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Abstract 

While process variations are becoming more significant with 
each new IC technology generation, they are often modeled via 
linear regression models so that the resulting performance 
variations can be captured via Normal distributions. Nonlinear 
(e.g. quadratic) response surface models can be utilized to capture 
larger scale process variations; however, such models result in 
non-Normal distributions for circuit performance which are 
difficult to capture since the distribution model is unknown. In 
this paper we propose an asymptotic probability extraction 
method, APEX, for estimating the unknown random distribution 
when using nonlinear response surface modeling. APEX first uses 
a novel binomial moment evaluation to efficiently compute the 
high order moments of the unknown distribution, and then applies 
moment matching to approximate the characteristic function of 
the random circuit performance by an efficient rational function. 
A simple statistical timing example and an analog circuit example 
demonstrate that APEX can provide better accuracy than Monte 
Carlo simulation with 104 samples and achieve orders of 
magnitude more efficiency. We also show the error incurred by 
the popular Normal modeling assumption using standard IC 
technologies. 
 
1. Introduction 

As IC technologies are scaled to the deep sub-micron region, 
process variations are becoming critical and significantly impact 
the overall performance of a circuit. Table 1 shows some typical 
process parameters and their 3  variations as technologies are 
scaled from 0.25 µm to 70 nm. These large-scale variations 
introduce uncertainties in circuit behavior, thereby making IC 
design increasingly difficult. Low product yield or unnecessary 
over-design cannot be avoided if these process variations are not 
accurately modeled and analyzed within the IC design flow. 

Table 1. Technology parameters and 3  variations [1] 

Leff (nm) Tox (nm) Vth (mV) W (µm) H (µm) 

250 80 5.0 0.40 500 50 0.80 0.20 1.2 0.3 

180 60 4.5 0.36 450 45 0.65 0.17 1.0 0.3 

130 45 4.0 0.39 400 40 0.50 0.14 0.9 0.27 

100 40 3.5 0.42 350 40 0.40 0.12 0.8 0.27 

70 33 3.0 0.48 300 40 0.30 0.10 0.7 0.25 

 
During the past decade, various statistical analysis techniques 

[1]-[7] have been proposed and utilized in many applications such 
as statistical timing analysis, mismatch analysis, yield 
optimization, etc. The objective of these techniques is to model 
the probability distribution of the circuit performance under 
random process variations. The author in [1] applies linear 
regression to approximate a given circuit performance f (e.g. 

delay, gain, etc.) as a function of the process variations (e.g. Vth, 
Tox, etc.), and assumes that all random variations are normally 
distributed. As such, the performance f is also a Normal 
distribution, since the linear combination of normally distributed 
random variables still has a Normal distribution [8]. 

The linear regression model is efficient and accurate when the 
process variations are sufficiently small. However, the large-scale 
variations in the deep sub-micron technologies, which can reach 

35% as shown in Table 1, suggest applying high order regression 
models in order to guarantee high approximation accuracy [4]-[7]. 
Using a high order response surface model, however, brings about 
new challenges due to the nonlinear mapping between the process 
variations and the circuit performance f. The distribution of f is no 
longer Normal, as is the case for the linear regression model. The 
authors in [3]-[5] utilize Monte Carlo simulation to evaluate the 
probability distribution of f, which is computationally expensive. 
Note that the computation cost for this probability extraction is 
crucial, especially when the extraction procedure is an inner loop 
within the optimization flow. 

In this paper, we propose a novel Asymptotic Probability 
EXtraction approach, APEX, for estimating the unknown 
PDF/CDF functions using nonlinear response surface modeling. 
Given a circuit performance f (e.g. a digital circuit path delay or 
the performance parameter of an analog/RF circuit), the response 
surface modeling approximates f as a polynomial function of the 
process parameters (e.g. Vth, Tox, etc.). Since the process 
parameters are modeled as random variables, the circuit 
performance f is a function of these random variables, which is 
also a random variable. APEX applies moment matching to 
approximate the characteristic function of f (i.e. the Fourier 
transform of the probability density function [8]) by a rational 
function H. We conceptually consider H to be of the form of the 
transfer function of a linear time-invariant (LTI) system, and the 
probability distribution function (PDF) and the cumulative 
distribution function (CDF) of f are approximated by the impulse 
response and the step response of the LTI system H, respectively. 
The resulting probability distribution function can then be used to 
characterize and/or optimize the statistical performance of analog 
and digital circuits under process variations. 

APEX extends existing moment matching methods via three 
important new contributions which significantly reduce the 
computation cost and improve the approximation accuracy for this 
particular application. Firstly, a key operation required by APEX 
is to compute the high order moments, which is extremely 
expensive when using traditional techniques. In APEX, we 
propose a binomial evaluation scheme to recursively compute the 
high order moments for a given quadratic response surface model. 
The binominal moment evaluation is derived from statistical 
independence theory and principal component analysis (PCA) 
methods. It can achieve more than 106x speedup compared with 
direct moment evaluation. 

Secondly, APEX approximates the unknown probability 
distribution function by the impulse response of an LTI system. 
Directly applying such an approximation to any circuit 
performance with negative values is infeasible, since it results in 
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an LTI system that is non-causal. To overcome this difficulty, 
APEX applies a generalized Chebyshev inequality for PDF/CDF 
shifting. 

Lastly, the best-case performance (e.g. the 1% point on CDF) 
and the worst-case performance (e.g. the 99% point on CDF) are 
two important metrics to be evaluated. Direct moment matching 
cannot capture the 1% point value accurately since the moment 
matching approximation is most accurate for low frequency 
components (corresponding to the final values of CDF), and least 
accurate for high frequency components (corresponding to the 
initial values of CDF). To address this problem, a reverse 
evaluation technique is proposed in this paper to produce an 
accurate estimation of the 1% point. 

The remainder of the paper is organized as follows. In Section 
2 we review the background on response surface modeling. Then 
we propose our APEX approach in Section 3. We discuss several 
implementation issues, including the high order moment 
evaluation, PDF/CDF shifting and reverse PDF/CDF evaluation, 
in Section 4. The efficacy of APEX is demonstrated by several 
circuit examples in Section 5. Finally, we conclude in Section 6. 
 
2. Background 

Given a circuit topology, the circuit performance (e.g. gain, 
delay) is a function of the design parameters (e.g. bias current, 
transistor sizes) and the process parameters (e.g. VTH, TOX). The 
design parameters are optimized and fixed during the design 
process; however, the process parameters must be modeled as 
random variables to account for any uncertain variations. Given a 
set of fixed design parameters, the circuit performance f can be 
approximated by a linear regression model [1]: 
 XBXfXf Tˆ  (1) 

where T
NxxxX ,,, 21  denotes the process parameters, X  

is the mean value of X, XXX  represents the process 
variations, NRB̂  stands for the linear model coefficients and N 
is the total number of these random variations. 

The process variations in (1), i.e. X, are often approximated 
by zero-mean Normal distributions*. In addition, correlated 
process variations can be expressed in terms of independent 
factors using principal component analysis (PCA) [9]. Given a set 
of normally distributed random variables X and their symmetric, 
positive semi-definite correlation matrix R, PCA decomposes R 
as: 
 TVVR  (2) 
where Ndiag ,,, 21  contains the eigenvalues of R, and 

NVVVV ,,, 21  contains the corresponding eigenvectors that 

are orthonormal, i.e. IVV T  (I is the identity matrix). Based on 
 and V, PCA defines a set of new random variables: 

 XVY T5.0  (3) 
It is easy to verify that the random variables Y are independent 
and satisfy the Normal distribution 1,0N  (i.e. zero mean and 
unit standard deviation). 

The factors extracted from PCA can be interpreted as 
coordinate rotations of the space defined by the original random 
variables. In addition, if the magnitude of the eigenvalues i  
deceases quickly, it is possible to use a small number of principal 
components to approximate the original N-dimensional space. 
                                                                 
* If a process parameter  satisfies a log-Normal distribution, it can also be 
transformed to a Normal distribution by taking the logarithmic operator, 
i.e. ln( ) is normally distributed. 

More details on PCA can be found in [9]. 
Substituting (3) into (1) yields: 

 YBCYf T  (4) 

where XfC  and BVB T ˆ5.0 . The linear regression 
model in (4) is accurate when the process variations are small. 
However, the large-scale variations that are expected for 
nanoscale technologies suggest that applying quadratic response 
surface models might be required to provide sufficient accuracy: 
 YAYYBCYf TT  (5) 

In (5), RC  is the constant term, NRB  represents the linear 
coefficients and NNRA  denotes the quadratic coefficients. 
Without loss of generality, we assume that A is symmetric in this 
paper, since any asymmetric quadratic form can be easily 
converted to an equivalent symmetric form [10]. 
 
3. Asymptotic Probability Extraction 

Given the quadratic response surface model in (5), the 
objective of probability extraction is to estimate the unknown 
probability density function fpdf  and cumulative distribution 
function fcdf  for performance f. Instead of running expensive 
Monte Carlo simulations, APEX tries to find an M-th order LTI 
system H whose impulse response th  and step response ts  are 
the optimal approximations for the fpdf  and fcdf  
respectively. Here, the variable t in th  and ts  corresponds to 
the variable f in fpdf  and fcdf . The optimal approximation 
is determined by matching the first 2M moments between th  
and fpdf  for an M-th order approximation. We first describe 
the mathematical formulation of APEX in Section 3.1. Then, in 
Section 3.2 we will link APEX to traditional probability theory 
and explain why it can be used to efficiently approximate 
PDF/CDF functions. 
 
3.1 Mathematical Formulation 

We define the time moments [11] for a given circuit 
performance f whose probability density function is fpdf  as 
follows: 

 dffpdff
k

m k
k

k !
1  (6) 

In (6), the definition of time moments is identical to the traditional 
definition of moments in probability theory except for the scaling 
factor !1 kk . 

Similarly, time moments can be defined for an LTI system H 
[11]. Given an M-th order LTI system whose transfer function and 
impulse response are: 
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The time moments of H are expressed as [11]: 
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In (7), the poles Mibi ,,2,1,  and residues 
Miai ,,2,1,  are the 2M unknowns that need to be 

determined. Matching the first 2M moments in (6) and (8) yields 
the following 2M nonlinear equations: 
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The nonlinear equations in (9) can be solved using the algorithm 
proposed in [11]. Once the poles ib  and residues ia  have been 
determined, the probability density function fpdf  is optimally 
approximated by th  in (7), and the cumulative distribution 
function fcdf  is optimally approximated by the step response: 
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It is worth noting that many implementation issues must be 
considered to make our proposed approach, APEX, feasible and 
efficient. For example, the impulse response of a causal LTI 
system is only nonzero for 0t , but a PDF in practical 
applications can be nonzero for 0f . In section 4, we will 
propose several schemes to address these problems. 

The aforementioned moment-matching method was 
previously applied for IC interconnect order reduction [11], [12] 
and is related to the Padé approximation in linear control theory 
[13]. In the following section, we will explain why this moment-
matching approach is an efficient way to approximate PDF/CDF 
functions. 
 
3.2 Connection to Probability Theory 

In probability theory, given a random variable f whose 
probability density function is fpdf , the characteristic function 
is defined as the Fourier transform of fpdf  [8]. 

 df
k
fjfpdfdfefpdf

k

k
fj

0 !
 (11) 

Substituting (6) into (11) yields: 

 
0k

k
k jm  (12) 

This implies an important fact: the time moments defined in (6) 
are related to the Taylor expansion of the characteristic function at 
the expansion point 0 . Matching the first 2M moments in (9) 
is equivalent to matching the first 2M Taylor expansion 
coefficients between the original characteristic function  
and the approximated rational function sH . 

To explain why the moment-matching approach is efficient, 
we first need to show two important properties of the 
characteristic function [8]: 

Property 1: A characteristic function has maximal magnitude at 
0 , i.e. 10 . 

Property 2: A characteristic function 0  when . 

Fig. 1 shows the characteristic functions for several typical 
random distributions. The above two properties imply an 
interesting fact: namely, given a random variable f, its 

characteristic function decays as  increases. Therefore, the 
optimally approximated sH  in (7) is a low pass system. It is 
well-known that a Taylor expansion is accurate around the 
expansion point. Since a low-pass system is mainly determined by 
its behavior in the low-frequency band (around 0 ), it can be 
accurately approximated by matching the first several Taylor 
coefficients at 0 , i.e. the moments. This conclusion has been 
verified in other applications (e.g. IC interconnect order reduction 
[11], [12]) and it provides the theoretical background to explain 
why moment-matching works well for the PDF/CDF evaluations 
that we will demonstrate in Section 5. 
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Fig. 1. Characteristic function for typical distributions. 

 
4. Implementation of APEX 

Our proposed APEX approach is made practically feasible by 
applying several novel algorithms, including: 1) a binomial 
scheme for high order moment computation, 2) a generalized 
Chebyshev inequality for PDF/CDF shifting and 3) a reverse 
evaluation technique for best-case/worst-case analysis. In this 
section, we describe the mathematical formulation of each of 
these algorithms. 
 
4.1 Binomial Moment Evaluation 

A key operation required in APEX is the computation of the 
high order time moments defined in (6) for a given random 
variable f. Such a moment evaluation is equivalent to computing 
the expectation of 12,,1,0, Mkf k . Given the quadratic 

response surface model in (5), kf  is a high order polynomial in 
Y: 

 
i

Ni
k Niii yyycYf 21

21  (13) 

where iy  is the i-th element in the vector Y, ic  is the 
coefficient of the i-th product term and ij  is the positive integer 
exponent. Since the random variables Y are independent after 
PCA analysis, we have: 
 

i
Ni

k Niii yEyEyEcfE 21
21  (14) 

where E  stands for the expectation. In addition, remember that 
each random variable iy  has a Normal distribution 1,0N , 
which yields [8]: 

 
,6,4,2131

,5,3,10
01

kk
k
k
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Substituting (15) into (14), the expectation of kf  can be 
determined. 

The above computation scheme is called direct moment 
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evaluation in this paper. The key disadvantage of the direct 
moment evaluation is that, as k increases, the total number of the 
product terms in (14) will increase exponentially, thereby quickly 
making their computation infeasible. To overcome this difficulty, 
we propose a novel binomial moment evaluation scheme that 
consists of two steps: quadratic model diagonalization and 
moment evaluation. The binomial moment evaluation scheme 
recursively computes the high order moments, instead of 
explicitly constructing the high order polynomials kf  in (14). 

A. Quadratic Model Diagonalization 
The first step in binomial moment evaluation is to remove the 

cross product terms in the quadratic response surface model (5), 
thereby yielding a much simpler, but equivalent, quadratic model. 

According to matrix theory [10], any symmetric matrix 
NNRA  can be diagonalized as: 

 TUUA  (16) 
where Ndiag ,,, 21  contains the eigenvalues of A 

and NUUUU ,,, 21  is an orthogonal matrix (i.e. IUU T ) 
containing the eigenvectors. Define new random variables Z as 
follows: 
 YUZ T  (17) 
Substituting (17) into (5) yields: 

 N

i
iiii

TT

zzqC

ZZZQCZf

1

2  (18) 

where iz  is the i-th element in the vector Z and 

BUqqqQ TT
N,,, 21 . Equation (18) implies that there is 

no cross product term in the quadratic model after diagonalization. 
In addition, the following theorem guarantees that the random 
variables Z defined in (17) are still independent and satisfy the 
Normal distribution 1,0N . 

Theorem 1: Given a set of independent random variables Y with 
the Normal distribution 1,0N  and an orthogonal matrix U, the 
random variables Z defined in (17) are independent and satisfy 
the Normal distribution 1,0N . 

Proof: Since the random variables Z are linear combinations of 
normally distributed random variables Y, they are normally 
distributed. The correlation matrix for Z is given by: 
 UYYEUUYYUEZZE TTTTT  (19) 
Remember that Y is a set of independent random variables with a 
Normal distribution 1,0N , i.e. IYYE T , and matrix U is 

orthogonal, i.e. IUU T . Thus, we have: 
 IUIUUYYEUZZE TTTT  (20) 
Equation (20) implies that the random variables in Z are 
uncorrelated. In addition, uncorrelated random variables with 
Normal distributions are also independent [8].      

B. Moment Evaluation 
We now demonstrate the use of the simplified quadratic 

model (18) for fast moment evaluation. Based on (18), we define 
a set of new random variables: 

 l

i
iiii

l

i
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iiiii

zzqCgCh

zzqg

1

2

1

2

 (21) 

Comparing (21) with (18), it is obvious that when Nl , 
fhN . Instead of computing the high order moments of f 

directly, the proposed binomial moment evaluation scheme 
successively computes the moments of lh , as shown in Fig. 2. 

1. Start from Ch0  and compute kk ChE 0  for each 
12,,1,0 Mk . Set 1l . 

2. For each 12,,1,0 Mk , compute: 
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3. If Nl , then go to Step 4. Otherwise, 1ll  and return 
Step 2. 

4. For each 12,,1,0 Mk , we have k
N

k hEfE . 

Fig. 2. Binomial moment evaluation algorithm. 

Step 2 in Fig. 2 is the key operation required by the binomial 
moment evaluation algorithm. In Step 2, both (22) and (23) utilize 
the binomial theorem to get the binomial series. Therefore, we 
refer to this algorithm as binomial moment evaluation in this 
paper. 

In (22), the expectation ik
lzE 2  can be easily evaluated 

using the closed-form expression (15), since lz  is normally 
distributed 1,0N . Equation (23) utilizes the property that 1lh  
and lg  are independent, because 1lh  is a function of 

1,,2,1, lizi , lg  is a function of lz  and all iz  are 

mutually independent. Therefore, ik
l

i
l

ik
l

i
l gEhEghE 11 , 

where the values of i
lhE 1  and ik

lgE  have already been 
computed in previous steps. 

The main advantage of the binomial moment evaluation is 
that, unlike the direct moment evaluation in (14), it does not 
explicitly construct the high order polynomial kf . Therefore, 
unlike direct moment evaluation, where the total number of the 
product terms will exponentially increase, both k

lgE  in (22) and 
k
lhE  in (23) contain at most 2M product terms. Since 

12,,1,0 Mk  and Nl ,,1,0  for an M-th order APEX 
approximation with N independent random variations, the total 
number of k

lgE  and k
lhE  that need to be computed is 

MNO . In addition, the matrix diagonalization in (16) only 

needs to be computed once and has a complexity of 3NO . 
Therefore, the computational complexity of the proposed 
algorithm is 32 NONMO . In most circuit applications, N is 
small (around 5~100) after PCA analysis, and selecting 

10~7M  provides sufficient accuracy for moment matching. 
With these typical values for M and N, the proposed binomial 
moment evaluation is extremely fast, as we will demonstrate with 
numerical examples in Section 5. 

It should be noted that as long as the circuit performance f is 
represented by the quadratic model in (5) and the process 
variations are normally distributed, binomial moment evaluation 
provides the exact high order moment values (except for 
numerical errors). There is no further assumption or 
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approximation made by the algorithm. 
In summary, binomial moment evaluation utilizes statistical 

independence theory and principal component analysis (PCA) to 
efficiently compute high order moment values, which are required 
in moment matching for probability extraction. 
 
4.2 PDF/CDF Shifting 

 

Mean µ 

 fpdf

f0 

Case 1  
Not Causal 

Case 2  
Large Delay

 
Fig. 3. Illustration for PDF/CDF shifting. 

APEX approximates the unknown PDF fpdf  as the 
impulse response th  of an LTI system. The impulse response of 
a causal system is only nonzero for 0t , but a PDF in practical 
applications can be nonzero for 0f . In such cases, we need to 
right-shift the unknown fpdf  by 0f  and use the impulse 
response th  to approximate the shifted PDF 0ffpdf , as 
shown in Fig. 3 (case 1). 

In addition, even if the unknown PDF fpdf  is zero for all 
0f , it can be far away from the origin, as shown in Fig. 3 (case 

2). As such, the corresponding impulse response th  presents a 
large delay in time domain, which cannot be accurately captured 
by a low-order approximation. In such cases, we need to left-shift 
the unknown fpdf  by 0f  and use the impulse response th  
to approximate the shifted PDF 0ffpdf . 

The above analysis implies that it is crucial to determine the 
correct value of 0f  for PDF/CDF shifting. Over-shifting the 
unknown PDF to either left or right side can increase the 
approximation error. In this paper, process variations are modeled 
as Normal distributions, which are unbounded and distributed 
over , . Therefore, any circuit performance f represented 
by the quadratic model in (5) is also unbounded. It is impossible 
to completely shift fpdf  to the positive axis. 

However, since f is a random variable, fpdf  can be left-
shifted by 0f  ( 0f  is negative in case of right-shifting) such that 
the probability 00ffP  is sufficiently small. As shown in 
Fig. 3, the PDF/CDF shifting problem can be stated as follows: 
find the value  and left-shift fpdf  by 0f , where µ is 
the mean value of f, such that the probability 00ffP  is not 
greater than a given error tolerance . In addition, we want to 
select the value  to be as small as possible, i.e. find the smallest  
satisfying 00ffP . A small  results in a small time-
domain delay in th  and, therefore, high approximation accuracy 
for fpdf . To estimate , we need the following theorem. 

Theorem 2: Given a random variable f, for any 0  and 
,6,4,2k , 

 k

kfEfP  (24) 

where µ is the mean value of f. 

Proof: For any ,6,4,2k , we have 

 

k

k

k

k

f
k

k

f

fEdffpdff

dffpdffdffpdffP

 (25) 

Note that the above proof is not restricted to any special 
probability distribution.           

Based on (24), if the unknown PDF fpdf  is left-shifted by 

0f , we have: 

 
k

kfEfP

fPfPffP 000

 (26) 

where ,6,4,2k . Therefore, one sufficient condition for 
00ffP  is: 

 ,6,4,2kfE
k

k

 (27) 

which is equivalent to: 

 ,6,4,2

1

kfE kk

 (28) 

Equation (28) estimates  using high order central moments. In an 
M-th order approximation, after the high order expectations 

kfE  12,,1,0 Mk  are computed by the binomial 
moment evaluation algorithm in Fig. 2, the central moments can 
be easily calculated using the binomial theorem: 

 
k

i

ikik fE
i
k

fE
0

 (29) 

where fE . Then, using (28), an estimated  is computed for 
each 22,,4,2 Mk , which is denoted as k . The minimal 
value of all these k  values is utilized as the final  for PDF/CDF 
shifting, since we aim to find the smallest  to achieve high 
approximation accuracy for fpdf . 

It is worth mentioning that when 2k , equation (24) is the 
well-known Chebyshev inequality [8]. We have generalized the 
2nd order Chebyshev inequality to higher orders and, therefore 
refer to (24) as the generalized Chebyshev inequality. In practical 
applications we find that high order moments provide a much 
tighter (i.e. smaller) estimation of , as is demonstrated by the 
numerical examples in Section 5. 

In summary, the proposed generalized Chebyshev inequality 
(24) provides an effective way to estimate the boundary for 
PDF/CDF shifting. As such, the major part of the unknown 
PDF/CDF can be moved to the positive axis, which is then 
accurately approximated by the impulse/step response of a causal 
LTI system. 
 
4.3 Reverse PDF/CDF Evaluation 

In many practical applications, such as robust circuit 
optimization [4], [14], the best-case performance (e.g. the 1% 
point on CDF) and the worst-case performance (e.g. the 99% 
point on CDF) are two important metrics to be evaluated. As 
discussed in Section 3.2, APEX matches the first 2M Taylor 
expansion coefficients between the original characteristic function 

 and the approximated rational function. Remember that the 
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Taylor expansion is most accurate around the expansion point 
0 . According to the final value theorem of the Laplace 

transform, accurately approximating  at 0  provides an 
accurate fpdf  at f . This, in turn, implies that the 
proposed approach can accurately estimate the 99% point of the 
random distribution, as shown in Fig. 4. 

fpdf

f0 

Flip for Reverse Evaluation 

fpdf

Accurate for Estimating 
the 99% Point 

Accurate for Estimating 
the 1% Point  

Fig. 4. Illustration for reverse PDF/CDF evaluation. 

The above analysis motivates us to apply a reverse evaluation 
scheme for accurately estimating the 1% point. As shown in Fig. 
4, the reverse evaluation algorithm flips the original fpdf  to 

fpdf . The 1% point of the original fpdf  now becomes the 
99% point of the flipped fpdf  which can be accurately 
evaluated by APEX. 
 
4.4 Summary 

1. Start from the quadratic response surface model in (5) and a 
given approximation order M. 

2. Diagonalize the quadratic model based on (16)~(18) and 
compute the high order expectations kfE  using the 
binomial moment evaluation algorithm in Fig. 2. 

3. Compute the central moments kfE  based on (29). 
4. Determine the value of  using (28) and 0f , where µ 

is the mean value of f. 
5. Compute time moments kk

k ffEkm 0!1 , where 
kffE 0  is similarly evaluated by replacing µ by 0f  in 

(29). 
6. Substitute km  into (9) and solve the problem unknowns ia  

and ib . 
7. The shifted 0ffpdf  is approximated by the impulse 

response in (7) and the shifted 0ffcdf  is approximated 
by the step response in (10). 

8. Shift 0ffpdf  and 0ffcdf  back to fpdf  and 
fcdf . 
Fig. 5. Overall implementation of APEX. 

Fig. 5 summarizes the overall implementation of APEX 
except for reverse evaluation. If reverse evaluation is required to 
improve estimation accuracy for the 1% point, we need to 

compute the high order expectations kfE  in Step 2 and 
repeat Step 3~8 for computing fpdf  and fcdf . However, 
using reverse evaluation doesn’t require explicitly computing the 
high order expectations again. Note that: 

 kkk fEfE 1  (30) 

where the high order expectations kfE  have already been 
calculated in previous computations. 

The algorithm in Fig. 5 is based on a given approximation 

order M. The authors in [11] and [12] proposed several methods 
for iteratively determining M based on the approximation error. 
The approximation order should be increased if the error is large. 
These methods can also be applied here for APEX. In addition, it 
is worth mentioning that using an approximation order greater 
than 10 can result in serious numerical problems [11], [12]. In 
most practical applications, we find that selecting M in the range 
of 7~10 can achieve the best accuracy. 
 
5. Numerical Examples 

In this section we demonstrate the efficacy of APEX using 
several circuit examples. All experiments are run on a SUN Sparc 

 1GHz server. 
 
5.1 ISCAS’89 S27 
A. Response Surface Modeling 

 
Fig. 6. Longest path in ISCAS’89 S27. 

We create a physical implementation for the ISCAS’89 S27 
benchmark circuit using the ST CMOS 0.13 µm process. This 
benchmark circuit is simple, but it enables us to make a full 
comparison of APEX with various PDF/CDF estimation methods. 
Given a set of fixed gate sizes, the longest path delay in the 
benchmark circuit (shown in Fig. 6) is a function of the process 
variations (e.g. Vth, Tox, L, etc.). Since the circuit only consists 
of six gates which can be put close to each other in the layout, 
inter-die variation will dominate intra-die variation, and gate 
delays will dominate (local) interconnect delays in this example. 
Therefore, for simplicity, we only consider inter-die variations for 
CMOS transistors in this example. The probability distributions 
and the correlation information of the inter-die transistor 
variations are obtained from the ST design kit. After PCA 
analysis, 6 principal random factors are identified to represent 
these process variations. We should note, however, that nothing 
precludes us from including more detailed intra-die and/or 
interconnect variation models in APEX as well. 

We approximate the longest path delay as a function of 
process variations by a linear regression model and a quadratic 
response surface (i.e. second order polynomial) model 
respectively. The fitting error is 4.48% for the linear model and 
1.10% for the quadratic model (4x difference). 

While it is worth noting that the linear modeling error in this 
example is not very large, as IC technologies are scaled to finer 
feature sizes, the process variations will become relatively larger, 
thereby making the nonlinear terms in the quadratic model even 
more important. 

B. Moment Evaluation 
Table 2 compares the computation time for direct moment 

evaluation and our proposed binomial moment evaluation. In 
direct moment evaluation, the number of the total product terms 
increases exponentially, thereby making the computation task 
quickly infeasible. Binomial moment evaluation, however, is 
extremely fast and achieves more than 106x speedup over direct 
moment evaluation. In addition, we verify that the moment values 
obtained from both approaches are identical except for numerical 
errors. 
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Table 2. Computation time for moment evaluation 
Direct Binomial Moment 

Order # of Terms Time (Sec.) Time (Sec.) 
1 28 1.00×10-2 0.01 
3 924 3.02×100 0.01 
5 8008 2.33×102 0.01 
6 18564 1.57×103 0.01 
7 38760 8.43×103 0.01 
8 74613 3.73×104 0.02 

10   0.02 
15   0.04 
20   0.07 

C. PDF/CDF Shifting 
As discussed in Section 4.2, PDF/CDF shifting is necessary to 

make the proposed APEX approach feasible and efficient. A key 
operation for PDF/CDF shifting is determining the  value based 
on (28) (also see Fig. 3). We select an error tolerance 310  in 
(28). Fig. 7 shows the estimated  value using various high order 
moments. From Fig. 7, we find that the high order moments 

2k  provide a much tighter (i.e. smaller) estimation of . 
However, after the moment order 10k , further increases in k do 
not have a significant impact on reducing . 
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Fig. 7. Estimated  value using high order moments. 

D. PDF/CDF Evaluation 
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Fig. 8. Cumulative distribution function for delay. 

Fig. 8 shows the cumulative distribution function using  
various approximation orders. In Fig. 8, the “exact” cumulative 
distribution function is evaluated by Monte Carlo simulation with 
106 samples. Note that, the CDF obtained from the low order 
approximation (Order = 4) is not accurate and contains numerical 
oscillations. However, once the approximation order is increased 
to 8, these oscillations are eliminated and the approximated CDF 
asymptotically approaches the exact CDF. Similar behavior has 

been noted in moment matching of LTI models of interconnect 
circuits [11], [12]. 

E. Comparison of Accuracy and Speed 
Table 3 compares the accuracy and speed for three different 

probability extraction approaches: linear regression, Monte Carlo 
analysis with 104 samples, and the proposed APEX approach. 
Several specific points on the cumulative distribution function are 
utilized for comparing the accuracy. The 1% point and the 99% 
point, for example, denote the best-case delay and the worst-case 
delay respectively. After the cumulative distribution function is 
explicitly obtained in the closed-form expression (10), the best-
case delay, worst-case delay and any other specific points on CDF 
can be easily found using a binary search algorithm. The error 
values in Table 3 are calculated against the “exact” CDF obtained 
by Monte Carlo simulation with 106 samples. 

Note from Table 3 that the linear regression approach has the 
largest error. APEX achieves more than 200x speedup over the 
Monte Carlo analysis with 104 samples, while still providing 
better accuracy. In this example, reverse evaluation on fpdf  
reduces the 1% point estimation error by 4x, from 0.20% to 
0.04%. This observation demonstrates the efficacy of the reverse 
evaluation method proposed in Section 4.3. 

Table 3. Estimation error (compared to Monte Carlo with 106 
samples) and computation cost 

 Linear MC (104 Runs) APEX 
1% Point 1.43% 0.34% 0.04%* 

10% Point 4.63% 0.64% 0.01% 
25% Point 5.76% 0.47% 0.03% 
50% Point 6.24% 0.32% 0.02% 
75% Point 5.77% 0.25% 0.02% 
90% Point 4.53% 0.66% 0.03% 
99% Point 0.18% 0.78% 0.09% 
Cost (Sec.) 0.04 43.44 0.18 

 
5.2 Low Noise Amplifier 
A. Response Surface Modeling 

 
Fig. 9. Circuit schematic for LNA. 

As a second example we consider a low noise amplifier 
designed in the IBM BiCMOS 0.25 µm process, as shown in Fig. 
9. In this example, the variations on both MOS transistors and 
passive components (capacitance and inductance) are considered. 
The probability distributions and the correlation information of 
these variations are provided in the IBM design kit. After PCA 
analysis, 8 principal factors are identified to represent the process 
variations. 

The performance of the LNA is characterized by 8 different 
specifications. Given a set of determined circuit sizes, each circuit 
performance is a function of the process variations. We 
approximate these unknown functions by linear regression models 
                                                                 
* This 1% point error is computed by using reverse evaluation. 
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and quadratic response (i.e. second order polynomial) models 
respectively. Table 4 shows the modeling error for all these 8 
performances. In this example, the quadratic modeling error is 
7.5x smaller than the linear modeling error on average. 

Table 4. Regression modeling error for LNA 
Performance Linear Quadratic 

F0 1.76% 0.14% 
S11 6.40% 1.32% 
S12 3.44% 0.61% 
S21 2.94% 0.34% 
S22 5.56% 3.47% 
NF 2.38% 0.23% 
IIP3 4.49% 0.91% 

Power 3.79% 0.70% 

B. Comparison of Accuracy and Speed 

Table 5. Estimation error for lower bound (1% point) 
Performance Corner Linear MC (104 Runs) APEX 

F0 15.80% 1.11% 0.24% 0.06% 
S11 45.44% 5.78% 0.47% 0.09% 
S12 38.87% 3.88% 0.59% 0.14% 
S21 60.25% 2.91% 0.08% 0.17% 
S22 23.08% 1.01% 0.29% 0.07% 
NF 51.91% 3.70% 0.10% 0.06% 
IIP3 54.64% 5.02% 0.22% 0.33% 

Power 16.56% 0.01% 0.47% 0.09% 

Table 6. Estimation error for upper bound (99% point) 
Performance Corner Linear MC (104 Runs) APEX 

F0 20.12% 1.10% 1.31% 0.05% 
S11 51.53% 1.40% 1.74% 0.08% 
S12 44.64% 1.16% 0.25% 0.28% 
S21 51.63% 4.69% 0.02% 0.19% 
S22 36.01% 5.61% 0.29% 0.19% 
NF 72.82% 3.52% 1.28% 0.12% 
IIP3 59.66% 5.93% 0.01% 0.26% 

Power 42.53% 1.24% 1.53% 0.02% 

Table 7. Computation cost for statistical analysis (Sec.) 
Performance Linear MC (104 Runs) APEX 

F0 0.04 41.73 0.16 
S11 0.03 41.86 0.14 
S12 0.04 41.75 0.17 
S21 0.04 41.84 0.19 
S22 0.04 41.78 0.19 
NF 0.03 41.70 0.15 
IIP3 0.03 41.80 0.14 

Power 0.04 41.91 0.15 
 

Table 5 and Table 6 compare the estimation accuracy for four 
different statistical analysis approaches: corner simulation, linear 
regression, Monte Carlo analysis with 104 samples and the 
proposed APEX approach. These error values are calculated 
against the “exact” CDF obtained by Monte Carlo simulation with 
106 samples. 

The corner simulation approach computes the best-case and 
worst-case performance by enumerating all process corners, i.e. 
combining the extreme values of all process parameters. The 
corner simulation approach is simple, but it can result in 
extremely large errors, as shown in Table 5 and Table 6. Linear 

regression provides more accurate results than corner simulation, 
but the errors are expected to increase as IC technologies continue 
to scale. APEX achieves better accuracy than the Monte Carlo 
analysis with 104 samples, and is more than 200x faster, as shown 
in Table 7. 
 
6. Conclusion 

As IC technologies reach nanoscale, process variations are 
becoming relatively large and nonlinear (quadratic) response 
surface models might be required to accurately characterize the 
large-scale variations. In this paper we propose an asymptotic 
probability extraction (APEX) method for estimating the non-
Normal random distribution resulting from the nonlinear response 
surface modeling. Three novel algorithms, i.e. binomial moment 
evaluation, CDF/PDF shifting and reverse PDF/CDF evaluation, 
are proposed to reduce the computation cost and improve the 
estimation accuracy. As is demonstrated by the numerical 
examples, applying APEX results in better accuracy than the 
Monte Carlo analysis with 104 samples, and achieves more than 
200x speedup. APEX can be incorporated into a yield 
optimization loop or a timing analysis environment, for efficient 
probability extraction and worst-case analyses. For example, the 
efficacy of applying APEX to robust analog design is further 
discussed in [14]. 
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