a 
W

y max{y }
w w

Theorem: There exist positive constants cl,C2 (which depend only on the

network topology, the products X yw, and the length functions dij) such

that the total link rate vector F(t) corresponding to shortest path rout-

ing satisfies for all t = kT, k = 0,1,...

-C Re-lt < E{D[F(t)]D-D * < e-Pt[D[F(0)]-D*] + c2[a(c,T) + b(z,T)te- t]
1~~~i )

where

a(c,T) = r{ (c-- +E:yr c(r+R) ) (e-pT-e-M ) (le T (4 14)
aI cT) ~-- + 2er¥ + (1-)-T)(4r+y)) (

r(l-e -T
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b(s,T) = R{ (cy+R+l)(eT-e MT )
+ (-e + (l-e )(4+R+ (15)

Te- T

Furthermore

lim (lim supfE{D[F(t)]}) = D*
s--0 t- o

T-*O

If in addition we assume that, for some I > 0, the length functions dij

satisfy

RIF-F < d.ij (F) - dij (F) , F,F > 0, (i,j)EL

then

lim E{Fij (t)-F*.j 2} = 0, V (i,j)£L,

T+O
t-wco

where F* is the unique solution of the deterministic optimal routing

problem (10).

The proof of the theorem is given in the appendix. The idea of the

proof is based on relations of shortest path routing with the flow

deviation (or Frank-Wolfe). method [7] for solving problem (iO0) (see [13]).

However the proof here is complicated by the fact that we are dealing with

a stochastic optimization problem while the flow deviation method deals

with a deterministic problem. A simpler version of the theorem that

assumes that C and T are so small that the path rates can be obtained as

solutions of differential equations is given in [22].

The main implication of (13) is that, as t -- -%E{D[F(t)]} comes within

C2 a(C,T) of being optimal. Thus c2 a(s,T) may be viewed as the long-term

deviation from optimality of shortest path routing. The key factis that

a(c,T) - 0 as £ -+ 0 and T -* 0. The rate at which E{D[F(t)]} approaches

its long term limit depends on the largest average
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holding time . There are three terms here. The first term e Pt[D[F(O)]-D*

is proportional to the initial deviation from optimality. The other two

terms are proportional to the initial deviation R of the initial OD pair

rates rw(0) from their long-term averages rw .

The three transient terms in (13) characterize the rate of convergence

of the algorithm. Of these terms the slowest is the one involving t e - t .

-lit 1 -(p-~)t
Since for any 6>0 we have t t < e )t we see that even this

term decays "almost" as fast as el- t. Thus we can conclude that at worst,

-Pt
E{D[F(t)]} converges to its long term average "almost"' like e t--a linear

rate which is independent of C and T. For specific problems the actual

rate of convergence can be considerably faster and the bound e- 1t is not

necessarily tight. However E{D[F(t)]} cannot converge to D* much faster

than elit since we know that the rate of change of F(t) is constrained by

the rate at which the number of old conversations on any path can decrease

due to termination and this rate is precisely e- t . Thus for example if

Di(F.ij) is'quadratic in Fii the rate of convergence of E{(DF(t)]} cannot

be faster than e 2Lt while in the extreme case where Dij (F.) is linear

in F.. the rate of convergence cannot be faster than e ot Therefore
13

there is little margin for improvement of our rate of convergence result.

The conclusion is. that the largest average. duratipn I/i,.of a conversation

is a fundamental limiting factor in the performance of the shortest path-

algorithm. When 1/i is large the algorithm tends to converge slowly to

a neighborhood of the optimum. This is a manifestation of the intuitively

clear fact that the routing algorithm cannot perform well if poorly routed

conversations last for.a long time.
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Appendix: Proof of the Theorem

For brevity we use the following notation in addition to the one

given in the beginning of Section 3:

k A k kA k AA
n (kT), x = x(kT), r - ( kT), F = Fij (kT)

.· p PS wEW, F IF

We first prove some helpful lemmas. The first lemma gives- some basic

facts about the transient behavior of various processes of interest.

In particular it shows that as £ + 0 the processes xp (t) and r(:t) behave

asymptotically as deterministic processes.

Lemma 1: For all t > O and wEW

-1I t
E{r (t)} = r + e [r (O)-rwj (Ail

w w w w

-1 t -IP t
var{r (t = Y (-e w )r + e w r (0)]. (A2)

Furthermore, for each wjW, if pkCPw is the shortest path used for routing

in the interval [kT, (k+l)T) we have for all tc[kT, (k+l)T]

-V (t-kT)w k
e x if P (Pk

E{x (t) 1X (A3)
p P A

rW + e (x-r) if =Pk



-1I (t-kT) -w-(t-kT) k
¥w[l-e ]e x if p Pk

k P
var{xp(t) xp} =

-P (t-kT) _(t'k)
E -y -Itk3 + e Ve x] ir p = Pk.

(A4)

Proof: Consider an M/M/- queueing system with arrival rate A and service

rate -. The probabilities Pk(t) of k customers in the system at time t

satisfy the differential equations ([21], p. 59, 101)

tP = -A P +' MP,0 0

p = -(A + kM)Pk + APk-l + (k+l)MPk+i , k = 1,2,... (AS)

~~~~~00 ~~~00

Let N(t) = . kPk(t) and r(t) = -[k-N(t)] Pk(t) be the expected value
k=l k=O

and variance of the number in the system. Multiplying (AS) by k and adding

we obtain by straightforward calculation the differential equation

N = -MN + A. (A6)

2
Also by multiplying (A5) by (k-N)2, adding, and taking into account the

0O

fact I = . (k-N) 2Pk we obtain the equation
k= :D

0 = -2Mdc + MN +A. (A7)

The solutions of the linear differential equations (A6), (A7) can be

calculated by the variations of constants formula. They are
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N(t) = +evt[N(0)- A (A8)

-2Mr Mt
a(t) = e 2 t c(0) + (l-et + et N(O)] (A9)

Applying (A8) for M = YwA = - ,and multiplying by Eyw yields (Al).

2-2Applying (A9) for M = pw, A = w (O0) = 0, and multiplying by c y yields

(A2). A similar application of (A8) and (A9) yields (A3) and (A4). Q.E.D.

Note that from (Ai), (A2) we obtain the useful relations

-1wt -t
f{rw(t)} - r < e R < e R (A10)

_ - ~w t w-wwt
var{rw(t)} < ¥y(l-e ) (l+e e [ - ] (All)

< cy(r + e-ltR).

The proof of Theorem 1 would be considerably simplified if the average

holding time of a conversation is independent of the OD pair, i.e.

Pw = p = M for all wcW. In fact the reader may wish to go first through

the proof assuming this. To cope with the case where p ~ M we will need

to introduce the following "normalized" processes

x (t) w(
x (tj = )w ' WW, pEPW ' (Al2a)P ri(t) =

F. (t) = x (t) , V (i,j)cL. (Ai2b)
iw P

wcW PEP w

(i,j)ep

We denote

x x (kT), . = F (kT). 1I2c)
P P ij



-17-

Using the fact xp(t) < rw, and (Al), (All) we have
p W

-E{x (t) - xp (t) 2 } r= - (t)

< E{lrw - r (t ) | 12

< E{lE{rw(t)} - e--wt [r (0) - ] - 2w-w ] - rw(t)J 

< var{rw(t) + e-2_wtR2

--- Wit
< Cy(r + e- t R) + - 2 t R2

Since F.. and F.. are sums of x and x respectively we obtain for some

constant p pconstant t2..

E{IFij (t) - Fij(t ) e R) + e R]. (A13)

The next lemma provides a basic estimate:

Lemma 2: For every vector FJF and every

other total link rate vector F (not necessarily in F) there holds

D(F) < D(F) + B I IF.. - Fij i, (A14)
(i,j) and F

where B is an upperbound for dij(Fij) over (i,j)cL and FcF.
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Proof: We have by the convexity of D

D(F) > D(F) + di j (Fij)( ij)

> D(F) B; R IF. .- F. I Q.E.D.
(i,jj 1] 13

Proof of Theorem 1:

We first show the left side of (13). Let {x*(t)} be a set of path

rates that solve the deterministic multicommodity flow problem

minimize D (F)

(A15)
subject to F.. = xp

weW PEP W

(i,j)zp

x = E{r (t)j , e W

pePw P

x > O, V pPW, wW.

Let F*(t) be the vector of corresponding total link rates, i.e.
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Fi"(t) = C X x*(t)
wcW peP P

w

(i, jsp
Define the "normalized" rates

r

x M> X*.(t (Ai6)tP Elrw(t) xpt)

F..it) = X x (t).
WEW PEP w

Since F(t) =' {FI. (t) }f we have using (A14)
13

D* < D[F(t)] < DiF*(t)] + B ! |Fij (t) - F.(t) (Ai7)

< D[E{F(t)}] + B (ij) ij (t) i)

where the last step follows using Jensen's inequality.

From (A16) we have using the fact x (t) < r and (AlO)
p -w

Ix(t) - x*(t) = [rW - E{rW (t)}j] < R e Pt

A A

Since Fij(t) and Fij(t) consist of sums of x (t) and x*(t) respectively

we have for some constants Bij

F[ (t) - Fi (t) I ij R e P. (Ai8)

Taking cl = B s we obtain from (A17) and (A18)
(i,j) 1j
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D* < E{D[F(t)]} + c. R e- it

and the left side of (13) is proved.

To prove the right side of (13) we first fix k and consider times

te[kT, (k+l)T]. We have using (7) and Taylor's Theorem

k k k

+ f {dij t - F)] - )} (t) 

.k k Lk Fk
12

< Dj.(F..) + di j (Fij )[Fij (t) F + -F1- ij ij 1 ij13~ii ) 13 1j 2 Fij(t) - j

By summing over all links (i,j) we obtain

k k. kkk
D[F(t)] < D(Fk ) + dijFij)Fij (t) - (i ik

(ij) 13 1 1 13 (i,j) 1J 

(A19)

We derive an upper bound for the expected value of each of the last two terms

above.

Denote by dk the length of path p corresponding to the link flows Fk
p 1P

We have

k k
d d..(F..) , wW, pEP
p (i,j)cp 1j 13

and it follows that
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d k Fk [ tkk
d. (F )[Fij (t) - Fj] = (Fj ) . (

(i i £ ijp(iLj 3 13 13j)wW pe1w [pp(t-X p

(i, j) ep

k k
= dp [x (t)-xk (A20)

weW PPwP p p p

Let PkePw be the shortest path used for routing in [kT,(k+l)T) and

define
0 if p p Pk

x (A21)

rw if P = Pk

Taking conditional expectation in (A20) and using (A3)

E{ y. dij (Fkij)[Fij (t)-Fkj]lxk = I dk[E{x pt)x kI - x I (A22)
(i,j) wEW PEP p p pw p

- (t-kT) k xk
[ [1-e I d (

w£ PPw p P P

-I [l-e [ dp(xp-xp) 

pw

,~~,k --k k
where xk is given by (A12). Since C x= x[ = rw and, for each w,

Pk is the shortest path we obtain using (A21)

~k -k - k dk k

PJ p - Pep P p
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so (A22) can be strengthened to yield

_e't (t-kT) k -k ~k

w(ij EX PpPw[ 1 w( t- kt -kT ) dk k~_x k

f I [l-e w ] ( P )

-}j(t-kT) k -k k
= [ - c" ] y d (x -x )

+ e-p(t-kT) e w(tkT)] d(k-x ).

wCW Pep P' P Pw

(A23)

We proceed to bound each of the two terms in the right side above.

Let {x*jw|W, pzPw } be any set of path flows minimizing D(F) over F

i.e., any x* > 0 such that

p* -kij = [ x*, (i,j)eL.
13 w£; W pe p

(i, j ) £p

Since for each w the shortest path is Pk and P P = r

EP wl Pwp w

we have

. dk -k k k k

dpxpx) < P P txp-xp ) (A24)
PePp PEPw

while similarly as earlier [cf. (A20)] we have

dk(xp-x k) = d..(Fkj)(FJ.-F.)k . (A25)
weW pLY P p p (i~j) 3 13

XiJ._
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Since D is convex we obtain

K k k k
d.ij(F j)(Fij-Fj ) < D(F*) - D(F) =D* D(F ). (A26)

(i,j) 1 ii 1 ij

Combining (A24)-(A26) we see that

p(x p-xk) < D* - D(Fk ) (A27)
weW PEP P P

.iich provides a bound for the first term on the right in (A23).

To obtain a bound for the second term on the right of (A23) we write

k k k k k k k k kvk k
d x (d -d )(x -x + d x -x) (A28)

PEPW P P P PEPw P P P P PEPW P P P

k k k
where dp is the length of path p if each flow x is replaced by xp, i.e.

P p

-k ~k
d = C dij(F.ij)

(i,jep 13 13

Using (7) and (A13) it is easily seen that for some constant E > 0

k ~k k Ik 2
E{( (d-dp)(xp-xp)} < L E{ [ 2-F
pP p p P (ip 1 j)1p

< S[eY(r+e- kTR) + e-2pkTR2].

Using (A12) we have

-- k
. d k k) r w - dk k

dW -x kw dx
PE p p rw peP

Ir< rk x k BITrrk

r PEPP P
w PP w
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where B is the constant defined in Lemma 2.

We have

k kE{|lr-rwl} < El{rw-E{rk}l} + E{IE{rk} 
-

r
k

|}< E{jrw-E{rW}l} + /var{r}

where the last step follows using Jensen's inequality. Therefore using

(A10) and (All) we obtain

E{Ir w-rl} < e - t R + /£cy(r+e PtR)

< e - R + y(r+R) ,

and

"k "k kBe -pkT ]
{ d (X )} < B[e k T R + /c y(r+R) ] 

PePw

Taking expectation over x in (A28) and using the inequalities above we

obtain for some constant C > 0

GE{ r [e- (t- kTekT)] dk k( k-w [e P (Xp-xp)}
w EW PEPw

-V(t--k) -2+ kT R2 + ekTR + )
< e T][s¥(CYr+e·- p) + e kT )e R2 + e- kTR + R(A28)

(A28)

Combining (A23), (A27), (A28), and taking expectation over x we obtain

for some constant 31
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(i ij .(Fij [F ij (t) - F ]} < l p(t-kT)] (A29)

(i, j) 1J 

+[ ,(t-kT) _ -M(t-kT)][ F + R) + e-kT 2 kT+ [e e ][y(r + e R) + e R + e R +v/'y(-+R) ]

which provides the desired bound on the expected value of the next to last

term in (A19).

We now bound the expected value of the last term in (A19). Since

Fk. and F. (t) are sums of path flows x and x (t) respectively we have
j and F i(t) are sums p P

that there exists a constant 0 such that

I IjF.(t) - F ( I t - Xk, (A30)
(i,j) ij ij wet PPw P P

We have

kik ik 2 k k{X ct)i k 2
E{Ixp(t) - x2x } = var{xp(t)lxp} + [ - E{x(t)Ixpj 2

and using Lemma 1 we obtain

-I (t-kT) -- (t-kT) k

I E{[ x(t) k2x k = Y[l-e w ][r + e rw]
pEt - P P w

PwPw

+ [ l-e- (t-kT) ] 2 [ (rw xpk p)

P'Pk

< [1-e- ( t- k T)][£ (r + r k) + (1-e T ) (r+rK) ].

Taking expectation over xk and using (A10), (All) we obtain
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k 2 -2 (t-kT) kE{|x (t)- kX2} < [l-e- (tk)]{Y(r+E{rIW) (A31)

PPw

+ -iT -2 k k 
+ (1-e )[r + 2rw E{rw + (E{rw})2 + var{r }]

< [1-e -(t-kT)]{sy( 2r + e-JkT R)

+ (1-e-T)[(2r + e- JkT R)2 + Y(r + e- kT R)]}

We now combine (A19), (A29)-(A31) to obtain for all te[kT, (k+l)T]

and some positive constant B2

EfD[F(t)]} - D* < e- ] (t-kT) [E{D(Fk)} - D*] (A31)

--p(t-kT) -M(t-kT)]rY(+ ikT -2kTR R 2 k
+ y1[e e ]:Ly(r+e R) +e R +e-R) /R y(r+R) ]

R) 41T- R) + yler- +e

+ (t 2[-e ]{y(2r + e -kTR) + (1-e-T )[(2r + e kTR) 2 -- -- + e 

By applying this inequality for t = (k+l)T, setting c2 = max{B1,B 2} and

collecting terms we obtain

E{D(Fk+l ) } - D* < e-!iT[E{D(Fk ) } - D*] (A32)

+ c 2 [a(z,T) + b(c,T)e-k T ]

where

a -,T -MT Ly :+R( - -: 1+/ _
a(,) = r{(e - T -e ( + (l-e PT)[2 + (-e e T) (4r+e)]}

r
(A33)

s ,T _-MT -34)6b(, T) = R{(e - e ) (Ey + R + 1)

+(e I+ T) + + (1-eT)(4r + R + )]}.+ (I-e~~~~~~~ )4
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Applying (A32) repeatedly for k equal to zero up to (k-l) we obtain

E{D(Fk)} - D* < e- kT[D(FO) - D*]

+ a(E,T) b;(,T) kTe-ikT
+[ 1-eT e Te-PT

which is the desired right side of relation (13) [compare (14), (15) with

(A33), (A34)].

Since

lim a(e,T) - and lim bhE'T) <
E+0O 1-e-T 40 TeT
T+0O T+O

we see that E{D[F(kT)]} + D* as e + 0, T --+ O and kT + a. It follows from

(A31) that E{D[F(t)]} + D* as -+O0, T -+ 0, and t -+ .

To show the last part of the theorem we use Taylor's theorem and the

hypothesis 9iF-FJ < Id.ij(F) - dij(F)I to write for any vector FEF

D(F) = D(F*) + d. (F )(Fi -Fj)
(i,j) 13 ii 1 

1
+ f {d. [F + of -F.)] - d. (F )(F -F. ')da
(ij) 0 [Fij i j 1j 

( F i j(Fij J

> D(F*) + d. (F) ( -F. IFij-Fj 2
(i,j) 1 13 ij 2 (i,j) lJ1

Since F* minimizes D over F we have the optimality condition

I d.(F'ij )(Fj)( -Fij) > 0 and it follows that

D(F) > D* + X IFij -F.
2 (ij) 13 13
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Therefore using also Lemma 2 we have

D* + 2 I E{fF. (t) - Fi.} < E{D[F(t)]}
(i j) j

< E{D[F(t)]} + B E{IFij (t) - Fij(t)I}
(i)j)

Since E{IF.ij (t) - Fij (t) } - 0 [cf. (A13)] and E{D[F(t)]} 3 D* as £ * 0,

T * 0 and t- +- we obtain that Fij (t) converges in mean square to F*..
1~ 13

Since {Fij (t) - Fij (t)} also converges to zero in mean square [cf. (A13)]

we obtain that F(t) converges to F* in -mean square. Q.E.D.
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