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1. INTRODUCTION

Suppose T is an estimator of a parameter θ based on an observed sample. The effi-
ciency of T is defined by 1/ [I (θ)Var(T )], where I (θ) denotes the Fisher information
of θ based on the sample. This definition has been modified to suit various application
areas, including hypothesis testing, experimental designs, factor analysis, classification
analysis, and others. Nikulin (2001) provides a detailed account of an efficiency.

Here, we are interested in efficiencies for a hypothesis testing problem. The clas-
sical efficiencies are Pitman efficiency (Pitman, 1948), Chernoff efficiency (Chernoff,
1952), Hodges-Lehmann efficiency (Hodges and Lehmann, 1956) and Bahadur effi-
ciency (Bahadur, 1960b). Some applications involving classical efficiencies are described
in Burgio and Nikitin (1998), Burgio and Nikitin (2004). The former describes goodness-
of-fit tests for the normal distribution and the latter describes combination of the sign
and Maesono tests for symmetry.

The oldest known efficiency is the Pitman efficiency (Pitman, 1948). Its applica-
tions have been widespread. Some recent applications have included: test of multivari-
ate linear models using spatial concordances (Choi and Marden, 2005); optimal sign
tests for data from ranked set samples (Wang and Zhu, 2005); asymptotic efficiency of
the blest-type tests for independence (Stepanova and Wang, 2008); a weighted multi-
variate signed-rank test for cluster-correlated data (Haataja et al., 2009); assessing the
relative power of structural break tests using a framework based on the approximate
Bahadur slope (Kim and Perron, 2009); comparison of the Stein and the usual estima-
tors for the regression error variance (Ohtani and Wan, 2009); optimal sign test for
quantiles in ranked set samples (Dong and Cui, 2010); testing for increasing mean in-
activity time (Zhang and Cheng, 2010); a nonparametric test for a two-sample scale
problem based on subsample medians (Mahajan et al., 2011); superior design sensitiv-
ity in an observational study of treatments for ovarian cancer (Rosenbaum, 2012).

But there have not been convenient tools to compute the Pitman efficiency. Of-
ten only bounds have been obtained for the Pitman efficiency: Capon (1965) derived
bounds for the Pitman efficiency of the Kolmogorov-Smirnov test; Ramachandra-
murty (1966) obtained lower bounds for the Pitman efficiency of the one-sided Kol-
mogorov test for all normal alternatives and for the Smirnov test for normal shift
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alternatives; Yu (1971) computed upper and lower bounds of the Pitman asymptotic
efficiency of the Kolmogorov-Smirnov test with respect to the Neyman test and lo-
cally most powerful rank test; Rothe (1983) obtained a lower bound for the Pitman ef-
ficiency of Friedman type tests; for the group of integral tests of homogeneity, general-
izing the omega-square tests, Nikitin (1984) found a lower bound of the Pitman asymp-
totic relative efficiency relative to the Student test for the shift alternative; Weissfeld
and Wieand (1984) presented bounds on the Pitman efficiency for two-sample scale and
location statistics along with densities for which these bounds are sharp; Jansen and
Ramirez (1993) derived bounds for the Pitman efficiency for efficiency comparisons
in linear inference; Tsai (2009) established a lower bound on the Pitman efficiency of
the spherical Wilcoxon rank test relative to the spherical T 2-test; Ermakov (2011) de-
rived a lower bound for the Pitman efficiency for a nonparametric signal detection
problem; to mention just a few. For other known results on the Pitman efficiency, see
the excellent book Nikitin (1995).

The aim of this note is to develop computationally convenient exact expressions
for the Pitman efficiency. The given expressions (see Theorem 3.2) are simple and can
be computed using software like Maple. Programs written by the authors took only
a few seconds to compute the expressions. This development has become possible
because of the recent papers Withers and Nadarajah (2009), Withers and Nadarajah
(2013b), Withers and Nadarajah (2013a).

Withers and Nadarajah (2009) showed how the asymptotic power (AP) of inte-
gral type statistics may be computed and compared to others. Withers and Nadarajah
(2013b) introduced two new efficiencies, referred to as the fixed-α efficiency and the
fixed-β efficiency, and developed theoretical tools to evaluate the efficiencies for some
of the most usual goodness of fit (gof) tests, including the Kolmogorov-Smirnov tests.
Withers and Nadarajah (2013a) introduced a third new efficiency, referred to as the
Bayesian efficiency, and established its advantages over the fixed-α and fixed-β efficien-
cies.

The contents of this note are organized as follows. Some theoretical tools to com-
pute the Pitman efficiency are developed in Section 3. Some preliminaries and nota-
tions needed for the developments are given in Section 2. The theoretical tools are
illustrated numerically in Section 4. Some concluding remarks are given in Section 5.
The proofs of all results in Section 3 are provided in Section 6.

2. PRELIMINARIES AND NOTATION

We need some notation for the theoretical developments in Section 3. Let Fn denote
the empirical cumulative distribution function (cdf) of a random sample X1, . . . ,Xn
from a cdf F onR= (−∞,∞). Let F0 denote some hypothesized cdf for F and assume
throughout that F0 is absolutely continuous. Letψ denote a non-negative function on
[0,1]. Define

DF0
(F ) =



 |F − F0|ψ (F0)




F0,∞, (1)

D+F0
(F ) = sup (F − F0)ψ (F0) , (2)

D−F0
(F ) = sup (F0− F )ψ (F0) , (3)

VF0
(F ) =D+F0

(F )+D−F0
(F ), (4)



Asymptotic Pitman’s Relative Efficiency 93

Tn,m(ψ) =


 |Fn − F0|ψ (F0)




F0,m , 0< m ≤∞, (5)

T +n,m(ψ) =


 (Fn − F0)ψ (F0)




F0,m , m = 1,3,5, . . . , (6)

Dn(ψ) =DF0
(Fn) , (7)

D+n (ψ) =D+F0
(Fn) , (8)

D−n (ψ) =D−F0
(Fn) , (9)

Vn(ψ) =VF0
(Fn) , (10)

Sn,m(ψ) =


 |Fn − F0|ψ (F0)




Fn ,m , 0< m ≤∞, (11)

S+n,m(ψ) =


 (Fn − F0)ψ (F0)




Fn ,m , m = 1,3,5, . . . , (12)

where |x| denotes the absolute value of x,


G




F ,m =
�∫ ∞

−∞
Gm d F

�1/m

if 0< m <∞,


G




F ,∞ = supG and


G




m =


G




U ,m , where U is the cdf of a uniform[0,1] random
variable. The parameter m represents the kind of averaging used: m = 1 represents
ordinary averaging, m = 2 represents quadratic averaging, m = 3 represents cubic
averaging and so on. The class of statistics given by (5)-(12) includes the integral statis-
tics, Kolmogorov-Smirnov statistics, Kuiper statistics, Tn,2(1), Tn,∞(1) and Vn(1). The
asymptotic null distributions for these statistics were derived in Anderson and Darling
(1952), Kolmogorov (1941) and Stephens (1965).

We test H0 : F = F0 against H1 : F = Fθ, where {Fθ} is a set of cdfs on R disjoint
from F0. We reject H0 when Tn (Fn) > rn for some functional Tn(·) taken to be one
of (5)-(12). For simplicity of presentation, we exclude randomized tests. Suppose Tn
is such that Tn (Fn) = T (F )+ op (1), a common condition in testing problems (see, for
example, Lehmann (1999)). Set

I (F ,G) =
∫ ∞

−∞
ln (d F /dG)d F if F , G are absolutely continuous cdfs,

I (A,B) = inf
F∈A

inf
G∈B

∫ ∞

−∞
ln (d F /dG)d F for sets of cdfs A and B ,

I0 (r, F ) = inf
Q

I ({cdfs Q on R : T (Q)> r } ,{F }) ,

where both F and G are assumed to be absolutely continuous cdfs. A weaker condi-
tion is to assume that F is absolutely continuous with respect to G and then define
I (F ,G) =∞ otherwise.

3. PITMAN EFFICIENCY

The Pitman efficiency is an index for comparing test procedures. Suppose there are
two procedures. If the first procedure requires n1 observations to attain a certain
power of a test, or a specified mean squared error, and second procedure requires n2
observations to achieve the same precision, the Pitman efficiency of the first against
second procedure is n2/n1. A related efficiency is the Bahadur efficiency. Its definition
is of highly theoretical nature, see Bahadur (1960b) for details. Further details includ-
ing applications of Pitman and Bahadur efficiencies can be found in Chapters 11 to 14
of van der Vaart (1998).
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Suppose there are two tests say Test 1 and Test 2 for testing H0 : F = F0 against
H1 : F = Fθ based on a sample of size n. Since the limiting Bahadur and Pitman
efficiencies are the same, the latter can be expressed as

lim
n→∞

Bahadur slope for Test 1
Bahadur slope for Test 2

= lim
n→∞

1
n

ln (p-value for Test 1)

1
n

ln (p-value for Test 2)
.

Suppose that the true value of θ is known for Test 1 and Test 2 is the optimal likelihood
ratio test. Then, by equation (6) in Otsu (2010),

lim
n→∞

1
n

ln (p-value for Test 2) =−I (Fθ, F0) .

Suppose Test 1 rejects H0 if Tn (Fn) > rn , where Fn denotes the empirical cdf of the
data. Again, by equation (6) in Otsu (2010),

lim
n→∞

1
n

ln (p-value for Test 1) =− lim
n→∞

inf
Q

I ({cdfs Q on R : Tn(Q)> rn} , F0) .

Thus, the Pitman efficiency for the problem formulated in Section 2 is

lim
n→∞

inf
Q

I ({cdfs Q on R : Tn(Q)> rn} , F0)

I (Fθ, F0)
= lim

r↓0

I0 (r, F0)
I (Fθ, F0)

.

Hence, in order to find the Pitman efficiency, we need the behavior of I0 (r, F0) near
r = 0, see Theorem 3.1. For a proof that I0 (r, F0) is continuous in r , see
Groeneboom et al. (1979).

If we keep the type 1 and type 2 errors fixed then the Pitman efficiency will equal
the limit of the fixed-β efficiency introduced in Withers and Nadarajah (2013b), for a
proof see Appendix 2 of Bahadur (1960a).

THEOREM 3.1. (i) Let ψ be bounded, continuous and non-negative, 0 < m <∞.
For Tn,m(ψ), T +n,m(ψ), Sn,m(ψ), S+n,m(ψ) of (5), (6), (11), (12),

I0 (r, F0) = λ1
r 2

2
+ o

�

r 2� (13)

as r ↓ 0, where λ1 = λ1(m,ψ) is the minimum positive λ such that Ḧ +λψm H m−1 = 0

has a non-negative solution H1 in [0,1] such that H1(0) =H1(1) = 0, and
∫ 1

0
ψm H m

1 = 1,

provided that such a solution is unique, where ε̈ denotes the second derivative of ε(·).
Furthermore,

λ−1
1 = sup

∫ 1
0 f m=1, f ≥0

∫ 1

0

∫ 1

0
[min(s , t )− s t ]ψ(s)ψ(t ) f (s)m−1 f (t )m−1d s d t , (14)

where inf replaces sup for m > 1, and

λ1(m, 1) =
2
m

�

1+
m
2

�2/m−1
·B
�

1
2

,
1
m

�2
, (15)
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where

B (a, b ) =
∫ 1

0
t a−1(1− t )b−1d t

denotes the beta function.
(ii) Letψ be bounded, continuous and non-negative. Then for Dn(ψ), D+n (ψ), D−n (ψ),

(13) holds with λ1 = λ1(∞,ψ) given by

λ−1
1 = sup

0<x<1

�

x − x2�ψ(x)2.

(iii) Letψ be bounded, continuous and non-negative. Then for Vn(ψ), (13) holds with

λ−1
1 = sup

0<x<y<1

��

x − x2�ψ(x)2+
�

y − y2�ψ(y)2− 2x(1− y)ψ(x)ψ(y)
�

= λ∨(ψ)
−1

say.

THEOREM 3.2. Let ψ be bounded, F = Fθ and p(x) =
�

∂

∂ θ
Fθ
�

F −1
0 (x)

�

�

θ=0
, as-

suming p(·) is well defined. Then the Pitman efficiency of

Tn,m(ψ) and Sn,m(ψ) is λ1(m,ψ)


 |p| ψ




2
m/
∫ 1

0
ṗ2, 0< m ≤∞,

T +n,m(ψ) and S+n,m(ψ) is λ1(m,ψ)


pψ




2
m/
∫ 1

0
ṗ2, m = 1,3,5, . . . ,

D+n (ψ) is λ1(∞,ψ) (sup (pψ))2 /
∫ 1

0
ṗ2,

D−n (ψ) is λ1(∞,ψ) (sup (−pψ))2 /
∫ 1

0
ṗ2,

Vn(ψ) is λV (ψ) (sup (pψ)+ sup (−pψ))2 /
∫ 1

0
ṗ2,

where λ1(m,ψ), λV (ψ) are defined as in Theorem 3.1 and ε̇ denotes the first derivative of
ε(·).

Suppose the parametric model used in Theorem 3.2 is regular at 0, i.e, Fθ has a
density fθ with respect to the Lebesgue measure µ and

∫
�

f 1/2
θ
− f 1/2

0 − 1
2
θχ f 1/2

0

�2
dµ= o

�

θ2� (16)

for some χ in L2 (F0). Then we have

sup
t∈R

�

�

�

�

�

Fθ(t )− F0(t )−
∫ t

−∞
χ d F0

�

�

�

�

�

= o(θ).
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This shows that

p(x) =
∫ F −1

0 (x)

−∞
χ d F0

and ṗ = χ ◦F −1
0 almost everywhereµ. Consequently,

∫ 1

0
ṗ2 is the Fisher information

J =
∫

χ 2 f0dµ of the model at 0.

The proof of Theorem 3.1 is given in Section 6. Theorem 3.2 follows easily from
Theorems 4.1 to 4.4 in Withers and Nadarajah (2013b) and Theorem 3.1.

We have written programs in Maple to compute the Pitman efficiencies given by
Theorem 3.2. These programs took only a fraction of a second to compute the ef-
ficiencies for a wide range of examples, including those in Section 4. The programs
could be of use to the many applications of Pitman efficiency.

4. NUMERICAL COMPUTATIONS

Here, we compute the Pitman efficiency given by Theorem 3.2 for seven parametric
families given by

(a) the normal with shift alternative specified by

Fθ(x) = Φ(x −θ),

where Φ(·) denotes the cdf of a standard normal random variable. For this fam-
ily,

p(x) =−φ
�

Φ−1(x)
�

with
∫ 1

0
ṗ2 = 1

and

sup (p) = 0, sup (−p) =φ (0) ,

where φ(·) denotes the probability density function (pdf) of a standard normal
random variable;

(b) the logistic with shift alternative specified by

Fθ(x) = [1+ exp(−x +θ)]−1 .

For this family,

p(x) =−x + x2
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with
∫ 1

0
ṗ2 = 1/3

and

sup (p) = 0, sup (−p) = 0.25;

(c) the double-exponential with shift alternative specified by

Fθ(x) =











1
2

exp(x −θ), x ≤ θ,

1− 1
2

exp(−x +θ), x ≥ θ.

For this family,

p(x) =
§

−x, x ≤ 0.5,
x − 1, x ≥ 0.5

with
∫ 1

0
ṗ2 = 1

and

sup (p) = 0, sup (−p) = 0.5;

(d) the Lehmann alternative (Lehmann, 1953) specified by

Fθ(x) = F θ+1
0 (x).

For this family,

p(x) = x ln x

with
∫ 1

0
ṗ2 = 1

and

sup (p) = 0, sup (−p) = exp(−1);

(e) the family specified by

Fθ(x) = [exp (θF0(x))− 1]/ [exp(θ)− 1] .
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For this family,

p(x) =−1
2

�

x − x2�

with
∫ 1

0
ṗ2 = 1/12

and

sup (p) = 0, sup (−p) =
1
8

;

(f) Cauchy with shift alternative specified by

Fθ(x) = 1/2+ 1/π tan−1(x −θ).

For this family,

p(x) =− 1
π

cos2
�

π
�

x − 1
2

��

with
∫ 1

0
ṗ2 = 1/2

and

sup (p) = 0, sup (−p) =
1
π

;

(g) the normal with scale alternative specified by

Fθ(x) = Φ (x exp(−θ)) .

For this family,

p(x) =−Φ−1(x)φ
�

Φ−1(x)
�

with
∫ 1

0
ṗ2 = 2

and

sup (p)≈ 0.2419707, sup (−p)≈ 0.2419707.
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Throughout, the sup is computed over x ∈ [0,1].
Examples (a), (b), (c) and (f) are special cases of the location model generated by F0

with F0 having finite Fisher information for location. f0 is absolutely continuous and

J0 =
∫

�

f
′

0 (x)
f0(x)

�2

f0(x)d x <∞.

This is equivalent to (16) with fθ(x) = f0(x−θ) and χ (x) =− f
′(x)/ f0(x). In this case,

p = − f0 ◦ F −1
0 and

∫ 1

0
ṗ2 = J0. Also sup p = 0 and sup−p = sup f0. In examples (a),

(b), (c) and (f), the density f0 is symmetric and unimodal, so sup−p equals to f0(0).
Example (g) is a special case of a scale model generated by F0. Suppose that the

function h defined by h(x) = x f0(x) is absolutely continuous and

J1 =
∫

�

h
′(x)

f0(x)

�2

f0(x)d x =
∫

�

1+ x
f
′

0 (x)
f0(x)

�2

f0(x)d x <∞.

Then (16) holds with fθ(x) = f0 (x/(1+θ))/(1+ θ) and χ = −h
′
/ f0 implying p =

−h ◦ F −1
0 and

∫ 1

0
ṗ2 = J1.

Example (d) treats the case fθ(x) = (1+ θ) f0(x)F
θ
0 (x) for which (16) holds with

χ = 1+ ln F0 and
∫

χ 2d F0 = 1.

The distributions specified by example (e) are known as the truncated-exponential
skew-symmetric distributions (Nadarajah et al., 2014). They are the most flexible skew-
symmetric distributions known to date, even more flexible than Azzalini’s
skew-symmetric distributions (Azzalini, 1985). Some of the advantages of truncated-
exponential skew-symmetric distributions established by Nadarajah et al. (2014) in-
clude: 1) they belong to the exponential family; 2) have closed form expressions for
pdf, cdf and quantiles; 3) exhibit the same tail behaviors as those of F0; 4) the maxi-
mum likelihood estimator for θ always exists and is unique; 5) admit a uniformly most
powerful test for hypotheses about θ. For details on the distributions, see Nadarajah
et al. (2014).

We compute the Pitman efficiencies in Theorem 3.2 for the seven examples for
ψ ≡ 1. This requires λ1(m, 1), λ1(∞, 1) and λV (1). A plot of λ1(m, 1) versus m is
shown in Figure 1. We see that λ1(m, 1) is a monotonically decreasing function of m
with λ1(∞, 1) = 4. Also

λ∨(1)
−1 = sup

0<x<y<1

�

x − x2+ y − y2− 2x(1− y)
�

=
1
4

.

Figure 2 shows the Pitman efficiency, λ1(m, 1)


 |p|




2
m/
∫ 1

0
ṗ2, versus m for the seven

examples. The Pitman efficiency for each of the examples initially increases before
decreasing with m. An exception is the double-exponential example with shift alter-
native. In this case, the Pitman efficiency monotonically increases with m.
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Figure 1 – Plot of λ1(m, 1) versus m.

The Pitman efficiency, λ1(m, 1)


 |p|




2
m/
∫ 1

0
ṗ2, is smallest for all m for the Cauchy

example with shift alternative. It is second smallest for all m for the normal example
with scale alternative. It is third smallest for all m for the Lehmann alternative exam-
ple. It is fourth smallest for small m for the double-exponential example with shift
alternative. It is fourth smallest for large m for the normal example with shift alterna-
tive. It is fifth smallest for small m for the normal example with shift alternative. It is
fifth smallest for large m for example (e). It is largest for small m for example (e). It is
largest for large m for the double-exponential example with shift alternative.

The fact that λ1(m, 1)


 |p|




2
m/
∫ 1

0
ṗ2 is smallest for the Cauchy example may be

due to it having the heaviest tails among the seven examples. The fact that

λ1(m, 1)


 |p|




2
m/
∫ 1

0
ṗ2 is largest for the double-exponential and normal examples

may be due to they having the lightest tails among the seven examples. The differ-

ent behaviours of λ1(m, 1)


 |p|




2
m/
∫ 1

0
ṗ2 may be due to how heavy or light the tails

are.
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Figure 2 – Plot of λ1(m, 1)




 |p|






2

m
/
∫ 1

0
ṗ2 versus m for the seven examples.

The Pitman efficiency, λ1(∞, 1) (sup (p))2 /
∫ 1

0
ṗ2, is zero for the normal example

with shift alternative, zero for the logistic example with shift alternative, zero for the
double-exponential example with shift alternative, zero for the Lehmann alternative
example, zero for example (e), zero for the Cauchy example with shift alternative and
2 · (0.2419707)2 for the normal example with scale alternative.

The Pitman efficiency, λ1(∞, 1) (sup (−p))2 /
∫ 1

0
ṗ2, is 4φ2 (0) for the normal ex-

ample with shift alternative, 3/4 for the logistic example with shift alternative, one
for the double-exponential example with shift alternative, 4exp(−2) for the Lehmann
alternative example, 3/4 for example (e), 8/π2 for the Cauchy example with shift al-
ternative and 2 · (0.2419707)2 for the normal example with scale alternative.

The Pitman efficiency, λV (1) (sup (p)+ sup (−p))2 /
∫ 1

0
ṗ2, is 4φ2 (0) for the nor-

mal example with shift alternative, 3/4 for the logistic example with shift alterna-
tive, one for the double-exponential example with shift alternative, 4exp(−2) for the
Lehmann alternative example, 3/4 for example (e), 8/π2 for the Cauchy example with
shift alternative and 8 · (0.2419707)2 for the normal example with scale alternative.
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Finally, we compared our exact values for Pitman efficiency with the bounds due
to Capon (1965), Ramachandramurty (1966) and Jansen and Ramirez (1993) cited in
Section 1. Computations showed that relative errors of the bounds were at best five
percent. The details of the computations are not given here for space concerns. This
illustrates the importance of having exact means for computing Pitman efficiency.

5. CONCLUSIONS

We have given a method for computing the Pitman efficiency exactly for the hypoth-
esis testing problem defined in Section 3. This appears to be the first such method.
We have illustrated the method using seven examples. In each example, the Pitman
efficiency was computed in a fraction of a second. Programs in Maple for computing
the Pitman efficiency are available from the corresponding author. Maple allows for
arbitrary precision, so the accuracy of computations was not an issue.

The proposed Pitman efficiency was motivated as the limit of the fixed-β efficiency
introduced in Withers and Nadarajah (2013b). A future work is to see if other ef-
ficiencies can be introduced by taking the limits of fixed-α and Bayesian efficiencies
introduced in Withers and Nadarajah (2013b) and Withers and Nadarajah (2013a).

Other future work are to see how the Pitman efficiency can be computed for hy-
potheses testing problems involving:

• multivariate distribution functions, matrix variate distribution functions and
complex variate distribution functions;

• discrete distributions (Aaberge, 1983).

6. PROOFS

We need the following lemma.

LEMMA 6.1. Let ψ be continuous and non-negative. If for some λ1,

Ḧ +λ1H m−1ψm = 0

has a unique non-negative solution H1 on [0,1] which vanishes at 0, 1 such that

∫ 1

0
H m

1 ψm = 1,

then f1 =H1ψ maximizes if m ≥ 1 (minimizes if m < 1)

L( f ) =
∫ 1

0

∫ 1

0
K(s , t ) f (s)m−1 f (t )m−1 d s d t

among f such that
∫ 1

0
f m = 1, where

K(s , t ) = [min(s , t )− s t ]ψ(s)ψ(t )
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and the maximum (minimum) equals λ−1
1 . Furthermore,

λ1 =
∫ 1

0
Ḣ 2

1 .

PROOF. Let K be any positive continuous symmetric function on [0,1]2. Set q =
m/(m− 1). For 0< m < 1 it follows from Hölder’s inequality that

∫

| f g | ≥


 f




m



g




q .

The direction of the inequality is reversed when m ≥ 1. Applying Hölder’s inequality
twice, one obtains

∫ 1

0

∫ 1

0
K(s , t ) |a(s)b (t )|d s d t ≤ (≥)



a




q



b




q

�∫ 1

0

∫ 1

0
K m

�1/m

for m ≥ (<)1. Hence, for m ≥ (<)1, L( f ) has a finite positive maximum (minimum)
among f such that

∫ 1

0
f m = 1. (17)

By the calculus of variations, if f1 is any non-negative function that maximizes (mini-
mizes) L( f ) subject to (17), it satisfies

f (s) = λ
∫ 1

0
K(s , t ) f (t )m−1 d t (18)

for some λ.
Now (17) and (18) imply λ−1 = L( f ). Hence, for f1, λ= λ1, the minimum (maxi-

mum) positive λ such that (17) and (18) have a non-negative solution. For the partic-
ular K of the lemma, setting H = f /ψ, (18) is equivalent to

Ḧ +λH m−1ψm = 0

since H (0) = H (1) = 0 (differentiating twice). Hence, if this differential equation
has a unique solution (H1,λ2) satisfying the boundary conditions, then λ2 = λ1 and
f1 =H1 ·ψ. Finally,

1=
∫ 1

0
H m

1 ψ
m =−

∫ 1

0
H1Ḧ1/λ1 =

∫ 1

0
Ḣ 2

1 /λ1.

The proof is complete.

PROOF of Theorem 3.1.
(i) We give the proof for Tn,m(ψ), T +n,m(ψ), m 6= 2 only. The proof for m = 2 follows
as the limiting case. The other cases are analogous.
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By the lemma in Withers and Nadarajah (2013b), we seek continuous cdf H =
H (x) on [0,1] such that

Ḧ (x)
Ḣ (x)

+mλ [H (x)− x]m−1 ψ(x)m = 0, H (0) = 0, H (1) = 1, Ḣ (x)≥ 0,

r m =
∫ 1

0
[H (x)− x]mψ(x)m ,

where we suppose for the moment that H (x) > x in (0,1). It is clear that H → x as
r → 0. It is easily shown that

H = x +λαa(x)+ o (λα)

as r → 0, where α = (2− m)−1, ä + mam−1ψm = 0 and a(0) = a(1) = 0. Hence,
a = βH1, where λ1, H1 are given by Theorem 4.4 in Withers and Nadarajah (2013b)

and β= (λ1/m)1/(m−2) and
∫ 1

0
ȧ2 =β2λ1 by Lemma 5.1.

For Tn,m(ψ), if we did not assume that H > x in (0,1), then we would have instead
that a is a non-negative multiple of H1 such that

Ḧ1+λ |H1|
m−1ψm = 0, H1(0) =H1(1) = 0,

∫ 1

0
|H1|

mψm = 1;

by an analog of Theorem 4.4 in Withers and Nadarajah (2013b), f1 =H1ψmaximizes

L (| f |) among f such that
∫ 1

0
| f |m = 1; hence, we may take f1 > 0 in (0,1) which

shows that we may assume H > x in (0,1). We have

I0 (r, F0) =
λ2α

2

∫ 1

0
ȧ2 · [1+ o(1)] ,

r m = λmα
∫ 1

0
amψm · [1+ o(1)] ,

so (13) and (14) of (i) follow. To show (15) of (i), we note that ḟ 2
1 = 2λ1/m

�

c − f m
1

�

for some constant c . Integration over [0,1] yields λ1 = 2λ1/m(c − 1). Therefore,
c = 1+m/2 and

±x ·
�

2λ1

m

�1/2

=
∫ f1

0
(c − y m)−1/2 d y,

± (2λ1 ·m)
1/2 c1/2−1/m x = B

�

f m
1 /c :

1
m

,
1
2

�

,

where

B(x : a, b ) =
∫ x

0
t a−1(1− t )b−1d t

denotes the incomplete beta function.
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Furthermore, f1 ≥ 0 and f1(0) = f1(1) = 0 so that ḟ1 ≥ 0 in (0,1/2], ḟ1 ≤ 0 in
[1/2, 1). This yields on simplification

(mλ1/2)
1/2 c1/2−1/m = B(1/2, 1/m).

This proves (15) .
Note that f1 is given by

B

�

f m
1

1+ m
2

:
1
m

, 1/2

�

= 2B
�

1
m

, 1/2
�

·
§

x, in [0,1/2],
1− x, in [1/2, 1].

(ii) This follows from Theorem 4.3 in Withers and Nadarajah (2013b) since

a(x, r ) =

(

(x + r ) ln
�

1+
r
x

�

+(1− x − r ) ln
�

1− r
1− x

�

, 0< x < 1− r,

∞, otherwise

=
r 2

2

�

x − x2�+ o
�

r 2�

as r ↓ 0.
(iii) In a similar way this follows from Theorem 4.4(v) in Withers and Nadarajah

(2013b) with F = F0. 2
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SUMMARY

Pitman efficiency is the oldest known efficiency. Most of the known results for computing
the Pitman efficiency take the form of bounds. Based on some recent developments due to the
authors and some calculus of variations, we develop tools for computing the Pitman efficiency
exactly. Their use is illustrated numerically.
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