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Abstract

Ignoring the model selection step in inference after selection is harmful. This paper studies the

asymptotic distribution of estimators after model selection using the Akaike information criterion.

First, we consider the classical setting in which a true model exists and is included in the candidate

set of models. We exploit the overselection property of this criterion in the construction of a selection

region, and obtain the asymptotic distribution of estimators and linear combinations thereof condi-

tional on the selected model. The limiting distribution depends on the set of competitive models and

on the smallest overparameterized model. Second, we relax the assumption about the existence of

a true model, and obtain uniform asymptotic results. We use simulation to study the resulting post-

selection distributions and to calculate confidence regions for the model parameters. We apply the

method to data.

Key words: Akaike information criterion; confidence region; likelihood model; model selection;

post-selection inference.

1 Introduction

Variable selection, model selection and estimation with a sparsity-enforcing penalty all induce uncer-

tainty due to the process of selection, and they complicate subsequent inference.

We investigate post-selection inference for the Akaike information criterion (Akaike, 1973). The

method is valid for variable selection in any likelihood-based model. We construct confidence intervals

for regression parameters, or linear combinations thereof, conditional on the selected model, that have

the correct coverage probabilities. The method involves rewriting the event of selection asymptotically

as a number of inequalities that involve multivariate normal random variables. While the calculation of

critical values might proceed exactly for one or two parameters, we develop a numerical approach that

applies more generally. We focus explicitly on the classical low-dimensional setting, for which no such

post-selection results are yet available.

The need to address the selection uncertainty has been pointed out several times (e.g., Kabaila, 1995,

1998; Hjort & Claeskens, 2003; Leeb & Pötscher, 2003, 2005, 2006; Danilov & Magnus, 2004; Kabaila

& Leeb, 2006). Claeskens & Hjort (2008) approached the post-selection issue via model averaging, by

simulation in a local misspecification framework. For model selection via sequential testing in nested

models, Pötscher (1991) calculated the asymptotic distribution of the parameter estimator. Several ad-

vances have recently been made. The post-selection inference method of Berk et al. (2013) results for

linear models in valid confidence intervals irrespective of the selection procedure, which can also be

informal. Bachoc et al. (2015) generalized this method to prediction intervals. Since these methods are

not specific to any selection procedure, the resulting confidence intervals might be quite conservative.

Efron (2014) proposed to use a bagging, bootstrap aggregation, estimator and derived its variance, us-

ing normal quantiles to obtain confidence intervals. Ferrari & Yang (2014) assessed model uncertainty

when performing F-tests in linear models via a so-called variable selection confidence set. Kabaila et al.
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(2016) investigated the exact coverage and scaled expected length of certain model-averaged confidence

intervals for a parameter of a linear regression model.

In selective inference one lets the data determine the selected model and the target of the parameter

estimators. For the lasso, Lee et al. (2016) obtain exact post-selection inference by relating the selected

set of active coefficients to a union of polyhedra. For forward selection and least angle regression in

normal linear regression models, Taylor et al. (2016) study selective hypothesis tests and confidence

intervals. Jansen (2014) studied the effect of the optimization on the expected values of the Akaike

information criterion and Mallow’s Cp in high-dimensional sparse models. Belloni et al. (2015) obtained

uniformly valid confidence intervals in the presence of a sparse high-dimensional nuisance parameter.

We explain the methodology first in the traditional simple case of selection using the Akaike informa-

tion criterion in a sequence of nested model, the so-called order selection problem. Next, this is extended

to the practically more relevant selection from a general set of models, not necessarily nested and possi-

bly all misspecified. When a true parametric model exists, only pointwise results can be obtained, while

under misspecification and working with pseudo-true values that change per model, stronger, uniformly

valid confidence intervals are constructed.

2 Post-AIC-selection in nested models

2.1 Selection properties of the AIC

Consider first a nested sequence of K + 1 likelihood models M0 ⊆ · · · ⊆ MK , for which the likelihood

function Ln depends on a parameter vector θ⊤ = (θ⊤0 , θ1, . . . , θK) ∈ Ω ⊆ R

a+K , where θ0 ∈ Ra

denotes the parameter vector that is common to all models and hence is not subject to variable selection

and n denotes the sample size. For ease of notation we assume that model Mi adds a single parameter to

model Mi−1. Generalizations are straightforward.

We start by assuming that there is a single minimal true model Mp0 in the set of models Mnest =

{Mi : i = 0, . . . ,K} in the sense that p0 is the smallest model order for which all non-zero compo-

nents of the true parameter vector ϑ are included. This assumption is relaxed in Section 4, where we

do not require the existence of a true model, we allow for non-nested models and for model misspeci-

fication. In the current setting, models with indices i < p0 are underparametrized, while models with

i > p0 are overparametrized. We denote by θ̂′(i) the maximum likelihood estimator for the parameter

vector θ⊤(i) = (θ⊤0 , . . . , θi) ∈ Ra+i in model Mi, θ̂(i) = (θ̂′(i)⊤, 0⊤K−i)
⊤, and by ϑ = ϑ(p0) the

corresponding true value where ϑj = 0 for j > p0. Note that 0l is a zero vector with length l.

The Akaike information criterion for model Mj in the model list Mnest is AIC(Mj) = −2ℓn{θ̂(j)}+

2(a+j) where ℓn = logLn. The index of the selected model is p̂0 = min{j : AIC(Mj) = min0≤i≤K AIC(Mi)}.

The idea behind the construction of post-selection inference is to rewrite the selection procedure in terms

of a set of inequalities, which define a geometrical region in terms of random variables that can be easily

simulated. For this purpose, we redefine p̂0 = min{j ∈ {0, . . . ,K} : j = argmaxj=0,...,K AIC
∗(Mj)}

with AIC
∗(Mj) = 2[ℓn{θ̂(j)} − ℓn(ϑ)]− 2j = 2ℓ∗n,j − 2j.

Asymptotically, the probability of underselection is zero (Woodroofe, 1982, see Lemma A1 in the

Appendix); see also Shibata (1976). Conditioning on p̂0 = p, we have that AIC
∗(Mp)− AIC

∗(Mj) > 0

for j = p0, . . . , p− 1 and AIC
∗(Mp)− AIC

∗(Mj) ≥ 0 for j = p+ 1, . . . ,K. For n → ∞, there is joint

convergence in distribution of (ℓ∗n,p0 , . . . , ℓ
∗
n,K) to (

∑a+p0
i=1 Z2

i , . . . ,
∑a+K

i=1 Z2
i )/2, with Z1, . . . , Za+K

independent and identically N(0, 1) variables (Woodroofe, 1982). By the continuous mapping theorem,

asymptotically, when p̂0 = p, (Z1, . . . , Za+K) ∈ Ap(Mnest), which is called the selection region for
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nested models and is defined by Ap(Mnest) equal to



z ∈ Ra+K :

⋂

j=p0+1,...,p





p∑

i=j

(z2a+i − 2) > 0



 ∩

⋂

j=p+1,...,K





j∑

i=p+1

(z2a+i − 2) ≤ 0







 .

Geometrically, the first set of p−p0−1 strict inequalities specifies regions outside spheres, the last set of

K − p inequalities indicates regions inside certain other spheres, while the inequality z2p > 2 determines

the union of two half-spaces, namely (−∞,−21/2) ∪ (21/2,+∞).

The specific structure of the Akaike information criterion determines the form of the regions. Other

selection methods define other regions, see Section 7 for examples. Lee et al. (2016, Lemma 5.1, Th. 5.2)

characterize the lasso-selection procedure, for a given value of the ℓ1-penalty, in terms of polyhedral sets;

see also Taylor et al. (2016).

2.2 Distributional results

Inference post-selection deals with the distribution of the estimators in the selected model, conditional on

the selection. In this paper we always mean selection of the model with the smallest Akaike information

criterion value and by the post-selection estimator we mean the maximum likelihood estimator based

on the selected model. We show that the limiting cumulative distribution function of n1/2{θ̂(p̂0) − ϑ}

conditional on the selected model can be described by a multivariate normal random variable Z that is

for nested models conditioned on Z ∈ Ap(Mnest).

Due to the nature of the selection using Akaike’s information criterion and the results of Pötscher

(1991) and Leeb & Pötscher (2003) it can be shown that the selection of an overspecified model does

not happen in a uniform way, but depends on the true parameter value ϑ. Hence, in sections 2 and 3, the

results are pointwise. All proofs and assumptions are placed in the Appendix.

Define, for model Mi, the submatrix JMi
(ϑ) of the Fisher information matrix J(ϑ) in the model

with all parameters, see Assumption A4, and for a (a + K) vector ν denote its subvector ν̃(i) =

(ν1, . . . , νa+i)
⊤. The indicator function I(A) = 1 if A is true, and I(A) = 0 otherwise.

Proposition 1. Assume A1–A4. For a sequence of nested models Mnest with p0 denoting the true model

order, the asymptotic conditional cumulative distribution function of the post-selection estimator is

Fp(t) = lim
n→∞

P[n1/2{θ̂(p)− ϑ} ≤ t | p̂0 = p,Mnest]

= P{J−1/2
p (ϑ)Z̃(p) ≤ t̃(p) | Z̃(p) ∈ A(s)

p (Mnest)}I(t ∈ Tp), (1)

with p ≥ p0 by Lemma 1, Z = (Z1, . . . , Za+K)⊤, the region with simplified constraints A
(s)
p (Mnest) =

{z̃(p) ∈ Ra+p :
⋂

j=p0+1,...,p

∑p
i=j(z

2
a+i − 2) > 0} and Tp = R

a+p × (R+)K−p.

By the forms of Ap and A
(s)
p , the limiting distribution of n1/2{θ̂(p) − ϑ} conditional on selection

in the set Mnest is symmetric and its density function is that of a truncated normal random variable.

Let φp(· | A;V ) denote the density of V −1/2Z̃(p), where Z̃(p) ∼ Na+p(0, Ia+p) is truncated such that

Z̃(p) ∈ A. In the case of selecting the true model, the conditioning event contains random variables that

are independent of Z̃(p0) and hence may be omitted. Figure 3 depicts some of the limiting post-selection

densities for an example of selecting the largest in a sequence of three nested models, while the smallest

model is the true one. This example is continued in Section 3.1. For more details, see the Supplementary

Material.
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(a) (b) (c)
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Figure 1: Marginal asymptotic densities fj|3 (j = 1, 2, 3) of n1/2(θ̂j − ϑj) conditional on p̂0 = 3 when

p0 = 1 and J−1
3 (ϑ) is a diagonal matrix with diagonal elements (1, 4, 4).

Corollary 1. Under the assumptions of Proposition 1, the limiting density of n1/2{θ̂(p̂0) − ϑ} con-

ditional on AIC-selection with p̂0 = p from the set of nested models Mnest, is fp(t) = φp{t̃(p) |

A
(s)
p (Mnest);J

−1
p (ϑ)}I(t ∈ Tp). When the true model is selected, i.e., p̂0 = p0, then fp0(t) =

φp0{t̃(p0)}I(t ∈ Tp).

2.3 Confidence regions

A correct post-selection analysis incorporates the uncertainty associated with variable selection; we ob-

tain confidence regions conditional on the selected model.

Corollary 2. Under the assumptions of Proposition 1, an asymptotic 100(1 − α)% Wald confidence

ellipsoid conditionally on having selected a model with p̂0 = p is

{
ϑ ∈ Ra+K : n{θ̂′(p)− ϑ̃(p)}⊤Jp(ϑ){θ̂′(p)− ϑ̃(p)} ≤ qα

}
,

where qα is defined such that 1− α equals

∫ qα

2(p−p0)

∫ w1

2(p−p0)
· · ·

∫ wp−2

4

∫ wp−1

2

f(wp, . . . , wp0+1, w1)

P{Z̃(p) ∈ A
(s)
p (Mnest)}

dwp dwp−1 . . . dwp0+1 dw1; (2)

f(wp, . . . , wp0+1, w1) =
exp(−w1/2)w

−1/2
p (w1 − wp0+1)

−(a+p0)/2−1
∏p−p0+1

i=1 (wi − wi−1)
−1/2

2
a+p

2 {Γ(1/2)}p−p0Γ(a+p0
2 )

.

In Section 2.4 we propose an accurate method to estimate qα when exact computation is cumbersome.

Clearly, the naive approach of using the quantile of a chi-square distribution is gives too low coverage.

Confidence intervals for single components of ϑ require the calculation of marginal distributions.

Corollary 3. Under the assumptions of Proposition 1, with Rα = Rj−1 × [−qα/2, qα/2] × R
a+p−j ×

(R+)K−p the asymptotic 100(1−α)% quantiles of the marginal distributions of ϑj with j = 1, 2, . . . , a+

p satisfy
∫
Rα

fp(t) dt = 1− α.
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2.4 Simulation based inference

Since the calculations are quite tedious, even in small dimensions, we present a method to simulate this

conditional distribution, from which quantiles can then be obtained.

When J(ϑ) is unknown, we use a consistent estimator Ĵ{θ̂(K)}. We use a Hamiltonian Monte

Carlo method (Pakman & Paninski, 2014) to sample from a (a+K)-variate standard normal distribution

subject to quadratic constraints that are also based on standard normal random variables. The resulting n′

samples drawn from this density are placed in the n′ × (a+K) matrix ZA. Next, we multiply each row

of Z̃A(p) by Ĵ
−1/2
p {θ̂(K)}, which leads to n′ samples from the limiting distribution of n1/2{θ̂(p̂0)−ϑ};

see Corollary 1.

The example in the Supplementary Material shows close agreement between the 95% quantiles qα in

(2) simulated via constrained χ2 distributions and their exact values.

3 Post-selection inference in general models

3.1 AIC selection in a set of non-nested models

Lemma 1 generalizes Lemma A1 in the Supplementary Material (Woodroofe, 1982) to an arbitrary set

of models that contains at least one overparametrized model.

Lemma 1. Under Assumptions A1–A4, the asymptotic probability that selection using the Akaike infor-

mation criterion results in an underparametrized model from a set of models M that contains at least

one overparametrized model is equal to zero.

The distributional properties of the post-selection estimators depend on the candidate set of models

M. Indeed, another set M could have led to another selection. We define the selection matrix to indicate

which variables appear in the set of models.

Definition 1. The selection matrix ζM is a |M| × (a +K) matrix with {0, 1} elements, constructed as

ζM = (1ta+Kπt
1π1, . . . , 1

t
a+Kπt

MπM )⊤, where |M| is the number of models and πm is a |m| × (a+K)

projection matrix that selects those covariates that belong to model m.

First consider M = Mall, the set of all possible submodels of a largest model. Denote by MO ⊆

Mall the set of all overparametrized models, including the true model, so the models in MO are over-

lapping. In model M the estimator of ϑ is denoted by θ̂(M), with zeros added for components not in M .

For any vector ν, let ν̃(M) denote its subvector corresponding to the variables in model M . Under the

orthogonality assumption A5, Proposition 2 is similar to the nested model case. Otherwise, we follow

Vuong (1989) for testing in overlapping models. Define Σ(θ) as a partitioned matrix with i, jth block

equal to ΣMi,Mj
= Q−1

Mi
(θ)Jij(θ, θ)Q

−1
Mj

(θ).

Proposition 2. Assume A1–A4 and selection from Mall. (i) If A5 holds, the selection region for model

M is

AM (MO) =
{
z ∈ Ra+K : {1(|MO |−1) ⊗ (1tKπt

MπM )− ζMO\M}{(z21 − 2), . . . , (z2a+K − 2)}⊤ > 0
}
.

The conditional limiting cumulative distribution function of the post-selection estimator is

FM (t) = lim
n→∞

P[n1/2{θ̂(M)− ϑ} ≤ t | MAIC = M,Mall]

= P{J
−1/2
M (ϑ)Z̃(M) ≤ t̃(M) | Z ∈ AM(MO)}I(t ∈ TM) (3)
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where TM is R|M | × (R+)K−|M | and JM (ϑ), Z̃(M) and t̃(M) are submatrices of, respectively, J(ϑ),

Z = (Z1, . . . , Za+K) and t, corresponding to the variables in model M .

(ii) If A5 does not hold, define m =
∑

M∈MO
|M | and let WAIC,i be a matrix partitioned in the same

way as Σ(ϑ) with diagonal blocks corresponding to MAIC and Mi equal to QMAIC
(ϑ) and −QMi

(ϑ), and

zero elsewhere. The selection region for model MAIC is

AM (MO) = {z ∈ Rm :z⊤Σ1/2(ϑ)WAIC,iΣ
1/2(ϑ)z ≥ 2(|MAIC| − |Mi|), Mi ∈ MO\MAIC}. (4)

Let Z̃(M) denote the subvector of Z ∼ Nm(0, I), Z ∈ AM(MO) that contains only those components

that correspond to components in the selected model M , then

FM (t) = P{J
−1/2
M (ϑ)Z̃(M) ≤ t̃(M) | Z ∈ AM(MO)}I(t ∈ TM) (5)

where TM isR|M | × (R+)m−|M |.

The choice of M is important. Regarding (i), the constraint involves those Zis corresponding to

the parameters in the selected model MAIC that are not in the smallest true model Mpars, hence no

constraints are placed on the Zi corresponding to parameters that occur in every model. Obviously,

the selection affects the distribution of all parameters, even those common to all models. The effect of

the set of models is illustrated by the following example. Let K = 2, a = 1 and M0 be the smallest

true model containing only θ1. Assume that A5 holds and that the full model MAIC = (θ1, θ2, θ3) is

selected in both Mnest and Mall. So, AM(Mall) = {z ∈ R3 : z22 > 2, z23 > 2, z22 + z23 > 4} while

AM (Mnest) = {z ∈ R3 : z23 > 2, z22 + z23 > 4}. Figure 2 depicts these regions for both Mnest, shaded

−2 − 2 2 2

−2

− 2

2

2

z2

z3

Figure 2: Allowable domain of Z2 and Z3 for nested model selection (shaded), and all subsets selection

(double shaded) when AIC selects the full model.

area, and Mall, double shaded area. If one selects the full model in Mnest, then Z2 is defined in R as

long as Z2
2 +Z2

3 > 4, while selection in Mall requires both Z2 and Z3 in (−∞,−21/2)∪ (21/2,∞). The

distribution of parameter estimators can be obtained by premultiplying Z = (Z1, Z2, Z3) by J
1/2
MAIC

(ϑ).

For the normal linear models Y ∼ Nn(Xϑ, σ2I) and MAIC ∈ MO, the distribution results are also exact

for finite samples. In such models J(ϑ) = n−1X⊤X/σ2, which does not depend on ϑ. For (ii) the

main difference is that we need the joint distribution of the estimators in the different models and place

constraints on the full vector.
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3.2 Confidence regions

For any arbitrary set of models, Marb, with Marb ∩ MO 6= ∅, due to Assumption A1, (3) still holds

after replacing AM(MO) with AM (Marb∩MO). With MAIC = M selected from Marb, the confidence

region for ϑ is

C(qα) =
{
θ ∈ Ra+K : n{θ̂′(M)− θ̃(M)}⊤JM (θ){θ̂′(M)− θ̃(M)} ≤ qα

}
, (6)

with θ̂′(M) the |M |-vector of non-zero values of θ̂(M) and qα determined by solving

P{(
∑

i∈M Z2
i ≤ qα) ∩ Z ∈ AM (Marb ∩MO)}

P{Z ∈ AM (Marb ∩MO)}
= 1− α. (7)

Let fM{t̃(M)} = φM{t̃(M)|AM (Marb ∩MO);J
−1
M (ϑ)} denote the density of n1/2{θ̂′(M)− ϑ̃(M)},

a truncated |M |-dimensional normal density. The quantile of its jth component is obtained via

∫

Rα

fM{t̃(M)}dt̃(M) = 1− α,

where Rα ⊂ R|M | restricts only the jth component to [−qα/2, qα/2]. The confidence interval for ϑj is

θ̂j(M)± qα/2n
−1/2.

While there is no uniform convergence of the distribution function in all settings (Leeb & Pötscher,

2003), for normal linear models using rectangular confidence regions and sequential testing, a uniform

result regarding coverage has been obtained by Pötscher (1995). The following result holds for over-

specified models. For models in the set MO all parameter components that appear in the true model are

nonzero, but there might be additional parameter components which might be zero or non-zero. However,

the set MO does not depend on the value of the true parameter ϑ. After conditioning on MAIC ∈ MO,

the set C(qα) is random due to maximum likelihood estimation in the selected model.

Proposition 3. Assume A1–A4, and that Qn(θ) in (A2) is continuous over a compact set Θ that contains

ϑ. The confidence region C(qα) from (6) is such that limn→∞ infϑ∈Θ Pϑ{ϑ ∈ C(qα) | MAIC ∈ MO} =

1−α. When AM (Marb) replaces AM(Marb∩MO) in (7) to obtain a value q̃α, limn→∞ infϑ∈Θ P{ϑ ∈

C(q̃α) | MAIC ∈ MO} ≥ 1− α.

One limitation of the Akaike information criterion is that the selection of an overspecified model

does not happen in a uniform way (Leeb & Pötscher, 2003). Hence, this result cannot be strengthened.

If the selected model is underparametrized, correct inference can be obtained for the pseudo-true values

instead; see Section 4. For a predetermined number of steps in a forward selection, least angle regres-

sion and lasso in linear additive error models, Tibshirani et al. (2015) obtain asymptotic results which

are uniformly valid for a specific class of non-normal errors. For a comparison between two models,

Andrews & Guggenberger (2009) use a local neighborhood to deal with the overselection and to obtain

uniform results for parameters that were not subject to selection. Chernozhukov et al. (2015) performed

uniformly valid inference on a low-dimensional parameter when there is selection in a high-dimensional

vector of nuisance parameters. See also Belloni et al. (2015) for using least absolute deviation in high

dimensional regression.

Inference after selection depends on (i) the set of models M specified by the researcher and (ii) the

smallest true model Mpars, in nested models p0, via AM (M∩MO). In Mnest and Mall one could take

the smallest model for Mpars. If this model is true or overparametrized, Propositions 1 and 2 hold and the
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asymptotic confidence intervals can be calculated exactly. If the smallest model is underparametrized, the

structure of the additional constraints AM(M)\AM (M ∩ MO) is such that the resulting distribution

of the parameters is longer-tailed. This leads to conservative confidence intervals, especially for the

parameters which are truly non-zero. In practice we calculate the constraints based on the selected

model and AM (Marb).

For case (i), in Mall the number of constraints equals 2K−|M0| − 1. Here, we show that AM (MO)

can be reduced to the set {z ∈ Ra+K :
⋂

i∈MAIC\Mpars
(z2i > 2) ∩

⋂
i/∈MAIC\Mpars

(z2i < 2)} without

losing information. Let IMAIC
denote the set consisting of all subsets of the indices in MAIC\Mpars,

referring to the redundant selected parameters, and denote by Ic
MAIC

the set of all subsets of the indices

in {1, . . . , a+K}\MAIC, referring to the variables that were not selected. Then

AMAIC
(M∩MO) =

{
z ∈ Ra+K :

⋂
i∈MAIC\Mpars

{z2i > 2},
⋂

i∈{1,...,a+K}\MAIC
{−z2i > −2},⋂

I∈IMAIC

⋂
J∈Ic

MAIC

{
∑

i∈I z
2
i −

∑
j∈J z

2
i > 2(|I| − |J |)}

}
.

The first two sets of constraints consist, respectively, of |MAIC| − |Mpars| and K − |MAIC| elements. The

third set only involves constraints that are summations of the constraints in the first two sets and does

not add any new restrictions on z. The constraint set for any Marb can be simplified as long as some

constraints can be implied by summing other constraints. Removing redundant constraints is not always

possible, for example for Mnest.

3.3 Inference for linear combinations

For inference for linear combinations xtϑ after model selection, we rewrite (3) as

F (t) = lim
n→∞

P[n1/2 x̃t(M){θ̂′(M)− ϑ̃(M)} ≤ t | MAIC = M,M]

= P{x̃t(M)J
−1/2
M (ϑ)Z̃(M) ≤ t | AM (M∩MO)}, (8)

where x̃(M) are the covariates corresponding to M . The asymptotic distribution of the estimated linear

combination xtϑ is simulated via (8).

When the sample size is small and the diagonal entries of J(θ̂) are large, it may happen that an

underparametrized model is selected. In this case the coverage probability of confidence regions of a

linear combination of the parameters, or a transformation thereof in generalized linear models, may be

smaller than the nominal value. In case of suspected underselection, one can use

lim
n→∞

P[n1/2xt{θ̂(Mfull)− ϑ} ≤ t | MAIC= M,M]=P{xtJ−1/2(ϑ)Za+K ≤ t | AM(M)}, (9)

where Mfull is the full model. This differs from (8) in using all parameters, not just the selected pa-

rameters. This procedure differs from assuming that the full model is selected, since, for example in

Mall, AM (Mall) contains z2i > 2 for the parameters which are selected and z2i < 2 for those which

are not selected, whereas AMfull
(Mall) contains z2i > 2 for all parameters, which leads to a long-tailed

distribution. The probability of underselection disappears asymptotically. The valid confidence intervals

of Bachoc et al. (2015) target the true value for the selected model, not the true value xtϑ. While in their

case underparametrized selection is not an issue, there is no guarantee that their proposed confidence

interval is valid for the true value.
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4 Confidence regions when all models are misspecified

4.1 Limiting distribution of estimators

The results in this section do not require any assumption about the existence of a true model, are uni-

formly valid, and apply to general parametric likelihood models. In order to obtain uniformly valid

results we consider the setting where there is no true parameter vector, either because the true den-

sity of the data does not belong to a parametric family or because all models are misspecified. We

assume the observations to be represented by a triangular array {Yni : i = 1, . . . , n, n ∈ N}, where

there is independence between the rows, i.e., different sample sizes n, and within the rows, i.e., for

i 6= j, Yni and Ynj are independent. Regression models are included, as observations may have dif-

ferent distributions. The true joint density of (Yn1, . . . , Ynn) is gn, with distribution function Gn. All

probabilities are computed under the true distribution, so P = PGn . The data are modeled via models

Mn,j = {
∏n

i=1 fj,i(yi; θj) : θj ∈ Θj ⊂ Rmj}. Thus mj is the number of parameters in model Mn,j .

All models are collected in the set Mn = {Mn,1, . . . ,Mn,J}. When there is no confusion, we omit the

subscript n in the notation. We assume for each n ∈ N that
∫
gn(y) log gn(y)dy < ∞. This defines the

class of true distributions Gn.

Regarding the models, assume that for each i ∈ N and each j = 1, . . . J , fj,i(·; θj) is measurable

for all θj ∈ Θj , a compact set, fj,i(yi; ·) is continuous on Θj almost surely and continuously differen-

tiable on Θj . Then for every model there exists (White, 1994, Th 2.12) an estimator θ̂n,j , maximizing∏n
i=1 fj,i(yi; θj) over Θj . If EGn{n

−1
∑n

i=1 log fj,i(yi; θj)} has an identifiable unique maximizer over

Θj , this maximizer is called the pseudo-true value ϑ∗
n(Mj). This value depends on the true joint den-

sity, the model densities, and on the sample size. We define two vectors of length m′ =
∑J

j=1mj ,

ϑ∗
n,M = {ϑ∗t

n (M1), . . . , ϑ
∗t
n (MK)}⊤ and θ̂n,M = {θ̂tn(M1), . . . , θ̂

t
n(MK)}⊤.

Lemma 2. Let {Yni : i = 1, . . . , n, n ∈ N\0} form a triangular array consisting of independent random

variables. Assume that (i) for all components of the vector ϑ∗
n,M, here stated for the kth such component

of θj corresponding to model Mj , for all Gn ∈ Gn with A = {yi ∈ R : |(∂/∂θk) log fj,i{yi; θ
∗
n(Mj)}| >

εnQMj ,kk{ϑ
∗
n(Mj)}}, and for all ε > 0,

lim
n→∞

n∑

i=1

∫

A

[
∂

∂θk
log fj,i{yi;ϑ

∗
n(Mj)}

]2
/[nQMj ,kk{ϑ

∗
n(Mj)}]dGni(yi) = 0.

and (ii) denoting ΣMj
{ϑ∗

n(Mj)} = Q−1
Mj

{ϑ∗
n(Mj)}Jjj{ϑ

∗
n(Mj), ϑ

∗
n(Mj)}Q

−1
Mj

{ϑ∗
n(Mj)},

lim
n→∞

max
i=1,...,n

PGn

(
(ΣMj ,kk)

−1/2n−1/2[Q−1
Mj

{ϑ∗
n(Mj)}]kk

∣∣ ∂

∂θk
log fj,i{yi;ϑ

∗
n(Mj)}

∣∣ > ε

)
= 0

Define Wn ∼ Nm′{0,Σ(ϑ∗
n,M)} where Σ(ϑ∗

n,M) is a m′ ×m′ matrix with ijth block, with dimensions

mi ×mj , equal to Q−1
Mi

{ϑ∗
n(Mi)}Jij{ϑ

∗
n(Mi), ϑ

∗
n(Mj)}Q

−1
Mj

{ϑ∗
n(Mj)}, then

lim
n→∞

sup
t∈Rm′

sup
Gn∈Gn

∣∣P{n1/2(θ̂n,M − ϑ∗
n,M) ≤ t} − P(Wn ≤ t)

∣∣ = 0.

A pivot is needed in order to construct confidence regions. In general, the variance Σ(ϑ∗
n,M) of Wn

might depend on ϑ∗
n,M. When there is an estimator Σ̂ of Σ such that

lim
n→∞

sup
Gn∈Gn

PGn(‖Σ̂n − Σ‖ > ε) = 0,
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with ‖A‖ denoting the Euclidean matrix operator norm of A, then, with Zm′ ∼ Nm′(0, Im′)

lim
n→∞

sup
Gn∈Gn

sup
t∈Rm′

|P{Σ̂−1/2
n n−1/2(θ̂n,M − ϑ∗

n,M) ≤ t} − P(Zm′ ≤ t)| = 0.

The model determines whether or not the variance may be estimated well. White (1994, Sec 8.3) gives

some general conditions for consistent estimation of the variance. One requirement is that

n−1
n∑

i=1

E(s)E(s⊤) → 0,

with s the vector of length m′ consisting of subvectors (∂/∂θk) log fki(Yi;ϑ
∗
k), for k = 1, . . . ,K. This

assumption holds, for example, when the models are correctly specified. Under misspecification, White

(1994, Sec 8.3) showed that the empirical estimator for Σ(ϑ∗
n,M) might overestimate the covariance

matrix, leading to conservative confidence intervals.

4.2 Selection region in a misspecified setting

When M consists of misspecified models, calculating the selection event requires additional care. De-

fine ℓn,Mj
(y, θj) =

∑n
i=1 log fj,i(yi, θj). When model MAIC is selected, then for all M ∈ M\MAIC,

2[ℓn,MAIC
{y, θ̂n(MAIC)} − ℓn,M{y, θ̂n(M)}] ≥ 2(|MAIC| − |M |). When both models, MAIC and M , are

correctly specified, the difference of log-likelihoods can be characterized asymptotically by chi-squared

random variables. However, when there is misspecification this difference can diverge to +∞ or −∞,

depending on the assumptions about the models. For strictly non-nested models the difference always

diverges (Vuong, 1989, Th. 5.1). When the selected model is always best, there is no restriction on

parameter estimators. See also Cox & Hinkley (1974, Sec. 9.3) for the asymptotic behavior of likeli-

hood ratio tests in non-nested settings. For overlapping models having some common parameters, the

log-likelihood difference converges to some random variable if one of the models is correctly specified,

and otherwise diverges. Under misspecification of all models, the only setting where the asymptotic

distribution can be used to characterize the selection event is for nested models under similarity of the

likelihoods (Vuong, 1989, Assumption A8). This means that ℓn,Mk
{y, ϑ∗

n(Mk)} = ℓn,Ml
{y, ϑ∗

n(Ml)}

for k, l = 1, . . . ,K . For an arbitrary set of models we impose the same similarity assumption and assume

that M includes a model Ms = Msmall which is nested in all other models. If we were to perform a like-

lihood ratio test, under this assumption it would correspond to testing whether the smaller model can be

considered equal versus worse than the larger model (Vuong, 1989, Lemma 7.1). We first compare each

model with the smallest model and then we use the obtained regions from each comparison to compute

the final selection region using pairwise comparisons. By imposing similarity, the calculated quantiles

to be used in the confidence regions are larger than without similarity since, as explained earlier, the

log-likelihood difference diverges otherwise and there is no restriction on the parameter estimators. For

all M ∈ M\Ms,

2[ℓn,M{y, θ̂n(M)} − ℓn,Ms{y, θ̂n(Ms)}]

= n{θ̂n(M)− ϑ∗
n(M)}⊤QM{ϑ∗

n(M)}{θ̂(M)− ϑ∗
n(M)}

−n{θ̂n(M)− ϑ∗
n(Ms)}

⊤Q{ϑ∗
n(Ms)}{θ̂n(Ms)− ϑ∗

n(Ms)}+ oP (1)

= n(θ̂n,M − ϑ∗
n,M)⊤WM,Ms(θ̂n,M − ϑ∗

n,M) + oP (1), (10)

where WM,Ms is a block-diagonal matrix partitioned in the same way as Σ, with the diagonal block

referring to model M equal to QM{ϑ∗
n(M)} and that referring to model Ms equal to −QMs{ϑ

∗
n(Ms)},



A. Charkhi and G. Claeskens 11

and zero elsewhere. If the models are already nested, there is no need to compare each model with the

smallest model. The asymptotic counterpart of the selection event is

AMAIC
(M) = {z ∈ Rm′

: z⊤Σ1/2(WMAIC ,Ms −WM,Ms)Σ
1/2z ≥ 2(|MAIC| − |M |),

M ∈ M\MAIC}. (11)

Proposition 4. Let the assumptions of Lemma 2 hold. For a set of models with AMAIC
(M) from (11) it

holds that

lim
n→∞

sup
Gn∈Gn

sup
t∈R|MAIC |

∣∣P[n1/2{θ̂(MAIC)− ϑ∗(MAIC)} ≤ t | MAIC] (12)

−P{Σ1/2Z ≤ t | AMAIC
(M)}

∣∣ = 0

As noted by Tibshirani et al. (2015), uniform convergence in distribution can be translated to uni-

formly valid confidence sets. The following proposition clarifies this statement. The proof is similar to

the proof of Proposition 4, using the fact that a continuous mapping preserves uniform convergence.

Proposition 5. Let the assumptions of Lemma 2 hold and let the set of models M contain a smallest

model which is nested in all models. Define the set

C∗(qα) = {θ ∈ R|MAIC | : n{θ̂(MAIC)− θ(MAIC)}
⊤ΣMAIC

(ϑ∗
MAIC

)−1{θ̂(MAIC)− θ(MAIC)} ≤ qα},

where qa is determined by solving

P
{
[Z̃⊤ (MAIC)ΣMAIC

(ϑ∗
MAIC

)−1Z̃(MAIC) ≤ qα] ∩ {Z ∈ AMAIC
(M)}

}

= P{Z ∈ AMAIC
(M)}(1 − α).

Then limn→∞ supGn∈Gn
supα∈[0,1]

∣∣PGn{ϑ
∗(MAIC) ∈ C∗(qα) | MAIC} − (1− α)

∣∣ = 0.

5 Simulation study

5.1 Parameters in linear models

While the proposed method is applicable in general likelihood models, in order to compare it with exist-

ing methods, we present simulation results for linear models. Results for generalized linear models and

for other settings are placed in the Supplementary Material.

The data were generated from a regression model Yi =
∑10

j=1 ϑjxji + εi, i = 1, . . . , n, with

εi ∼ N(0, 1). The true value for the parameters is ϑ⊤ = (2·25,−1·1, 2·43,−2·24, 2·5, 0⊤5 ), with 05 a

vector of all zeros with length 5. We set x1i = 1 and (x2i, . . . , x10,i)
⊤ ∼ N(09,Ω) where Ω is a positive

definite matrix with diagonal elements equal to 1 and off-diagonal entries equal to 0·25. The sample size

is either 30 or 100.

Three different model sets were considered. Let ζ iall be the selection matrix when the first i parame-

ters are present in all models. We take ζ3all which is a 27 × 10 matrix and ζ6all which is 24 × 10 matrix,

and ζarb which contains 14 rows, arbitrarily chosen from ζ3all.

We are interested in inference for the parameters in the selected model. In order to facilitate the

comparison, the simulations were run until model M with parameters (ϑ1, . . . , ϑ6, ϑ8) had been selected

3000 times. For each of those simulation runs the Fisher information matrix is estimated in the full model

by Ĵ(θ̂), leading to the submatrix ĴM (θ̂). When A5 does not hold one should use (5) to calculate the
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n method ϑj ζ3all ζ6all ζarb

30 PostAIC ϑ4 [−2·85,−1·64] 98 [−2·68,−1·78] 92 [−2·85,−1·64] 97

ϑ6 [−0·60, 0.62] 94 [−0·45, 0·45] 93 [−0·60, 0·62] 96

ϑ8 [−0·60, 0·61] 94 [−0·60, 0·60] 95 [−0·61, 0·62] 96

PoSI ϑ4 [−2·98,−1·51] 99 [−2·89,−1·57] 99 [−2·97,−1·52] 99

ϑ6 [−0·73, 0·75] 99 [−0·66, 0·66] 99 [−0·71, 0·73] 99

ϑ8 [−0·73, 0·74] 98 [−0·66, 0·67] 97 [−0·72, 0·73] 99

Naive ϑ4 [−2·67,−1·82] 89 [−2·68,−1·79] 91 [−2·66,−1·83] 89

ϑ6 [−0·42, 0·43] 69 [−0·44, 0·44] 92 [−0·41, 0·42] 71

ϑ8 [−0·42, 0·43] 70 [−0·44, 0·45] 75 [−0·41, 0·43] 71

100 PostAIC ϑ4 [−2·54,−1·94] 99 [−2·46,−2·02] 94 [−2·55,−1·93] 99

ϑ6 [−0·30, 0·31] 95 [−0·22, 0·22] 95 [−0·31, 0·32] 96

ϑ8 [−0·30, 0·31] 95 [−0·29, 0·30] 95 [−0·31, 0·31] 97

PoSI ϑ4 [−2·58,−1·90] 100 [−2·54,−1·94] 99 [−2·57,−1·90] 99

ϑ6 [−0·33, 0·34] 98 [−0·30, 0·30] 99 [−0·33, 0·34] 98

ϑ8 [−0·34, 0·34] 98 [−0·29, 0·31] 95 [−0·33, 0·34] 98

Naive ϑ4 [−2·46,−2·02] 93 [−2·46,−2·02] 93 [−2·46,−2·02] 92

ϑ6 [−0·22, 0·22] 66 [−0·22, 0·22] 94 [−0·21, 0·22] 67

ϑ8 [−0·22, 0·22] 66 [−0·22, 0·23] 69 [−0·22, 0·22] 65

Table 1: Simulation study with 3000 runs of AIC selection. Average confidence intervals and coverage

percentages for ϑ4, ϑ6, ϑ8 using different selection matrices ζ corresponding to different model sets M

and different sample sizes n for the proposed method, the method of Berk et al. (2013) and for a naive

approach that treats the selected model as given and ignores selection.

confidence intervals. However, we used (3) instead, resulting in good approximations. Quantiles of the

limiting asymptotic distribution for each setting were obtained via simulation. See the Supplementary

Material for the code. In each simulation run we compute the lower and upper limit of the confidence in-

terval and report the averaged confidence intervals along with the coverage percentages. Table 1 presents

the results for ϑ4, ϑ6 and ϑ8. Results for the other parameters are not presented to save space.

Confidence intervals from the method of Berk et al. (2013) are reported for sake of comparison. Their

target for inference is the so-called non-standard target (Bachoc et al., 2015), namely the best coefficients

within the selected model, not the standard target, the true values of the parameters (Berk et al., 2013,

equation (3.2)). Simulation results in Leeb et al. (2015) showed that the coverage probability of such

intervals for the standard target is lower than the nominal value for certain situations.

For ζ3all where ϑ4 and ϑ5 are truly non-zero, the conditional confidence intervals for the proposed

method have simulated coverage probabilities higher than the nominal value 95%. This is because

AM (M3
all), Z

2
4 > 2 and Z2

5 > 2 in the constraint set, while Z4 and Z5 are truly unconstrained when

taking AM(M3
all ∩ MO). For ϑ6 and ϑ8 which are truly zero, Z2

6 > 2 and Z2
8 > 2 are correct con-

straints. One may expect conservative confidence intervals for ϑ6 and ϑ8 because they are defined by

multiplication of the corresponding rows in Ĵ
1/2
M (θ̂) by Z̃(M). The latter vector satisfies the constraints

AM (M3
all) rather than AM(M3

all∩MO), so the distribution is longer-tailed than needed. For the current

simulation, the settings considered lead to Ĵ
1/2
M (θ̂) with small off-diagonal elements, so, the distribution

of an estimator is mainly determined by its corresponding Zi. For ζ6all the coverages almost equal the

nominal values, especially for n = 100. Using ζarb leads to conservative confidence intervals for all pa-

rameters because of the additional constraints in AM (Marb), while theoretically the constraints should

be AM(Marb ∩MO).

The method of Berk et al. (2013) always yields conservative confidence intervals although there is
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no guarantee that it always leads to valid confidence intervals for the true parameters. Naive confidence

intervals for ϑ4 have coverages almost equal to the nominal value while for ϑ6 using ζarb and ζ3all and for

ϑ8 in all settings the coverage percentages are around 70%. This is the result of wrongly treating the se-

lected model as given. For settings with small off-diagonal elements of Ĵ
1/2
M (θ̂), the confidence intervals

for the truly non-zero parameters are valid. Other simulation results are contained in the Supplementary

Material. We find that the proposed method can be used even in underparametrized situations, where

assumption A1 does not hold.

5.2 Linear combinations in linear models

The performance of the proposed method for linear combinations was investigated by simulations.

Let ϑ⊤ = (2.25,−1.1, 2.43,−1.24, 2.5, 0⊤8 ) be the true values for the parameters in a linear model,

with error standard deviation either 1 or 3. Four different selection matrices are considered, ζ iall, for

i ∈ {3, 5, 8, 10}, indicating that the first i covariates are common to each model. The data generation

processes are as in Section 5.1. For this simulation, we do not control the selected model because we are

interested in a linear combination of the selected parameters. Table 2 shows the results. We compare the

post-selection intervals with the smoothed bootstrap confidence intervals (Efron, 2014) and the intervals

for post-selection predictions (Bachoc et al., 2015). The bootstrap samples consist of n draws with re-

placement from the main data set and we replicate this B = 1000 times. The non-ideal bootstrap when

the number of replications is not equal to nn biases the variance of the smoothed bootstrap estimator

upward, so we use the bias-corrected version (Efron, 2014, remark J). The post-selection intervals for

prediction have a target based on the selected model, so this might be different from the true prediction.

The choice of models with ζ3all as a selection matrix results in conservative confidence intervals due

to conditioning on AM(M3
all), similar to before. For this selection matrix, the confidence intervals by

the bootstrap method are shorter than by the proposed post-selection method. The bootstrap confidence

intervals are not directly based on the selected model for the original data because a model is selected

for each bootstrap sample.

The ideal situation is when the selection matrix is ζ5all, since all truly non-zero parameters are then

forced to be in the model. The confidence intervals for the proposed method are always shorter than

those for the competing methods and their coverages are almost equal to the nominal value. For ζ8all
and ζ10all the situation is the same, though with wider intervals than with ζ5all for all methods, because

more parameters are forced to be in the model, which increases the variability of the predictions. These

confidence intervals are not wider than for ζ3all. Thus the variability of the prediction is more affected

by the condition part than by forcing more variables into the model. The post-selection method for

prediction (Bachoc et al., 2015) always leads to wider confidence intervals than the bootstrap method

and the proposed method.

The coverages of the confidence intervals for the proposed method are always close to or higher than

the nominal values, while the bootstrap method can have lower coverage probabilities than the nominal

values. Moreover, the bootstrap method for all possible models is computationally intensive, because it

needs B bootstrap samples and in each of them all candidate models are fit.

For the setting σ = 3 and n = 30 in ζ3all, we used the results in (9) instead of (8). In this setting

the probability of selecting an underparametrized model is not zero due to a small sample size and large

variance. The average length of the confidence interval was 9.9 and the coverage was around 90% when

we used (8).
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ζ3all ζ5all ζ8all ζ10all

σ n method length cov. length cov. length cov. length cov.

1 30 PostAIC 3·11 97 2·61 95 2·90 94 3·08 94

Boot 3·67 92 3·32 92 3·31 92 3·79 92

PoSIp 4·38 100 4·39 100 5·36 100 6·00 100

100 PostAIC 1·42 98 1·17 95 1·30 96 1·37 95

Boot 1·25 94 1·25 94 1·30 94 1·33 93

PoSIp 1·83 100 1·83 100 2·20 100 2·42 100

3 30 PostAIC 11·76 98 7·82 94 8·68 94 9·24 94

Boot 11·46 92 9·95 92 9·94 92 11·37 92

PoSIp 12·65 99 13·16 100 16·08 100 17·99 100

PostAIC 4·25 98 3·50 95 3·90 96 4·12 95

Boot 3·77 94 3·74 94 3·90 94 4·00 93

PoSIp 5·47 100 5·48 100 6·60 100 7·26 100

Table 2: Simulation study with 3000 runs of selection with Akaike’s information criterion. Average

length of 95% confidence intervals and coverage percentages (cov.) for a linear combination of the

parameters for different methods and model sets using the selection matrices ζ for different sample sizes.

6 Pima Indian diabetes data

We construct confidence intervals conditional on the selected model for a logistic regression model ap-

plied to the Pima Indian diabetes data set (Lichman, 2013). This data set consists of women at least 21

years old of Pima Indian heritage, living near Phoenix Arizona. We used 332 complete observations.

The response is 0 if a test for diabetes is negative and is 1 for a positive test. We use seven covariates in

the model, npreg: number of pregnancies, glu: plasma glucose concentration in an oral glucose tolerance

test, bp: diastolic blood pressure, skin: triceps skin fold thickness in millimeter, bmi: body mass index,

ped: diabetes pedigree function and age in years. See Smith et al. (1988) for more details about the data.

First, we consider bootstrap percentile and naive confidence intervals for the parameters in the full

model when no selection is involved, see Table 3(b). We used 5000 bootstrap runs, each resampling the

332 women uniformly with replacement. Several intervals contain zero, which shows the possibility of

using a smaller model.

Selection uses the set Mall; an intercept is present in all models. This results in selecting four

variables: npreg, glu, bmi and ped. Table 3(a) presents the unconditional confidence intervals for these

parameters using the naive method with the post-selection confidence intervals that condition on the

model selected using the Akaike information criterion. The naive method ignores the selection procedure

which leads to the significance of the covariate ped, whereas the proposed method, which takes the

selection uncertainty into account, concludes that this covariate is not individually significant at the 5%

level. For logistic regression, to the best of our knowledge, there are no other post-selection methods to

compare with.

7 Discussion and extensions

For one of the classic model selection methods, the Akaike information criterion (Akaike, 1973) we have

provided an approach to deal with the selection uncertainty by performing inference conditional on the

selected model. Our results have demonstrated that this inference depends not only on the selected model,
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(a) Method npreg glu bmi ped

Naive [0·091, 0·269] [0·028, 0·049] [0·042, 0·129] [0·305, 2·050]

PostAIC [0·058, 0·299] [0·022, 0·054] [0·027, 0·142] [−0·027, 2·358]

(b) Method npreg glu bp skin bmi ped age

Naive [0·03, 0·26] [0·03, 0·05] [−0·03, 0·02] [−0·03, 0·05] [0·02, 0·14] [0·24, 2·00] [−0·02, 0·05]

Bootstrap [−0·003, 0·30] [0·03, 0·05] [−0·03, 0·16] [−0·03, 0·06] [0·02, 0·15] [0·005, 2·41] [−0·02, 0·07]

Table 3: (a) Confidence intervals for the Pima Indian diabetes data with nominal level 95% ignoring

(Naive) and including (PostAIC) model selection using Akaike’s information criterion. (b) 95% Naive

and bootstrap confidence intervals in the full model, without selection.

but also on the set of models from which the selection takes place, and on the smallest overparametrized

model. The dependence on the set of models is not surprising, though has not received much attention

so far.

The proposed method explicitly uses the overselection properties of Akaike’s information criterion.

For some selection properties under local misspecification, see Claeskens & Hjort (2004). For consistent

selection criteria, e.g., the Bayesian information criterion, other approaches should be used, though ef-

fects of the selection remain present (Leeb & Pötscher, 2005). Other selection methods that are similar to

Akaike’s information criterion can be approached in the same way. Consider, for example, selection in an

arbitrary set of models allowing for model misspecification, see Section 4, using Takeuchi’s information

criterion (Takeuchi, 1976) TIC(M) = 2ℓn{θ̂(M)} − 2tr{QM (ϑ∗)−1JM (ϑ∗)}. For most practical set-

tings the information matrices are estimated by their empirical counterparts Q̂M (θ̂M ) and ĴM (θ̂M ). We

rewrite (10) for an arbitrary set of models containing Ms by replacing |M | with tr{QM (ϑ∗)−1JM (ϑ∗)}

and proceed to calculate the asymptotic distribution of the parameters conditioned on the constraint set.

Another such example is the generalized information criterion introduced by Konishi & Kitagawa

(1996). It considers functional estimators, such as M-estimators, and uses the influence function as part

of the criterion, GIC(M) = −2ℓn{θ̂(M)} + (2/n)
∑n

i=1 tr
{
Infl(Yi)(∂/∂θ

⊤
M ) log f(Yi; θ̂M )

}
. Under

some regularity conditions, the functional estimator has an asymptotic normal distribution, allowing to

extend the results in Section 4.

Mallows’ Cp (Mallows, 1973) for linear regression is Cp(M) = σ̂−2σ̂2(M) + 2|M | − n where σ̂2

is the estimated variance in the full model while σ̂2(M) uses model M . The model with the smallest Cp

value is the best. In nested models one can easily show that when n tends to infinity, Cp(M)−Cp(M
∗) ∼

χ2
q/q + 2q where q = |M∗| − |M |. In the same manner as for the Akaike information criterion, one can

calculate the constraint set and hence the distribution of estimators for parameters in the selected model.

In forward stepwise selection, we start from a small model and embed it in a larger model containing

one additional parameter. This procedure continues until adding a parameter does not decrease the

Akaike information criterion. To be precise, in step t we embed model Mt in a number of bigger models,

each adding one parameter. Define Mt to be this set of models. Model Mt+1 ∈ Mt is selected when

this model has a smaller criterion value than model Mt and it has the smallest criterion value amongst

all models in Mt. This means that AIC(Mt+1) < AIC(Mt) and AIC(Mt+1) < AIC(M) for all M ∈

Mt \Mt+1. These inequalities can be translated to constraints. The constraint set is the collection of all

these constraints from all steps.

We explicitly dealt with low-dimensional parameters for which maximum likelihood estimators exist

and Akaike’s information crierion is well-defined. Other criteria are better suited for high-dimensional

parameters.
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Appendix

Let BK(ǫ) denote a sphere in a+K dimensions centered at ϑ with radius ǫ, and denote its complementary

set by Bc
K(ǫ).

A1 For each ǫ > 0, as n → ∞, supθ∈Bc
K
(ǫ){ℓn(θ)− ℓn(ϑ)}→ −∞ in probability.

A2 There exist an ǫ0 > 0 such that ℓn(θ) is twice continuously differentiable in BK(ǫ0) for all n

large enough. Define the score vector Un(θ) = (∂/∂θ)ℓn(θ) and the negative Hessian matrix

Qn(θ) = −(∂2/∂θ∂θ⊤)ℓn(θ).

A3 For some 0 < ǫ1 < ǫ0 when n → ∞, there exists a non-random positive definite continuous matrix

Q(θ), for θ in BK(ǫ1) such that supθ∈BK(ǫ) tr{Qn(θ)/n −Q(θ)}→0 in probability.

A4 As n → ∞, n1/2Un(ϑ) is asymptotically N{0, J(ϑ)}.

A5 For i 6= j and Mi,Mj ∈ MO, with the expectation with respect to the true distribution, Jij{θ(i), θ(j)} =

E({∂/∂θ(Mi)}[ℓn{θ(Mi)}]{∂/∂θ(Mj)
⊤}[ℓn{θ(Mj)}]) = 0|Mi|×|Mj|.

Assumptions A1–A4 are from Woodroofe (1982). Assumption A1 leads to the consistency of maximum

likelihood estimators for θ in the model considered and its submodels. For the non-nested case A5

leads to a simplification (Vuong, 1989). In linear regression, assumption A5 is equivalent to having an

orthogonal design matrix.

The next lemma is an extension of Lemma A in Vuong (1989) to more than two models.

Lemma 3. Assume A1–A4. Fix any ordering of the models in MO and denote o = |MO|. As n →

∞, n1/2(θ̂Mo − ϑMo) = n1/2{θ̂′(M1)
⊤ − ϑ(M1)

⊤, . . . , θ̂′(Mo)
⊤ − ϑ(Mo)

⊤}⊤ → N{0,Σ(ϑ)} in

distribution.

Proof. Similar to Vuong (1989), a Taylor series expansions leads to

0 = n−1/2Un,Mi
(ϑ) +QMi

(ϑ)n1/2{θ̂′(Mi)− ϑ}+ oP (1), Mi ∈ MO.

By the multivariate central limit theorem, there is convergence in distribution, for n → ∞,

n−1/2(U⊤
n,M1

, . . . , U⊤
n,Mo

)⊤ → N(0,Σu) (13)

where Σu is a partitioned matrix with ijth block equal to Jij(ϑ, ϑ). The distribution of the estimators

follows.

When the models are correctly specified, Jii(ϑ, ϑ) = JMi
(ϑ) = QMi

(ϑ). Lemma 3 is also valid

for misspecified models and for models not in MO. In such case the true parameter is replaced by the

pseudo-true parameter corresponding to the considered model.
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Proof of Proposition 1. We show that (1) equals

lim
n→∞

P([n1/2{θ̂′(p)− ϑ̃(p)} ≤ t̃(p)] ∩ [2ℓ∗n,p − 2p ≥ 2ℓ∗n,j − 2j, j ∈ {p0, p0 + 1, . . . ,K}])

P[2ℓ∗n,p − 2p ≥ 2ℓ∗n,j − 2j, j ∈ {p0, p0 + 1, . . . ,K}]
.

From Lemma 3 there is joint convergence of the estimators in the different models. Next, since ℓ∗n,j is a

function of θ̂′(j), namely

ℓ∗n,j =
n

2
{θ̂′(p)− ϑ(p)}⊤Jp(ϑ){θ̂

′(p)− ϑ(p)}+ oP (1),

and since the probability of the event in the denominator is strictly positive, Slutsky’s theorem and the

continuous mapping theorem give joint convergence for both the numerator and denominator of the above

expression to their asymptotic counterparts.

To obtain the selection set let Sj = {s ∈ Ra+K : si = 0, for i = a + j, . . . , a + K} for j =

p0, . . . ,K . Woodroofe (1982) showed that (ℓ∗n,p0 , . . . , ℓ
∗
n,K) converges in distribution to (ℓ∗p0 , . . . , ℓ

∗
K)

as n → ∞, where for j = p0, . . . ,K , ℓ∗j = sups∈Sj
{s′Y − s′J(ϑ)s/2}, where Y ∼ N{0, J(ϑ)}. Then

ℓ∗j = 0.5
∑a+j

i=1 Z
2
i , for j = p0, . . . ,K , where Z1, . . . , Za+j are independent and identically distributed

standard normal random variables. Lemma 1 and Assumptions A1–A4 imply that n1/2J
1/2
j (ϑ){θ̂′(j) −

ϑ̃(j)} converges in distribution to Z̃(j) as n → ∞. Parameters not in the selected model are set to zero,

which leads to the region Tp. Since Z̃(p) and (Zp+1, . . . , ZK) are independent, and for t ∈ Tp,

Fp(t) = P{J−1/2
p (ϑ)Z̃(p) ≤ t̃(p) | Z ∈ Ap(Mnest)}

= P
[
J−1/2
p (ϑ)Z̃(p) ≤ t̃(p) |

⋂

j=p0,...,p−1

{

p∑

i=j+1

Z2
a+i > 2(p − j)}

]
. (14)

Proof of Corollary 2. From Proposition 1, with p̂0 = p, qα is equivalently found via

P
[
(

a+p∑

i=1

Z2
i ≤ qα) ∩

⋂

j=p0,...,p−1

{

p∑

i=j+1

Z2
a+i > 2(p − j)}

]
/P{Z̃(p) ∈ A(s)

p (Mnest)} = 1− α.

The denominator can be calculated by Lemma A1 in the Supplementary Material. To calculate the

numerator, we first find the joint density of (Wp, . . . ,Wp0+1,W1) where Wj =
∑a+p

i=a+j Z
2
i , W1 =∑p

i=1 Z
2
i and Z2

i ∼ χ2
1 for all i = 1, . . . , a+ p. So, Z2

a+i = Wi−1 −Wi for i = p0 + 1, . . . , p − 1 and

Z2
a+p = Wp with

∑a+p0
i=1 Z2

i = W1 −Wp0+1 ∼ χ2
a+p0 . The joint distribution of (Wp, . . . ,Wp0+1,W1)

is obtained via a transformation of the distribution of (Z2
a+p, Z

2
a+p−1, . . . , Z

2
a+p0+1,

∑a+p0
i=1 Z2

i ),

f(wp, . . . , wp0+1, w1) =
exp(−w1/2)w

−1/2
p (w1 − wp0+1)

−(a+p0)/2−1
∏p−p0+1

i=1 (wi − wi−1)
−1/2

2
a+p

2 {Γ(1/2)}p−p0Γ(a+p0
2 )

.

The region of integration follows from A
(s)
p (Mnest) and the fact that Wi ≤ Wj for i > j.

Proof of Lemma 1. Denote the smallest true model by Mpars. For all M ′ 6∈ MO, by assumption A1,

P(MAIC = M ′) ≤ P

{
AIC

∗(M ′) ≥ max
M∈MO

AIC
∗(M)

}
≤ P

{
AIC

∗(M ′) ≥ AIC
∗(Mpars)

}

= P
[
ℓn{θ̂(M

′)} − |M ′| ≥ ℓn{θ̂(Mpars)} − |Mpars|
]

= P
[
ℓn{θ̂(M

′)} − ℓn{ϑ(Mpars)} − |M ′| ≥ ℓn{θ̂(Mpars)} − ℓn{ϑ(Mpars)} − |Mpars|
]

→ 0.
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Proof of Proposition 2. (i) Define Sj = {s ∈ Ra+K : si = 0, i /∈ M} and ℓ∗n,Mi
= ℓn{θ̂(Mi)}− ℓn(ϑ)

where Mi ∈ MO. Similar to Proposition 1 we can show that for Mi ∈ MO, ℓ∗n,Mi
→ 0.5

∑
j∈Mi

Z2
j in

distribution. Now, the condition part can be calculated by
∑

j∈M

Z2
j − 2|M | >

∑

j∈Mi

Z2
j − 2|Mi|, Mi ∈ MO\M,

which is equivalent to Z ∈ AM (MO).

(ii) By Lemma 3 there is joint convergence in distribution of the estimators in the different models.

The constraint set can be calculated by pairwise comparisons of the AIC
∗ values. To do so, write

ℓn{θ̂(Mi)} = ℓn(ϑ) +
n

2
{θ̂(Mi)− ϑ}⊤QMi

(ϑ){θ̂(Mi)− ϑ}+ oP (1)

from which it follows that ℓ∗n,i =
n
2{θ̂(Mi)− ϑ}⊤QMi

(ϑ){θ̂(Mi)− ϑ}+ oP (1).

Then, since AIC
∗(MAIC) ≥ AIC

∗(Mi) is equivalent to 2(ℓ∗n,AIC − ℓ∗n,i) ≥ 2(|MAIC| − |Mi|) it follows

that

n(θ̂MO
− ϑMO

)⊤WAIC,i(θ̂MO
− ϑMO

) + oP (1)− 2(|MAIC| − |Mi|) ≥ 0. (15)

By using Lemma 3 and the continuous mapping theorem, the asymptotic counterpart of (15) can be

written as Z⊤Σ1/2WAIC,iΣ
1/2Z ≥ 2(|MAIC|− |Mi|), Mi ∈ MO, which results in the stated selection

region and limiting distribution.

Proof of Proposition 3. (i) Using Theorems 1 and 2 of Sweeting (1980),

n1/2{θ̂′(M)− ϑ̃(M)}⊤J
1/2
M (ϑ)−→Z̃(M),

uniformly in distribution over the compact set Θ. This leads to having limn→∞ infϑ∈Θ Pϑ{ϑ ∈ Cα(ϑ)} =

1 − α. (ii) When MO is not known, we use AM (Marb) in (7) instead of AM(Marb ∩ MO), which

defines the value q̃α. Since AM(Marb) ⊂ AM (Marb ∩MO), q̃α ≥ qα, which leads to a conservative

confidence region.

Proof of Lemma 2. For every j = 1, . . . , J and every component k of the vector θ̂n,M(Mj), it holds that

n1/2([θ̂n,M(Mj)]k − [ϑ∗
n,M(Mj)]k) =

n∑

i=1

Q−1
Mj

{ϑ∗
n(Mj)}n

−1/2 ∂

∂θk
log fj,i{Yi, ϑ

∗
n(Mj)}+ oP (1).

By assumption (i), which is a Lindeberg assumption for all Gn ∈ Gn, we obtain a uniform limiting

normality result for each of the components of n1/2(θ̂n,M − ϑ∗
n,M). Under assumption (ii) the data are

in a so-called null triangular array format, to which Corollary 2 of Pollak (1972) applies, resulting in a

joint asymptotic normality for the vector combining all such components.

Proof of Proposition 4. Define the events B = [n1/2{θ̂(MAIC)− ϑ∗(MAIC)} ≤ t] and

C = ∩M∈M{n(θ̂M − ϑ∗
M)⊤(WMAIC ,Ms −WMi,Ms)(θ̂M − ϑ∗

M) ≥ 2(|MAIC| − |M |)} + oP (1).

Using the results of Lemma 2 and the continuous mapping theorem, the difference between

P[n1/2{θ̂(MAIC)− ϑ∗(MAIC)} ≤ t | M̂ = MAIC]P(B ∩ C)/P(C)

and P[
{
ΣMAIC

(ϑ∗
MAIC

)1/2Z̃(MAIC) ≤ t
}
∩ {Z ∈ AMAIC

(M)}]/P{Z ∈ AMAIC
(M)} converges uniformly

to 0.
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Supplementary Material: Asymptotic

post-selection inference for Akaike’s information

criterion

This supplement contains a rewriting of results of Woodroofe (1982), exact calculations for an example,

the selection matrix for one of the simulation settings and additional simulation results.

A Additional lemma

The following Lemma is adapted from Woodroofe (1982). The zero probability of underestimation is a

special case of our Lemma 1, while the exact expressions for overestimation are obtained by rewriting

the generalized arc-sine probabilities of Woodroofe (1982).

Lemma 4. Under assumptions (A1)–(A4), in the nested models case for the model order p̂0 selected such

that the Akaike information criterion is minimized for the corresponding model, it holds that

πp = lim
n→∞

P(p̂0 = p) =

{
0 if a ≤ p < p0,

gp−p0qK−p if p0 ≤ p ≤ K,

where g0 = q0 = 1 and with Ri = {(r1, . . . , ri) ∈ N
i : r1 + 2r2 + . . .+ iri = i}, aj = P(χ2

j > 2j),

gi =
∑

Ri





i∏

j=1

1

rj!

(
aj
j

)rj



 and qi =

∑

Ri





i∏

j=1

1

rj !

(
1− aj

j

)rj



 .

B A worked-out illustrative example

Let erf(x) = 2π−1/2
∫ x
0 exp(−w2) dw denote the ‘error function’ and let erfc(x) = 1− erf(x). Assume

∅ = M0 ⊂ . . . ⊂ M3 with the true value ϑ = (ϑ1, 0, 0)
⊤ and three situations for the 3 × 3 matrix
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J−1/2(ϑ),

(a)



1 0 0

0 2 0

0 0 2


 , (b)



1 0 0

0 2 0.5

0 0.5 2


 , (c)




1 0.9 0.9

0.9 2 0.5

0.9 0.5 2


 .

The Akaike information criterion is used to select a model from the set of three nested models Mnest =

{M1,M2,M3}. Consider the situation that the smallest value of the Akaike information criterion is

attained for the full model, thus p̂0 = 3. In this case A3 = {(z1, z2, z3) : z
2
3 > 2, z23 + z22 > 4}. Using

Lemma A.4 with p0 = 1, K = 3 and p̂0 = 3 results in P (Z ∈ A3) = 0.08.

Let fj|3 denote the limiting density of n1/2(θ̂j−ϑj) conditional on p̂0 = 3, then for case (a) f
(a)
1|3 (t) =

φ(t) where φ is the standard normal density function,

{0.16(2π)1/2}f
(a)
2|3 (t) =





exp(−t2/8)erfc
{
(2− t2/8)1/2

}
, t ∈ (−23/2, 23/2)

exp(−t2/8)erfc(1), t ∈ R\[−23/2, 23/2]

0 otherwise,

{0.16(2π)1/2}f
(a)
3|3 (t) =





exp(−t2/8)erfc
{
(2− t2/8)1/2

}
t ∈ (−4,−23/2) ∪ (23/2, 4)

exp(−t2/8) t ∈ (−∞,−4] ∪ [4,∞)

0 otherwise,

For case (b) where there is correlation between the second and third component of the estimator, we

only calculate f3|3, with similar results for f2|3. The limiting distribution of n1/2(θ̂3 − ϑ3) conditional

on p̂0 = 3 is the distribution of the third row in J−1/2(ϑ)Z3 which is T = 0·5Z2 + 2Z3. We define

g1(t) = erf{171/2 − t4(2/17)1/2},

g2(t) = erf{171/2 + t4(2/17)1/2},

g3(t) = erf{(2− 2t2/17)1/2}.

By tedious calculations, we find the distribution of n1/2(θ̂3 − ϑ3) conditional on p̂0 = 3 as follows,

{0.08(34π)1/2}f
(b)
3|3(t) (16)

=





exp(−2t2/17) (2− g1(t)− g2(t)) t ∈ (−2−1/23, 2−1/23)

exp(−2t2/17) (2− g2(t)− g3(t)) t ∈ [2−1/23, 2−1/25)

exp(−2t2/17) (2− g1(t)− g3(t)) t ∈ (−2−1/25,−2−1/23]

exp(−2t2/17) (2− g1(t)− g2(t)− 2g3(t)) t ∈ (−17−1/2,−2−1/25] ∪ [2−1/25, 171/2)

exp(−2t2/17) (2− g1(t)− g2(t)) t ∈ (−∞,−17−1/2] ∪ [17−1/2,∞)

0 otherwise.

For case (c) we calculate for f3|3 the distribution of W = T + 0·9Z1 where T has a density function

as in (16). Hence for case (c),

f
(c)
3|3(w) =

∫

D(T )
f
(b)
3|3(t)φ0·9(w − t) dt, (17)

where D(T ) is the domain of random variable T and φ0·9 is the density of a normal random variable with

standard deviation 0·9.

In the naive approach, often out of convenience, one wrongly assumes that p̂0 is deterministic, not

random, and hence one constructs the confidence interval for the parameters using an assumed asymp-

totic normal distribution of the maximum likelihood estimators. For instance, with J
−1/2
p (ϑ) as in (a),
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Figure 3: Marginal asymptotic density of n1/2(θ̂j−ϑj) conditional on p̂0 = 3 when p0 = 1 for j = 1, 2, 3

and for case (a) in panels (a)–(c), for the third component of case (b) in panel (d) and for that of case (c)

in panel (e). Dashed line: kernel density estimate using the simulated values; solid line: exact asymptotic

density.

the naive 95% confidence interval for ϑ3 is θ̂3 ± 1·96(2n−1/2). Clearly, this confidence interval does

not consider the uncertainty of model selection. Rather, we should use the quantile of the symmetric

conditional distribution. The exact 0·975% quantile is 5·75 while the simulated one is 5·77. Hence, the

conditional confidence interval is θ̂3 ± 5·75n−1/2, clearly showing the overoptimism in the meaning of

having a too narrow interval, when neglecting the model selection uncertainty. It should be noted that

for case (a) the limiting probability of n1/2(θ̂3 − ϑ3) in [−23/2, 23/2] is zero. The density function is not

only bimodal, but also has quite some curvature. The simulation method captures these properties almost

perfectly. For this information matrix, the limiting probability of n1/2(θ̂3 − ϑ3) to be in [0, 2−1/23] is

equal to 0·0141 while based on our sampling method, we find 0·0139. Again, the naive confidence inter-

val θ̂3±1·96(4·25/n)1/2 is too narrow as compared to the conditional confidence interval θ̂3±5·93n−1/2

where 5·93 is the exact 0·975% quantile (5·94 based on the simulated distribution).

The diversity of the shape of the density functions after model selection is illustrated with case (c)

for n1/2(θ̂3 − ϑ3). The plot of the exact limiting density is based on numerical integration from (17).

The 97·5% quantile is equal to 6·48, again larger than the unconditional value 1·96(5·061/2) = 4·41.

For simultaneous confidence regions we compute qα in equation (3) in the paper via constrained χ2

distributions. An exact calculation is possible when the difference between the number of selected and

true parameters is less than three. Table 4 presents the simulated 95% quantiles for some values of p0
and p. Using these values in equation (3) in the paper gives coverages, showing close agreement with
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(p0, p) simulated quantile coverage χ2 quantile

(2,3) 10·78 95·0 7·81

(3,4) 12·29 94·8 9·49

(1,3) 12·17 94·9 7·81

(2,4) 13·76 94·8 9·49

(3,5) 15·36 94·9 11·07

(10,12) 25·28 95·0 21·03

(28,30) 47·97 94·9 43·77

Table 4: Simulated quantiles and their exact coverage percentages along with unconditional quantiles of

χ2 distributions.

the nominal value. The unconditional quantiles from χ2 distributions are obviously too small, resulting

in too optimistic inference, that is, too low coverage probabilities.

C Selection matrix for Marb in Section 4

ζarb =




1 1 1 1 1 1 0 1 0 0

1 1 1 1 1 0 0 0 0 0

1 1 1 1 0 1 0 0 0 0

1 1 1 1 0 0 0 1 0 0

1 1 1 1 0 0 0 0 1 0

1 1 1 1 0 0 0 0 0 1

1 1 1 1 0 0 0 0 0 0

1 1 1 0 1 1 0 0 0 0

1 1 1 0 1 0 0 1 0 0

1 1 1 0 1 0 0 0 0 0

1 1 1 0 0 1 0 1 0 0

1 1 1 0 0 1 0 0 0 0

1 1 1 0 0 0 0 1 0 0

1 1 1 0 0 0 0 0 0 0




14×10

.

D Effect of p0 on confidence intervals in nested models

This simulation study illustrates that in nested models considering the smallest model as the true model

leads to confidence intervals with higher coverage probabilities than the nominal value.

Take θ = (2·25,−1·1, 2·43,−1·24, 2·5, 03)
⊤ as the true parameters in a linear regression model, thus

p0 = 5, a = 1 and K = 7. Mnest consists of 8 nested models; the smallest model contains only an

intercept, the biggest model is the model with all covariates. The sample size varies in {30, 100, 300}.

All other settings are as in Section 4·1.

For each sample size we generate data until each of the model orders 5, 6, 7 and 8 has been selected

3000 times. While in this simulation we know the true order is 5, we ignore this information by consid-

ering all possible values for the true order which are smaller or equal to p̂0. A confidence interval for



A. Charkhi and G. Claeskens 25

each parameter of the selected model is calculated. For example, when p̂0 = 6, this means six intervals.

Confidence intervals for the post-selection method of Berk et al. (2013) are reported for comparison. The

confidence intervals and their coverage have been calculated as in Section 4.1.

Tables 5–?? present the confidence intervals for θ1, . . . , θ8 in different settings under different as-

sumptions for p0. For moderate and relatively large sample sizes, 100 and 300, when we assume p0 = 5

the simulation shows the validity of the proposed method for each of the selected orders p̂. Smaller

values of the assumed p0 lead to wider intervals. For n = 30 the coverage probabilities decrease by in-

creasing p̂ which is due to a too small sample size for an accurate estimation of the full 8×8 information

matrix. When p̂ = p0, the confidence intervals correspond to the naive confidence intervals, which have

coverage probabilities close to the nominal value for θ1, . . . , θ5 while for the other parameters they fail

to produce the correct intervals by ignoring the constraints in the selection procedure.

p̂

n p0 5 6 7 8

30 1 [1·85, 2·66] 95 [1·85, 2·64] 94 [1·85, 2·64] 93 [1·86, 2·65] 93

2 [1·85, 2·65] 95 [1·85, 2·64] 94 [1·86, 2·64] 93 [1·87, 2·64] 92

3 [1·85, 2·65] 95 [1·86, 2·64] 93 [1·86, 2·64] 93 [1·87, 2·64] 92

4 [1·85, 2·65] 95 [1·86, 2·63] 93 [1·86, 2·64] 92 [1·87, 2·64] 92

5 [1·86, 2·64] 95 [1·86, 2·63] 93 [1·86, 2·63] 92 [1·87, 2·64] 91

6 - - [1·87, 2·63] 93 [1·87, 2·63] 92 [1·87, 2·63] 91

7 - - - - [1·87, 2·63] 91 [1·88, 2·63] 91

8 - - - - - - [1·88, 2·63] 90

PoSI [1·63, 2·87] 100 [1·65, 2·85] 99 [1·65, 2·85] 99 [1·67, 2·84] 99

100 1 [2·05, 2·45] 96 [2·05, 2·45] 95 [2·05, 2·45] 95 [2·05, 2·45] 94

2 [2·05, 2·45] 95 [2·05, 2·45] 95 [2·05, 2·45] 95 [2·05, 2·45] 94

3 [2·05, 2·45] 95 [2·05, 2·45] 95 [2·05, 2·45] 95 [2·05, 2·45] 94

4 [2·05, 2·45] 95 [2·05, 2·45] 95 [2·05, 2·45] 95 [2·05, 2·45] 94

5 [2·05, 2·45] 95 [2·05, 2·45] 95 [2·05, 2·44] 95 [2·05, 2·45] 94

6 - - [2·05, 2·45] 95 [2·05, 2·44] 95 [2·05, 2·45] 94

7 - - [2·05, 2·44] 95 [2·05, 2·45] 94

8 - - - - [2·05, 2·45] 94

PoSI [1·93, 2·54] 100 [1·96, 2·54] 99 [1·96, 2·53] 99 [1·96, 2·54] 99

300 1 [2·14, 2·37] 96 [2·14, 2·36] 96 [2·14, 2·36] 96 [2·14, 2·36] 95

2 [2·14, 2·37] 96 [2·14, 2·36] 96 [2·14, 2·36] 96 [2·14, 2·36] 95

3 [2·14, 2·37] 96 [2·14, 2·36] 96 [2·14, 2·36] 96 [2·14, 2·36] 95

4 [2·14, 2·37] 96 [2·14, 2·36] 96 [2·14, 2·36] 96 [2·14, 2·36] 95

5 [2·14, 2·37] 96 [2·14, 2·36] 96 [2·14, 2·36] 96 [2·14, 2·36] 95

6 - - [2·14, 2·36] 96 [2·14, 2·36] 96 [2·14, 2·36] 95

7 - - - - [2·14, 2·36] 96 [2·14, 2·36] 95

8 - - - - - - [2·14, 2·36] 95

PoSI [2·09, 2·42] 100 [2·09, 2·41] 99 [2·09, 2·41] 100 [2·09, 2·41] 99

Table 5: Average simulated post-selection confidence intervals when Akaike’s information criterion is

used for selection, for θ1, together with the average coverage percentage for different scenarios and

different assumptions regarding p0, and the post-selection interval by Berk et al. (2013).
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p̂

n p0 5 6 7 8

30 1 [−1.59,−0·61] 97 [−1·58,−0·63] 95 [−1·57,−0·62] 95 [−1·58,−0·63] 93

2 [−1·55,−0·65] 95 [−1·55,−0·66] 94 [−1·54,−0·65] 92 [−1·55,−0·66] 91

3 [−1·55,−0·66] 95 [−1·55,−0·67] 93 [−1·54,−0·66] 92 [−1·54,−0·66] 91

4 [−1·54,−0·66] 95 [−1·54,−0·67] 93 [−1·54,−0·66] 92 [−1·54,−0·67] 91

5 [−1·53,−0·67] 94 [−1·54,−0·68] 93 [−1·53,−0·67] 92 [−1·54,−0·67] 90

6 − − [−1·53,−0·69] 92 [−1·53,−0·67] 91 [−1·53,−0·67] 90

7 − − − − [−1·52,−0·68] 91 [−1·53,−0·68] 90

8 − − − − − − [−1·52,−0·69] 89

PoSI [−1·78,−0·42] 100 [−1·77,−0·44] 99 [−1·76,−0·43] 99 [−1·77,−0·44] 99

100 1 [−1·34,−0·86] 97 [−1·34,−0·86] 96 [−1·34,−0·86] 96 [−1·34,−0·86] 96

2 [−1·32,−0·87] 96 [−1·32,−0·88] 95 [−1·32,−0·88] 94 [−1·32,−0·87] 95

3 [−1·32,−0·88] 96 [−1·32,−0·88] 95 [−1·32,−0·88] 94 [−1·32,−0·87] 95

4 [−1·32,−0·88] 95 [−1·32,−0·88] 94 [−1·32,−0·88] 94 [−1·32,−0·87] 95

5 [−1·31,−0·88] 95 [−1·32,−0·88] 94 [−1·32,−0·88] 94 [−1·32,−0·88] 95

6 − − [−1·32,−0·88] 94 [−1·32,−0·88] 93 [−1·32,−0·88] 95

7 − − − − [−1·32,−0·88] 93 [−1·32,−0·88] 94

8 − − − − − − [−1·32,−0·88] 94

PoSI [−1·41,−0·78] 99 [−1·42,−0·78] 99 [−1·42,−0·78] 99 [−1·42,−0·78] 99

300 1 [−1·24,−0·96] 98 [−1·24,−0·96] 97 [−1·24,−0·97] 97 [−1·24,−0·96] 96

2 [−1·23,−0·98] 97 [−1·23,−0·97] 96 [−1·23,−0·97] 95 [−1·23,−0·97] 95

3 [−1·23,−0·98] 97 [−1·22,−0·97] 96 [−1·23,−0·98] 95 [−1·23,−0·97] 95

4 [−1·22,−0·98] 97 [−1·22,−0·97] 96 [−1·23,−0·98] 95 [−1·23,−0·97] 95

5 [−1·22,−0·98] 96 [−1·22,−0·98] 96 [−1·23,−0·98] 95 [−1·23,−0·97] 95

6 − − [−1·22,−0·98] 95 [−1·23,−0·98] 95 [−1·23,−0·97] 95

7 − − − − [−1·23,−0·98] 95 [−1·22,−0·97] 94

8 − − − − − − [−1·22,−0·98] 94

PoSI [−1·28,−0·93] 100 [−1·28,−0·92] 99 [−1·28,−0·92] 99 [−1·28,−0·92] 99

Table 6: Average simulated post-selection confidence intervals for θ2, together with the average coverage

percentage for different scenarios and different assumptions regarding p0. Also given are the results of

the post-selection interval by Berk et al. (2013).

E PostAIC confidence intervals for linear combinations in nested models

Four different scenarios for the true parameters are considered,

Scenario 1 : θ = (2·25,−1·1, 2·43,−1·24, 2·5)⊤,

Scenario 2 : θ = (2·25,−1·1, 2·43,−1·24, 2·5, 03)
⊤,

Scenario 3 : θ = (2·25,−1·1, 2·43,−1·24, 2·5, 012)
⊤,

Scenario 4 : θ = (2·25, 07)
⊤.

In Scenario 1 the largest model is the true model. Scenarios 2 and 3 are dealing with the true model

somewhere in between but with different numbers of candidate models and redundant variables. In

Scenario 4 the smallest model is the true model. The error standard deviation varies in the set {0·5, 1, 3}

and other settings for data generation process are the same as in the previous section. We use Mnest

to select a model which is used to make a confidence interval for x⊤θ, with x an out-of-sample new

observation. We run the simulation 3000 times for all settings.

Table ?? presents the average length of the intervals over 3000 runs with their coverage percentages
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p̂

n p0 5 6 7 8

30 1 [1·90, 2·96] 99 [1·92, 2·94] 96 [1·92, 2·93] 95 [1·94, 2·93] 95

2 [1·94, 2·92] 98 [1·96, 2·91] 95 [1·95, 2·90] 94 [1·97, 2·91] 93

3 [1·98, 2·87] 97 [1·99, 2·87] 93 [1·98, 2·87] 92 [2·00, 2·87] 91

4 [1·99, 2·87] 96 [2·00, 2·87] 93 [1·99, 2·86] 92 [2·00, 2·87] 91

5 [2·00, 2·86] 96 [2·00, 2·86] 92 [1·99, 2·86] 91 [2·00, 2·87] 91

6 − − [2·01, 2·85] 92 [1·99, 2·85] 91 [2·01, 2·86] 91

7 − − − − [2·00, 2·85] 90 [2·01, 2·86] 90

8 − − − − − − [2·02, 2·85] 90

PoSI [1·75, 3.11] 100 [1·77, 3.10] 99 [1·76, 3.09] 99 [1·78, 3.10] 99

100 1 [2·17, 2·69] 99 [2·17, 2·69] 98 [2·17, 2·68] 97 [2·17, 2·68] 97

2 [2·19, 2·67] 98 [2·19, 2·67] 97 [2·19, 2·67] 96 [2·19, 2·67] 96

3 [2·21, 2·65] 96 [2·21, 2·65] 95 [2·21, 2·65] 95 [2·20, 2·65] 94

4 [2·21, 2·65] 96 [2·21, 2·65] 95 [2·21, 2·65] 94 [2·20, 2·65] 94

5 [2·21, 2·65] 95 [2·21, 2·65] 95 [2·21, 2·65] 94 [2·20, 2·65] 94

6 − − [2·21, 2·64] 94 [2·21, 2·65] 94 [2·21, 2·65] 94

7 − − − − [2·21, 2·65] 94 [2·21, 2·65] 94

8 − − − − − − [2·21, 2·65] 94

PoSI [2·12, 2·75] 100 [2·11, 2·74] 99 [2·11, 2·75] 99 [2·11, 2·75] 99

300 1 [2·28, 2·58] 98 [2·28, 2·58] 98 [2·29, 2·58] 97 [2·29, 2·57] 98

2 [2·29, 2·57] 97 [2·29, 2·57] 97 [2·30, 2·57] 96 [2·29, 2·57] 97

3 [2·30, 2·55] 96 [2·30, 2·56] 95 [2·31, 2·56] 95 [2·30, 2·56] 95

4 [2·30, 2·55] 96 [2·30, 2·55] 95 [2·31, 2·56] 95 [2·30, 2·56] 95

5 [2·31, 2·55] 95 [2·31, 2·55] 95 [2·31, 2·56] 95 [2·30, 2·56] 95

6 − − [2·31, 2·55] 95 [2·31, 2·56] 95 [2·30, 2·56] 95

7 − − − − [2·31, 2·56] 95 [2·31, 2·56] 95

8 − − − − − − [2·31, 2·56] 95

PoSI [2·25, 2·60] 99 [2·25, 2·61] 99 [2·25, 2·61] 99 [2·25, 2·61] 99

Table 7: Average simulated post-selection confidence intervals for θ3, together with the average coverage

percentage for different scenarios and different assumptions regarding p0. Also given are the results of

the post-selection interval by Berk et al. (2013).

for the proposed method, the post-selection prediction method and the smoothed bootstrap method for

different settings. In scenario 4 where the true model is the smallest model, the asymptotic method gives

accurate results as expected. For n = 30, the bootstrap method underestimates the confidence intervals

(low coverages) except in scenario 4 in which it gives acceptable coverage probabilities but the length

of these intervals is about 1·5 times larger than those of the proposed method. In scenarios 1 and 2 for

n = 100 the bootstrap coverages are a bit lower than 95% but still acceptable and the lengths are smaller

than from the proposed method, which is conservative. For scenarios 3 and 4 the proposed method

performs better than the other methods, especially for high values of σ. The post-selection prediction

intervals are always wider and their coverage probabilities are always close to one. The reason for this is

that this method does not specify the specific selection procedure and in this simulation study, we used

the corresponding code that assumes that all subsets of a largest model are used in the selection.
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p̂

n p0 5 6 7 8

30 1 [−1·81,−0·66] 99 [−1·79,−0·70] 97 [−1·78,−0·71] 96 [−1·76,−0·72] 96

2 [−1·78,−0·69] 98 [−1·76,−0·72] 97 [−1·75,−0·73] 96 [−1·74,−0·74] 95

3 [−1·74,−0·74] 97 [−1·72,−0·76] 95 [−1·72,−0·76] 95 [−1·71,−0·77] 93

4 [−1·68,−0·80] 95 [−1·68,−0·81] 93 [−1·68,−0·80] 92 [−1·67,−0·80] 90

5 [−1·67,−0·81] 95 [−1·67,−0·81] 93 [−1·68,−0·81] 92 [−1·67,−0·81] 90

6 − − [−1·66,−0·82] 92 [−1·67,−0·81] 92 [−1·67,−0·81] 90

7 − − − − [−1·66,−0·82] 91 [−1·66,−0·81] 89

8 − − − − − − [−1·66,−0·82] 89

PoSI [−1·92,−0·56] 100 [−1·91,−0·57] 99 [−1·91,−0·57] 99 [−1·90,−0·58] 99

100 1 [−1·53,−0·95] 99 [−1·51,−0·96] 99 [−1·51,−0·97] 98 [−1·51,−0·97] 97

2 [−1·51,−0·97] 98 [−1·50,−0·98] 98 [−1·50,−0·98] 98 [−1·49,−0·98] 97

3 [−1·49,−0·99] 98 [−1·48,−0·99] 97 [−1·48,−1·00] 97 [−1·48,−1·00] 96

4 [−1·46,−1·02] 95 [−1·46,−1·02] 96 [−1·46,−1·02] 95 [−1·46,−1·02] 94

5 [−1·45,−1·02] 95 [−1·46,−1·02] 95 [−1·46,−1·02] 95 [−1·46,−1·02] 94

6 − − [−1·45,−1·02] 95 [−1·46,−1·02] 95 [−1·46,−1·02] 94

7 − − − − [−1·45,−1·02] 95 [−1·46,−1·02] 94

8 − − − − − − [−1·46,−1·02] 94

PoSI [−1·55,−0·92] 100 [−1·55,−0·92] 99 [−1·55,−0·92] 99 [−1·56,−0·92] 99

300 1 [−1·40,−1·08] 99 [−1·40,−1·08] 99 [−1·40,−1·09] 99 [−1·40,−1·09] 98

2 [−1·39,−1·09] 98 [−1·39,−1·09] 98 [−1·39,−1·09] 98 [−1·39,−1·10] 98

3 [−1·38,−1·10] 98 [−1·38,−1·10] 97 [−1·38,−1·10] 97 [−1·38,−1·11] 97

4 [−1·36,−1·11] 96 [−1·37,−1·12] 96 [−1·37,−1·11] 95 [−1·37,−1·12] 95

5 [−1·36,−1·12] 96 [−1·37,−1·12] 96 [−1·37,−1·12] 95 [−1·37,−1·12] 95

6 − − [−1·36,−1·12] 95 [−1·37,−1·12] 95 [−1·37,−1·12] 95

7 − − − − [−1·36,−1·12] 95 [−1·37,−1·12] 95

8 − − − − − − [−1·37,−1·12] 95

PoSI [−1·41,−1·06] 99 [−1·42,−1·06] 99 [−1·42,−1·06] 99 [−1·42,−1·06] 99

Table 8: Average simulated post-selection confidence intervals for θ4, together with the average coverage

percentage for different scenarios and different assumptions regarding p0. Also given are the results of

the post-selection interval by Berk et al. (2013).

F Poisson regression

To investigate the performance of the proposed method in generalized linear models, we consider Poisson

regression where the response values are generated from

Yi = Pois
{
exp(

10∑

j=1

θjxji)
}
, i = 1, · · · , n,

x1i = 1 and for j = 2, . . . , 10, xji are generated independently from Uniform[−1, 1]. The sample size

varies as before and θ = (1·25,−1·1, 1·43,−1·24, 1·5, 05)
⊤. Three different selection matrices are consid-

ered, ζi, i ∈ {1, 3, 5} which force the first i covariates in the model. There were no under-parametrized

models selected, also for the small sample size. The simulation runs until for each setting the model

(θ1, . . . , θ5, θ7, θ9)
⊤ had been selected 3000 times. The confidence intervals for the superfluous param-

eters are presented in Table ??.

The results for the proposed method are similar as in the previous examples. For ζ5 the simulated

coverage probabilities show the validity of the proposed method. Because this selection matrix considers
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p̂

n p0 5 6 7 8

30 1 [1·81, 3.20] 100 [1·91, 3.09] 98 [1·93, 3.06] 97 [1·95, 3.05] 96

2 [1·84, 3.17] 100 [1·94, 3.06] 98 [1·95, 3.04] 96 [1·97, 3.03] 95

3 [1·87, 3.14] 99 [1·97, 3.03] 97 [1·98, 3.01] 095 [2·00, 3.00] 94

4 [1·92, 3.09] 99 [2·01, 2·99] 96 [2·02, 2·98] 93 [2·03, 2·97] 93

5 [2·07, 2·94] 95 [2·07, 2·93] 93 [2·06, 2·93] 91 [2·07, 2·93] 91

6 − − [2·08, 2·92] 92 [2·07, 2·93] 90 [2·07, 2·93] 90

7 − − − − [2·07, 2·92] 89 [2·07, 2·92] 90

8 − − − − − − [2·08, 2·92] 90

PoSI [1·82, 3.19] 100 [1·83, 3.17] 99 [1·83, 3.17] 99 [1·84, 3.16] 99

100 1 [2·15, 2·85] 100 [2·20, 2·80] 99 [2·21, 2·79] 99 [2·22, 2·78] 98

2 [2·17, 2·83] 100 [2·22, 2·79] 99 [2·22, 2·78] 98 [2·23, 2·77] 98

3 [2·18, 2·82] 100 [2·23, 2·77] 98 [2·24, 2·76] 98 [2·24, 2·75] 97

4 [2·21, 2·79] 99 [2·25, 2·75] 97 [2·26, 2·74] 96 [2·26, 2·74] 96

5 [2·28, 2·72] 95 [2·28, 2·72] 95 [2·28, 2·72] 94 [2·28, 2·72] 94

6 − − [2·29, 2·72] 94 [2·28, 2·72] 94 [2·28, 2·72] 93

7 − − − − [2·28, 2·72] 94 [2·28, 2·72] 93

8 − − − − − − [2·28, 2·71] 93

PoSI [2·18, 2·82] 100 [2·19, 2·82] 99 [2·18, 2·82] 99 [2·18, 2·81] 99

300 1 [2·30, 2·70] 100 [2·33, 2·67] 99 [2·34, 2·67] 99 [2·34, 2·66] 99

2 [2·31, 2·69] 100 [2·34, 2·66] 99 [2·34, 2·66] 99 [2·35, 2·66] 98

3 [2·32, 2·68] 100 [2·35, 2·65] 99 [2·35, 2·65] 98 [2·35, 2·65] 98

4 [2·34, 2·67] 99 [2·36, 2·64] 98 [2·36, 2·64] 97 [2·36, 2·64] 97

5 [2·38, 2·62] 96 [2·37, 2·62] 95 [2·37, 2·63] 95 [2·38, 2·63] 95

6 − [2·38, 2·62] 95 [2·38, 2·63] 95 [2·38, 2·63] 95

7 − − − [2·38, 2·62] 95 [2·38, 2·63] 95

8 − − − − − [2·38, 2·63] 95

PoSI [2·33, 2·68] 100 [2·32, 2·68] 99 [2·32, 2·68] 99 [2·32, 2·68] 99

Table 9: Average simulated post-selection confidence intervals for θ5, together with the average coverage

percentage for different scenarios and different assumptions regarding p0. Also given are the results of

the post-selection interval by Berk et al. (2013).

all the non-zero parameters in the model and all truly zero parameters are under selection, the coverage

probabilities are close to 95%. Other selection matrices lead to more conservative confidence intervals for

the parameters due to conditioning on the selected model. The naive unconditional confidence intervals

are always tighter than those of the proposed method and their coverage probabilities are much lower

than the nominal value.

G Under-parametrized model selection

As discussed before, for small sample sizes it might happen that a model with less parameters than the

true model is selected. If this happens, the proposed method can still be used, although assumption A1

does not hold. Consider the true value for parameters in linear regression θ = (0·25,−0·1, 0·43,−0·24, 0·5, 05)
⊤,

sample size 30, error standard deviation equal to 2 and all other settings are as before. With the same

notation as in the previous example, the selection matrix is ζ1. We focus on three models which are
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p̂

n p0 6 7 8

30 1 [−0·70, 0·71] 99 [−0·61, 0·61] 98 [−0·57, 0·59] 97

2 [−0·68, 0·69] 99 [−0·59, 0·59] 97 [−0·55, 0·57] 96

3 [−0·65, 0·66] 98 [−0·56, 0·56] 97 [−0·53, 0·54] 95

4 [−0·62, 0·63] 96 [−0·53, 0·53] 95 [−0·50, 0·52] 93

5 [−0·57, 0·58] 94 [−0·49, 0·49] 93 [−0·47, 0·48] 91

6 [−0·42, 0·43] 73 [−0·43, 0·43] 88 [−0·42, 0·44] 88

7 − − [−0·42, 0·42] 87 [−0·42, 0·43] 87

8 − − − − [−0·41, 0·42] 86

PoSI [−0·66, 0·68] 98 [−0·67, 0·67] 99 [−0·65, 0·67] 98

100 1 [−0·36, 0·36] 99 [−0·31, 0·31] 99 [−0·30, 0·30] 98

2 [−0·35, 0·35] 99 [−0·30, 0·30] 98 [−0·29, 0·29] 97

3 [−0·34, 0·33] 98 [−0·29, 0·29] 98 [−0·28, 0·28] 96

4 [−0·32, 0·32] 97 [−0·27, 0·27] 97 [−0·26, 0·26] 95

5 [−0·29, 0·29] 95 [−0·25, 0·25] 95 [−0·24, 0·24] 93

6 [−0·22, 0·21] 72 [−0·22, 0·22] 90 [−0·22, 0·22] 90

7 − − [−0·22, 0·22] 89 [−0·22, 0·22] 90

8 − − − − [−0·22, 0·22] 90

PoSI [−0·32, 0·31] 96 [−0·32, 0·32] 99 [−0·32, 0·32] 98

300 1 [−0·21, 0·20] 100 [−0·18, 0·18] 99 [−0·17, 0·17] 99

2 [−0·20, 0·20] 99 [−0·17, 0·17] 99 [−0·17, 0·16] 99

3 [−0·19, 0·19] 99 [−0·16, 0·16] 99 [−0·16, 0·16] 98

4 [−0·18, 0·18] 98 [−0·15, 0·15] 98 [−0·15, 0·15] 97

5 [−0·17, 0·17] 96 [−0·14, 0·14] 96 [−0·14, 0·14] 95

6 [−0·12, 0·12] 74 [−0·12, 0·13] 92 [−0·13, 0·13] 92

7 − − [−0·12, 0·12] 91 [−0·13, 0·12] 92

8 − − − − [−0·13, 0·12] 92

PoSI [−0·18, 0·18] 97 [−0·18, 0·18] 99 [−0·18, 0·18] 99

Table 10: Average simulated post-selection confidence intervals for θ6, together with the average cover-

age percentage for different scenarios and different assumptions regarding p0. Also given are the results

of the post-selection interval by Berk et al. (2013).

represented in the selection matrix and contain the following parameters,

model 1 : (θ1, θ3)

model 2 : (θ1, θ5)

model 3 : (θ1, θ2, θ5).

The simulations were run until each of these models had been selected 3000 times. Table ?? illustrates

that the proposed method is able to provide conditional confidence intervals even in possibly under-

parametrized models. The naive method’s simulated coverage percentages are shown between parenthe-

ses. For model 3, the naive method performs poorly in terms of coverage.

H Naive method fails for the truly non-zero parameters

Inference for the truly non-zero parameters can fail because in the limit the estimators are defined as

a multiplication of the corresponding row in Ĵ
1/2
M (θ̂) to Z̃(M) with Z̃(M) ∈ AM(M). So, if one of



A. Charkhi and G. Claeskens 31

p̂

n p0 7 8

30 1 [−0·71, 0·72] 98 [−0·61, 0·63] 97

2 [−0·69, 0·70] 98 [−0·60, 0·61] 96

3 [−0·67, 0·67] 97 [−0·57, 0·59] 96

4 [−0·65, 0·65] 96 [−0·55, 0·56] 95

5 [−0·61, 0·62] 94 [−0·52, 0·53] 93

6 [−0·57, 0·57] 90 [−0·48, 0·49] 89

7 [−0·42, 0·42] 58 [−0·42, 0·43] 82

8 − − [−0·41, 0·42] 81

PoSI [−0·66, 0·66] 96 [−0·66, 0·67] 98

100 1 [−0·37, 0·37] 99 [−0·32, 0·33] 98

2 [−0·36, 0·36] 99 [−0·31, 0·32] 98

3 [−0·35, 0·35] 98 [−0·30, 0·31] 97

4 [−0·33, 0·34] 97 [−0·29, 0·29] 96

5 [−0·32, 0·32] 96 [−0·27, 0·28] 94

6 [−0·29, 0·30] 92 [−0·25, 0·25] 91

7 [−0·21, 0·22] 48 [−0·22, 0·22] 84

8 − − [−0·21, 0·22] 83

PoSI [−0·31, 0·32] 95 [−0·32, 0·32] 98

300 1 [−0·21, 0·21] 99 [−0·18, 0·18] 99

2 [−0·21, 0·21] 99 [−0·18, 0·18] 99

3 [−0·20, 0·20] 98 [−0·17, 0·17] 98

4 [−0·19, 0·19] 97 [−0·16, 0·16] 97

5 [−0·18, 0·18] 95 [−0·15, 0·15] 95

6 [−0·17, 0·17] 92 [−0·14, 0·14] 93

7 [−0·12, 0·12] 49 [−0·13, 0·13] 85

8 − − [−0·12, 0·12] 85

PoSI [−0·18, 0·18] 93 [−0·18, 0·18] 98

Table 11: Average simulated post-selection

confidence intervals for θ7, together with the

average coverage percentage for different sce-

narios and different assumptions regarding p0.

Also given are the results of the post-selection

interval by Berk et al. (2013).

p̂

n p0 8

30 1 [−0·75, 0·71] 97

2 [−0·74, 0·69] 97

3 [−0·72, 0·67] 96

4 [−0·70, 0·65] 95

5 [−0·67, 0·62] 94

6 [−0·64, 0·59] 92

7 [−0·59, 0·54] 87

8 [−0·44, 0·39] 46

PoSI [−0·68, 0·64] 94

100 1 [−0·38, 0·38] 99

2 [−0·37, 0·37] 98

3 [−0·36, 0·36] 98

4 [−0·35, 0·35] 97

5 [−0·34, 0·34] 96

6 [−0·32, 0·32] 93

7 [−0·30, 0·30] 87

8 [−0·22, 0·22] 39

PoSI [−0·32, 0·32] 92

300 1 [−0·22, 0·22] 99

2 [−0·21, 0·21] 99

3 [−0·21, 0·21] 99

4 [−0·20, 0·20] 98

5 [−0·19, 0·19] 96

6 [−0·18, 0·18] 93

7 [−0·17, 0·17] 87

8 [−0·12, 0·13] 38

PoSI [−0·18, 0·18] 89

Table 12: Average simulated post-selection confi-

dence intervals for θ8, together with the average cov-

erage percentage for different scenarios and differ-

ent assumptions regarding p0. Also given are the

results of the post-selection interval by Berk et al.

(2013).

the Zis is constrained and the corresponding element for this Zi in Ĵ
1/2
M (θ̂) is relatively big for one

parameter, then the distribution of that parameter is highly effected by that Zi.

Consider the settings in Section 4.1 but here Ω is defined as

Ωij =





0·95 i = 3, j = 4, . . . , 9

0·95 j = 3, i = 4, . . . , 9

1 i = j

0·25 otherwise

We use the function nearPD in R to find the nearest positive definite matrix for this Ω and use that

matrix to generate the covariates. For n = 100, and ζ3all the naive confidence interval’s coverage for θ4
is only 0·60 while for the proposed method it is 0·96.
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Scenario 1 Scenario 2 Scenario 3 Scenario 4

σ n method length coverage length coverage length coverage length coverage

0·5 30 PostAIC 1·17 98 1·26 99 1·72 97 0·57 94

Bootstrap 0·78 90 0·98 91 6.51 89 0·87 93

PoSIp 1·31 99 1·60 100 2·91 100 0·84 100

100 PostAIC 0·59 99 0·63 99 0·66 98 0·28 95

Bootstrap 0·42 93 0·50 94 0·68 95 0·42 96

PoSIp 0·63 100 0·74 100 0·96 100 0·39 99

300 PostAIC 0·34 99 0·35 99 0·37 98 0·15 95

Bootstrap 0·24 95 0·29 95 0·38 96 0·24 97

PoSIp 0·35 99 0·41 100 0·52 100 0·22 99

1 30 PostAIC 2·39 98 2·53 99 3.45 97 1·13 94

Bootstrap 1·57 90 1·96 91 13.01 89 1·74 93

PoSIp 2·62 99 3.19 100 5.82 100 1·69 100

100 PostAIC 1·19 99 1·25 99 1·33 98 0·55 95

Bootstrap 0·84 93 1·00 94 1·37 95 0·85 96

PoSIp 1·26 100 1·47 100 1·92 100 0·78 99

300 PostAIC 0·67 99 0·71 99 0·74 98 0·31 95

Bootstrap 0·49 95 0·58 95 0·75 96 0·49 97

PoSIp 0·71 99 0·82 100 1·04 100 0·44 99

3 30 PostAIC 6.98 98 7.56 98 10·32 97 3.40 94

Bootstrap 4.79 90 5.91 91 39.04 89 5.23 94

PoSIp 7.82 99 9.53 99 17.43 100 5.06 100

100 PostAIC 3.57 99 3.76 99 4.00 98 1·65 95

Bootstrap 2·51 95 2·98 94 4.10 95 2·54 96

PoSIp 3.79 100 4.14 100 5.74 100 2·35 99

300 PostAIC 2·02 99 2·12 99 2·22 99 0·93 95

Bootstrap 1·46 95 1·73 95 2·25 96 1·46 97

PoSIp 2·12 99 2·46 100 3.11 100 1·31 99

Table 13: Simulated average length of 95% confidence intervals and the coverage percentages for a linear

combination of the parameters for different methods in nested models.

n method θj ζ1 ζ3 ζ5

30 PostAIC θ7 [−0·46, 0·48] 98 [−0·44, 0·45] 96 [−0·42, 0·43] 94

θ9 [−0·47, 0·48] 97 [−0·45, 0·46] 96 [−0·42, 0·43] 95

Naive θ7 [−0·29, 0·31] 56 [−0·30, 0·31] 56 [−0·30, 0·31] 56

θ9 [−0·30, 0·31] 55 [−0·30, 0·31] 55 [−0·30, 0·31] 55

100 PostAIC θ7 [−0·18, 0·18] 97 [−0·17, 0·17] 96 [−0·17, 0·17] 95

θ9 [−0·18, 0·17] 96 [−0·17, 0·17] 96 [−0·17, 0·16] 95

Naive θ7 [−0·12, 0·12] 64 [−0·12, 0·12] 64 [−0·12, 0·12] 64

θ9 [−0·12, 0·12] 60 [−0·12, 0·12] 60 [−0·12, 0·12] 60

300 PostAIC θ7 [−0·09, 0·09] 97 [−0·09, 0·09] 97 [−0·09, 0·09] 95

θ9 [−0·09, 0·09] 97 [−0·09, 0·09] 97 [−0·09, 0·08] 96

Naive θ7 [−0·06, 0·06] 67 [−0·06, 0·06] 66 [−0·06, 0·06] 67

θ9 [−0·07, 0·06] 67 [−0·07, 0·06] 66 [−0·07, 0·06] 67

Table 14: Averaged simulated confidence intervals and the simulated coverage percentages for parame-

ters in Poisson regression.
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model 1 model 2 model 3

θ1 [−0·54, 1·05] 96(0·96) [−0·53, 1·04] 96(95) [−0·52, 1·01] 94(93)

θ2 − − − − [−1·52, 0·71] 96(74)

θ3 [−0·26, 1·86] 98(92) − − − −

θ5 − − [−0·22, 1·89] 98(93) [−0·20, 1·98] 98(88)

Table 15: Average simulated PostAIC confidence intervals and their coverage percentage using a possibly

under-parametrized selected model (coverage percentage of the naive intervals).




