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Asymptotic probability density of nonlinear phase noise
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The asymptotic probability density of nonlinear phase noise, often called the Gordon–Mollenauer effect, is
derived analytically when the number of fiber spans is large. Nonlinear phase noise is the summation of
infinitely many independently distributed noncentral x2 random variables with two degrees of freedom. The
mean and the standard deviation of those random variables are both proportional to the square of the recip-
rocal of all odd natural numbers. Nonlinear phase noise can also be accurately modeled as the summation
of a noncentral x2 random variable with two degrees of freedom and a Gaussian random variable. © 2003
Optical Society of America
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When optical amplif iers are used to compensate for
fiber loss, the interaction of amplifier noise and the
fiber Kerr effect causes phase noise, often called the
Gordon–Mollenauer effect or nonlinear phase noise.1

Nonlinear phase noise degrades both phase-shifted
keying and differential phase-shifted keying sig-
nals,2 – 6 which have received renewed attention
recently.7 –9 Usually the performance of the system is
estimated based on the variance of the nonlinear phase
noise.1,4,5 However, the nonlinear phase noise is not
Gaussian noise,3,6 and the variance is not sufficient
to characterize the system. Knowledge of the proba-
bility density function (p.d.f.) is required for better
understanding of the system and for evaluating the
system’s performance. In this Letter an analytical
expression is provided of the asymptotic p.d.f. for non-
linear phase noise when the amplifier noise is modeled
as a distributed process for a large number of fiber
spans. First the characteristic functions are derived
analytically as a simple expression, and the p.d.f. is
the inverse Fourier transform of the corresponding
characteristic function. The asymptotic p.d.f. can be
accurately applied to systems that have more than
32 spans.

For an N-span fiber system, the overall nonlinear
phase noise is1

fNL � gLeff �jA 1 n1j
2 1 jA 1 n1 1 n2j

2 1 . . .

1 jA 1 n1 1 . . . 1 nN j2� , (1)

where A is a real number that represents the ampli-
tude of the transmitted signal; nk, k � 1, . . . ,N , are
independent identically distributed complex zero-mean
circular Gaussian random variables as the optical am-
plifier noise introduced into the system at the kth fiber
span; gLeff is the product of the f iber’s nonlinear coef-
ficient and the effective fiber length per span.

With large numbers of f iber spans the summation of
Eq. (1) can be replaced by integration as

fNL � k
Z L

0
jA 1 S�z�j2dz , (2)

where S�z� is a zero-mean complex-valued Wiener
process or Brownian motion of E�S�z1�S��z2�� �
ss

2 min�z1, z2� and k � NgLeff�L is the average
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nonlinear coefficient per unit length. The variance of
ss

2 � NsASE
2�L is the noise variance per unit length,

where E�jnk
2j� � sASE

2, k � 1, . . . ,N , is the noise
variance per amplif ier.

The p.d.f. is derived for the following normalized
nonlinear phase noise:

f �
Z 1

0
jr 1 b�t�j2dt , (3)

where b�t� is a complex Wiener process with an auto-
correlation function

Rb�t, s� � E�b�s�b��t�� � min�t, s� . (4)

Comparing the integrations of Eqs. (2) and (3),
we scale the normalized phase noise of Eq. (3) by
f � Lss

2fNL�k, t � z�L is the normalized distance,
b�t� � S�tL��ss�

p
L is the normalized amplifier noise,

and r � A�ss�
p
L is the normalized amplitude.

The signal-to-noise ratio (SNR) is r2 � A2��Lss
2� �

A2��NsASE
2�.

The classic paper by Cameron and Martin10

gave the characteristic function of the integration
of the square of the Wiener process [Eq. (3)]. A
brief derivation is provided here to simplify the
model. The Wiener process of b�t� can be ex-
panded by use of the standard Karhunen–Loéve
expansion (Ref. 11, section 10-6)

b�t� �
X̀
k�1

skxkck�t� , (5)

where xk are independent ideally distributed complex
circular Gaussian random variables with zero mean
and unity variance. The eigenvalues and eigenfunc-
tions of sk

2, ck�t�, 0 # t # 1 are (Ref. 11, p. 305)

sk �
2

�2k 2 1�p
, ck�t� �

p
2 sin

∑
�2k 2 1�p

2
t
∏
.

(6)

Previous studies12 produced the equivalent of the
Karhunen–Loéve transform of a f inite number of
random variables of Eq. (1) based on numerical cal-
culation. Whereas the eigenvalues of the covariance
matrix correspond approximately to sk

2 of Eqs. (6),
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the eigenvectors always require numerical calcula-
tions.12 The assumption of a distributed process of
Eq. (2) can be used to derive both eigenvalues and
eigenfunctions of Eqs. (6) analytically.

Using Eq. (5) with Eqs. (6) yields the normalized
phase of Eq. (3) as

f � r2 1 2
p
2r

X̀
k�1

sk
2��xk� 1

X̀
k�1

sk
2jxkj

2, (7)

where �� � denotes the real part of a complex num-
ber. Because

P
`
k�1 sk

2 � 1�2 (Ref. 13, section 0.234),
we get

f �
X̀
k�1

sk
2j
p
2r 1 xkj

2. (8)

The normalized nonlinear phase noise is the sum-
mation of infinitely many independently distributed
noncentral x2 random variables with two degrees of
freedom with noncentrality parameters of 2sk

2r2 and
a variance parameter sk

2�2. The mean and the stan-
dard deviation of the random variables are both propor-
tional to the square of the reciprocal of all odd natural
numbers.

The characteristic function of j
p
2r 1 xkj

2 is
(Ref. 14, p. 44)

Cj
p
2r1xkj2 � jn� �

1
1 2 jn

exp
µ
2jnr2

1 2 jn

∂
. (9)

The characteristic function of the normalized phase f
of Eq. (3) is

Cf� jn� �
Ỳ
k�1

1
1 2 jnsk

2 exp
µ
2jnr2sk

2

1 2 jnsk
2

∂
. (10)

Using the expressions of Ref. 13, sections 1.431 and
1.421 enables the characteristic function of Eq. (10) to
be simplif ied to3,10

Cf� jn� � sec
µq

jn

∂
exp

∑
r2

q
jn tan

µq
jn

∂∏
. (11)

In Eq. (1), nonlinear phase noise is induced by self-
phase modulation of the amplif ier noise within a band-
width matched to the signal. If the amplif ier noise
has a bandwidth that is m times larger than the signal
bandwidth, the characteristic function of Eq. (11) be-
comes secm�

p
jn �exp�r2

p
jn tan�

p
jn ��.

The f irst eigenvalue of Eqs. (6) is much larger than
other eigenvalues. The normalized phase of Eq. (7) is
dominated by the noncentral x2 random variable that
corresponds to the first eigenvalue because

s1
2

s2
2 1 s3

2 1 . . .
�

�2�p�2

1�2 2 �2�p�2
� 4.27 , (12)

s1
4

s2
4 1 s3

4 1 . . .
�

�2�p�4

1�6 2 �2�p�4
� 68.12 . (13)

The relationship
P`

k�1 sk
4 � 1�6 is based on Ref. 12,

section 0.234.
Besides the noncentral x2 random variable that

corresponds to the largest eigenvalue of s1, the
other x2 random variables of j

p
2r 1 xkj

2, k . 1,
have more-or-less than same variance. From the
central-limit theorem, the summation of many ran-
dom variables with more-or-less the same variance
approaches a Gaussian random variable. The char-
acteristic function of Eq. (10) can be accurately
approximated by

Cf� jn� �
1

1 2 4jn�p2 exp
µ

8jnr2�p2

1 2 4jn�p2

∂

3 exp
∑
jn�2r2 1 1�

µ
1
2

2
4

p2

∂

2
1
2

n2�4r2 1 1�
µ
1
6

2
16
p4

∂∏
(14)

as a summation of a noncentral x2 random variable
with two degrees of freedom and a Gaussian random
variable. Whereas the characteristic function of
Eq. (11) is a simpler expression than approximation of
relation (14) and can be derived easily,3,10 the physical
meaning of relation (14) is more obvious.

One can calculate the p.d.f. of the normalized phase
noise of Eq. (3) by taking the inverse Fourier transform
of either the exact [Eq. (11)] or the approximate [re-
lation (14)] characteristic functions. Figure 1 shows
the p.d.f. of the normalized nonlinear phase noise for
three SNRs r2 (�11, 18, 25), which correspond to error
probabilities of approximately 1026, 1029, and 10212,
respectively, when amplif ier noise is the only impair-
ment. Figure 1 shows the p.d.f. that results when the
exact [Eq. (11)] or the approximate [relation (14)] char-
acteristic function is used and the Gaussian approxi-
mation with a mean and a variance of mf � r2 1 1�2
and sf

2 � �4r2 1 1��6, respectively. The exact and
the approximate p.d.f.s overlap and cannot be distin-
guished from each other.

Figure 2 shows the cumulative tail probabilities as
a function of the Q factor. The Q factor is defined
as Q � �f 2 mf��sf and gives an error probability
or tail probability of 1/2 erfc�Q�

p
2 � for a Gaussian

distribution, where erfc( ) is the complementary er-
ror function. Figure 2 is plotted for r2 � 18. From
Fig. 2, the p.d.f.s calculated from the exact [Eq. (11)] or
the approximate [relation (14)] characteristic function
show no difference. The Gaussian approximation
underestimates the cumulative tail probability for

Fig. 1. p.d.f. of normalized nonlinear phase noise f for
SNRs r2 of 11, 18, 25: lin., linear.
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Fig. 2. Cumulative tail probabilities as functions of the Q
factor.

Fig. 3. Asymptotic p.d.f. of f compared with the p.d.f.s of
N � 4, 8, 16, 32, 64 fiber spans. The p.d.f. is shown in the
inset on a linear scale.

Q . 1 but overestimates the cumulative tail probabil-
ity for Q , 21.

The p.d.f. for a finite number of fiber spans was
derived based on the orthogonalization of Eq. (1)
by N independently distributed random variables.12

Figure 3 shows a comparison of the p.d.f.s for
N � 4, 8, 16, 32, 64 of fiber spans12 with the dis-
tributed case of Eq. (11). Using the SNR r2 � 18,
I have plotted Fig. 3 on a logarithmic scale to show
the differences in the tails. Figure 3 also provides an
inset on a linear scale of the same p.d.f.s to show the
difference near the mean. The asymptotic p.d.f. of
Eq. (11) with distributed noise has the smallest spread
in the tail of the p.d.f.s with N discrete noise sources.
The asymptotic p.d.f. is highly accurate for N $ 32
fiber spans.

The analysis here assumes dispersionless fiber.
With fiber dispersion, if the nonlinear phase noise is
confined to that induced by the amplif ier noise that
has a bandwidth matched to the signal, the analysis
here should be a good approximation. Because they
have the same wavelength, both signal noise and
amplifier noise propagate at the same speed.

The overall received phase noise of the signal is
fr � �FNL�f��r2 1 1�2� 1 Qn, where �FNL� is the mean
nonlinear phase shift and Qn is the linear phase noise.
Because of the interdependence of nonlinear and linear
phase noise, it is diff icult to derive the p.d.f. of the re-
ceived phase, fr.

In summary, in this Letter the asymptotic p.d.f. of
nonlinear phase noise when the number of fiber spans
is large has been derived. A Gaussian approximation
based solely on the variance cannot be used to pre-
dict the performance of the system accurately. The
nonlinear phase noise can be modeled accurately as
the summation of a noncentral x2 random variable
with two degrees of freedom and a Gaussian random
variable.

The author’s e-mail address is kpho@
stratalight.com.
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