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It is well known that stochastic volatility is an essential feature of commodity spot prices. By
using methods of singular perturbation theory, we obtain approximate but explicit closed form
pricing equations for forward contracts and options on single- and two-name forward prices.
The expansion methodology is based on a fast mean-reverting stochastic volatility driving fac-
tor, and leads to pricing results in terms of constant volatility prices, their Delta’s and their
Delta-Gamma’s. The stochastic volatility corrections lead to efficient calibration and sensitivity
calculations.

1. Introduction

A quick glance at any commodities price data will reveal the obvious fact that volatility
is a stochastic quantity. A now classical and extremely popular model for incorporating this
stochasticity of volatility is the Heston (1993) model, in which the instantaneous price variance
follows a Cox, Ingersoll, and Ross (1985) (CIR) like process. Eydeland and Geman (1998) were
among the first to utilize the Heston model in the context of energy derivatives. More recently,
Richter and Sørensen (2006) introduce a stochastic convenience yield model with one underlying
stochastic volatility factor in the same spirit of Heston. They make an extensive case study on
soybean futures and options data and demonstrate that stochastic volatility is a significant
factor. Since Heston inspired stochastic volatility models lead to affine structures, they appear
natural; however, the resulting pricing equations are in terms of inverse Fourier transforms
rather than explicitly in terms of elementary functions – or even special functions. This is
not a substantial disadvantage when valuing only a few options; however, in a calibration and
trading environment many contracts are involved and consistently calibrating all instruments
to market prices would be difficult and time consuming. Furthermore, determining hedge ratios
will require computations of the sensitivities of the price to various parameters – the so-called
“Greeks” – which, if computed using Fourier methods, may result in further speed reduction.
To circumvent these issues, we transport singular perturbation theory techniques first developed
for equity derivatives (see Fouque, Papanicolaou, and Sircar, 2000a), and then for interest rate
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Figure 1. The annualized running five-day moving volatility of the NYMEX sweet crude oil spot
price for the period 10/07/03 to 07/03/06.

derivatives in Cotton, Fouque, Papanicolaou, and Sircar (2004), into the context of commodities
and commodities derivatives.

Asymptotic methods have three main advantages over traditional approaches: (i) they natu-
rally lead to efficient calibration across a set of forward contracts; (ii) they lead to approximate,
but explicit, closed form pricing equations for a wide class of contingent claims; and (iii) the re-
sulting approximate prices are independent of the specific underlying volatility model. Notably,
these prices are exact when the mean-reversion rate is large - serendipitously, this is precisely
the manner in which the market prices seem to behave. In addition, many of the salient fea-
tures of option prices – most strikingly the implied volatility smile or smirk – are captured by
these methods. Fouque, Papanicolaou, and Sircar (2000a) were the first to introduce the use of
asymptotic methods in the context of derivative pricing and, together with their collaborators,
have written several articles on the application of these techniques to the equity and interest rate
markets. To this date, none of these techniques have been applied to the commodities markets
where a unique set of challenges arise.

To motivate the validity of asymptotic methods for commodities, we plot the running five-day
realized volatility for the NYMEX sweet crude oil spot price for the period 10/07/03 to 07/03/06
in Figure 1 which clearly demonstrates the fast mean-reversion of volatility. We therefore model
the underlying commodity spot price volatility as a function σX(Zt) of a fast-mean reverting
hidden process Zt. As is well known, commodities, unlike equities, tend to have strong mean-
reversion effects in the prices themselves. Secondly, the long-run mean-reversion is not constant
through time, rather it is stochastic. These and many other stylized empirical facts are well
documented in, for example, Clewlow and Strickland (2000), Eydeland and Wolyniec (2003) and
Geman (2005). Correctly accounting for such behavior together with stochastic volatility and
using such a model to price derivatives is the main contribution of this article.

Hikspoors and Jaimungal (2007) introduced tractable two-factor mean-reverting models (with
and without jumps) and priced forward and spread options on forward contracts. In this article,
we successfully determine the asymptotic corrections for forward prices based on stochastic
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volatility extensions of the one- and two-factor mean-reverting diffusive spot price models. To
this end, we quickly review the one- and two-factor spot price models, together with the resulting
forward and option prices, in Section 2.1. The stochastic volatility extended one- and two-factor
mean-reverting models are introduced in Section 2.2 and we illustrate that such a model does not
provide closed form forward prices. Section 3 contains two of our main asymptotic expansion
results: the forward prices for the stochastic volatility extended one- and two-factor mean-
reverting models are shown to be well approximated by adjusted constant volatility results.
By calibrating to existing forward prices, the volatility function σX(z) is rendered irrelevant;
instead, a new effective pseudo-parameter arises as a smoothed version of the stochastic volatility.
This pseudo-parameter appears again in the pricing of contingent claims, allowing a consistent
calibration between forward and options prices.

Given that the model is calibrated to forward prices, the next task is to determine the price
corrections to contingent claims. Since typical single-name contingent claims are written on
the forward prices, which we have already approximated, the asymptotic analysis relies on
a consistent layering of approximations. In Section 4, these asymptotic price corrections to
single-name contingent claims are explored. Interestingly, we demonstrate that the corrections
depend solely on the Delta’s and Delta-Gamma’s of the option using the constant volatility
model. Furthermore, once the free pseudo-parameter arising in the forward price approximation
is calibrated to market prices, the option price corrections are uniquely determined. Section
5 contains the extension of these methods to contingent claims written on two forward prices.
There are several subtle issues associated with the expansion; nonetheless, we pleasantly find
that the resulting price corrections are once again in terms of the Delta’s and Delta-Gamma’s
of the constant volatility price.

We close the paper with conclusions and some comments on ongoing and future work in
Section 6.

2. Spot Price Models and Main Properties

This section first provides an overview of the standard one- and two-factor constant volatility
models for energy spot price dynamics (for early uses of the one-factor models see Gibson and
Schwartz, 1990; Cortazar and Schwartz, 1994). The forward prices, call and exchange option
prices are also reviewed. Given these constant volatility models, the stochastic volatility (SV)
extensions are then introduced and we briefly demonstrate that the SV extensions lack an affine
structure.

We explain why and where asymptotic methods constitute a very useful set of tools in energy
markets, as they already have been shown to be for their stocks and interest rate counterparts.

2.1. Constant Volatility Models
2.1.1. The One-Factor Model

For completeness, this section provides a quick review of a well known one-factor energy spot
price model and its use in derivatives pricing. Let St denote the spot dynamics defined under
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the risk-neutral measure Q. The standard model assumes

St := exp {gt +Xt} , (1)

dXt = β (φ−Xt) dt+ σX dW
(1)
t , (2)

where σX is the constant volatility, gt is a deterministic seasonality factor andW (1) is a Q-Wiener
process. An important traded commodity instrument is the futures contract with futures price
Ft,T . In a no-arbitrage, deterministic interest rate, environment the futures and forward price
coincides and the forward price must be given by Ft,T := EQ

t [ST ], where EQ
t [R] represents the

expectation of R conditional on the natural filtration Ft generated by the underlying Wiener
process(es). The forward price process being a martingale, must satisfy the following PDE{
AF (t, x) = 0 ,
F (T, x) = egT +x ,

(3)

where A is the infinitesimal generator of (t,Xt). Within the present context, a straightforward
calculation provides the following result

Ft,T = exp
{
gT + φ

(
1− e−β(T−t)

)
+
σ2

X

2
h(t, T ; 2β) + e−β(T−t) (log(St)− gt)

}
. (4)

Here, and in the sequel,

h(t, T ; a) := (1− e−a(T−t))/a . (5)

Turning to the valuation of European contingent claims, let ϕ(FT0,T ) denote the terminal
payoff at time T0 of a European option written on a forward price. The no-arbitrage price Πt,T0

is the discounted expectation under the risk-neutral measure Q. Specifically,

Πt,T0 := EQ
t

[
e−

R T0
t rs ds ϕ (FT0,T )

]
= P (t, T0) EQ

t [ϕ (FT0,T )] . (6)

Here, and in the remainder of this article, interest rates are deterministic, and we denote the
T0-maturity zero-coupon bond price contracted at time t by P (t, T0). Following the martingale
techniques employed in Hikspoors and Jaimungal (2007) Section 3.4, the price Ct;T0,T at time
t of a T0-expiry call option with strike K written on the forward FT0,T can be expressed in the
following Black-Scholes like form:

Ct;T0,T = EQ
t

[
e−

R T0
t rs ds (FT0,T −K)+

]
= P (t, T0)

[
Ft,T Φ(d∗ + σ∗t;T0

)−K Φ(d∗)
]
. (7)

Here, d∗ and σ∗t;T0
are functions of the model parameters and time only, and Φ(·) is the standard

gaussian cdf. A similar result follows for forward exchange option prices:

ΠF
t;T0,T1,T2

= EQ
t

[
e−

R T0
t rs ds

(
F

(1)
T0,T1

− αF
(2)
T0,T2

)
+

]
= P (t, T0)

[
F

(1)
t,T1

Φ(d+ σt;T0)− αF
(2)
t,T2

Φ(d)
]
. (8)

The interested reader is referred to the original article for the precise form of the various coeffi-
cients.
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2.1.2. The Two-Factor Model : Mean-Reverting Long Run Mean
Hikspoors and Jaimungal (2007) utilize a two-factor mean-reverting model, in which the

long-run mean of the previous one-factor model is itself stochastic and mean-reverts to a second
long-run mean. In that work, the authors study the valuation of forward contracts and exchange
options and also include jumps into the spot price dynamics. In this article, we focus on the
jump-free model; however, much of the results can be extended to the jump case with little
additional complication.

In this two-factor model, the Q-dynamics of the spot St is

St = exp {gt +Xt} , (9)

dXt = β (Yt −Xt) dt+ σX dW
(1)
t , (10)

dYt = α (φ− Yt) dt+ σY dW
(2)
t , (11)

with correlation structure,

d
[
W (1),W (2)

]
t
= ρ1 dt . (12)

Here, β controls the speed of mean-reversion of Xt to the stochastic long-run level Yt; α controls
the speed of mean-reversion of the long-run level Yt to the target long-run mean φ; σX and σY

control the size of the fluctuations around these means. The forward price process can be shown
to be

Ft,T = exp
{
gT +Rt,T +Gt,T + e−β(T−t)Xt +Mt,T Yt

}
(13)

where the expressions for Mt,T , Gt,T and Rt,T are functions of time and the model parameters.
Even within this more general setting, the call option price Ct;T0,T on a forward as well as the
exchange option price ΠF

t;T0,T1,T2
on forwards have similar forms to (7) and (8) respectively. More

complicated expression for d∗, σ∗t;T0,T , d and σt;T0,T arise, yet they remain explicit functions only
of the model parameters and time. The interested reader is once again referred to Hikspoors
and Jaimungal (2007) for details.

2.2. Stochastic Volatility Extensions
2.2.1. The SV Extended One-Factor Model

In this section, the stochastic volatility (SV) extended one-factor model is explored in detail;
in particular, the volatility σX is now assumed to be driven by a fast mean-reverting stochastic
process. Explicitly, the spot is now modeled under the risk-neutral measure Q as

St = exp {gt +Xt} , (14)

dXt = β (φ−Xt) dt+ σX(Zt) dW
(1)
t , (15)

dZt = α (m− Zt) dt+ σZ dW
(3)
t , (16)

where σX(·) is a strictly positive smooth function bounded above and below by positive constants
and with bounded derivatives. We also specify the following correlation structure

d
[
W (1),W (3)

]
t
= ρ2 dt . (17)
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The smoothness and boundedness assumptions on the volatility function σX(·) may appear
overly restrictive at first; however, as we later demonstrate, singular perturbation methods
remarkably lead to pricing results that are completely independent of its detailed specification.

It is not possible to solve the system of SDEs (14)-(16) explicitly; nonetheless, we now ex-
plore its implications for forward prices. As usual, the forward price is F (t, x, z) = EQ

t,x,z [ST ].
Equivalently, F (t, x, z) can be characterized as the solution of the following PDE:

∂F
∂t + β(φ− x)∂F

∂x + α(m− z)∂F
∂z + 1

2σ
2
X(z)∂2F

∂x2 + 1
2σ

2
Z

∂2F
∂z2 + ρ2σZσX(z) ∂2F

∂x∂z = 0

F (T, x, z) = egT +x

(18)

As we now show, a solution to (18) can be decomposed into two independent parts; one having
a log-affine structure in x and the other being independent of x. First, let Wt be a Q-Wiener
process independent of

(
W

(1)
t ,W

(3)
t

)
and define the following

dZ̃t :=
(
α(m− Z̃t) + ρ2σZσX(Z̃t)e−β(T−t)

)
dt+ dWt , (19)

c(t, z) :=
1
2
σ2

X(z)e−2β(T−t) + βφe−β(T−t) , (20)

M(t, z) := EQ
t,z

[
exp

{∫ T

t
c(s, Z̃s)ds

}]
. (21)

Then, by smoothness and boundedness of c(·, ·) and of the coefficients of dZ̃t, M(t, z) is finite
and satisfies the following PDE (see Duffie, Pan, and Singleton (2000))

∂M
∂t +

(
α(m− z) + ρ2σZσX(z)e−β(T−t)

)
∂M
∂z + 1

2σ
2
Z

∂2M
∂z2 + c(t, z)M = 0 ,

M(T, z) = 1 .
(22)

By direct, tedious, computations exp
{
gT + e−β(T−t)x

}
M(t, z) is seen to satisfy the PDE (18);

consequently, the forward price F (t, x, z) = exp
{
gT + e−β(T−t)x

}
M(t, z).

Given the form of M(t, z), the forward prices clearly do not share the natural affine structure
that other models often possess (e.g., compare with the constant volatility two-factor model
(13)). It is also doubtful that an explicit (closed form) solution of the PDE (22) exists. Hence,
this model appears to suffer from the deficiencies of Heston-like models which require either
solving a PDE numerically or resorting to Fourier methods, rendering the models less useful
for calibration purposes. Surprisingly, it is possible to partially overcome these difficulties if we
accept to limit the range of applicability of our SV model to commodities having fast mean-
reverting volatility (α� 1). This is indeed the approach we pursue in the rest of this work.

2.2.2. The SV Extended Two-Factor Model
In this section, the stochastic volatility (SV) extended two-factor model is recorded for com-

pleteness. Starting with the two-factor model of Section 2.1.2, we make the volatility σX a
function of a fast mean-reverting stochastic process – analogous to the SV extended one-factor
model. The spot is now modeled under a Q-measure as

dXt = β (Yt −Xt) dt+ σX(Zt) dW
(1)
t , (23)
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dYt = αY (φ− Yt) dt+ σY dW
(2)
t , (24)

dZt = α (m− Zt) dt+ σZ dW
(3)
t , (25)

with correlation structure,

d
[
W (1),W (2)

]
t
= ρ1 dt , d

[
W (1),W (3)

]
t
= ρ2 dt , and d

[
W (2),W (3)

]
t
= 0 , (26)

and restrictions on σX(·) parallel to the previous section.
Rather than repeating the analysis of the previous subsection, we instead point out that

resulting forward prices are not of the affine form. Nevertheless, asymptotic methods will lead
to approximate, but explicit, closed form forward and option prices.

3. Forward Price Approximation

It is well known that the invariant distribution of the volatility driving factor Zt is Gaussian
with a variance of ν2 := σ2

Z/2α. The asymptotic expansion revolves around assuming that
α � 1 and simultaneously holding the variance ν2 of the invariant distribution finite and fixed.
As such, our developments are primarily parameterized by the small parameter ε := α−1. The
ultimate goal of this section is to obtain a sound approximation (in a sense to be defined shortly)
to the forward price, and in tandem eliminate the dependency of the approximate forward curve
on the non-observable Zt.

Such closed form forward price approximations will allow efficient statistical estimation of
the model parameters, and lead to tractable pricing of derivatives written on these forward
curves. We use the methodology originally applied in Fouque, Papanicolaou, and Sircar (2000a)
and Cotton, Fouque, Papanicolaou, and Sircar (2004) for stock and IR options respectively.
For detailed discussions on the fundamentals of these asymptotic techniques we refer to the
monograph Fouque, Papanicolaou, and Sircar (2000b).

3.1. One-Factor Model + SV
In this section, we assume that the spot price dynamics is driven by the SV extended one-factor

model in section 2.2.1. Recall that

F ε(t, x, z) := EQ
t,x,z [ST ] , (27)

where the dependence on ε (:= α−1) is made explicit. Rewriting the PDE (18) as
AεF ε =

(
ε−1A0 + ε−

1
2A1 +A2

)
F ε(t, x, z) = 0 ,

F ε(T, x, z) = egT +x ,

(28)

with the three new operators defined as

A0 := (m− z)
∂

∂z
+ ν2 ∂2

∂z2
, (29)

A1 :=
√

2ρ2νσX(z)
∂2

∂x∂z
, (30)

A2 :=
∂

∂t
+ β(φ− x)

∂

∂x
+

1
2
σ2

X(z)
∂2

∂x2
, (31)
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highlights the various scales of the individual operators. Note that A0 is the infinitesimal
generator of a simple Vasicek (OU) process; A2 is the infinitesimal generator of the process
(t,Xt); while the A1 operator accounts for the correlation between the log spot price Xt and
the volatility driver Zt processes.

Expanding F ε in powers of
√
ε

F ε = F (0) +
√
εF (1) + εF (2) + ε

3
2F (3) + ... (32)

where we impose the boundary conditions F (0)(T, x, z) := F ε(T, x, z) := egT +x and F (1)(T, x, z) :=
0. We have explicitly assumed that the zeroth order term matches the payoff at maturity, while
the first correction term vanishes at maturity. This terminal splitting is not required, however
it is natural, leading to explicit closed form approximations, and allowing us to prove that the
remaining corrections terms are O(ε).

Inserting this last expansion into the PDE (28) and collecting terms with like powers of
√
ε

gives

0 =
1
ε
A0F

(0) +
1√
ε

(
A1F

(0) +A0F
(1)
)

+
(
A2F

(0) +A1F
(1) +A0F

(2)
)

+
√
ε
(
A2F

(1) +A1F
(2) +A0F

(3)
)

+ ... . (33)

From this last equation, the coefficients of the various powers of
√
ε must vanish individually.

In the subsequent analysis we investigate these resulting equations and deduce from them the
main properties of F (i)(t, x, z) for i = 0, 1, 2 and 3 explicitly.

• ε−1–Order Equation : A0F
(0) = 0

This holds for all z; therefore F (0) must be independent of z: F (0) = F (0)(t, x).

• ε−
1
2 –Order Equation : A1F

(0) +A0F
(1) = 0

Since F (0) is independent of z, this implies A0F
(1) = 0. This further implies F (1) is also

independent of z; that is, F (1) = F (1)(t, x).

• ε0–Order Equation : A2F
(0) +A1F

(1) +A0F
(2) = 0

Since F (1) is independent of z, this implies the Poisson equation A2F
(0) + A0F

(2) = 0
and the resulting centering equation 〈A2F

(0)〉 = 0 is a necessary condition for a solution
to exist. Here, and in the remainder of the article, the bracket notation 〈f(z)〉 denotes
the expectation of f(Z) where Z ∼ N(m, ν2), the invariant distribution of the Q-process
Zt, as defined in (16). Since F (0) is independent of z, the centering equation becomes
〈A2〉F (0) = 0. Remarkably, this is the PDE (3) satisfied by the forward price based on the
one-factor spot model with constant volatility σX :=

√
〈σ2

X(z)〉. Enforcing the boundary

condition F (0)(T, x) = exp (gT + x), implies that F (0) is the one-factor forward price (4)
with constant volatility σX .

Up to this order, it is also possible to extract properties of F (2) which will prove useful in
the subsequent analysis. Due to the centering equation 〈A2〉F (0) = 0, notice that

A2F
(0) = (A2 − 〈A2〉)F (0) =

1
2
(
σ2

X(z)− 〈σ2
X〉
)
F (0)

xx , (34)
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which allows the zero-order equation A2F
(0) +A0F

(2) = 0 to be rewritten as

F (2) = −1
2
A−1

0

(
σ2

X(z)− 〈σ2
X〉
)
F (0)

xx = −1
2

(ψ(z) + c(t, x))F (0)
xx , (35)

where the function ψ is define as the solution of

A0ψ = σ2
X − 〈σ2

X〉 , (36)

and c(t, x) is an arbitrary constant of integration. A straightforward calculation also shows
that

ψ′ := ∂zψ =
1

ν2Φ(z;m, ν2)

∫ z

−∞

(
σ2

X(u)− 〈σ2
X〉
)
Φ(u;m, ν2) du , (37)

where Φ(·;m, ν2) is the cdf of N(m, ν2), the invariant distribution of Zt.

• ε
1
2 –Order Equation : A2F

(1) +A1F
(2) +A0F

(3) = 0
This is a second Poisson equation, but now for F (3). Its centering equation is 〈A2F

(1) +
A1F

(2)〉 = 〈A2〉F (1) + 〈A1F
(2)〉 = 0 which is easily shown to transform into 〈A2〉F (1) =

2−
1
2 ρ2ν〈σXψ

′〉F (0)
xxx. Define F̃ (1) :=

√
εF (1) and V := ( ε

2)
1
2 ρ2ν〈σXψ

′〉, the centering equa-
tion is then
〈A2〉F̃ (1)(t, x) = V F

(0)
xxx ,

F̃ (1)(T, x) = 0 .
(38)

Equation (38) is the zero boundary version of the usual one-factor forward price PDE (3)
with constant volatility σX and an additional source term of order

√
ε. Using the previous

result that F (0) has the form of the one-factor forward price (4), direct computations show
that F̃ (1) = −V h(t, T ; 3β)F (0) is a solution to equation (38).

Piecing together all of the above partial results, the price approximation based on the first
two terms of the expansion (32) is succinctly written as

F ε(t, x, z) ' F (0)(t, x) + F̃ (1)(t, x) := ( 1− V h(t, T ; 3β) )F (0)(t, x) . (39)

Intriguingly, the right hand side of (39) is independent of the unobservable Zt process. This is
an extremely convenient consequence of asymptotic derivative valuation results. It is also worth
noting that for calibration purposes, the constant V can, and should, be used as a parameter
in its own right. All of the details of the mapping from Zt to the volatility process (σX(Zt)) is
averaged out and embedded in the constant V . Rather than specifying the “micro-structure”
in the model, it is perfectly valid to specify the “macro-structure” in V as implied from futures
price data.

We now state one of our main results on the validity of the approximation (39).
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Theorem. 3.1 For any fixed (T, x, z) ∈ R+ × R2 and all t ∈ [0, T ], we have∣∣∣F ε(t, x, z)−
(
F (0)(t, x) + F̃ (1)(t, x)

)∣∣∣ = O(ε) ,

where the approximation F (0)(t, x) + F̃ (1)(t, x) is defined in (39) and F (0)(t, x) as in (4) with
σX replaced by

√
〈σ2

X(z)〉.

Proof. Define the function Υε(t, x, z) as the error terms of order ε2 and higher. Explicitly,

Υε :=
(
F (0) +

√
εF (1) + εF (2) + ε

3
2F (3)

)
− F ε . (40)

We first aim at proving that |Υε| = O(ε). Applying the infinitesimal generator Aε of (t,Xt, Zt)
on Υε and canceling vanishing terms, based on our previous analysis of the F (i) functions, we
find

Aε Υε =
(
ε−1A0 + ε−

1
2A1 +A2

)(
F (0) +

√
εF (1) + εF (2) + ε

3
2F (3) − F ε

)
= ε

(
A2F

(2) +A1F
(3) +

√
εA2F

(3)
)
. (41)

Now focus on each term from the right hand side of (41), paying attention to their growth
properties as functions of x, z.

• A2F
(2)-Term:

Choosing the constant of integration in (35) to be zero, we have F (2) = −1
2ψ(z)F (0)

xx . In
addition, since ψ(z) satisfies the Poisson equation (36) and since its r.h.s. is bounded and
satisfies the centering condition, then ψ(z) grows at most linearly in |z|. Given the form
of the forward price (4), it is clear that F (0) (and therefore F (2)) is log-linear in x.

• A1F
(3) and A2F

(3)-Terms:
From the ε

1
2 -order analysis, F (3) satisfies the Poisson equation A0F

(3)+A2F
(1)+A1F

(2) =
0 and the centering condition 〈A2F

(1) +A1F
(2)〉 = 0. We then have, A2F

(1) +A1F
(2) =(

A2F
(1) − 〈A2F

(1)〉
)

+
(
A1F

(2) − 〈A1F
(2)〉
)
. Consequently,

F (3) = −
√

2ρ2νη(z)F (0)
xxx −

1
2
ζ(z)F (1)

xx , (42)

where η(z) and ζ(z) are characterized by solutions ofA0η = σXψ
′−〈σXψ

′〉 andA0ζ = σ2
X−

〈σ2
X〉, respectively, with both constants of integration set to zero. Both of these last two

Poisson equations satisfy the centering equation and have bounded source terms, implying
that η(z), ζ(z) are at most linearly growing in |z| with bounded first derivatives. From
these last properties of η(z), ζ(z) and the form of F (3) in (42) as well as the boundedness
of σX(z), we conclude that A1F

(3) and A2F
(3) are at most linearly growing in |z| and

log-linearly growing in x.

The above results allow us to bound the error term Υε. Define N := A2F
(2) + A1F

(3) +
√
εA2F

(3) so that equation (41) becomesAεΥε = εN . With this new terminology, the “Feynman-
Kac” probabilistic representation of (41) can be expressed as (see Karatzas and Shreve (1991),
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section 5.7):

Υε(t, x, z) = εEQ
t,x,z

[
F (2)(T,XT , ZT ) +

√
εF (3)(T,XT , ZT )−

∫ T

t
N(s,Xs, Zs) ds

]
. (43)

We have already demonstrated that N(t, x, z), F (2)(T, x, z) and F (3)(T, x, z) are at most linearly
bounded in |z| and log-linearly growing in x. For the N function, this bound is uniform in t ∈
[0, T ]. Furthermore, since σX(·) is bounded, a direct check (or see Lemma B.1 in Cotton, Fouque,
Papanicolaou, and Sircar (2004)) shows that Xt has finite exponential moments. Similarly for
the process Zt, which implies a bound on its second moment (variance). Therefore, |Υε| = O(ε),
as previously claimed.

We make use of this last partial result and write∣∣∣F ε − (F (0) + F̃ (1))
∣∣∣ = ∣∣∣εF (2) + ε

2
3F (3) −Υε

∣∣∣ ≤ |Υε|+ ε
∣∣∣F (2) +

√
εF (3)

∣∣∣ , (44)

which, by the properties of F (2) and F (3), completes the proof. �

We have succeeded in demonstrating that, when the mean-reversion rate is large, the forward
prices in the SV extended one-factor model are well approximated by the constant volatility
price with a small adjustment factor. The correction term is proportional to a parameter V
which itself encapsulates the volatility function σX(Zt) information. However, from a calibration
and pricing perspective, the detailed specification of this parameter in terms of the underlying
volatility function is irrelevant, and instead it should be viewed as a free parameter in and of
itself. There is one interesting limit to consider: the limit in which the correlation between
the volatility factor Zt and the log spot price process Xt is zero. In this limit, the correction
term vanishes identically; however, the market will likely have a non-zero correlation between
volatility and spot price returns. In fact, it is well known that for commodities there is an inverse
leverage effect which drives volatility higher when spot prices rise.

We would like to make one last comment concerning the SV corrected forward price (39): the
correction vanishes as T ↘ t while it tends to (1 − V/3β) as T → +∞. Specifically we have,
F ε(t, x, z) T→+∞−→ exp{φ+ ln(1−V/3β)+σ2

X/4β}. Consequently, if one fixes the long-end of the
log-forward curve and adjusts V , then V will control the mid-term of the forward curves. This
is nice feature, because then, V can be viewed as an independent lever affecting the strength
of the forward curve hump. To illustrate this point, in Figure 2 we plot sample forward curves
with three choices of V . The diagram clearly shows that V affects the strength of the hump.
Interestingly, regardless of the sign of V , in this specific example, the forward curve always
becomes more humped.

3.2. Two-Factor Model + SV
In this section, we assume that the spot price dynamics is driven by the SV extended two-

factor model of section 2.2.2 and look for an approximation to the implied forward prices. We
omit the details of the calculations since the formal expansion procedure follows the same steps
as in Section 3.1, with A2 containing additional terms due to the stochastic long-run mean.
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Figure 2. This diagram depicts typical forward curves implied the model for three choices of V .
The long-run forward price is set at 61 in the left panel and 59 in the right panel. The spot is
60, β = 0.4 and σX = 0.2.

Theorem. 3.2 For any fixed (T, x, y, z) ∈ R+ × R3 and all t ∈ [0, T ], we have

F ε
t,T =

(
1− V1h(t, T ; 3β)− V2

β

αY − β
[h(t, T ; 3β)− h(t, T ;αY + 2β)]

)
F

(0)
t,T +O(ε) , (45)

where F (0)
t,T is the two-factor forward curve (13) with constant volatility σX replaced by

√
〈σ2

X(z)〉
and the new parameters V1 :=

√
ε
2ρ2ν〈σXψ

′
1〉 and V2 :=

√
2ερ1ρ2νσY 〈σXψ

′
2〉.

From a calibration and pricing viewpoint, the detailed composition of V1 and V2 in terms of
the initial parametrization is again irrelevant – they should now be considered as parameters in
their own right. Furthermore, this approximation is, as in our previous forward approximation,
independent of Zt. This allows an easy calibration of the two-factor model to futures prices;
see Hikspoors and Jaimungal (2007) and its reference for more details on these topics. Once
again, these parameters can be viewed as levers to change strength and now also the shape of
the forward-curve hump.

4. European Single-Name Options

Forward price determination is only the first stage of the analysis. For a model and method to
be of any real use, it must lead to efficient valuation tools for single- and two-name option prices.
In this section, we illustrate how the approximate forward prices from the previous section can
be utilized to obtain approximate European single-name option prices. In Section 5, the issue
of two-name contracts is addressed. Both single- and two-name approximations lead to closed
form results which depend solely on constant volatility prices, Delta’s and Delta-Gamma’s.
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4.1. Smooth Payoff Function
4.1.1. One-Factor Model + SV

Consider a smooth payoff function ϕ(·) with bounded derivatives and linear growth at infinity.
Based on our SV extended one-factor spot price model of Section 2.2.1 we investigate the price
Πε(t, x, z) at time t of the T0-contingent claim ϕ(F ε

T0,T ) on the forward price F ε
T0,T , that is

Πε(t, x, z) = P (t, T0) EQ
t,x,z

[
ϕ(F ε

T0,T )
]
. (46)

To simplify notation we omit the explicit appearance of T0 and T in the price function. To obtain
an approximation scheme for (46), the previous asymptotic result F ε

T0,T = F
(0)
T0,T + F̃

(1)
T0,T +O(ε)

from Theorem 3.1 will be used. To this end, consider a power expansion of the option payoff
ϕ(F ε

T0,T ) around ϕ(F (0)
T0,T ) – this is valid since we have made appropriate smoothness assumptions

on ϕ(·)

ϕ
(
F ε

T0,T

)
= ϕ

(
F

(0)
T0,T

)
− V h(T0, T ; 3β)F (0)

T0,T · ϕ
′
(
F

(0)
T0,T

)
+O(ε) . (47)

From (46) the price function Πε satisfies a similar PDE to the one F ε satisfies (see (28)) with
modified terminal conditions. Explicitly,
Aε Πε =

(
ε−1A0 + ε−

1
2A1 +A∗2

)
Πε(t, x, z) = 0 ,

Πε(T0, x, z) = 0 ,
(48)

where A∗2 := A2 − r(t), r(t) is the short-rate and A0, A1 and A2 are defined in (29)-(31).
Expanding Πε in powers of

√
ε, as previously done with F ε, we have

Πε = Π(0) +
√
εΠ(1) + εΠ(2) + ε

3
2 Π(3) + ... , (49)

and plugging into (48) gives

0 =
1
ε
A0Π(0) +

1√
ε

(
A1Π(0) +A0Π(1)

)
+
(
A∗2Π(0) +A1Π(1) +A0Π(2)

)
+
√
ε
(
A∗2Π(1) +A1Π(2) +A0Π(3)

)
+ ... . (50)

An analysis of the various equations arising from (50) order-by-order in
√
ε – analogous to the

study carried out in Section 3.1 and specifically for (33) – yields

Π(0)(t, x) = P (t, T0) EQ
t,x

[
ϕ
(
F

(0)
T0,T (XT0)

)]
, (51)

Π̃(1)(t, x) = −V h(t, T0; 3β)P (t, T0) EQ
t,x

[
F

(0)
T0,T (XT0)ϕ

′
(
F

(0)
T0,T (XT0)

)]
−V EQ

t,x

[∫ T0

t
P (t, u) Π(0)

xxx(u,Xu) du
]
, (52)

Π(2)(t, x, z) = −1
2
ψ(z)Π(0)

xx , (53)

where Π̃(1)(t, x) :=
√
εΠ(1), V =

(
ε
2

) 1
2 ρ2ν〈σXψ

′〉 is the same parameter which arose in the
analysis of the forward price approximation in Section 3.1, ψ(z) is defined in (36), and the
“smoothed” process Xt satisfies the SDE

dXu = β(φ−Xu) du+ σX dW (1)
u , Xt = Xt . (54)
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Here, σ2
X := 〈σ2

X(z)〉. Note that equation (52) is, due to its integral part, quite difficult to
compute explicitly. It is, however, possible to transform Π̃(1) into a much more tractable form.
From the

√
ε-order analysis, we find that Π̃(1) satisfies the following PDE:

〈A∗2〉Π̃(1)(t, x) = V Π(0)
xxx ,

Π̃(1)(T0, x) = −V h(T0, T ; 3β)F (0)
T0,T ϕ

′
(
F

(0)
T0,T

)
.

(55)

Using the commutation relation

〈A∗2〉Π(0)
xxx =

{
∂3

x〈A∗2〉+
[
∂3

x; 〈A∗2〉
]}

Π(0)
xxx = 3βΠ(0)

xxx (56)

where [A;B] := AB − BA, one can show that G1 := −V h(t, T0;−3β)Π(0)
xxx is a solution of (55)

with zero boundary condition. Also, a specific solution (say G2) to the homogeneous version of
the PDE (55) provides a unique solution G1 +G2 to (55). Using Feynman-Kac with a source to
obtain G2, we conclude that

Π̃(1)(t, x) = −V h(t, T0;−3β)Π(0)
xxx

−V h(T0, T ; 3β)P (t, T0) EQ
t,x

[
F

(0)
T0,T (XT0)ϕ

′
(
F

(0)
T0,T (XT0)

)]
. (57)

This last expression is now much simpler to compute for any reasonably well behaved payoff
function. It is particularly interesting that the correction terms are dependent only on the
zeroth order price, which themselves are determined in terms of the constant volatility model.
Furthermore, the first term in the above correction explicitly depends on the Delta-Gamma of
the constant vol option price. Contrastingly, the second term can be viewed as the price of
a modified payoff assuming constant volatility. For example, if valuing a call option, then the
second correction term is the price of an asset-or-nothing option. Finally, the parameter V which
controls the impact of stochastic volatility is inherited from the forward price approximation (39).

We conclude this section by providing the conditions of validity of our price approximation in
the following theorem.

Theorem. 4.1 For any fixed (T0, T, x, z) ∈ R2
+×R2 with T0 ≤ T and for all t ∈ [0, T0], we have∣∣∣Πε(t, x, z)−

(
Π(0)(t, x) + Π̃(1)(t, x)

)∣∣∣ = O(ε) ,

where the approximation Π(0)(t, x) + Π̃(1)(t, x) is defined in (51) and (57).

Proof. The proof follows along similar lines to the proof of Theorem 3.1. The one main com-
plication is to demonstrate that x-derivatives of Π(0) and Π̃(1) have at most exponential growth.
This is achieved by appealing to the smoothness properties of ϕ(·) and Lebesgue’s dominated
convergence theorem, as similarly done in the more general situation of Section 5.1.1. We provide
more details there. �
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4.1.2. Two-Factor Model + SV
Based on our SV extended two-factor spot price model of Section 2.2.2, we seek an approxi-

mation to the price Πε(t, x, y, z) of a T0-contingent claim with payoff ϕ(F ε
T0,T ), i.e.

Πε(t, x, y, z) = P (t, T0) EQ
t,x,z

[
ϕ(F ε

T0,T )
]
. (58)

The forward approximation F ε
T0,T = F

(0)
T0,T + F̃

(1)
T0,T +O(ε) used in the expansion methodology is

now the one from Theorem 3.2. The mathematical developments leading to the next theorem
are very similar to those of Section 4.1.1; we therefore concentrate on the precise statement of
the main result and omit the proof.

Theorem. 4.2 For any fixed (T0, T, x, y, z) ∈ R2
+ × R3 with T0 ≤ T and for all t ∈ [0, T0], we

have∣∣∣Πε(t, x, y, z)−
(
Π(0)(t, x, y) + Π̃(1)(t, x, y)

)∣∣∣ = O(ε) ,

where

Π(0)(t, x, y) := P (t, T0) EQ
t,x,y

[
ϕ
(
F

(0)
T0,T (XT0 , YT0)

)]
, (59)

with F (0)
T0,T as in Theorem 3.2, the process Xt of (23) being replaced by its “smoothed version”

dXu = β(Yu −Xu) du+ σX dW (1)
u , Xt = Xt , (60)

σ2
X := 〈σ2

X(z)〉 and

Π̃(1)(t, x, y) := l1(t, T0) Π(0)
xxx + l2(t, T0) Π(0)

xxy (61)

+l(T0, T )P (t, T0) EQ
t,x,y

[
F

(0)
T0,T (XT0 , YT0)ϕ

′
(
F

(0)
T0,T (XT0 , YT0)

)]
, (62)

where,

l1(t, T0) := − β V2

β − αY
h(t, T0;−2β − αY )−

[
V1 +

3β2 V2

2β + αY

(
1− 1

β − αY

)]
h(t, T0,−3β), (63)

l2(t, T0) := −V2 h(t, T0;−2β − αY ) , (64)

l(T0, T ) := −V1h(T0, T ; 3β)− V2
β

αY − β
[h(T0, T ; 3β)− h(T0, T ; 2β + αY )] . (65)

Furthermore, V1 and V2 are as in Theorem 3.2.

Once again, we find that the SV extended model option prices are written in terms of the
constant volatility model prices with a smoothed volatility. The correction terms are again in
terms of the various Delta’s and Delta-Gamma’s with coefficient proportional to the parameters
Vi which themselves are inherited from the forward price approximation (45).

4.2. Nonsmooth Payoff: Calls and Puts
When the T0-payoff function ϕ(·) is non-smooth, Theorem 4.1 and 4.2 can be generalized via

a further approximation scheme. The main device is to approximate the non-smooth payoff
function by a regularized version – in particular its discounted conditional expectation over a
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very small time – and then prove that the regularized option price well approximates the exact
price. The required methodology is, due to the differentiability of our one-factor energy forward
call/put option prices (7), a simplified version of the one originally developed for stock options
in Fouque, Papanicolaou, Sircar, and Solna (2003). We therefore refer to that paper for further
mathematical details.

For practical purposes, it suffices to know that the approximate prices developed in Theorems
4.1 and 4.2 are still valid for non-smooth call/put options as long as they are not used for
extremely close to maturity option contracts. In practice, there would be no need for such a
pricing methodology for small terms since it would be clear whether the option is in or out of
the money.

5. European Two-Name Options

In this section, we pursue the approximations of options written on two correlated commodity
forwards, where each commodity is driven by an SV extended one- or two-factor mean-reverting
model. The analysis is more involved than previously; however, the end results inherit a similar
structure to the single name case. In particular, the price is given in terms of the constant volatil-
ity model price with correction terms depending on the various Delta’s and Delta-Gamma’s.
Interestingly, two new parameters arise in this case. These new parameters cannot be calibrated
from forward prices, or options on the individual forward prices, instead they should be viewed
as a flexibility lever allowing the trader to bias the prices (or equivalently the implied vol skew)
upward or downward.

5.1. Smooth Payoff Function
Consider a smooth payoff function ϕ(·, ·) having bounded partial derivatives and a linear

growth at infinity in each variable. Our main goal is to find a well behaved approximation to
the option price Πε which as usual is written in terms of the discounted expectation under the
risk-neutral measure

Π~ε(t, ~x, ~z) = P (t, T0) EQ
t,~x,~z

[
ϕ
(
F ε1

T0,T1
, F ε2

T0,T2

)]
. (66)

Note that we allow the forward contracts to have different maturities, that is, we only require
T0 ≤ T1, T2. Most of the important steps in the derivation are explicitly provided for the SV
extended one-factor model only, while the main Theorem for the two-factor model is simply
stated.

5.1.1. One-Factor Model + SV
Here, the joint dynamics of the spot and forward price for the pair of commodities (i = 1, 2)

are assumed to satisfy the system of SDEs

S
(i)
t = exp

{
g
(i)
t +X

(i)
t

}
, (67)

F εi
t,T = EQ

t

[
S

(i)
T

]
, (68)
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dX
(i)
t = βi

(
φi −X

(i)
t

)
dt+ σXi

(
Z

(i)
t

)
dW

(1i)
t , (69)

dZ
(i)
t = αi

(
mi − Y

(i)
t

)
dt+ σZi dW

(3i)
t , (70)

with correlation structure d
[
W (11),W (12)

]
t

= ρ dt, d
[
W (1i),W (3i)

]
t

= ρ2i dt and all others
zero. We also assume that the volatility functions σXi(·) are again smooth, strictly positive and
bounded functions with bounded derivatives. Also notice that the explicit dependence on the
small parameter εi := 1/αi has been made. As before (see Section 3), the variance ν2

i := σ2
Zi/2αi

of the Z(i)
t -invariant distributions are held fixed in the limit of small εi. We are now ready to

develop an approximation to the price (66) which satisfies the PDE
A~ε Π~ε =

(
ε−1
1 A(1)

0 + ε−1
2 A(2)

0 + ε
− 1

2
1 A(1)

1 + ε
− 1

2
2 A(2)

1 +A∗2
)

Π~ε = 0 ,

Π~ε(T0, ~x, ~z) = ϕ
(
F ε1

T0,T1
, F ε2

T0,T2

)
,

(71)

where A~ε is the generator of (t,M−1
t , ~Xt, ~Zt) withMt := exp{

∫ t
0 rs ds} the money market account

and the operator

A∗2 :=
∂

∂t
+ β1(φ1 − x1)

∂

∂x1
+ β2(φ2 − x2)

∂

∂x2
+

1
2
σ2

X1(z1)
∂2

∂x2
1

+
1
2
σ2

X2(z2)
∂2

∂x2
2

+ ρσX1(z1)σX2(z2)
∂2

∂x1∂x2
− r(t) . (72)

Expanding Π~ε in powers of
√
ε1 and

√
ε2 we have

Π~ε = Π(0) +
√
ε1Π(1,1) +

√
ε2Π(1,2) + ε1Π(2,1) + ε2Π(2,2) +

√
ε1ε2Π(2,3) + ε

3/2
1 Π(3,1)

+ ε1
√
ε2Π(3,2) +

√
ε1ε2Π(3,3) + ε

3/2
2 Π(3,4) + ... , (73)

with T0-terminal condition

ϕ
(
F ε1

T0,T1
, F ε2

T0,T2

)
= ϕ

(
F

ε1(0)
T0,T1

, F
ε2(0)
T0,T2

)
+ F̃

ε1(1)
T0,T1

∂ϕ

∂F ε1

(
F

ε1(0)
T0,T1

, F
ε2(0)
T0,T2

)
+ F̃

ε2(1)
T0,T2

∂ϕ

∂F ε2

(
F

ε2(0)
T0,T1

, F
ε2(0)
T0,T2

)
+O(ε′) . (74)

Here, and in the sequel, ε′ := max(ε1, ε2) and F
εi(0)
t,T (F εi(1)

t,T ) is the first (second, resp.) order
approximation of the forward price F εi

t,T , i = 1, 2 (see Section 3).
Now, collect terms of the equivalent orders arising from (71) on substitution of (73)-(74), as

in the previous section. In the following, we emphasize the new aspects of the present (more
general) asymptotic analysis and omit most of details. A study of the ε−1

1 ,ε−1
2 ,ε−1/2

1 ,ε−1/2
2 ,

√
ε1/ε2 and

√
ε2/ε1 - order equations results in Π(0) and Π(1) being independent of ~z := (z1, z2).

Explicitly: Π(0) = Π(0)(t, ~x) and Π(1) = Π(1)(t, ~x).

• ε0-Order Equation: A(1)
0 Π(2,1) +A(2)

0 Π(2,2) +A∗2Π(0) = 0
Any solution of the two Poisson equations

A(1)
0 Π(2,1) +

1
2
A∗2Π(0) = 0 , and A(2)

0 Π(2,2) +
1
2
A∗2Π(0) = 0 . (75)



18 S. Hikspoors and S. Jaimungal

is a solution of the ε0-order PDE. Both Poisson equations have identical centering con-
ditions 〈A∗2Π(0)〉 = 0, where 〈f(~Z∞)〉 is defined as the expectation of f(~Z∞) with ~Z∞ ∼
N(~m,~ν2), the invariant distribution of the process ~Zt = (Z(1)

t , Z
(2)
t ) defined in (70)2. The

centering condition reduces to 〈A∗2Π(0)〉 = 〈A∗2〉Π(0) = 0 and enforcing the b.c. (74) to
zeroth order, implies that Π(0)(t, ~x) is the option price in the constant volatility one-factor
model with σXi := (〈σ2

Xi〉)1/2 and correlation ρ := ρ〈σX1〉〈σX2〉/(〈σ2
X1〉〈σ2

X2〉)1/2. The
new correlation ρ is in [−1, 1] due to Hölder’s inequality. Explicitly,

Π(0)(t, ~x) = P (t, T0) EQ
t,~x

[
ϕ
{
F

ε1(0)
T0,T1

(
X

(1)
T0

)
, F

ε2(0)
T0,T2

(
X

(2)
T0

)}]
. (76)

Here, the smoothed processes X(i)
t are again defined by

dX
(i)
u = βi

(
φi −X

(i)
u

)
du+ σXi dW

(i)
u , X

(i)
t = X

(i)
t , (77)

with correlation d[W (1)
,W

(2)] = ρ.

Using the above solution for Π(0) and following the arguments leading to equation (35),
but starting with (75), we find

Π(2,1) = −1
4
{ψ1(z1) + c1(t, ~x, z2)}Π(0)

x1x1
+
ρ

2
{ψ12(~z) + c12(t, ~x, z2)}Π(0)

x1x2
, (78)

Π(2,2) = −1
4
{ψ2(z2) + c2(t, ~x, z1)}Π(0)

x2x2
+
ρ

2
{ψ21(~z) + c21(t, ~x, z1)}Π(0)

x1x2
, (79)

where the ψi’s and ψij ’s are defined by

A(1)
0 ψ1 = σ2

X1 − 〈σ2
X1〉 , A(1)

0 ψ12 = σX1σX2 − 〈σX1σX2〉 ,
A(2)

0 ψ2 = σ2
X2 − 〈σ2

X2〉 , A(2)
0 ψ21 = σX1σX2 − 〈σX1σX2〉 ,

(80)

with the ci’s and cij ’s being their respective (arbitrary) constants of integration.

•
√
ε1/ε2 ,

√
ε2/ε1 -Order Equations: A(1)

0 Π(2,3) = 0 and A(2)
0 Π(2,3) = 0

These equations imply that Π(2,3) = Π(2,3)(t, ~x) is independent of ~z.

• √ε1-Order Equation : A∗2Π(1,1) +A(1)
1 Π(2,1) +A(1)

0 Π(3,1) +A(2)
0 Π(3,3) = 0

Once again decoupling this PDE into two Poisson equations

A(1)
0 Π(3,1) +

1
2

(
A∗2Π(1,1) +A(1)

1 Π(2,1)
)

= 0 , (81)

A(2)
0 Π(3,3) +

1
2

(
A∗2Π(1,1) +A(1)

1 Π(2,1)
)

= 0 , (82)

leads to the centering condition 〈A∗2Π(1,1) + A(1)
1 Π(2,1)〉 = 0. Inserting the expression for

Π(2,1) implies that
〈A∗2〉Π̃(1,1) =

√
ε1

2
√

2
ρ21ν1〈σX1ψ

′
1〉Π

(0)
x1x1x1 +

√
ε1√
2
ρρ21ν1〈σX1∂z1ψ12〉Π(0)

x1x1x2 ,

Π̃(1,1)(T0, ~XT0) = F̃
ε1(1)
T0,T1

∂ϕ
∂F ε1

(
F

ε1(0)
T0,T1

, F
ε2(0)
T0,T2

)
.

(83)

2Since Z
(1)
t and Z

(2)
t are independent processes, they also have independent invariant distributions.
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where Π̃(1,1) :=
√
ε1 Π(1,1) and its boundary condition being induced by (74). The commu-

tation rules [〈A∗2〉; ∂x1x1x1 ] = 3β1∂x1x1x1 and [〈A∗2〉; ∂x1x1x2 ] = (2β1 + β2)∂x1x1x2 , together
with the fact that 〈A∗2〉Π(0) = 0, allows one to write

〈A∗2〉
(
l1(t)Π(0)

x1x1x1
+ l2(t)Π(0)

x1x1x2

)
= (∂tl1 + 3β1l1) Π(0)

x1x1x1
+ (∂tl2 + (2β1 + β2)l1) Π(0)

x1x1x2
, (84)

for l1(t) and l2(t) arbitrary functions of time only. Matching the coefficients of the r.h.s.
with coefficients in the r.h.s of the PDE (83), and solving the resulting ODEs for l1,2 (with
b.c. l1(T ) = l2(T ) = 0), allows us to solve the PDE (83) explicitly

Π̃(1,1)(t, ~x) = −V1

2
h(t, T0;−3β1)Π(0)

x1x1x1
− V11 h(t, T0;−2β1 − β2)Π(0)

x1x1x2

−V1h(T0, T1; 3β1)P (t, T0)

×EQ
t,~x

[
F̃

ε1(0)
T0,T1

(
X

(1)
T0

) ∂ϕ

∂F ε1

{
F

ε1(0)
T0,T1

(
X

(1)
T0

)
, F

ε2(0)
T0,T2

(
X

(2)
T0

)}]
, (85)

with V1 :=
√

ε1
2 ρ21ν1〈σX1ψ

′
1〉 and V11 :=

√
ε1
2 ρρ21ν1〈σX1∂z1ψ12〉. Equation (85) depends

solely on the Delta’s and Delta-Gamma’s of the constant volatility price and the constant
volatility price of a modified payoff. These individual terms can be computed explicitly in
many typical cases – such as Margrabe spread options.

• √ε2-Order Equation : A∗2Π(1,2) +A(2)
1 Π(2,2) +A(1)

0 Π(3,2) +A(2)
0 Π(3,4) = 0

Going through similar arguments as above, we find

Π̃(1,2)(t, ~x) = −V2

2
h(t, T0;−3β2)Π(0)

x2x2x2
− V22h(t, T0;−β1 − 2β2)Π(0)

x1x2x2

−V2h(T0, T2; 3β2)P (t, T0)

×EQ
t,~x

[
F̃

ε2(0)
T0,T2

(
X

(2)
T0

) ∂ϕ

∂F ε2

{
F

ε1(0)
T0,T1

(
X

(1)
T0

)
, F

ε2(0)
T0,T2

(
X

(2)
T0

)}]
, (86)

with Π̃(1,2) :=
√
ε2 Π(1,2) , V2 :=

√
ε2
2 ρ22ν2〈σX2ψ

′
2〉 and V22 :=

√
ε2
2 ρρ22ν2〈σX2∂z2ψ21〉.

We now aim at proving the main result of this section, which, according to our general
expansion methodology (71)-(74) and its subsequent analysis, should take the form of

Π~ε(t, ~x, ~z) ' Π(0)(t, ~x) + Π̃(1,1)(t, ~x) + Π̃(1,2)(t, ~x) , (87)

whenever the inverse mean-reversion parameters ε1 and ε2 are sufficiently small. The precise
formulation of this approximation is the subject of our next Theorem.

Theorem. 5.1 For any fixed (T0, T1, T2, ~x, ~z) ∈ R3
+×R4 with T0 ≤ T1, T2 and for all t ∈ [0, T0],

we have∣∣∣Π~ε(t, ~x, ~z)−
(
Π(0)(t, ~x) + Π̃(1,1)(t, ~x) + Π̃(1,2)(t, ~x)

)∣∣∣ = O(ε′) , (88)

where the terms Π(0),Π̃(1,1), and Π̃(1,2) are defined in (76), (85), and (86). Finally, ε′ :=
max{ε1, ε2}.
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Proof. First define the function Υ~ε(t, ~x, ~z) by

Υ~ε =
(

Π(0) + Π̃(1,1) + Π̃(1,2) + ε1Π(2,1) + ε2Π(2,2) + ε
3
2
1 Π(3,1) + ε1

√
ε2Π(3,2)

+
√
ε1ε2Π(3,3) + ε

3
2
2 Π(3,4)

)
−Π~ε (89)

Notice that the Π(2,3)-term has purposefully been included in Υ~ε – this is a crucial splitting for
the validity of the remaining analysis. The first step toward a proof of Therem 5.1 is once again
to show that

∣∣Υ~ε
∣∣ = O(ε

′
). As similarly executed in Section 3, we study the properties of Υ~ε via

its behavior when acted on by the generator A~ε. From our previous analysis and the boundary
condition (74), we have

A~εΥ~ε = ε1

(
A∗2Π(2,1) +A(1)

1 Π(3,1) +A(2)
1 Π(3,2)

)
+ε2

(
A∗2Π(2,2) +A(1)

1 Π(3,2) +A(2)
1 Π(3,4)

)
+
√
ε1ε2

(
A(1)

1 Π(3,2) +A(2)
1 Π(3,3)

)
+ ε

3/2
1 A∗2Π(3,1)

+ε1
√
ε2A∗2Π(3,2) +

√
ε1ε2A∗2Π(3,3) + ε

3/2
2 A∗2Π(3,4) ,

Υ~ε(T0, ~x, ~z) = ε1Π(2,1)(T0, ~x, ~z) + ε2Π(2,2)(T0, ~x, ~z) + ε
3/2
1 Π(3,1)(T0, ~x, ~z)

+ε1
√
ε2 Π(3,2)(T0, ~x, ~z) +

√
ε1ε2Π(3,3)(T0, ~x, ~z) + ε

3/2
2 Π(3,4)(T0, ~x, ~z)

+O(ε
′
) .

(90)

The detailed growth properties of the first two terms of (90) and related boundary conditions
will now be examined. All other terms can be shown (with limitless patience!) to have similar
bounds.

• A∗2Π(2,1)-Term:
Without loss of generality, we choose c1 = c12 = 0 in (78). Then A∗2Π(2,1) involves multipli-
cations of the terms ψ1,ψ12 with up to the fourth order partial derivatives of Π(0) and the
smooth (linear growth in ~x and bounded in ~z) coefficients of A∗2. By the boundedness of
the source terms in their defining Poisson equations (80), ψ1 and ψ12 are at most linearly
growing in their arguments and have bounded first derivative. From the Appendix, the
partial derivatives of Π(0) are at most log-linearly bounded in ~x. Aggregating these partial
results, A∗2Π(2,1) has at most a linear growth in ~z and log-linear in ~x. It also follows from
these last arguments that Π(2,1)(T0, ~x, ~z) share equivalent growth bounds.

• A(1)
1 Π(3,1)-Term:

Since Π(3,1) solves the Poisson equation (81) with the corresponding centering equations,
we can write

A(1)
0 Π(3,1) = −1

2

[
(A∗2 − 〈A∗2〉) Π(1,1) +

(
A(1)

1 Π(2,1) − 〈A(1)
1 Π(2,1)〉

)]
. (91)

Solving this yields,

Π(3,1) = −1
4
ψ1Π(1,1)

x1x1
− ρ

2
ψ12Π(1,1)

x1x2
+
ρ21ν1

4
√

2
ξ1Π(0)

x1x1x1
+
ρρ21ν1

2
√

2
η1Π(0)

x1x1x2
, (92)
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where ξ1, η1 are solutions of (with constants of integration set to zero)

A(1)
0 ξ1 = σ

(1)
X ψ′1 − 〈σ

(1)
X ψ′1〉 , A(1)

0 η1 = σ
(1)
X ∂z1ψ12 − 〈σ(1)

X ∂z1ψ12〉 . (93)

The source terms in (93) being bounded, ξ1 and η1 are at most linearly growing and can
be chosen with bounded first derivatives. It follows that A(1)

1 Π(3,1) is a linear combination
of terms with at most linear growth in ~z multiplied by up to third order ~x-derivatives of
Π(1,1) or fifth order ~x-derivatives of Π(0). By the Appendix’s result on log-linear bounds of
Π(0) and Π(1,1) under various orders of derivatives, we conclude that A(1)

1 Π(3,1) is at most
linearly growing in ~z and log-linearly growing in ~x. It is now straightforward to see that
Π(3,1)(T0, ~x, ~z) also shares these growth properties.

We remark that, with the use of similar techniques, the remaining terms from (90) can be
shown to possess equivalent growth properties.

Letting the functions M(t, ~x, ~z) and N(T0, ~x, ~z) denote the r.h.s. of the PDE (90) and its
boundary condition, respectively, a probabilistic representation of the solution is

Υ~ε(t, ~x, ~z) = EQ
t,~x,~z

[
P (t, T0)N(T0, ~XT0 ,

~ZT0)−
∫ T0

t
P (t, u)M(u, ~Xu, ~Zu) du

]
. (94)

From Lemma B.1 in Cotton, Fouque, Papanicolaou, and Sircar (2004), or by direct computations,
the processes X(i)

t and Z
(i)
t , i ∈ {1, 2} have finite exponential moments, implying the finiteness

of the first two moments of Z(i)
t , i ∈ {1, 2}. Applying these considerations to (94) finally supplies

us with the claimed assertion, that is
∣∣Υ~ε
∣∣ = O(ε′).

We are now ready to conclude our proof:∣∣∣Π~ε(t, ~x, ~z)−
(
Π(0)(t, ~x) + Π̃(1,1)(t, ~x) + Π̃(1,2)(t, ~x)

)∣∣∣
=

∣∣∣∣ε1Π(2,1) + ε2Π(2,2) + ε
3
2
1 Π(3,1) + ε1

√
ε2Π(3,2) +

√
ε1ε2Π(3,3) + ε

3
2
2 Π(3,4) −Υ~ε

∣∣∣∣ (95)

≤
∣∣∣Υ~ε
∣∣∣+ ε1

∣∣∣Π(2,1)
∣∣∣+ ...+ ε2

∣∣∣√ε2Π(3,4)
∣∣∣ (96)

≤
∣∣∣Υ~ε
∣∣∣+ ε′

∣∣∣Π(2,1)
∣∣∣+ ...+ ε′

∣∣∣√ε2Π(3,4)
∣∣∣ (97)

= O(ε′) (98)

�

It is noteworthy that the two parameters V11 and V22 arise only in the two-name case and are
not induced by forward or single-name option prices. These parameters provide the trader with
two additional degrees-of-freedom allowing a biasing of a two-name claim upward or downward
relative to the single-name case. Equivalently, the two parameters may be used to tweak the
implied volatility smile/skew. Furthermore, from the definitions of Vii (see equations (85) and
(86)), if the correlation between the two commodities is zero (ρ = 0) then Vii = 0. Additionally,
since each of these coefficients are proportional to the product of two correlations and the small
parameter

√
εi, they should in principle be very small.
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5.1.2. Two-Factor Model + SV
This section’s main goal is to find a well behaved approximation to the option price

Π~ε(t, ~x, ~y, ~z) = P (t, T0) EQ
t,~x,~y,~z

[
ϕ
{
F ε1

T0,T1
, F ε2

T0,T2

}]
, (99)

where each of the forward curves F εi
T0,Ti

are based on the SV extended two-factor spot price
model of Section 2.2.2. We only state the main result without going through the proof, which
follows along similar lines to the previous section.

Theorem. 5.2 For any fixed (T0, T1, T2, ~x, ~y, ~z) ∈ R3
+ × R6 with T0 ≤ T1, T2 and for all t ∈

[0, T0], we have∣∣∣Π~ε(t, ~x, ~y, ~z)−
(
Π(0)(t, ~x, ~y) + Π̃(1,1)(t, ~x, ~y) + Π̃(1,2)(t, ~x, ~y)

)∣∣∣ = O(ε′) ,

where ε′ := Max{ε1, ε2},

Π(0)(t, ~x, ~y) := P (t, T0) EQ
t,~x,~y

[
ϕ
{
F

ε1(0)
T0,T1

(
X

(1)
T0
, Y

(1)
T0

)
, F

ε2(0)
T0,T2

(
X

(2)
T0
, Y

(2)
T0

)}]
, (100)

F
εi(0)
t,Ti

being as in (13) with σXi replaced by
√
〈σ2

Xi(zi)〉 and each X(i)
t as defined in (77),

Π̃(1,1)(t, ~x, ~y)

:= l
(1,1)
1 (t, T0) Π(0)

x1x1x1
+ l

(1,1)
2 (t, T0) Π(0)

x1x1y1
+ l

(1,1)
3 (t, T0) Π(0)

x1x1x2

+l(1,1)(T0, T1)P (t, T0)

×EQ
t,~x,~y

[
F̃

ε1(0)
T0,T1

(
X

(1)
T0
, Y

(1)
T0

) ∂ϕ

∂F ε1

{
F

ε1(0)
T0,T1

(
X

(1)
T0
, Y

(1)
T0

)
, F

ε2(0)
T0,T2

(
X

(2)
T0
, Y

(2)
T0

)}]
, (101)

and its symmetric part

Π̃(1,2)(t, ~x, ~y)

:= l
(1,2)
1 (t, T0) Π(0)

x2x2x2
+ l

(1,2)
2 (t, T0) Π(0)

x2x2y2
+ l

(1,2)
3 (t, T0) Π(0)

x2x2x1

+l(1,2)(T0, T2)P (t, T0)

×EQ
t,~x,~y

[
F̃

ε2(0)
T0,T2

(
X

(2)
T0
, Y

(2)
T0

) ∂ϕ

∂F ε2

{
F

ε1(0)
T0,T1

(
X

(1)
T0
, Y

(1)
T0

)
, F

ε2(0)
T0,T2

(
X

(2)
T0
, Y

(2)
T0

)}]
, (102)

where V
(i)
1 and V

(i)
2 are (for each asset i ∈ {1, 2}) given by the parameters value in there

respective forward price approximation in Theorem 3.2. Furthermore, for each asset i ∈ {1, 2},
the various “l-coefficients” are given by

l
(1,i)
1 (t, T0) := − βiV

(i)
2

2(βi − αi)
h(t, T0;−2βi − αi)

−

(
V

(i)
1

2
+

3β2
i V

(i)
2

4βi + 2αi

(
1− 1

βi − αi

))
h(t, T0;−3βi) , (103)

l
(1,i)
2 (t, T0) := −V

(i)
2

2
h(t, T0;−2βi − αi) , (104)

l
(1,i)
3 (t, T0) := −Viih(t, T0;−2βi − αj) , (i, j) ∈ {(1, 2), (2, 1)} , (105)

l(1,i)(T0, Ti) := −V (i)
1 h(T0, Ti; 3βi)− V

(i)
2

βi

αY i − βi
[h(T0, Ti; 3βi)− h(T0, Ti;αY i + 2βi)] . (106)
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Once more, these SV extended two-factor model two-name option prices depend on the constant
volatility prices plus corrections depending on the Delta’s and Delta-Gamma’s of the option
together with a modified payoff. The V1 and V2 coefficients are inherited from the forward price
approximation, while the new parameters V11 and V22 arise as a result of the correlation between
the spot prices.

5.2. Nonsmooth Payoff: Forward Spread
As similarly argued in Section 4.2, it is possible to extend the validity of our pricing results

(Theorems 5.1 and 5.2) to non-smooth T0-payoff functions ϕ(·, ·), such as forward spread option
contracts. The arguments behind this assertion follows along the same lines as described in
Section 4.2. In practice, our stated results apply for dates not extremely close to contract
maturity. We again refer to Fouque, Papanicolaou, Sircar, and Solna (2003) for further technical
explanations within the stock option context.

6. Conclusions and Future Work

This work focused on incorporating stochastic volatility into one- and two-factor mean-
reverting commodities spot price models. Although stochastic volatility models have been stud-
ied in the context of commodities, none of the previous works produce closed form option prices
and also only focus on single-name options. In contrast, we obtained explicit closed form pricing
equations for single and two-name options on forward contracts.

By assuming the instantaneous stochastic volatility of the spot price process is driven by a
hidden fast mean-reverting OU process, we were successful in obtaining explicit closed form
derivative prices. Furthermore, we proved that these explicit approximations are correct up to
order ε. This methodology produced forward and option prices which are independent of the
specific mapping between the hidden process and the stochastic volatility. The key consequence
is that forward prices can be written in terms of the constant volatility model where the effective
constant volatility arises due to a smoothening of the hidden process driving the stochastic
volatility. Although our results appear somewhat daunting at first, they are in fact quite simple
in structure and, more importantly, they are explicit. The results can be used to compute the
stochastic volatility corrections of many common commodity options such as calls, puts, and
spreads. As Fouque, Papanicolaou, and Sircar (2000b) similarly found in equity derivatives, we
find, using commutator methods, that these corrections are related to the delta’s and delta-
gamma’s of the constant volatility prices and the price of a modified payoff.

Another very important aspect of this asymptotic approach is its ease of calibration. The ar-
bitrary modeling specification is smoothed out and instead we find a new set of free parameters
V , Vi and Vii (see equations (39) & (45) and (85) & (86) and the arguments leading up to these
results). Using a nonlinear least-squares minimization scheme, the first set of these parameters
(V or V1-V2) can be calibrated directly from forward price data. The second set of parame-
ters (Vii) arise only in the two-name case when the payoff explicitly depends on both names.
Consequently, this second class of parameters has two dual and equivalent interpretations: (i)



24 S. Hikspoors and S. Jaimungal

if no market prices for two-name options exists, they are additional model inputs and provide
the trader with the flexibility to tweak prices; or (ii) if at least two option prices on two-names
exist, they are market determined parameters which can then be used to consistently price other
options.

There are many directions left open for future work, the most obvious being applying the
model to an extensive data set. It would be instructive to classify the set of commodities spot
price data which are driven by a fast mean-reverting hidden OU process. Then, using the
forward price approximations, we extract the market implied parameters and use these implied
parameters to price single- and two-name options.

A more mathematically interesting direction to explore, and one we have already begun to, is to
apply similar methods in the context of stochastic volatility HJM models for commodities data.
Schwartz and Trolle (2007) are the first to introduce a second unspanned stochastic volatility
component into the commodities framework using an HJM approach – previous work includes
Cortazar and Schwartz (1994), Amin, Ng., and Pirrong (1995) and Miltersen and Schwartz
(1998) who focus solely on the constant volatility cases – however, they resort to an affine
Heston-like model and employ transform methods to compute forward and option prices as no
closed form results exists. As commented earlier, this is not a huge disadvantage when pricing a
few options; however, it becomes very computationally intensive when used as a calibration tool
and/or for sensitivity analysis. Our preliminary work gives us confidence that we can indeed find
closed form forward and option prices through an SV extension of the standard HJM models
using the hidden fast mean-reverting OU process to drive stochastic volatility.

A. Appendix

Here we sketch a proof of some useful bounds on the growth of various partial derivatives of
the first three terms in the price expansion (73). The main result is stated as follows.

Theorem. A.1 Fix p ∈ N. Then, for any i, n ∈ N s.t. 0 ≤ i ≤ n ≤ p and all t ∈ [0, T0), there
exist constants C, C1, C2 such that∣∣∣∣∣ ∂nΠ(0)

∂xi
1∂x

n−i
2

∣∣∣∣∣ ,
∣∣∣∣∣ ∂nΠ(1,1)

∂xi
1∂x

n−i
2

∣∣∣∣∣ ,
∣∣∣∣∣ ∂nΠ(1,2)

∂xi
1∂x

n−i
2

∣∣∣∣∣ ≤ C exp (C1x1 + C2x2) . (107)

Proof. We know that for t ≤ u ≤ T0

X(i)
u = φi + (xi − φi) e−βi(u−t) + σXi

∫ u

t
e−βi(u−s) dW (i)

s , (108)

with d
[
W (1),W (2)

]
t
= ρ dt. That is ~Xu ∼ N(~m, σ̄) with mean mi = φi + (xi − φi) e−βi(u−t) and

covariance matrix given by σ̄ii = 〈σ2
Xi〉h(t, u; 2βi) and σ̄12 = σ̄21 = ρ〈σX1σX2〉h(t, u;β1 + β2).

Let Φ̄′t,u be the density of N(~m, σ̄) and Φ′t,u the one of N(~0, σ̄). Also recall from (4) that we can
write

F
εi(0)
T0,Ti

= exp
{
g
(i)
Ti

+ φi

(
1− e−βi(Ti−T0)

)
+
〈σ2

Xi〉
2

h(T0, Ti; 2βi) + e−βi(Ti−T0)X
(i)
T0

}
:= C(i) exp

{
D(i)X

(i)
T0

}
, (109)
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where we used the symbols C(i) and D(i) to simplify notations. Using these last formulas in (76)
we can write

Π(0)(t, ~x) = P (t, T0)
∫

R2

ϕ
(
C(1) eD

(1)(m1+y1), C(2) eD
(2)(m2+y2)

)
Φ′t,T0

(y1, y2) d~y , (110)

where the dependence on the ~x-variable is imbedded in ~m. Smoothness of ϕ and boundedness of
its partial derivatives combined with the dominated convergence theorem (note that r.v. having
the density Φ′(·, ·) has finite exponential moments) imply the claimed bound on the derivatives
of Π(0).

We also rewrite (85) as

Π(1,1)(t, ~x) = −
∫

R2

(
V1

2
h(t, T0;−3β1)Π(0)

x1x1x1
(t,m1 + y1,m2 + y2)

+ V11h(t, T0;−2β1 − β2)Π(0)
x1x1x2

(t,m1 + y1,m2 + y2)

)
Φ′t,T0

(~y) d~y

−V1h(T0, T1; 3β1)P (t, T0)
∫

R2

C(1) eD
(1)(m1+y1)

× ∂ϕ

∂F ε1

(
C(1) eD

(1)(m1+y1), C(2) eD
(2)(m2+y2)

)
Φ′t,T0

(~y) d~y , (111)

so that the log-linear bound on Π(1,1) follows from the same arguments as in Π(0) case and the
previous bound on Π(0).

Finally, the log-linear bounds on the partial derivatives of Π(1,2) is found exactly as in the
Π(1,1) case since the arguments are perfectly symmetric with respect to x1 and x2. �
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