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ASYMPTOTIC PROBABILITIES OF AN EXCEEDANCE OVER
RENEWAL THRESHOLDS WITH AN APPLICATION TO RISK
THEORY
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Abstract

Let (Yn, Nn)n≥1 be i.i.d. bivariate random variables such that Nn are positive
with finite mean ν and Yn have a common heavy-tailed distribution F . We
consider the process (Zn)n≥1 defined by Zn = Yn − Σn−1, where Σn−1 =∑n−1

k=1 Nk. It is shown that the probability that the maximum M = maxn≥1 Zn

exceeds x is approximately ν−1
∫∞

x
F̄ (u) du, as x → ∞. Then we study the

integrated tail of the maximum of a random walk with long-tailed increments
and negative drift over the interval [0, σ] defined by some stopping time σ,
in case the randomly stopped sum is negative. Finally, an application to risk
theory is considered.

Keywords: Renewal Process, Maximum of a Random Walk, Regenerative
Process, Stopping Time, Heavy-tailed Distribution, Ruin Probability, Risk
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1. Introduction

Throughout this paper, (Y,N) and (Yn, Nn)n≥1 are independent and identically
distributed (i.i.d.) bivariate random variables (r.v.) such that N is positive with
finite mean ν and Y has a heavy-tailed distribution F . We consider the process
(Zn)n≥1 defined by Zn = Yn − Σn−1, where Σn−1 =

∑n−1
k=1 Nk (Σ0 = 0), and study

the probability that the maximum M = maxn≥1 Zn exceeds large x. It is also the
probability that there exists n such that Yn exceeds x + Σn−1, where (Σn−1)n≥1 is a
sequence of renewal thresholds. Σn−1 is independent of Yn but can be a function of
its past values. It is shown that this probability is approximately ν−1

∫∞
x
F̄ (u) du for

large x.
A possible application of this result is to risk theory. Let us consider the following

risk model with renewal arrivals:
(i) The claim sizes U1, U2, ... are i.i.d. positive r.v. with mean µU .
(ii) The claims happen at random times s1 < s2 < ... such that Tn = sn − sn−1 are

i.i.d. positive r.v. with mean µT , and are independent of (Un)n≥1.
(iii) The premium rate is assumed to be equal to 1, and µU < µT .
We define the claim surplus process (resp. the risk reserve process) by Sc

t =∑Nt

k=1 Uk − t (resp. Rt = −Sc
t ), where Nt = max {n ≥ 0 : sn ≤ t}. Let u be the

initial solvency margin which is met by capital provided by the shareholders. The
classical probability ψ (u) of ultimate ruin is the probability that the claim surplus
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process ever exceeds the level u, P (maxt≥0 S
c
t > u). Since ruin can only occur at claim

times, the ruin probability is equal to P (maxn≥0 Sn > u) where (Sn)n≥1 is the random
walk with increments Xn = Un − Tn.

A reasonable modification of this model is that some dividends are paid out to the
shareholders when the reserve process is sufficiently large. Dividend barrier models
have a long history in risk theory (Bühlmann (1996)), but other situations can be
considered. Let ϕ : R+ → R+ be a positive function such that 0 ≤ ϕ (x) ≤ x. The
insurance company uses a stopping time σ1 to decide when the reserves (just after a
claim) −Sσ1 are sufficiently large (necessarily positive) such that a part ϕ (−Sσ1) is
distributed to the shareholders and the other part −Sσ1 −ϕ (−Sσ1) is kept to reinforce
the solvency margin. At this time the reserves are reduced to 0. The same rule
is then used to define a sequence of stopping times σk and a sequence of dividends
ϕ
(
Sσk−1 − Sσk

)
. Let us define the process {Sϕ

n} by

Sϕ
n = Sn +

∑
k≥1:σk<n

ϕ
(
Sσk−1 − Sσk

)
,

where σ0 = 0 and S0 = 0. The probability of ruin is thus equal to ψ (u) = P (Mϕ > u),
where Mϕ = max {Sϕ

n : n ≥ 1}. If we put Yn = max0≤k<σn−σn−1

(
Sk+σn−1 − Sσn−1

)
and Nn = ρ

(
Sσn−1 − Sσn

)
where ρ (x) = x − ϕ (x), then it is easy to see that

P (Mϕ > u) = P (M > u). According to our result, the probability of ruin is ap-
proximately

ψ (u) ∼ (Eρ (−Sσ1))
−1
∫ ∞

u

P (Y > x) dx, for large u.

We shall not solve the problem of optimal dividend payment under a ruin constraint
(see Bühlmann (1996) and references given there, as well as Gerber (1979) for such a
problem).

The recent paper Foss and Zachary (2003) studies the tail behavior of the maximum
of a random walk with long-tailed increments (Xn) and negative drift over the interval
[0, σ] defined by some stopping time σ. The authors show that

P (Y > x) ∼ EσP (X > x) , for large x,

where X has the same distribution as the Xn. In case the randomly stopped sum is
negative, we derive, as a corollary of our result, the similar equivalence∫ ∞

u

P (Y > x) dx ∼ Eσ
∫ ∞

u

P (X > x) dx, for large u.

Then the probability of ruin is approximately

ψ (u) ∼ (Eρ (−Sσ1))
−1 Eσ1

∫ ∞

u

P (X > x) dx, for large u.

In case no dividend is distributed, ϕ is equal to 0, and by using Wald’s Identity
(Chow et al. (1964)), Eρ (−Sσ1) = −ESσ1 = −Eσ1EX, which gives the classical
asymptotics for the probability of ruin.

Section 2 presents the results of the paper. All the proofs are post-poned in a third
section.
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2. Results

We first state our main result, which is Theorem 2.1. We then give Corollary 2.1,
Corollary 2.2 and Proposition 2.1 which set out the conditions for the application to
risk theory.

Theorem 2.1. Let us assume that EN2 <∞ and that

lim
x→∞

P (Y > x) /
∫ ∞

x

P (Y > u) du = 0, (C.1)

then

lim
x→∞

P (M > x)∫∞
x

P (Y > u) du
=

1
EN

. (1)

Remark 2.1. (C.1) is not a classical condition to define heavy-tailed distributions. A
more usual definition is that the distribution of Y is long-tailed (LT), i.e.

lim
x→∞

P (Y > x− h)
P (Y > x)

= 1, for all fixed h > 0,

(see below for other definitions). If Y is LT, then it is easy to see that Condition (C.1)
holds.

Remark 2.2. Let (Sn)n≥1 be a random walk with heavy-tailed increments Xn and
negative mean. It is well-known that

lim
x→∞

P (maxn≥1 Sn > x)∫∞
x

P (X > u) du
= − 1

EX
,

(see Veraverbecke (1977), Embrechts and Veraverbecke (1982), Korshunov (1997)).
Theorem 2.1 seems to hold with Yn = Xn and Nn = −Xn although −Xn is not almost
surely positive, but have a positive mean.

Now consider a regenerative process {Vn}n≥0; there exists a zero-delayed renewal
process with epochs T0 = 0 < T1 < T2 < ... such that the cycles

{
Vn+Tk−1

}
0≤n<Tk−Tk−1

are independent and have the same distribution. Regenerative processes have many
important applications in queueing networks, storage processes, insurance or finance
(see e.g. Asmussen (1987, 2000)). A basic example is the Lindley process and its
cycles, that is, the time intervals separated by the instants where the process is equal
to 0. We write ck = Tk − Tk−1 for the cycle lengths and c is a r.v. which has the same
distribution as the ck. κ = Ec is assumed to be finite. Let us define the maxima over
cycles Mck

= max
{
Vn+Tk−1 : 0 ≤ n < Tk − Tk−1

}
.

Let us assume that there exist r.v. Nk such that
({
Vn+Tk−1

}
0≤n<Tk−Tk−1

, Nk

)
k≥1

are i.i.d.. As a consequence of Theorem 2.1, we give the asymptotic tail behavior of
M = maxk≥1 (Mck

− Σk−1), i.e. the probability that the regenerative process exceeds
high increasing thresholds which are defined by a renewal process and are constant on
regenerative cycles.

Corollary 2.1. Let us assume that EN2 <∞ and that

lim
x→∞

P (Mc > x) /
∫ ∞

x

P (Mc > u) du = 0, (C.2)
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then

lim
x→∞

P (M > x)∫∞
x

P (Mc > u) du
=

1
EN

. (2)

The proof is omitted because it is a direct application of Theorem 2.1.

Let {Xn}n≥1 be a sequence of i.i.d. random variables. By FX we denote the common
distribution of Xn and we assume that µ = EXn < 0 and P (X1 > 0) > 0. We consider
a stopping time σ with respect to the filtration {Fn}n≥1 where Fn = σ (X1, ..., Xn).
We write Sn =

∑n
i=1Xi and Mσ = max {Sn : n = 0, 1, ..., σ − 1}.

Before giving Corollary 2.2, we first provide some further definitions. For any
distribution function H on R with finite mean we define the integrated distribution
function Hs by Hs = min

(
1,
∫∞

x
H (u) du

)
. A distribution function H on R+ is

subexponential if and only if H (x) > 0 for all x and limx→∞H∗n (x) /H (x) = n,
n ≥ 2, where H∗n is the n−fold convolution of H with itself. (It is sufficient to verify
the previous condition in the case n = 2). More generally, a distribution function H on
R is subexponential if and only if H+ is subexponential, where H+ = HIR+ and IR+ is
the indicator function of R+. A well-known result is that subexponential distributions
are long-tailed. At last, a distribution H on R belongs to the class S∗ if and only if
H (x) > 0 for all x and

lim
x→∞

∫ x

0
H (x− y)H (y) dy

H (x)
=
∫ ∞

0

H (y) dy. (3)

It is also known that if H ∈ S∗ then H and Hs are subexponential (see Klüppelberg
(1988)).

Corollary 2.2. (i) Suppose that FX ∈ S∗. Let σ be any stopping time such that
P (Sσ ≤ 0) = 1 and ES2

σ <∞. Then

lim
x→∞

∫∞
x

P (Mσ > u) du∫∞
x
FX (u) du

= Eσ. (4)

(ii) Suppose that Equation (4) holds for some stopping time σ such that P (Sσ ≤ 0) =
1 and ES2

σ <∞, then F s
X is subexponential.

Remark 2.3. If we assume that E
(
X+

1

)2
< ∞ and Eσ2 < ∞, then ES2

σ < ∞ (see
Gut and Janson (1986) Theorem 3.1). Moreover if the stopping-time is the first passage
time min {n : Sn < c} with c a nonpositive constant, then the condition E

(
X+

1

)2
<

∞ implies that Eσ2 < ∞ from Theorem 2.1 of Gut (1974), and then the condition
E
(
X+

1

)2
<∞ is just needed.

Finally, we come back to the risk problem outlined in introduction. We found that,
as in the classical risk model, the probability of ruin is equivalent to the integrated tail
of X.

Proposition 2.1. Suppose that FX ∈ S∗, then

lim
x→∞

ψ (u)∫∞
u
FX (x) dx

=
Eσ

Eϕ (−Sσ)
.
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3. Proofs

We first state a Lemma which is needed for the proof of Theorem 2.1.

Lemma 3.1. Let {ξn}n≥1be a sequence of i.i.d. r.v. with Eξ1 = −m < 0 and
P (ξ1 > 0) > 0. Let us define ξ+1 = max (0, ξ1), then

E
(
ξ+1
)2
<∞⇔

∑
n≥1

P

(
n∑

i=1

ξi > 0

)
<∞.

Proof. Consider the probability that n is the epoch of the first entry of the random
walk with increments {ξn} into ]−∞; 0[, that is,

τ ξ
n = P

(
ξ1 ≥ 0, ...,

n−1∑
i=1

ξi ≥ 0,
n∑

i=1

ξi < 0

)
.

{
τ ξ
n

}
is the distribution of the first descending ladder epoch τ ξ

−. The finitness of the
moments of τ ξ

− are equivalent to the finitness of the moments of ξ+1 (see Gut (1974)

Theorem 2.1): let r ≥ 1, E
∣∣ξ+1 ∣∣r <∞ if and only if E

(
τ ξ
−

)r

<∞ .

Its probability generating function is given by P ξ (s) =
∑

n≥1 τ
ξ
ns

n, 0 ≤ s ≤ 1.
Sparre-Anderson Theorem (see Feller (1971) Theorem XII.7.1) establishes that

log
1− P ξ (s)

1− s
=
∑
n≥1

sn

n
P

(
n∑

i=1

ξi > 0

)
, 0 ≤ s < 1. (5)

Since by assumption E
∣∣ξ+1 ∣∣ <∞, then Eτ ξ

− <∞ and we can introduce the following
probability generating function

Qξ (s) =
1

Eτ ξ
−

1− P ξ (s)
(1− s)

, 0 ≤ s ≤ 1. (6)

of the random variable Iτξ
−

defined for j ≥ 0 by P
(
Iτξ
−

= j
)

=
∑

k>j τ
ξ
j /Eτ

ξ
− (see

Feller (1970) p. 265). By differentiating (6), we have(
Qξ
)′ (s)

Qξ (s)
=
∑
n≥1

sn−1P

(
n∑

i=1

ξi > 0

)
, 0 ≤ s < 1, (7)

and then

lim
s↗1

(
Qξ
)′

(s) <∞⇔
∑
n≥1

P

(
n∑

i=1

ξi > 0

)
<∞⇔ EIτξ

−
<∞⇔ E

(
τ ξ
−

)2

<∞.

We conclude that E
∣∣ξ+1 ∣∣2 <∞ is equivalent to

∑
n≥1 P (

∑n
i=1 ξi > 0) <∞. �
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Proof of Theorem 2.1. Let us denote Mk = max1≤i≤k (Yk − Σk−1). Then

P
(
Mk > x

)
= P

(
∪k

i=1 {Yi > x+ Σi−1}
)
.

The proof of Theorem 2.1 is based on several steps.

Step 1: an upper bound for P (M > x). Since P
(
Mk > x

)
is bounded by

∑k
i=1 P (Yi > x+ Σi−1),

we focus our attention on the probability

P (Yi > x+ Σi−1)
= P (Yi > x+ Σi−1,Σi−1 < (i− 1) ν (1− ε)) + P (Yi > x+ Σi−1,Σi−1 ≥ (i− 1) ν (1− ε))
≤ P (Yi > x,Σi−1 < (i− 1) ν (1− ε)) + P (Yi ≥ x+ (i− 1) ν (1− ε))
≤ P (Yi > x) P (Σi−1 < (i− 1) ν (1− ε)) + P (Yi ≥ x+ (i− 1) ν (1− ε)) .

It follows that

P
(
Mk > x

)
≤ F (x)

k∑
i=1

P
(
Σ̃u

i−1 > 0
)

+
k∑

i=1

F (x+ (i− 1) ν (1− ε)) ,

where Σ̃u
i−1 = (i− 1) ν (1− ε) − Σi−1. According to Lemma 3.1 and since EΣ̃u

1 < 0
and E (N)2 <∞, we deduce that

k∑
i=1

P
(
Σ̃u

i−1 > 0
)
<

∞∑
i=1

P
(
Σ̃u

i−1 > 0
)

= K1 (ε) <∞,

and

P
(
Mk > x

)
≤ F (x)K1 (ε) +

k∑
i=1

F (x+ (i− 1) ν (1− ε)) .

Then let k →∞, P
(
Mk > x

)
↗ P (M > x) and

P (M > x) ≤ F (x)K1 (ε) +
∞∑

i=1

F (x+ (i− 1) ν (1− ε))

≤
∫∞

x
F (u) du

ν (1− ε)
+ F (x) (K1 (ε) + 1) .

Step 2: a lower bound for P (M > x). First let us note that

P (M > x) ≥
∞∑

i=1

P (Yi > x+ Σi−1)−
∑

1≤i<j

P (Yi > x+ Σi−1, Yj > x+ Σj−1) .
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On one hand, we have

P (Yi > x+ Σi−1)

=
∫ ∞

0

P (Yi > x+ σ) fΣi−1 (σ) dσ ≥
∫ (i−1)ν(1+ε)

0

P (Yi > x+ σ) fΣi−1 (σ) dσ

≥ P (Yi > x+ (i− 1) ν (1 + ε))
∫ (i−1)ν(1+ε)

0

fΣi−1 (σ) dσ

≥ P (Yi > x+ (i− 1) ν (1 + ε)) P (Σi−1 ≤ (i− 1) ν (1 + ε))
= P (Yi > x+ (i− 1) ν (1 + ε))− P (Yi > x+ (i− 1) ν (1 + ε)) P (Σi−1 > (i− 1) ν (1 + ε))
≥ P (Yi > x+ (i− 1) ν (1 + ε))− P (Yi > x) P (Σi−1 > (i− 1) ν (1 + ε)) .

It follows from Lemma 3.1 and E (N)2 <∞ that K2 (ε) =
∑∞

i=1 P
(
Σ̃l

i−1 > 0
)
<∞

where Σ̃l
i−1 = Σi−1 − (i− 1) ν (1 + ε) since EΣ̃l

1 < 0. Then

∞∑
i=1

P (Yi > x+ Σi−1) ≥
∞∑

i=1

F (x+ (i− 1) ν (1 + ε))− F (x)K2 (ε)

≥
∫∞

x
F (u) du

ν (1 + ε)
− F (x)K2 (ε) .

On the other hand, let us denote Σj−1
i+1 =

∑j−1
k=i+1Nk for i < j. We have

P (Yi > x+ Σi−1, Yj > x+ Σj−1)

≤ P
(
Yi > x+ Σi−1, Yj > x+ Σj−1

i+1

)
≤ P (Yi > x+ Σi−1) P

(
Yj > x+ Σj−1

i+1

)
= P (Yi > x+ Σi−1) P (Yj > x+ Σj−i−1) .

Analogously to Step 1

∑
1≤i<j

P (Yi > x+ Σi−1, Yj > x+ Σj−1) ≤

(∫∞
x
F (u) du

ν (1− ε)
+ F (x) (K1 (ε) + 1)

)2

.

Thus a lower bound is given by

P (M > x) ≥
∫∞

x
F (u) du

ν (1 + ε)
− F (x)K2 (ε)−

(∫∞
x
F (u) du

ν (1− ε)
+ F (x) (K1 (ε) + 1)

)2

.

Step 3: Let us use Step 1 and 2 and let x→∞. Condition (C.1) implies that

(1− ε)
EN

≤ lim
x→∞

P (M > x)∫∞
x

P (Y > u) du
≤ (1 + ε)

EN
,

and then let ε→ 0 to complete the proof. �

Proof of Corollary 2.2. (i) Let us define the sequence of stopping times {σk}k≥0

such that σ0 = 0, σ1 = σ and the cycles{
Sn+σk−1 − Sσk−1

}
0≤n<σk−σk−1
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are independent and have the same distribution for k = 1, 2, ..... Let us write Vn+σk−1 =
Sn+σk−1 − Sσk−1 , for 0 ≤ n < σk − σk−1 and Nk = Sσk−1 − Sσk

. By the regenerative

structure of the random walk,
{({

Vn+σk−1

}
0≤n≤σk−σk−1

, Nk

)
, k ≥ 1

}
are i.i.d.. Let

us remark that

M = max
n≥1

Sn = max
k≥1

max
0≤n<σk−σk−1

(
Vn+σk−1 − Σk−1

)
.

Since F s
X is subexponential, Veraverbecke’s theorem (Korshunov (1997)) establishes

that

lim
x→∞

P (M > x)∫∞
x
FX (u) du

=
1
−µ

.

Since E (N)2 = E (−Sσ)2 <∞, to apply Corollary 2.1, it suffices to verify that

lim
x→∞

P (Mσ > x) /
∫ ∞

x

P (Mσ > u) du = 0.

Let us define the sequence of stopping times {τk}k≥0 by

τ0 = 0 τk = min
{
n : n > τk−1, Sn ≤ Sτk−1

}
,

so that τk is the kth descending ladder time. Since Sσ ≤ 0 a.s., τ1 ≤ σ a.s.. Let
µ (x) = min {n : Sn > x} ,

P (Mσ > x) =
∑
k≥1

P (τk < µ (x) ≤ τk+1, σ > µ (x))

=
∑
k≥1

P (σ > µ (x) > τk) P (τk < µ (x) ≤ τk+1|σ > µ (x))

≤
∑
k≥1

P (σ > τk) P (Mτk
> x)

≤
∑
k≥1

P (σ > k) P (Mτ > x) ≤ EσP (Mτ > x) .

Moreover, by using regenerative properties of the Lindley process

P (Mτ > x) ≤ P (] {n < τ : Sn > x, Sn+1 ≤ x} ≥ 1)

≤ E
τ−1∑
n=0

I {Sn > x, Sn+1 ≤ x}

= Eτ
∫ ∞

0

π (x+ dt) P (X ≤ −t) ∼ Eτ
µ−

µ
P (X > x) .

where π (x) = P (M ≤ x) and µ− =
∫∞
0
FX (−y) dy. And remark that P (Mσ > x) ≥

P (X > x) to get

P (Mσ > x)∫∞
x

P (Mσ > u) du
≤ EσEτ

µ−

µ

P (X > x)∫∞
x

P (X > u) du
→ 0,
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as x→∞ since the distribution of X is long-tailed.
By Corollary 2.1, we have

lim
x→∞

P (M > x)∫∞
x

P (Mσ > u) du
= − 1

ESσ
.

Moreover Wald’s identity (see Chow et al. (1964)) gives that if either E |X1| < ∞
or Eσ <∞, then ESσ = µEσ. Using now Veraverbecke’s theorem, we derive

lim
x→∞

∫∞
x

P (Mσ > u) du∫∞
x
F (u) du

= Eσ.

(ii) F s is subexponential follows from the converse to Veraverbeke’s theorem proved
by Korshunov (1997). �

Proof of Proposition 2.1. Let us consider the sequence of stopping times {σk}k≥0.
The cycles

{
Sn+σk−1 − Sσk−1

}
0≤n<σk−σk−1

are independent and have the same distri-
bution for k = 1, 2, ..... Write Vn+σk−1 = Sn+σk−1 − Sσk−1 , for 0 ≤ n < σk − σk−1

and k ≥ 1, Yn = max0≤k<σn−σn−1

(
Sk+σn−1 − Sσn−1

)
and Nn = ρ

(
Sσn−1 − Sσn

)
. By

the regenerative structure of the random walk,
({
Vn+σk−1

}
0≤n≤σk−σk−1

, Nk

)
k≥1

are

i.i.d.. Let us remark that

Mϕ = max
n≥1

Sϕ
n = max

k≥1
max

0≤n<σk−σk−1

(
Vn+σk−1 − Σk−1

)
.

According to Corollary 2.1

lim
x→∞

P (Mϕ > x)∫∞
x

P (Y > u) du
=

1
Eρ (−Sσ1)

,

and according to Corollary 2.2

lim
x→∞

∫∞
x

P (Y > u) du∫∞
x
FX (u) du

= Eσ1,

and then Proposition 2.1 is proved. �
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