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For adaptive clinical trials using a generalized Friedman’s urn design, we

derive the limiting distribution of the urn composition under staggered entry

and delayed response. The stochastic delay mechanism is assumed to depend

on both the treatment assigned and the patient’s response. A very general

setup is employed with K treatments and L responses. When L = K = 2,

one example of a generalized Friedman’s urn design is the randomized play-

the-winner rule. An application of this rule occurred in a clinical trial of

depression, which had staggered entry and delayed response. We show that

maximum likelihood estimators from such a trial have the usual asymptotic

properties.

1. Preliminaries.

1.1. Introduction. Adaptive designs for clinical trials use sequentially accru-

ing outcome data to dynamically update the probability of assignment to one of

two or more treatments. The idea is to skew these probabilities to favor the treat-

ment that has been the most effective thus far in the trial, thus making the ran-

domization strategy more attractive to physicians and their patients than standard

equal allocation. A typical probability model for adaptive clinical trials is the gen-

eralized Friedman’s urn model [cf. Athreya and Karlin (1968)]. Initially, a vector

Y1 = (Y11, . . . , Y1K) of balls of type 1, . . . ,K is placed in an “urn” (computer

generated). Patients sequentially enter the trial. When a patient is ready to be ran-

domized, a ball is drawn at random and replaced. If it was type i, the ith treatment

is assigned. We then wait for a random variable ξ (whose probability distribution

depends on i) to be observed. An additional dij balls are added to the urn of type

j = 1, . . . ,K , where dij (ξ) is some function on the sample space of ξ . The algo-

rithm is repeated through n stages.

Let Yn = (Yn1, . . . , YnK) be the urn composition when the nth patient arrives

to be randomized. Then the probability that the patient will be randomized to
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treatment j is given by Ynj/|Yn|, where |Yn| =
∑K

i=1 Yni . Let D(ξ) = ((dij (ξ),

i, j = 1, . . . ,K)). First-order asymptotics for the generalized Friedman’s urn are

determined by the generating matrix of the urn, given by H = E{D(ξ)}. Provided

H is positive regular and Pr{dij = 0 ∀j} = 0 for all i,
Ynj

|Yn|
→ vj almost surely,(1)

j = 1, . . . ,K, where v = (v1, . . . , vK ) is the normalized left eigenvector corre-

sponding to the maximal eigenvalue of H [cf. Athreya and Karlin (1968)].

As a simple example, ξ might be the primary outcome of a clinical trial,

such as death or cure. Assuming that Y1 is deterministic, let dij = (K − 1)δij
if cure on treatment i, and dij = (1 − δij ) if death on treatment i, where δij
is the Kronecker delta. Assuming that ξ is immediately observable after the

patient is randomized, we have |Yn| = |Y1| + (K − 1)(n − 1). When K = 2,

this is the randomized play-the-winner rule of Wei and Durham (1978), which

has been used occasionally in clinical trials [see, e.g., Bartlett, Roloff, Cornell,

Andrews, Dillon and Zwischenberger (1985) and Tamura, Faries, Andersen and

Heiligenstein (1994)]. Wei, Smythe, Lin and Park (1990) gave a simple probability

model for the randomized play-the-winner rule, letting p1 be the probability of

success on treatment 1 and p2 be the probability of success on treatment 2. Under

this model, by (1),
Yn1

Y11 + Y12 + n − 1
→

1 − p2

2 − p1 − p2

almost surely

[Rosenberger (1996), page 140] and hence the rule allocates according to the rel-

ative risk of failure on treatment 2 versus treatment 1. Wei (1979) first proposed

using the generalized Friedman’s urn to develop a broad class of allocation rules

for clinical trials. The generalized Friedman’s urn also has been used in other med-

ical applications [see, e.g., Rosenberger (1996) and Rosenberger and Grill (1997)].

Typically, clinical trials do not result in immediate outcomes, and urn models are

simply not appropriate for today’s oft-performed long-term survival trials, where

outcomes may not be ascertainable for many years. However, there are many trials

where many or most outcomes are available during the recruitment period, even

though individual patient outcomes may not be immediately available prior to the

randomization of the next patient. Consequently, the urn can be updated when

outcomes become available, and this does not involve any additional logistical

complexities. Wei (1988) suggested such updating for the randomized play-the-

winner rule and introduced an indicator function, δjk, j < k, that takes the

value 1 if the response of patient j occurs before patient k is randomized and 0

otherwise. He did not explore its properties. Later, Bandyopadhyay and Biswas

(1996) explored properties of a simple probability model, which assumes that

P (δjk = 1) is a constant depending only on the lag k− j , for a modified version of

the randomized play-the-winner rule. Delays in response can slow the adaptation

process considerably, and simulation studies show that the expected allocation
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proportions generated by the design are more conservative than if outcomes are

immediately ascertainable [see Rosenberger (1999)]. However, the adaptive nature

of the design still accomplishes its purpose: more patients, on average, are assigned

to the better treatment. In practice, time to response in clinical trials can depend

on the treatment assigned and the response observed. Heretofore, what has not

been known is how such delayed response with staggered entry affects the limiting

distribution of the urn composition given by (1).

In this paper, we verify that stochastic staggered entry and delay mechanisms

do not affect the limiting distribution of the urn for a wide class of designs

defined by the generalized Friedman’s urn. We then show that the maximum

likelihood estimators have the usual asymptotic properties. This extends the work

of Rosenberger, Flournoy and Durham (1997), who investigated properties of

maximum likelihood estimators from a generalized Friedman’s urn design with

immediate response. In our proofs, we assume that patients arrive sequentially and

their arrival process has independent increments, and that time to response has a

distribution that depends on both the treatment assigned and the patient’s response.

We investigate a very general adaptive randomization scheme with K treatments

and L outcomes, based on the generalized Friedman’s urn model.

1.2. Motivating example. Tamura, Faries, Andersen and Heiligenstein (1994)

described an adaptive placebo-controlled clinical trial of fluoxetine in depression.

Patients were stratified by shortened or normal rapid eye movement latency

(REML) and then were randomized according to the randomized play-the-winner

rule. Separate urns were used in the REML strata. The outcome on which

the adaptive randomization was based is a 50% reduction in the Hamilton

Depression Scale (HAMD17) score in two consecutive visits after at least three

weeks of therapy. This outcome was obviously not ascertainable immediately,

and hence the urn was updated based on the available data. Exploratory data

analysis [Rosenberger and Hu (1999)] indicated that entry time was approximately

uniformly distributed over a 270-day time interval. Time to response was similar

among the two REML strata and two treatment groups, but differed according to

patient outcomes. Time to response was approximately normal with mean 43 days

and variance 122 days; in nonresponders, time to determination of nonresponse

was approximately uniform on the interval (20 days, 75 days).

When there is immediate response, Wei, Smythe, Lin and Park (1990) showed

that the usual maximum likelihood estimator of the treatment effect from a clinical

trial employing the randomized play-the-winner rule has the usual asymptotic

properties, namely, consistency and asymptotic normality. However, this result is

not applicable to clinical trials with delayed response, such as the fluoxetine trial;

hence, we have the motivation for this paper.

REMARK 1. The fluoxetine trial had a number of subtleties that necessitated

nonstandard analyses; in particular, the outcome on which the adaptation was
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based was a surrogate outcome for the true primary outcome. We note that Tamura,

Faries, Andersen and Heiligenstein (1994) simulated the joint distribution of these

outcomes and the time delay in order to make inferences about the treatment

effect, and they also performed a Bayesian analysis. They found that fluoxetine

was modestly effective in the shortened REML stratum and not effective in the

normal REML stratum. The results of our paper suggest a simple alternative

analysis, but only for the surrogate outcome, based on the asymptotic distribution

of the treatment effect. However, the accuracy of such a test may be appropriately

questioned since there were approximately 40 patients in each stratum. With

large numbers of patients, enumerating or simulating the exact distribution of

the test statistic may be computationally intensive; in which case the asymptotic

distribution given in this paper may be attractive.

1.3. Organization of the paper. In Section 2, we derive the limiting distrib-

ution of the urn composition under delayed response for a multi-armed trial. In

Theorem 1, we prove that the urn composition, Yn, suitably normalized, tends to

the same limit as in (1). In Theorem 2, we show that the urn composition tends

to a multivariate normal distribution in law, and we give a form of the variance–

covariance matrix. The main assumption of the theorems is that the delay cannot

be very large relative to the patient entry stream. The important observation is

made that the limiting distribution does not depend on the delay mechanism, but,

in practice, the delay mechanism must be taken into account in estimating the

variance–covariance matrix. In Section 3, we derive the full likelihood and show

that the usual asymptotic inference results can be applied to data arising from a

generalized Friedman’s urn design when there is staggered entry and delayed re-

sponse. We conclude our paper with some observations in Section 4. Proofs are

relegated to the Appendix.

2. Asymptotic properties of the urn composition. We assume a multi-

nomial response model with responses ξn = l if patient n had response l,

l = 1, . . . ,L. Let Jn be the treatment indicator for the nth patient, that is, Jn = j if

patient n was randomized to treatment j = 1, . . . ,K , and let Xn = (Xn1, . . . ,XnK )

satisfy XnJn = 1 and all other elements 0. We assume that the entry time of the

nth patient is tn, where {tn − tn−1} are i.i.d. for all n. The response time of the

nth patient is denoted by τn(j, l), which has distribution gj l, j = 1, . . . ,K, l =
1, . . . ,L, for all n, so that the distribution of the response times can depend

on both the treatment assigned and the response observed. For the nth patient

randomized to treatment j , we define an indicator function Mj l(n,m) as follows:

Mj l(n,m) = 0 if ξn 	= l and Mj l(n,m) = 1[response time∈(tn+m,tn+m+1)] if ξn = l. We

assume for n = 1,2, . . . that, given j , {Mjξn(n,m)} are i.i.d. By definition, for

every pair of n and j , there is only one pair (l,m) such that Mj l(n,m) = 1 and

Mj l′(n,m
′) = 0 for all (l,m) 	= (l′,m′). We can define µj lm = E{Mj l(n,m)} as

the probability that a patient on treatment j with response l will respond after m
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more patients are enrolled and before m + 1 more patients are enrolled. Thus we

have
∑

l,m

µj lm = 1 for j = 1, . . . ,K.

For patient n, after observing ξn = l, Jn = i, we add dij (ξn = l) balls of type j

to the urn, where the total number of balls added at each stage is constant; that is,
∑K

j=1 dij (ξn) = β , where β > 0. Without loss of generality, we can assume β = 1;

otherwise, we can consider the sequence {Yn/β} instead. Note that the number of

balls added to the urn does not have to be an integer, as in the models of Andersen,

Faries and Tamura (1994). Let D(l) = ((dij (ξn = l), i, j = 1, . . . ,K)).

REMARK 2. It is possible to generalize our results to the case in which the

total number of balls added at each stage is random, provided that the expected

number of balls added is a positive constant.

For given n and m, if Mj l(n,m) = 1, then we add balls at the (n + m)th stage

according to the rule XnD(l). Xn contains the randomness in Jn, and D(l) contains

the randomness in ξn, conditioned on Jn. We can now write a recursive formula

for the urn composition,

Yn = Yn−1 + Wn,

where Wn is the number of balls of each type added at the nth stage, given by

Wn =
n−2
∑

m=0

MJn−m−1,ξn−m−1
(n− m− 1,m)Xn−m−1D(ξn−m−1).

Denote by Fn the sigma algebra generated by {Y1, . . . ,Yn} and let En{·}=

E{·|Fn}. We have

En−1

{

MJn−m−1,ξn−m−1
(n − m− 1,m)Xn−m−1D(ξn−m−1)

}

=
L

∑

l=1

Yn−m−1

|Yn−m−1|
µlmD(l),

where µlm is a K ×K diagonal matrix with the j th diagonal element µj lm. Then

En−1{Wn} =
n−2
∑

m=0

Yn−m−1

|Yn−m−1|

(

L
∑

l=1

µlmD(l)

)

.

It turns out that it is easier to work with the recursive formula

Yn = Yn−1 + En−1{Wn} +
(

Wn − En−1{Wn}
)

.
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Setting Qn = Wn − En−1{Wn}, we obtain the recursive formula

Yn = Yn−1 +
n−2
∑

m=0

Yn−m−1

|Yn−m−1|

(

L
∑

l=1

µlmD(l)

)

+ Qn.(2)

We will use (2) as the pivotal recursion formula to prove asymptotic properties

of Yn. But first we will require the following assumptions:

ASSUMPTION 1. For some c ∈ (0,1],

∞
∑

i=m

µj li = o(m−c) ∀j, l.(3)

REMARK 3. Assumption 1 implies that the probability that at least m

additional patients will arrive prior to a patient’s response is of order o(m−c).

Hence, in practical examples, the delay cannot be very large relative to the entry

stream. In practice, it is convenient to verify this assumption by examining the

time-to-response variable τn(j, l) and the entry times tn. If (i) E[τn(j, l)]
c1 < ∞

for each j, l and c1 > c and (ii) E(ti − ti−1) > 0 and E(ti − ti−1)
2 < ∞, then

Assumption 1 is satisfied. This is because

µj lm = P
{

τn(j, l) ∈ (tn+m, tn+m+1)
}

= P
{

τ (j, l) ∈ (Sm, Sm+1)
}

,

where Sm =
∑m

i=1(ti − ti−1) (t0 = 0). Then

∞
∑

i=m

µj li = P
{

τ (j, l) ∈ (Sm,∞)
}

.

Since Sm/m → E(ti − ti−1) = E(t1) almost surely as m → ∞,

P
{

τ (j, l) ∈ (Sm,∞)
}

≤ P
{

τ (j, l) ∈
(

mE(t1)/2,∞
)}

+ P
(

Sm ≤ mE(t1)/2
)

.

By the Markov inequality, we have

P
{

τ (j, l) ∈
(

mE(t1)/2,∞
)}

= P
{

τ (j, l) > mE(t1)/2
}

≤ E
[

τ (j, l)
]c1/

(

mE(t1)/2
)c1

= O(m−c1) = o(m−c)

and

P
(

Sm ≤ mE(t1)/2
)

= P
(

Sm − ESm ≤ −mE(t1)/2
)

≤ O(m−1).

Consequently, Assumption 1 is not very stringent.
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ASSUMPTION 2. Using the notation in Section 1, let H = E(D) and let v

be the normalized left eigenvector of H corresponding to its maximal eigenvalue.

Assume that H has the following Jordan decomposition:

T−1HT = diag[1,�1, . . . ,�s],

where � t is a νt × νt matrix (defining νt to be the block size of the Jordan form),

given by

� t =

















λt 1 0 · · · 0

0 λt 1 · · · 0

0 0 λt · · · 0
...

...
... · · ·

...

0 0 0 · · · λt

















.

We may select the matrix T so that its first column is 1′ and the first row of T−1

is v. Let λ = max{Re(λ1), . . . ,Re(λs)} and ν = maxj {νj such that Re(λj ) = λ},

where Re( ) is the real part of the eigenvalue.

THEOREM 1. Under Assumptions 1 and 2, if c > 0 and λ < 1, then

Yn/|Yn| → v almost surely.

PROOF. See the Appendix.

We can extend Theorem 1 to apply not only to the urn composition, but also to

the sample fractions assigned to each treatment. Let Nn = (Nn1, . . . ,NnK), where

Nnj is the number of patients assigned to treatment j, j = 1, . . . ,K , after n stages.

COROLLARY 1. Under the assumptions of Theorem 1, Nn/n → v almost

surely.

PROOF. See the Appendix.

We now give the central limit result.

THEOREM 2. Under Assumptions 1 and 2, for c > 1/2 and λ < 1/2, we have

n1/2(Yn/|Yn| − v) converges in law to N(0,�), where the form of � is given

in (22).

PROOF. See the Appendix.

REMARK 4. If λ = 1/2, the asymptotic normality holds, but with a different

norming, given by n log2ν−1 n. In this case, we can derive � using techniques

similar to those in the proof of Theorem 2.
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REMARK 5. Because � depends on
∑∞

m=0 µj lm = Pr{ξn = l|Jn = j} through

(21), we see that � does not depend on the delay mechanism. But this is a limiting

result. In practice, we need to estimate � using (19) and (22), and the estimate

will involve the delayed-response mechanism, Mj l(n,m). We can estimate � in

practice using the following procedure:

(i) Estimate H by

Ĥ =

∑n
i=2

∑i−2
m=0 MJi−m−1,ξi−m−1

(i − m− 1,m)diag(Xi−m−1)D(ξi−m−1)
∑n

i=2

∑i−2
m=0 MJi−m−1,ξi−m−1

(i − m− 1,m)
,

where MJi−m−1,ξi−m−1
(i − m − 1,m), Xi−m−1 and D(ξi−m−1) are observed

during the trial.

(ii) Estimate Bni by

B̂ni =
n

∏

j=i+1

(

I + j−1Ĥ
)

.

(iii) Estimate � by

�̂ =
(

I − (Y′
n/|Yn|)l

)

[

n−1
n

∑

i=1

B̂′
ni(Wi − W̄)′(Wi − W̄)B̂ni

]

(

I − l′Yn/|Yn|
)

,

where W̄ = n−1 ∑n
i=1 Wi . The Wi are the number of balls added to the urn

at stage i, which are observed during the trial.

REMARK 6. For the sample fractions assigned to each treatment, we know

that

n−1/2(Nn/n− v) = n−1/2
n

∑

i=1

[

Xi − E(Xi |Fi)
]

(4)

+ n1/2
n

∑

i=1

(

Yi/|Yi | − v
)

.(5)

The asymptotic normality of the first term on the right-hand side of (4) follows

from a multivariate version of the martingale central limit theorem. However, we

still have not derived the asymptotic distribution of (5) and the correlation between

the two terms, and we leave this as an additional research topic. Smythe (1996)

proved the asymptotic joint normality of the sample fractions for the generalized

Friedman’s urn with immediate updating of the urn.

3. Likelihood results. Let Yn = (Y1, . . . ,Yn) be the history of the urn

composition, where Yi is defined in Section 1. Let Jn = (J1, . . . , Jn) be the history

of treatment assignments, ξn = (ξ1, . . . , ξn) be the history of patient responses,
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τ n = (τ1, . . . , τn) be the history of response times and tn = (t1, . . . , tn) be the

history of entry times. Then the full likelihood is given by

Ln = L(τn, ξn,Jn,Yn, tn)

= L(τn|τ
n−1, ξn,Jn,Yn, tn)L(ξn|τ

n−1, ξn−1,Jn,Yn, tn)

× L(Jn|τ
n−1, ξn−1,Jn−1,Yn, tn)L(Yn|τ

n−1, ξn−1,Jn−1,Yn−1, tn)

× L(tn|τ
n−1, ξn−1,Jn−1,Yn−1, tn−1)Ln−1

= L(τn|Jn, ξn)L(ξn|Jn)L(Jn|Yn)L(tn)Ln−1

=
n

∏

i=1

L(τi|Ji, ξi)L(ξi|Ji)L(Ji |Yi)L(ti)

∝
n

∏

i=1

L(ξi|Ji).

Note that the allocation proportions are random and, together with treatment

responses, form a sufficient statistic, unlike in the i.i.d. case with fixed allocation.

For the problem we have formulated, we have a product multinomial likelihood

with pj l = Pr{ξn = l|Jn = j} for all n, and j = 1, . . . ,K , l = 1, . . . ,L − 1 and

pjL = 1−pj1 −· · ·−pj,L−1. Standard martingale techniques can be used to prove

the consistency and asymptotic normality of the maximum likelihood estimators

p̂j l from this likelihood. Rosenberger, Flournoy and Durham (1997) gave a

convenient set of sufficient conditions. In our case, only their condition (A3)

is nontrival. Using their notation, let Li = log(Li/Li−1), where L0 = 1. Then

condition (A3) requires

−n−1
n

∑

i=1

Ei−1

{

∂2Li

∂pj l∂pkm

}

→ γjklm almost surely,(6)

where γjklm is a constant, j, k = 1, . . . ,K , l,m = 1, . . . ,L − 1. Using the

multinomial likelihood, it is easy to show that the left-hand side of (6) is 0 when

j 	= k and, for j = k, is given by
(

1

pj l

+
1

pjL

)

n−1
n

∑

i=1

Yij

|Yi |
, l = m(7)

and

1

pjL

n−1
n

∑

i=1

Yij

|Yi |
, l 	= m.(8)

From Theorem 1, (7) converges almost surely to vj/pj l + vj/pjL and (8)

converges almost surely to vj/pjL. Hence,

Ŵ =
((

γjklm
))

=
vj

pj l

I +
vj

pjL

J,
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where I is the identity matrix and J = 11′. Then, by the theorem of Rosenberger,

Flournoy and Durham (1997), page 71, we obtain the following result:

THEOREM 3. For fixed j = 1, . . . ,K , the vector with components

((

n1/2{p̂j l − pj l}
))L−1

l=1

is asymptotically multivariate normal with mean vector 0 and variance–covariance

matrix

Ŵ−1 =
pj l

vj
I −

p2
j l

vj (pjL + (L − 1)pj l)
J.

Moreover, the K vectors are asymptotically independent.

Consequently, the usual asymptotic χ2 tests can be used to investigate the

treatment effect. For K = L = 2, we can use standard Z tests of the simple

difference of proportions or the odds ratio.

4. Conclusions. Results on the asymptotic properties of the generalized

Friedman’s urn when there is a stochastic delay in updating the urn are interesting

in their own right, from a probabilistic perspective. But the main contribution

of this paper is in showing that randomized clinical trials using the generalized

Friedman’s urn for randomization can now use standard maximum likelihood

estimation following the trial, under the standard clinical trial conditions of

staggered entry and delayed response. We have also demonstrated, in Remark 3,

that the assumptions on the entry stream and delay mechanism are typically not

stringent.

We have not examined properties of estimators in this paper. For example,

the joint distribution of sufficient statistics could be used to develop inferential

tests, as an alternative to maximum likelihood. It would be interesting to develop

several types of estimators and compare their efficiencies under different delay

mechanisms, but we will leave that topic for future research.

Finally, asymptotic theory is becoming less important in this age of rapid al-

gorithms for computing exact distributions. Hardwick and Stout (1998) performed

seminal work in this area for adaptive designs and generally found samples as large

as n = 75 to be amenable to exact computations, using parallel processing and net-

working algorithms. How one would implement such algorithms with a stochastic

delay mechanism may be an interesting topic for further research. The third author

has had some success with simulating the distribution of test statistics for adaptive

designs with delayed response, using priority queues [see, e.g., Rosenberger and

Seshaiyer (1997)]. However, the computational simplicity of an asymptotic normal

test based on the maximum likelihood estimator, we presume, will always make

it an attractive tool, and, in this paper, we have provided the necessary theory to

justify its use.



132 Z. D. BAI, F. HU AND W. F. ROSENBERGER

APPENDIX

Because of the delayed response, the total number of balls in the urn at

each stage will be a random variable, depending on which patients have already

responded. To prove Theorem 1, we will need to take care of this complication,

which we do in the following lemma:

LEMMA 1. (i) For the total urn composition, Yn, n−1|Yn| → 1 in probability.

(ii) If Assumption 1 is true,

n−1|Yn| = 1 + op(n
−c′

) for any c′ < c

and

n−1|Yn| = 1 + o(n−c′
) almost surely for any c′ < c/2,

where the constant c is defined in Assumption 1.

PROOF. Recall that we have assumed, without loss of generality, that the

number of balls added to the urn at each stage is 1. Also, assume, without loss

of generality, that |Y1| = 1. Then the number of balls at stage n will be n minus

the balls not added due to a patient’s nonresponse by stage n. We can write this

mathematically as

|Yn| = n −
n−1
∑

m=1

∞
∑

i=n−m

MJm,ξm(m, i),(9)

by noting that

∞
∑

i=0

MJm,ξm(m, i) = 1.

Now, since

∞
∑

i=m

µj li → 0 [(= o(m−c) under Assumption 1] as m → ∞,

we have

E

(

n−1
∑

m=1

∞
∑

i=n−m

MJm,ξm(m, i)

)

=
n−1
∑

m=1

∞
∑

i=n−m

E
{

MJm,ξm(m, i)
}

=
n−1
∑

m=1

∞
∑

i=n−m

K
∑

j=1

L
∑

l=1

µj li

=







o(n), without Assumption 1,

o(n1−c), under Assumption 1 and 0 < c < 1,

o(logn), under Assumption 1 and c = 1.
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This proves conclusion (i) and the first part of conclusion (ii) of Lemma 1 by the

Markov inequality.

Now, choose ρ such that ρ(c−c′) > 1 and ρc′ < 1 (c′ < c/2). Define nk = [kρ ],
where [·] is the greatest integer function. Then, for any ε > 0,

P
(

n−1+c′

k

∣

∣|Ynk | − nk

∣

∣ ≥ ε
)

≤ ε−1n−1+c′

k E
∣

∣|Ynk | − nk

∣

∣

≤ ε−1n−1+c′

k n
1−c)
k lognk

≤ Ck−ρ(c−c′) logk

for some constant C. Note that the right-hand side of the preceding inequality is

summable. Thus, by the Borel–Cantelli lemma,

n−1+c′

k (|Ynk | − nk) → 0(10)

almost surely. To complete the proof of the lemma, we need to show that

max
nk−1<n≤nk

∣

∣n−1+c′
(|Yn| − n)

∣

∣ → 0

almost surely. It is easy to see that

|Ynk−1
| − nk−1 − (nk − nk−1) ≤ |Yn| − n ≤ |Ynk | − nk + (nk − nk−1).

From (10), we have

n−1+c′
(|Ynk−1

| − nk−1) → 0 and n−1+c′
(|Ynk | − nk) → 0

almost surely. By the selection of ρ,

n−1+c′
(nk − nk−1) ≤ n−1+c′

k−1 Cnkk
−1 ≤ Ckρc

′−1 → 0.

Therefore, we have proved the second part of (ii). �

PROOF OF THEOREM 1. From (2), we have

Yn = Yn−1 +
n−1
∑

m=1

Ym

m
G(n− m− 1) + Qn + Rn,(11)

where

G(m) =
L

∑

l=1

µlmD(l)

and

Rn =
n−1
∑

m=1

Ym(m − |Ym|)

m|Ym|
G(n − m− 1).

Recalling the definition of Qn from (2), we can derive the following using (11)

[letting G(−1) be the identity matrix I for convenience]:
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Yn = Y1 +
n

∑

i=2

i−1
∑

m=1

Ym

m
G(i − m− 1) +

n
∑

i=2

(Qi + Ri)

=
n−1
∑

m=1

n−1
∑

i=m

Ym

m
G(i − m) +

n
∑

i=1

(Qi + Ri) + Y1(12)

=
n−1
∑

m=1

Ym

m

n−m−1
∑

i=0

G(i) +
n

∑

i=1

(Qi + Ri) + Y1.

Here Q1 = R1 = 0. By the definition of G(m), we have

∞
∑

m=0

G(m) =
∞
∑

m=0

L
∑

l=1

µlmD(l) = H,

recalling that H = E(D). Then, by (12), we have

Yn =
n−1
∑

m=1

YmH

m
+

n
∑

i=1

Qi + Y1 + R(1)
n ,(13)

where

R(1)
n =

n
∑

i=1

Ri −
n−1
∑

m=1

Ym

m

∞
∑

i=n−m

G(i).

Under condition (3) and by the result of Lemma 1, we further have

R(1)
n =

n−1
∑

m=1

Ym(m− |Ym|)

m|Ym|

n−m−1
∑

i=0

G(i) −
n−1
∑

m=1

Ym

m

∞
∑

i=n−m

G(i) = op(n
1−c′

),

and, by Lemma 1, we can strengthen this to almost sure convergence. From (13),

we have

Yn = Yn−1

(

I + (n− 1)−1H
)

+ Qn + R(2)
n ,

where

R(2)
n = R(1)

n − R
(1)
n−1 = o(n1−c′

).

Furthermore,

Yn =
n

∑

i=2

QiBni + Y1Bn1 +
n

∑

i=2

R
(2)
i Bni,(14)

where

Bni =
n

∏

j=i+1

(

I + (j − 1)−1H
)

(with the convention that Bnn is the identity matrix I).
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Let zn = n−1YnT, where T is defined in Assumption 2. We wish to show that

zn converges to (1,0,0, . . . ,0) almost surely, which then implies that

n−1Yn → (1,0,0, . . . ,0)T−1 = v almost surely.(15)

We have already shown that the first element of zn converges almost surely to 1.

Hence, we can focus on znE, where E′ = [0 : I]K−1×K . Then, from (14), we obtain

znE = n−1
n

∑

i=2

QiBniTE + n−1Y1Bn1TE + n−1
n

∑

i=2

R
(2)
i BniTE.(16)

Let B̃ni = T−1BniT. The second term of (16) can be written as n−1z1B̃n1E,

which converges almost surely to 0, as n−1z1B̃n1 converges almost surely to (z11,

0, . . . ,0), where z11 is the first element of z1. This is because n−1B̃n1 converges

to (1,0, . . . ,0)′(1,0, . . . ,0) under the condition λ < 1.

The third term of (16) requires a careful analysis. We write

n−1
n

∑

i=2

R
(2)
i BniTE = n−1R(1)

n BnnTE + n−1
n−1
∑

i=2

R
(1)
i (H/i)Bn,i+1TE

(17)

− n−1R
(1)
1 Bn2TE.

The first term of (17) is o(n−c′
). We can write the second term of (17) as

n−1
n−1
∑

i=2

R
(1)
i (H/i)TB̃n,i+1E.

For the analysis of B̃n,i+1, recalling the definitions of λ and � t in Assumption 2,

we see that, for ε > 0,

n−(λ+ε)
n

∏

j=i+1

(I + j−1� t ) = o(i−λ).

Consequently, B̃ni is of order o(nλ+ε/iλ), and the second term is of order

o(n−c′+ε) if λ + c′ < 1 and o(nλ+ε−1) if λ + c′ > 1. Finally, the third term of

(17) can be written as

−n−1R
(1)
1 TB̃n2E,

and this term is o(nλ+ε−1).

To complete the analysis of (16), we inspect the first term. The variance of the

j th (j > 1) term is given by

n−2
n

∑

i=1

Var(QiBniTe′
j ) = n−2

n
∑

i=1

e′
jT∗B′

niE(Q′
iQi)BniTe′

j ,(18)
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where e′
j is the j th column of E and T∗ is the conjugate transpose of T. The

conditional expectation of Q′
nQn is given by

En−1(Q
′
nQn) = En−1(W

′
nWn) −

(

En−1(Wn)
)′(

En−1(Wn)
)

=
n−2
∑

m=0

L
∑

l=1

D(l)′Diag

(

Yn−m−1,1

|Yn−m−1|
µ1lm, . . . ,

Yn−m−1,K

|Yn−m−1|
µKlm

)

D(l)(19)

−
(

En−1(Wn)
)′(

En−1(Wn)
)

,

and hence E(Q′
iQi) is bounded. [Equation (19) will be important in determining

the variance–covariance structure of the limiting distribution, derived in the proof

of Theorem 2.] Since the elements of B̃nie
′
j are controlled by nλ+ε/iλ, from the

developments above, we can see that (18) is o(nλ+2ε−1). Because ε can be made

small, using the Chebyshev inequality, we conclude that

Pr

(
∣

∣

∣

∣

∣

n−1
n

∑

i=1

QiBniTe′
j

∣

∣

∣

∣

∣

≥ δ

)

≤ Cn−b

for some constant C and b > 0.

Now we define nk = [kρ ], where ρ satisfies bρ > 1. For the subsequence nk , the

first term of (16) converges almost surely to 0 by the Borel–Cantelli lemma. Hence,

for c′ > 0, and by choosing ε small, the terms of znkE converge almost surely to 0,

and (15) holds on the subsequence nk , implying that Ynk/nk converges almost

surely to v. Applying the subsequence method (use the monotonicity of Yn), Yn/n

converges almost surely to v. Then, under Assumption 1 and by Lemma 1, Yn/|Yn|

converges almost surely to v. �

PROOF OF COROLLARY 1. We can write

Nn = Nn−1 + Xn =
n

∑

i=1

Xi

=
n

∑

i=1

[

Xi − E(Xi|Fi)
]

+
n

∑

i=1

E(Xi|Fi)

=
n

∑

i=1

[

Xi − E(Xi|Fi)
]

+
n

∑

i=1

Yi/|Yi|.

Then

Nn

n
=

1

n

n
∑

i=1

[

Xi − E(Xi|Fi)
]

+
1

n

n
∑

i=1

Yi/|Yi |.
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From the martingale strong law [e.g., Theorem 2.18 of Hall and Heyde (1980),

page 36], the first term converges to 0 almost surely. The second term

1

n

n
∑

i=1

Yi/|Yi | → v

almost surely, which follows directly from Theorem 1. �

PROOF OF THEOREM 2. From Lemma 1, we have that

n1/2(|Yn| − n) → 0 in probability.

Define z#
n = (n−1Yn − v)T. We wish to examine the limit of n1/2z#

n. First,

by Lemma 1, the first term converges almost surely to 0. We recall that E′ =

[0 : I]K−1×K and, since v is the first row of T−1, we have vT = (1,0, . . . ,0),

and vTE = 0. Consequently, from (16),

n1/2z#
nE = n−1/2

n
∑

i=2

QiBniTE + n−1/2Y1Bn1TE

(20)

+ n−1/2
n

∑

i=2

R
(2)
i BniTE.

The third term of (20), n−1/2 ∑n
i=2 R

(2)
i BniTE, can be decomposed into three

components, as in (17). From the proof of Theorem 1, it follows that the first term

is of order op(n
−c1+1/2), so it tends to 0 for c > c1 > 1/2. The second term is

op(n
−c1+ε+1/2), and as ε is arbitrarily small, this term tends to 0. The third term

is op(n
λ+ε−1/2), and as λ < 1/2, this also tends to 0.

From the proof of Theorem 1, B̃n1E is of order o(nλ+ε), so that the second term

of (20), n−1/2Y1Bn1TE = o(nλ+ε−1/2), also tends to 0.

Finally, we can use the martingale central limit theorem [e.g., Corollary 3.1

of Hall and Heyde (1980), page 58] to show that the first term of (20)

n−1/2
n

∑

i=1

QiBniTE → N(0,�1) in law.

The form of �1 can be obtained by careful derivation, but it is quite messy. Using

the same techniques as Bai and Hu (1999), we can derive an exact expression for

�1. It is given by �1 = ((�gh, g,h,= 1, . . . , s)), where �gh is a submatrix with

(a, b) element

a−1
∑

a′=0

b−1
∑

b′=0

(a′ + b′)!

a′!b′!(1 − λg − λ̄h)
a′+b′+1

[

T∗
gE∞(Q′Q)Th

]

a−a′,b−b′
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(T∗ is the conjugate transpose of T and λ̄ is the complex conjugate of λ), where

E∞(Q′Q) = limn→∞ En−1(Q
′
nQn). From (19),

E∞(Q′Q) =
L

∑

l=1

D(l)′Diag

(

v1

∞
∑

m=0

µ1lm, . . . , vK

∞
∑

m=0

µKlm

)

D(l) − v′v.(21)

Finally, we obtain

� = (T−1)∗
[

0 0

0 �1

]

T−1. �(22)
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