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ASYMPTOTIC PRIME DIVISORS AND ANALYTIC SPREADS

STEPHEN MCADAM1

Abstract. Let / be an ideal in a Noetherian domain R, and let / be the integral

closure of /. Let A*(I) = A^s(R/I") for n large (it being known that for large n

this set does not vary with n). Suppose that R satisfies the altitude formula. Then it

is shown that P e Â*(I) if and only if height P ■> l(IP), the analytic spread of /,,.

Introduction. Let I be an ideal in a Noetherian ring. For n > 1, let A(n) be the

set of prime divisors of I", A(n) = Ass(R/I"). A recent paper of Brodmann [1]

shows that A(n) is constant for n large. In [5] that constant is denoted A* = A*(I).

In general it is difficult to explicitly determine A * for a given ideal I, although in

[5, Corollary 22] this is done for R a 2-dimensional normal domain. This paper will

discuss a concept related to A*, namely yl*. Let I denote the integral closure of the

ideal I, and let Â(ri) = Ass(R/î"), the prime divisors of /". If height I > 1, [5,

Proposition 7] shows that A(n) is constant for large n. That constant is denoted by

A* = A*(I). The purpose of this paper is to characterize A* for any ideal I in a

Noetherian domain satisfying the altitude formula. The characterization is P £ A*

if and only if height P = l(IRP), the analytic spread of IRP.

Preliminaries. Throughout this paper, R will denote a Noetherian domain, / an

ideal of R, and P a prime ideal of R containing /. The domain T will always be

T = R[Ix] = R + Ix + I2x2 + . . . , x an indeterminate. Since T c R[x], obvi-

ously the transcendence degree of T over R is 1. We will occasionally mention the

form ring oi I, R/I + I/I2 +_Note that this is isomorphic to T/IT. If

(R, P) is local, we will also use the ring R/P + I/PI + I2/PI2 + . . ., which is

isomorphic to T/PT. Finally, P" will be P + Ix + I2x2 + . . . in T.

If (R, P) is a local domain and / is an ideal of R, then /(/) denotes the analytic

spread of /. Recall that there are various characterizations of /(/). (i) If R/P is

infinite and if J is a mimmal reduction of / then /(/) = v(J), the minimal number

of generators of J. (ii) /(/) = height(i>"//>T). (See [7] and [8] for basics on

reductions and /(/).) Also by the altitude inequality (stated below) height P +

TRD(T/R) > height P" + TKD(P"/P) giving height P + 1 > height P" >

heigfrt(P"/PT) = 1(1). Thus height P > 1(1). (See [2] for more.)
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Let the domain S be a finitely generated ring extension of R. Let Q be prime in

S with Q n R = P. It is well known that height P + TRD(S/R) > height Q +

TRD(0/P). Here "TRD" denotes transcendence degree and TRLXÔ/P) refers to

the transcendence degree of S/Q over R/P.lf in fact height P + TRD(S/R) =

height Q + TRD(Q/P) for all such S and Q, then R is said to satisfy the altitude

formula. Almost all known Noetherian domains do satisfy the altitude formula. The

only known counterexamples are variations on [6, Example 2, pp. 202-205]. Thus

assuming that the altitude formula holds is a minor restriction.

A* and /(/). Our first lemma is essentially a restatement of [5, Proposition 18] in

a more efficient manner.

Lemma 1. Let R be a Noetherian domain which satisfies the altitude formula. Let

0 =£ I Q P be ideals of R, with P prime. Then PEA* if and only if there is a height

one prime P' of T = R + Ix + I2x2 + . . . , with P' C\ R = P. If this is the case,

then P' is homogeneous.

Proof. Suppose first that such a P' exists. As I E P c P', IT E P' and so in

the form ring of /, T/IT, P'/IT is a minimal prime. According to [5, Proposition

18], in order to show that P E A* we need only show that P'/IT is a relevant

prime. Being a minimal prime, P'/IT is homogeneous (thus P' is homogeneous as

stated), and so if it is not relevant then clearly P' = P + Ix + I2x2 + . . . , so that

T/P' = R/P. Applying the altitude formula to R E T and the primes P and P'

gives height P + TRD(T/R) = height P' + TRD(P'/P), that is, height P + 1 =

1 + 0. Thus height P = 0 contradicting that 0 ¥= I Q P. Therefore P'/IT is

relevant, as required.

Conversely, suppose that P E A*. By [5, Proposition 18], in the form ring T/IT

there is a minimal prime, call it P'/IT, with (P'/IT) n (R/I) = P/L To prove

the lemma, we must only show that in T, height P' = 1. We go to the Rees ring

T + x_1Ä[x_1], and consider the prime P' + x~xR[x~x]. Since T, being a finitely

generated extension of R, satisfies the altitude formula, and since T/P' =

(T + x-xR[x~x])/(P' + x~'ä[x-1]) we have height P' = height P' +

x~xR[x~x]. As P' is minimal over IT, P' + x~xR[x~x] is minimal over IT +

x~xR[x"x] =x~x(T + x_1Ä[x-1]), which is a principal ideal of the Rees ring.

Accordingly, height P' = 1.

Corollary 2. Let (R, P) be a local domain satisfying the altitude formula. Let I

be an ideal of R. Then P E Â * if and only if PT is a height one ideal of T.

Proof. If P E Â*, pick P' as in the lemma. Obviously PT E P' and so

height PT = 1. Conversely if height PT = 1, let P' be a height one prime of T

containing PT. Thus P E PT E P' and so P' n R = P. By the lemma, P E Â*.

Theorem 3. Let R be a Noetherian domain satisfying the altitude formula. Let
_ A

/ =f= 0 be an ideal of R and let P be a prime containing I. Then P E A * if and only if

l(IRP) = height P.
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Proof. We may assume that R is local at P, and write /(/) for l(IRP). Suppose

first that height P = /(/), call this n. Let P" be the prime P + Ix + I2x2 + . . . of

T = R + Ix + I2x2 +_Since n = /(/) = heigil(P"/PT) in the ring T/PT,

we have a chain of primes P¿ c P'x C • • • C P'n = P" in T with PT Ç P¿.

Obviously P¿ n R = P. In order to show that P G A*, in view of the lemma we

must only show that height P¿ = 1. We apply the altitude formula to R c T and

the primes P and P". Since height P = n, TKD(T/R) = 1, and T/P" = R/P, the

altitude formula yields n + 1 = height P". Now the chain P0 C P,' C • • • Cfn' =

P" shows that height P¿ — 1 as required.

Conversely, suppose that P £ A *, and now let « = /(/). As above we have

P¿ C Px' C • • • £ P^ = P" with PT ç P¿. Since P G ^*, by Lemma 1 there is a

height 1 homogeneous prime P' of T with P' n R = P. As (P, P) is local, and P'

is homogeneous, P'ÇP + /x + /V + • • • = P". Let k = height(P"/^")- As

Peí', PT £P'. Thus Â: = height(P"/P') < height(P"/Pr) = /(/) = n. That

is k < n. As P satisfies the altitude formula, T is catenary [4, Corollary 2.5]

and so height P" = height(P"/P') + height P' = k + I. Also height P" =

height(P"/^ó) + height P¿" > n + 1 (by the existence of the chain P¿ c ■ • • C P„'

= P" and the fact that 0 ¥= PT c P¿). Thus we have A: + 1 = height P" > n + 1.

As we previously saw k < n we get n = k and height P" = n + 1. Finally the

altitude formula applied to R c T and P and P" gives height P + 1 =

height P" + 0 so that height P = n = 1(1).

Corollary 4. Lcr R be a Noetherian domain satisfying the altitude formula. Let

O^/ÇP be ideals of R with P prime. If P £ A(n) for any n > 1, then

height P = l(IRP).

Proof. By [9, Theorem 2.5], A(n) Q A*, and so the corollary is immediate from

Theorem 3.

We can strengthen Corollary 2 in the case that / is basic. Recall that an ideal in a

local domain is basic if v(I) = 1(1), or equivalently if / is a minimal reduction of

itself. (Notice that in discussing A*, one may always assume that / is basic, since if

/ is a minimal reduction of /, making / basic, then for all n > I, J" reduces I" so

that J" = /".)

Corollary 5. Let I be a basic ideal in a local domain (R, P) which satisfies the

altitude formula. Then P £ A* if and only if PT is a height 1 prime of T.

Proof. Assume that P £ A*. We refer to the second half of the proof of

Theorem 3. We have height(P"/P') = k = « = /(/) = v(I). If / = (a„ ..., an)

then T = R[axx, . . . , anx] and we have an obvious homomorphism from

R[xx, . . ., xn] onto T. Let Q" and Q' be the inverse images of P" and P'

respectively. Since P" n R = P = P' n R, we have Q" n R = P = Q' n R.

Thus Q" and Q' are two primes in R[xx, . . . , xn] both lying over P. However

height(2"/ô') = height(P"/P') = n. This forces Q' to be PR[xx, .. ., x„] and so

its image P' is PT. Thus PT is a height 1 prime of T. The converse follows from

Corollary 2.
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Theorem 6. Let R be a 2-dimensional normal Noetherian domain. Then for any

ideall of R, A* = Â*.

Proof. By [9, Corollary 2.6.1], A* EA*. Conversely, suppose that P EA*. If
A

P is minimal over / then obviously P E A*. If P is not minimal over / then

height P = 2. By [5, Proposition 21], IRP is not principal. I claim that 1(1 RP) > 1.

If l(IRp) = 1 then by the usual method, we may assume RP/PP is infinite, so for

some a E RP, aRP reduces IRP. Thus aRP E IRP E aRP. However, since RP is

normal, aRP = aRP showing that IRP is principal. This contradiction shows that

l(IRP) > 1. We know l(IRP) < height P - 2. Thus l(IRP) = 2 = height P. By

Theorem 3, P E A *, since 2-dimensional normal Noetherian domains are Cohen-

Macaulay and hence satisfy the altitude formula [6, 35.5].

Corollary 7. Let I be an ideal in a 2-dimensional normal Noetherian domain R.

Let P be prime in R containing I. Then P E A* if and only if height P = l(IRP)-

Proof. Immediate from Theorems 3 and 6.

Corollary 7 fails without normality. If R is not normal then there will always be

elements a E R for which (a) § (â). In our next proposition we use this to find an

/for which A* ¥=A*.

Proposition 8. Let (R, P) be a local domain with dim R > 1. Let 0 ¥= a E R and

suppose that y E (â) - (a). Let I = (Py, a). Then for all n > l,P E A(n). If(R, P)

satisfies the altitude formula, then for all n > 1, P E A(n) — A(ri).

Proof. As y E (â), y satisfies an equation ym + rxaym~x + • • • + rmam = 0.

Note m > 1 since y & (a). Suppose that here m is the least possible. If 1 < n < m,

I claim that y" £ /" for if y" E I" = (Py, a)a, write y" = r0vX + r, vn_lp„_1a

+ • • • +r„p<fin with p, E P'. Thus y"(l - roPn) - rxapn_xy"-x--rj^"

= 0. This is impossible since 1 - r0p„ is a unit and n < m. Thus y" £ /" for

1 < n < m. Now P"yn E (Py, a)n = I", and so P" consists of zero divisors modulo

/". Thus P E A(n) for 1 < n < m.

I   now   claim   that   alm~x   = Im.   Obviously   Im = (Py)m + a(Py)m~x

+ ■ ■ ■ +am~xPy + (a)m, and each term of this sum is contained in alm~x except

the term (Py)m. However we have ym + rxaym~x + ■ ■ • + rmam = 0 from which

we see that (Py)m E alm~x. Thus Im Q alm~x. The other inclusion holds since

a El.

Now consider n > m. By the first paragraph of this proof, we already have

p = (J*-1; c) for some c E R. Obviously P - (/»'-,a»-'»+l: Can~m+X). However

since alm~x = lm,a"~m*lIm~l = /", and so P EA(n)foraün > 1.

Finally suppose that R satisfies the altitude formula. Since height P = dim R >

1, in order to show that P & A (n) f or all n > 1, in view of Corollary 4, it is enough

to show that /(/) = 1 < height P. However the second paragraph of the proof

shows that (a) reduces /. Thus /(/) = 1 as desired.
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