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SUMMARY

Approximate Bayesian computation allows for statistical analysis in models with intractable likeli-

hoods. In this paper we consider the asymptotic behaviour of the posterior distribution obtained by this

method. We give general results on the rate at which the posterior distribution concentrates on sets con-

taining the true parameter, its limiting shape, and the asymptotic distribution of the posterior mean. These

results hold under given rates for the tolerance used within the method, mild regularity conditions on

the summary statistics, and a condition linked to identification of the true parameters. Implications for

practitioners are discussed.

Some key words: Approximate Bayesian computation; Asymptotics; Bernstein–von Mises theorem; Likelihood-free
method; Posterior concentration.

1. INTRODUCTION

Interest in approximate Bayesian computation methods has begun to shift from its initial focus as a

computational tool toward its validation as a statistical inference procedure; see, e.g., Fearnhead and

Prangle (2012), Marin et al. (2014), Creel and Kristensen (2015), Drovandi et al. (2015), Creel et al.

(arxiv:1512.07385), Martin et al. (arxiv:1604.07949) and Li and Fearnhead (2018a,b). Hereafter we de-

note these preprints by Creel et al. (2015), and Martin et al. (2016).

We study large sample properties of posterior distributions and posterior means obtained from approx-

imate Bayesian computation algorithms. Under mild regularity conditions on the underlying summary

statistics, we characterize the rate of posterior concentration and show that the limiting posterior shape

crucially depends on the interplay between the rate at which the summaries converge and the rate at which

the tolerance used to select parameters shrinks to zero. Bayesian consistency places a less stringent condi-

tion on the speed with which the tolerance declines to zero than does asymptotic normality of the posterior

distribution. Further, and in contrast to textbook Bernstein–von Mises results, asymptotic normality of the

posterior mean does not require asymptotic normality of the posterior distribution, the former being attain-

able under weaker conditions on the tolerance than required for the latter. Validity of these results requires

that the summaries converge toward a well-defined limit and that this limit, viewed as a mapping from

C© 2016 Biometrika Trust
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parameters to summaries, be injective. These conditions have a close correspondence with those required

for theoretical validity of indirect inference and related frequentist estimators, see, e.g., Gouriéroux et al.

(1993).

We focus on three aspects of asymptotic behaviour: posterior consistency, limiting posterior shape, and

the asymptotic distribution of the posterior mean. Our focus is broader than that of existing studies on

the large sample properties of approximate Bayesian computation algorithms, in which the asymptotic

properties of resulting point estimators have been the primary focus; see Creel et al. (2015) and Li and

Fearnhead (2018a). Our approach allows both weaker conditions and a complete characterization of the

limiting posterior shape. We distinguish between the conditions, on both the summaries and the tolerance,

required for concentration and those required for distributional results. These results suggest how the

tolerance in approximate Bayesian computation should be chosen to ensure posterior concentration, valid

coverage levels for credible sets, and asymptotically normal and efficient point estimators.

2. PRELIMINARIES AND BACKGROUND

We observe data y = (y1, . . . , yT )
⊺, T ≥ 1, drawn from the model {Pθ : θ ∈ Θ}, where Pθ admits the

corresponding conditional density p(· | θ), and θ ∈ Θ ⊂ R
kθ . Given a prior measure Π(θ) with density

π(θ), the aim of the algorithms under study is to produce draws from an approximation to the exact

posterior density π(θ | y) ∝ p(y | θ)π(θ), when both parameters and pseudo-data (θ, z) can easily be

simulated from π(θ)p(z | θ), but p(z | θ) is intractable. The simplest accept/reject form of the algorithm

(Tavaré et al., 1997; Pritchard et al., 1999) is detailed in Algorithm 1.

Algorithm 1. Approximate Bayesian Computation

(1) Simulate θi (i = 1, . . . , N) from π(θ),
(2) Simulate zi = (zi1, . . . , z

i
T )

⊺ (i = 1, . . . , N) from the likelihood, p(· | θi),
(3) Select θi such that d{η(y), η(zi)} ≤ ε, where η(·) is a statistic, d(·, ·) is a distance function,

and ε > 0 is the tolerance level.

Algorithm 1 thus samples θ and z from the joint posterior density

πε{θ, z | η(y)} = π(θ)p(z | θ)1lε(z)
/∫

π(θ)p(z | θ)1lε(z)dzdθ,

where 1lε(z) = 1l[d{η(y), η(z)} ≤ ε] = 1 if d {η(y), η(z)} ≤ ε, and zero otherwise. The approximate

Bayesian computation posterior density is defined as

πε{θ | η(y)} =
∫
πε{θ, z | η(y)}dz.

Below, we refer to πε{θ | η(y)} as the approximate posterior density. Likewise, the posterior probability

of a set A ⊂ Θ associated with Algorithm 1 is

Πε{A | η(y)} = Π [A | d{η(y), η(z)} ≤ ε] =

∫

A

πε{θ | η(y)}dθ,

and we refer to Πε{· | η(y)} as the approximate posterior distribution. When η(·) is sufficient for the

observed data y and ε is close to zero, πε{θ | η(y)} will be a good approximation to π(θ | y), and draws

of θ from πε{θ | η(y)} can be used to estimate features of π(θ | y).
In practice η(y) is rarely sufficient for y, and draws of θ can only be used to approximate π{θ | η(y)} =

limε→0 πε{θ | η(y)}. Given the general lack of sufficient statistics, we need to assess the behavior of the

approximate posterior distribution Πε{· | η(y)}, and to establish whether or not Πε{· | η(y)} behaves in

a manner that is appropriate for statistical inference, with asymptotic theory being one obvious approach.

Establishing the large sample behavior of Πε{· | η(y)}, including point and interval estimates derived

from this distribution, gives practitioners guarantees on the reliability of approximate Bayesian compu-

tations. Furthermore, these results allow us to provide guidelines for choosing the tolerance ε so that

Πε{· | η(y)} possesses desirable statistical properties.
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Before presenting our results, we set notation used throughout the paper. Let B ⊂ R
kη denote the range

of the simulated summaries η(z). Let d1(·, ·) be a metric on Θ and d2(·, ·) a metric on B. Take ‖ · ‖
to be the Euclidean norm. Throughout, C denotes a generic positive constant. For real-valued sequences

{aT }T≥1 and {bT }T≥1, aT . bT denotes aT ≤ CbT for some finite C > 0 and T large, aT ≍ bT implies

that aT . bT . aT , and aT≫bT indicates a larger order of magnitude. For xT a random variable, xT =
oP (aT ) if limT→∞ pr(|xT /aT | ≥ C) = 0 for any C > 0 and xT = OP (aT ) if for any C > 0 there exists

a finite M > 0 and a finite T such that pr(|xt/at| ≥ M) ≤ C, for all t > T . All limits are taken as

T → ∞. When no confusion will result, limT replaces limT→∞.

3. CONCENTRATION OF THE APPROXIMATE BAYESIAN COMPUTATION POSTERIOR

We assume throughout that the model is correctly specified: for some θ0 in the interior of Θ, we have

Pθ = P0. Asymptotic validity of any Bayesian procedure requires posterior concentration, which is often

referred to as Bayesian consistency. In our context, this equates to the following posterior concentration

property: for any δ > 0, and for some ε > 0,

Πε{d1(θ, θ0) > δ | η(y)} = Π [d1(θ, θ0) > δ | d2{η(y), η(z)} ≤ ε] =

∫

d1(θ,θ0)>δ

πε{θ | η(y)}dθ = oP (1).

This property is paramount since, for any A ⊂ Θ, Π [A | d2{η(y), η(z)} ≤ ε] will differ from the exact

posterior probability. Without the guarantees of exact posterior inference, knowing that Πε{· | η(y)} will

concentrate on θ0 gives validity to its use as a means of expressing our uncertainty about θ.

Posterior concentration is related to the rate at which information about θ0 accumulates in the sample.

The amount of information Algorithm 1 provides depends on the rate at which the observed summaries

η(y) and the simulated summaries η(z) converge to well-defined limit counterparts b(θ0) and b(θ), and

the rate at which information about θ0 accumulates within the algorithm, governed by the rate at which

ε goes to 0. To link both factors we consider ε as a T -dependent sequence εT → 0 as T → ∞. We can

now state the technical assumptions used to establish our first result. These assumptions are applicable to

a broad range of data structures, including weakly dependent data.

Assumption 1. There exist a non-random map b : Θ → B, and a sequence of functions ρT (u) that are

monotone non-increasing in u for any T and satisfy ρT (u) → 0 as T → ∞. For fixed u, and for all θ ∈ Θ,

Pθ [d2{η(z), b(θ)} > u] ≤ c(θ)ρT (u),

∫

Θ

c(θ)dΠ(θ) < ∞,

with either of the following assumptions on c(·):
(i) there exist c0 < ∞ and δ > 0 such that for all θ satisfying d2{b(θ), b(θ0)} ≤ δ then c(θ) ≤ c0;

(ii) there exists a > 0 such that
∫
Θ
c(θ)1+adΠ(θ) < ∞.

Assumption 2. There exists some D > 0 such that, for all ξ > 0 and some C > 0, the prior probability

satisfies Π [d2{b(θ), b(θ0)} ≤ ξ] ≥ CξD.

Assumption 3. (i) The map b is continuous. (ii) The map b is injective and satisfies: ‖θ − θ0‖ ≤
L‖b(θ)− b(θ0)‖

α on some open neighbourhood of θ0 with L > 0 and α > 0.

Remark 1. The convergence of η(z) to b(θ) in Assumption 1 is the key to posterior concentration and

without it, or a similar assumption, Bayesian consistency will not occur. The function ρT (u) in Assump-

tion 1 typically takes the form ρT (u) = ρ(uvT ), for vT a sequence such that d2{η(z), b(θ)} = OP (1/vT ),
and where ρ(uvT ) controls the tail behavior of d2{η(z), b(θ)}. The specific structure of ρ(uvT ) will de-

pend on what is assumed about the properties of the underlying summaries η(z). In most cases, ρ(uvT )
will have either a polynomial or exponential structure in uvT , and thus satisfy one of the following rates.

(a) Polynomial: there exist a diverging positive sequence {vT }T≥1 and u0, κ > 0 such that

Pθ [d2{η(z), b(θ)} > u] ≤ c(θ)ρT (u), ρT (u) = 1
/
(uvT )

κ, u ≤ u0, (1)
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where, for some c0 > 0 and δ > 0,
∫
Θ
c(θ)dΠ(θ) < ∞ and if d2{b(θ), b(θ0)} ≤ δ, then c(θ) ≤ c0.

(b) Exponential: there exist hθ(·) > 0 and u0 > 0 such that

Pθ [d2{η(z), b(θ)} > u] ≤ c(θ)ρT (u), ρT (u) = exp{−hθ(uvT )}, u ≤ u0, (2)

where, for some c, C > 0,
∫
Θ
c(θ) exp{−hθ(uvT )}dΠ(θ) ≤ C exp{−c(uvT )

τ}.

To illustrate these cases for ρT (·), consider the summary statistics η(z) = T−1
∑T

i=1 g(zi) where, for

simplicity, {g(zi)}i≤T is independent and identically distributed, and b(θ) = Eθ{g(Z)}.

If g(zi)− b(θ) has a finite moment of order κ, ρT (u) will satisfy (1): from Markov’s inequality,

Pθ {‖η(z)− b(θ)‖ > u} ≤ CEθ {|g(Z)|κ}
/
(uT 1/2)κ.

With reference to (1), ρT (u) = 1/(uvT )
κ, vT = T 1/2 and c(θ) = CEθ{|g(Z)|κ} < ∞. If the map θ 7→

Eθ {|g(Z)|κ} is continuous at θ0 and positive, Assumption 1 is satisfied.

If {g(zi)− b(θ)} has a finite exponential moment, ρT (u) will satisfy (2): from a version of the Bern-

stein inequality,

Pθ {‖η(z)− b(θ)‖ > u} ≤ exp
[
−u2T/{2c(θ)}

]
.

With reference to (2), ρT (u) = exp{−hθ(uvT )}, hθ(uvT ) = u2v2T /{2c(θ)} and vT = T 1/2. If the map

θ 7→ c(θ) is continuous at θ0 and positive, Assumption 1 is satisfied.

Remark 2. Assumption 2 controls the degree of prior mass in a neighbourhood of θ0 and is standard

in Bayesian asymptotics. For ξ small, the larger D, the smaller the amount of prior mass near θ0. If

the prior measure Π(θ) is absolutely continuous with prior density π(θ) and if π is bounded, above and

below, near θ0, then D = dim(θ) = kθ. Assumption 3 is an identification condition that is critical for

obtaining posterior concentration around θ0. Injectivity of b depends on both the true structural model and

the particular choice of η. Without this identification condition posterior concentration at θ0 cannot occur.

THEOREM 1. If Assumptions 1–2 are satisfied, then, for M large enough, as T → ∞ and εT = o(1),
with P0 probability going to one,

Π [d2{b(θ), b(θ0)} > λT | d2{η(y), η(z)} ≤ εT ] . 1/M, (3)

with λT = 4εT /3 + ρ−1
T (εDT /M). Moreover, if Assumption 3 also holds, as T → ∞,

Π [d1(θ, θ0) > Lλα
T | d2{η(y), η(z)} ≤ εT ] . 1/M, (4)

Since equations (3) and (4) hold for any M large enough, we can conclude that the posterior distribution

behaves like an oP (1) random variable on sets that do not include θ0, and Bayesian consistency of Πε{· |
η(y)} follows. More generally, (3) and (4) give a posterior concentration rate, denoted by λT in Theorem

1, that depends on εT and on the underlying behavior of η(z), as described by ρT (u). We must consider

the nature of this concentration rate in order to understand which choices for εT are appropriate under

different assumptions on the summary statistics.

As mentioned above, the deviation control function ρT (u) will often be of a polynomial (1) or expo-

nential (2) form. Under these two assumptions, ρT (u) has an explicit representation and the concentration

rate λT can be obtained by solving the equation

λT = 4εT /3 + ρ−1
T (εDT /M).

(a) polynomial case: From equation (1), the deviation control function is ρT (u) = 1/(uvT )
κ. To obtain

the posterior concentration rate, we invert ρT (u) to obtain ρ−1
T (εDT ) = 1/(ε

D/κ
T vT ), and then equate εT

and ρ−1
T (εDT ), to obtain εT ≍ v

−κ/(κ+D)
T . This choice of εT implies concentration of the approximate

posterior distribution at the rate

λT ≍ v
−κ/(κ+D)
T .
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(b) exponential case: If the summary statistics admit an exponential moment, a faster rate of posterior

concentration obtains. From equation (2), ρT (u) = exp{−hθ(uvT )} and there exist finite u0, c, C > 0
such that

∫

Θ

c(θ)e−hθ(uvT )dΠ(θ) ≤ Ce−c(uvT )τ , u ≤ u0.

Hence if c(θ) is bounded from above and if hθ(u) ≥ uτ for θ in a neighbourhood of θ0, then ρT (u) ≍
exp{−c0(uvT )

τ}; thus, ρ−1
T (εDT ) ≍ (− log εT )

1/τ/vT . Following arguments similar to those used in (a)

immediately above, if we take εT ≍ (log vT )
1/τ/vT , the approximate posterior distribution concentrates

at the rate

λT ≍ (log vT )
1/τ/vT .

Example 1. We now illustrate the conditions of Theorem 1 in a moving average model of order two:

yt = et + θ1et−1 + θ2et−2 (t = 1, . . . , T ),

where {et}
T
t=1 is a sequence of white noise random variables such that E(e4+δ

t ) < ∞ and some δ > 0.

Our prior for θ = (θ1, θ2)
⊺ is uniform over the following invertibility region,

−2 ≤ θ1 ≤ 2, θ1 + θ2 ≥ −1, θ1 − θ2 ≤ 1. (5)

Following Marin et al. (2011), we choose as summary statistics for Algorithm 1 the sample autoco-

variances ηj(y) = T−1
∑T

t=1+j ytyt−j , for j = 0, 1, 2. For this choice the j-th component of b(θ) is

bj(θ) = Eθ(ztzt−j).
Now, take d2{η(z), b(θ)} = ‖η(z)− b(θ)‖. Under the moment condition for et above, it follows that

V (θ) = E[{η(z)− b(θ)}{η(z)− b(θ)}⊺] satisfies tr{V (θ)} < ∞ for all θ in (5). By an application of

Markov’s inequality, we can conclude that

Pθ {‖η(z)− b(θ)‖ > u} = Pθ

{
‖η(z)− b(θ)‖2 > u2

}
≤

tr{V (θ)}

u2T
+ o(1/T ),

where the o(1/T ) term comes from the fact that there are finitely many non-zero covariance terms due

to the m-dependence of the series, and Assumption 1 is satisfied. Given the structure of b(θ), the uni-

form prior π(θ) over (5) fulfills Assumption 2. Furthermore, θ 7→ b(θ) = (1 + θ21 + θ22, (1 + θ2)θ1, θ2)
⊺

is injective and satisfies Assumption 3. As noted in Remark 2, the injectivity of θ 7→ b(θ) is required

for posterior concentration, and without it there is no guarantee that the posterior will concentrate on θ0.

Since the sufficient conditions for Theorem 1 are satisfied, approximate Bayesian computation based on

this choice of statistics will yield an approximate posterior density that concentrates on θ0.

Theorem 1 can also be visualized by fixing a particular value of θ, say θ̃, and generating observed data

sets ỹ of increasing length, then running Algorithm 1 on these data sets. If the conditions of Theorem 1 are

satisfied, the approximate posterior density will become increasingly peaked at θ̃ as T increases. Using

Example 1, we demonstrate this behavior in the Supplementary Material.

4. SHAPE OF THE ASYMPTOTIC POSTERIOR DISTRIBUTION

4·1. Assumptions and Theorem

While posterior concentration states that Π [d1(θ, θ0) > δ | d2{η(y), η(z)} ≤ εT ] = oP (1) for an ap-

propriate choice of εT , it does not indicate precisely how this mass accumulates, or the approximate

amount of posterior probability within any neighbourhood of θ0. This information is needed to obtain

accurate expressions of uncertainty about point estimators of θ0 and to ensure that credible regions have

proper frequentist coverage. To this end, we now analyse the limiting shape of Π [· | d2{η(y), η(z)} ≤ εT ]
for various relationships between εT and the rate at which summary statistics satisfy a central limit theo-

rem. In this and the following sections, we denote Π [· | d2{η(y), η(z)} ≤ εT ] by Πε{· | η(y)}. Let ‖ · ‖∗
denote the spectral norm.
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In addition to Assumption 2 the following conditions are needed to establish the results of this section.

Assumption 4. Assumption 1 holds. There exists a sequence of positive definite matrices {ΣT (θ0)}T≥1,

c0 > 0, κ > 1 and δ > 0 such that for all ‖θ − θ0‖ ≤ δ, Pθ [‖ΣT (θ0){η(z)− b(θ)}‖ > u] ≤ c0u
−κ for

all 0 < u ≤ δ‖ΣT (θ0)‖∗, uniformly in T .

Assumption 5. Assumption 3 holds. The map θ 7→ b(θ) is continuously differentiable at θ0 and the

Jacobian ∇θb(θ0) has full column rank kθ.

Assumption 6. The value θ0 is in the interior of Θ. For some δ > 0 and for all ‖θ − θ0‖ ≤ δ, there

exists a sequence of (kη × kη) positive definite matrices {ΣT (θ)}T≥1, with kη = dim{η(z)}, such that

for all open sets B

sup
|θ−θ0|≤δ

∣∣Pθ [ΣT (θ){η(z)− b(θ)} ∈ B]− P
{
N (0, Ikη

) ∈ B
}∣∣ → 0

in distribution as T → ∞, where Ikη
is the (kη × kη) identity matrix.

Assumption 7. There exists vT → ∞ such that for all ‖θ − θ0‖ ≤ δ, the sequence of functions θ 7→
ΣT (θ)v

−1
T converges to some positive definite A(θ) and is equicontinuous at θ0.

Assumption 8. For some positive δ, all ‖θ − θ0‖ ≤ δ, all ellipsoids BT =
{
(t1, . . . , tkη

) :∑kη

j=1 t
2
j/h

2
T ≤ 1

}
and all u ∈ R

kη fixed, for all hT → 0, as T → ∞,

lim
T

sup
|θ−θ0|≤δ

∣∣∣h−kη

T Pθ [ΣT (θ){η(z)− b(θ)} − u ∈ BT ]− ϕkη
(u)

∣∣∣ = 0,

h
−kη

T Pθ [ΣT (θ){η(z)− b(θ)} − u ∈ BT ] ≤ H(u),

∫
H(u)du < ∞,

for ϕkη
(·) the density of a kη-dimensional normal random variate.

Remark 3. Assumption 4 is similar to Assumption 1 but for ΣT (θ0){η(z)− b(θ)}. Assumption

6 is a central limit theorem for {η(z)− b(θ)} and, as such, requires the existence of a positive-

definite matrix ΣT (θ). In simple cases, such as independent and identically distributed data with

η(z) = T−1
∑T

i=1 g(zi), ΣT (θ) = vTAT (θ) with AT (θ) = A(θ) + oP (1) and V (θ) = E[{g(Z)−
b(θ)}{g(Z)− b(θ)}⊺] = {A(θ)⊺A(θ)}−1. Assumptions 5 and 8 ensure that θ 7→ b(θ) and the covariance

matrix of {η(z)− b(θ)} are well-behaved, which allows the posterior behavior of a normalized version of

(θ − θ0) to be governed by that of ΣT (θ0){b(θ)− b(θ0)}. Assumption 8 governs the pointwise conver-

gence of a normalized version of the measure Pθ, therein dominated by H(u), and allows the application

of the dominated convergence theorem in Case (iii) of the following result.

THEOREM 2. Under Assumptions 2, 4–7, with κ > kθ, the following hold with probability going to 1.

(i) If limT vT εT = ∞, the posterior distribution of ε−1
T (θ − θ0) converges to the uniform distribution

over the ellipsoid {w : w⊺B0w ≤ 1} with B0 = ∇θb(θ0)
⊺∇θb(θ0), meaning that for f(·) continuous

and bounded,
∫

f{ε−1
T (θ − θ0)}dΠε{θ | η(y)} →

∫

u⊺B0u≤1

f(u)du
/∫

u⊺B0u≤1

du, T → ∞.

(ii) If limT vT εT = c > 0, there exists a non-Gaussian distribution on R
kη , Qc, such that

Πε [ΣT (θ0)∇θb(θ0)(θ − θ0)− ΣT (θ0){η(y)− b(θ0)} ∈ B | η(y)] → Qc(B), T → ∞.

In particular, Qc(B) ∝
∫
B

∫
R

kη 1l{(z − x)⊺A(θ0)
⊺A(θ0)(z − x) ≤ c}ϕkη

(z)dzdx.
(iii) If limT vT εT = 0 and Assumption 8 holds then,

Πε [ΣT (θ0)∇θb(θ0)(θ − θ0)− ΣT (θ0){η(y)− b(θ0)} ∈ B | η(y)] →

∫

B

ϕkη
(x)dx, T → ∞.
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Remark 4. Theorem 2 generalizes to the case where the components of η(z) have different rates of con-

vergence. The statement and proof of this more general result are deferred to the Supplementary Material.

Furthermore, as with Theorem 1, the behavior of Πε{· | η(y)} described by Theorem 2 can be visualized.

This is demonstrated in the Supplementary Material. Formal verification of the conditions underpinning

Theorem 2 is quite challenging, even in this case. Numerical results nevertheless suggest that for this par-

ticular choice of model and summaries a Bernstein–von Mises result holds, conditional on εT = o(1/vT ),
with vT = T 1/2.

4·2. Discussion of the Result

Theorem 2 asserts that the crucial feature in determining the limiting shape of Πε{· | η(y)} is the

behaviour of vT εT . The implication of Theorem 2 is that only in the regime where limT vT εT = 0
will 100(1− α)% Bayesian credible regions calculated from Πε{· | η(y)} have frequentist coverage

of 100(1− α)%. If limT vT εT = c > 0, for c finite, Πε{· | η(y)} is not asymptotically Gaussian and

credible regions will have incorrect magnitude, i.e., the coverage will not be at the nominal level. If

limT vT εT = ∞, i.e., εT ≫ v−1
T , credible regions will have coverage that converges to 100%.

In Case (i), which corresponds to a large tolerance εT , the approximate posterior distribution has

nonstandard asymptotic behaviour. In Case (i) Πε{· | η(y)} behaves like the prior distribution over

{θ : ‖∇θb(θ0)(θ − θ0)‖ ≤ εT {1 + oP (1)}}, which, by prior continuity, implies that Πε{· | η(y)} is

equivalent to a uniform distribution over this set. Li and Fearnhead (2018a) also establish this behaviour,

and observe that asymptotically Πε{· | η(y)} behaves like a convolution of a Gaussian distribution, with

variance of order 1/v2T , and a uniform distribution over a ball of radius εT , and, where, depending on the

order vT εT , one distribution will dominate.

Assumption 8 applies to random variables η(z) that are absolutely continuous with respect to the

Lebesgue measure, or in the case of sums of random variables, to sums that are non-lattice; see Bhat-

tacharya and Rao (1986). For discrete η(z), Assumption 8 must be adapted for Theorem 2 to be satisfied.

One such adaptation is

Assumption 9. There exist δ > 0 and a countable set ET such that for all ‖θ − θ0‖ < δ, for all x ∈ ET

such that pr {η(z) = x} > 0, pr {η(z) ∈ ET } = 1 and

sup
‖θ−θ0‖≤δ

∑

x∈ET

∣∣∣p[ΣT (θ){x− b(θ)} | θ]− v
−kη

T |A(θ0)|
−1/2ϕkη

[ΣT (θ){x− b(θ)}]
∣∣∣ = o(1).

This is satisfied when η(z) is a sum of independent lattice random variables, as in the population genetics

experiment detailed in Section 3.3 of Marin et al. (2014), which compares evolution scenarios of separated

populations from a most recent common ancestor. Furthermore, this example satisfies Assumptions 2 and

4–7. Thus the conclusions of both Theorems 1 and 2 apply to this model.

5. ASYMPTOTIC DISTRIBUTION OF THE POSTERIOR MEAN

5·1. Main Result

The literature on the asymptotics of approximate Bayesian computation has so far focused primarily on

asymptotic normality of the posterior mean. The posterior normality result in Theorem 2 is not weaker, or

stronger, than the asymptotic normality of an approximate point estimator, as the results focus on different

objects. However, existing proofs for asymptotic normality of the posterior mean all require asymptotic

normality of the posterior distribution Πε{· | η(y)}. We demonstrate that this is not a necessary condition.

For clarity we focus on the case of a scalar parameter θ and scalar summary η(y), i.e., kθ = kη = 1,

but present an extension to the multivariate case in Section 5·2. This result requires a further assumption

on the prior in addition to Assumption 2.

Assumption 10. The prior density π(θ) is such that (i) for θ0 in the interior of Θ, π(θ0) > 0; (ii) the

density function π(θ) is β- Hölder in a neighbourhood of θ0: there exist δ, L > 0 such that for all |θ −
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θ0| ≤ δ, and ∇
(j)
θ π(θ0) the (j)-th derivative of π(θ0),

∣∣π(θ)−
⌊β⌋∑

j=0

(θ − θ0)
j∇

(j)
θ π(θ0)

j!

∣∣ ≤ L|θ − θ0|
β .

(iii) For Θ ⊂ R,
∫
Θ
|θ|βπ(θ)dθ < ∞.

THEOREM 3. Let Assumptions 2, 4–7, with κ > β + 1, and 10 be satisfied. Furthermore, let θ 7→ b(θ)
be β-Hölder in a neighbourhood of θ0. Denoting EΠε

(θ) as the posterior mean of θ, the following char-

acterisation holds with probability going to one:

(i) If limT vT εT = ∞ and vT ε
2∧(1+β)
T = o(1), then

EΠε
{vT (θ − θ0)} → N [0, V (θ0)/{∇θb(θ0)}

2], (6)

in distribution as T → ∞, where V (θ0) = limT var[vT {η(y)− b(θ0)}].
(ii) If limT vT εT = c ≥ 0, and if when c = 0 Assumption 8 holds, then (6) also holds.

There are two immediate consequences of Theorem 3: first, part (i) of Theorem 3 states that if one is

only interested in obtaining accurate point estimators for θ0, all we require is a tolerance εT satisfying

vT ε
2
T = o(1), which can significantly reduce the computational burden of approximate Bayesian compu-

tation; secondly, if one wants accurate point estimators of θ0 and accurate expressions of the uncertainty

associated with this point estimate, we require εT = o(1/vT ). The first statement follows directly from

part (i) of Theorem 3, while the second statement follows from part (ii) of Theorem 3 and recalling that,

from Theorem 2, credible regions constructed from Πε{· | η(y)} will have proper frequentist coverage

only if εT = o(1/vT ). For εT ≍ v−1
T or εT ≫ v−1

T , the frequentist coverage of credible balls centered at

EΠε
(θ) will not be equal to the nominal level.

As an intermediate step in the proof of Theorem 3, we demonstrate the following expansion for the

posterior mean, where k denotes the integer part of (β + 1)/2:

EΠε
(θ − θ0) =

η(y)− b(θ0)

∇θb(θ0)
+

⌊β⌋∑

j=1

∇
(j)
b b−1(b0)

j!

⌊(j+k)/2⌋∑

l=⌈j/2⌉

ε2lT ∇
(2l−j)
b π(b0)

π(b0)(2l − j)!
+O(ε1+β

T ) + oP (1/vT ).

(7)

This highlights a potential deviation from the expected asymptotic behaviour of the posterior mean

EΠε
(θ), i.e., the behaviour corresponding to T → ∞ and εT → 0. Indeed, the posterior mean is asymptot-

ically normal for all values of εT = o(1), but is asymptotically unbiased only if the leading term in equa-

tion (7) is [∇θb(θ0)]
−1{η(y)− b(θ0)}, which is satisfied under Case (ii) and in Case (i) if vT ε

2
T = o(1),

given β ≥ 1. However, in Case (i), if lim infT vT ε
2
T > 0, when β ≥ 3, the posterior mean has a bias

ε2T

[
∇bπ(b0)

3π(b0)∇θb(θ0)
−

∇
(2)
θ b(θ0)

2{∇θb(θ0)}2

]
+O(ε4T ) + oP (1/vT ).

5·2. Comparison with Existing Results

Li and Fearnhead (2018a) analyse the asymptotic properties of the posterior mean and functions thereof.

Under the assumption of a central limit theorem for the summary statistic and further regularity assump-

tions on the convergence of the density of the summary statistics to this normal limit, including the

existence of an Edgeworth expansion with exponential controls on the tails, Li and Fearnhead (2018a)

demonstrate asymptotic normality, with no bias, of the posterior mean if εT = o(1/v
3/5
T ). Heuristically,

the authors derive this result using an approximation of the posterior density πε{θ | η(y)}, based on the

Gaussian approximation of the density of η(z) given θ and using properties of the maximum likelihood

estimator conditional on η(y). In contrast to our analysis, these authors allow the acceptance probability

defining the algorithm to be an arbitrary density kernel in ‖η(y)− η(z)‖. Consequently, their approach is

more general than the accept/reject version considered in Theorem 3.
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However, the conditions Li and Fearnhead (2018a) require of η(y) are stronger than ours. In particular,

our results on asymptotic normality for the posterior mean only require weak convergence of vT {η(z)−
b(θ)} under Pθ, with polynomial deviations that need not be uniform in θ. These assumptions allow for

the explicit treatment of models where the parameter space Θ is not compact. In addition, asymptotic

normality of the posterior mean requires Assumption 8 only if εT = o(1/vT ). Hence if εT ≫ v−1
T , then

only deviation bounds and weak convergence are required, which are much weaker than convergence of

the densities. When εT = o(1/vT ) then Assumption 8 essentially implies local (in θ) convergence of the

density of vT {η(z)− b(θ)}, but with no requirement on the rate of this convergence. This assumption is

weaker than the uniform convergence required in Li and Fearnhead (2018a). Our results also allow for an

explicit representation of the bias that obtains for the posterior mean when lim infT vT ε
2
T > 0.

In further contrast to Li and Fearnhead (2018a), Theorem 2 completely characterizes the asymptotic

behavior of the approximate posterior distribution for all εT = o(1) that admit posterior concentration.

This general characterization allows us to demonstrate, via Theorem 3 part (i), that asymptotic normality

and unbiasedness of the posterior mean remain achievable even if limT vT εT = ∞, provided the tolerance

satisfies εT = o(1/v
1/2
T ).

Li and Fearnhead (2018a) provide the interesting result that if kη > kθ ≥ 1 and εT = o(1/v
3/5
T ), the

posterior mean is asymptotically normal, and unbiased, but is not asymptotically efficient. To help shed

light on this phenomenon, the following result gives an alternative to Theorem 3.1 of these authors and

contains an explicit asymptotic expansion for the posterior mean when kη > kθ ≥ 1.

THEOREM 4. Let Assumptions 2, 4–7 and 10 be satisfied. Assume that vT εT → ∞ and vT ε
2
T = o(1).

Assume also that b(.) and π(.) are Lipschitz in a neighbourhood of θ0. Then, for kη > kθ ≥ 1,

EΠε
{vT (θ − θ0)} = {∇θb(θ0)

⊺∇θb(θ0)}
−1∇θb(θ0)

⊺vT {η(y)− b(θ0)}+ op(1).

In addition, if {∇θb(θ0)
⊺∇θb(θ0)}

−1∇θb(θ0)
⊺ 6= ∇θb(θ0)

⊺, the matrix

var
[
{∇θb(θ0)

⊺∇θb(θ0)}
−1∇θb(θ0)

⊺vT {η(y)− b(θ0)}
]
− {∇θb(θ0)

⊺V −1(θ0)∇θb(θ0)}
−1,

is positive semi-definite, where {∇θb(θ0)
⊺V −1(θ0)∇θb(θ0)}

−1 is the optimal asymptotic variance

achievable given η(y).

A consequence of Theorem 4 is that, for a fixed choice of summaries, the two-stage procedure ad-

vocated by Fearnhead and Prangle (2012) will not reduce the asymptotic variance over a point estimate

produced via Algorithm 1. However, this two-stage procedure does reduce the Monte Carlo error inher-

ent in estimating the approximate posterior distribution Πε{· | η(y)} by reducing the dimension of the

statistics on which the matching in approximate Bayesian computation is based.

6. PRACTICAL IMPLICATIONS OF THE RESULTS

6·1. General

The approximate Bayesian computation approach in Algorithm 1 is typically not applied in practice.

Instead, the acceptance step in Algorithm 1 is commonly replaced by the nearest-neighbour selection step

and with d2{η(z), η(y)} = ‖η(z)− η(y)‖, see, e.g., Biau et al. (2015):

(3′) select all θi associated with the α = δ/N smallest distances ‖η(z)− η(y)‖ for some δ.

This nearest-neighbour version accepts draws of θ associated with an empirical quantile over the sim-

ulated distances ‖η(z)− η(y)‖ and defines the acceptance probability for Algorithm 1. A key practical

insight of our asymptotic results is that the acceptance probability, αT = pr {‖η(z)− η(y)‖ ≤ εT }, is

only affected by the dimension of θ, as formalized in Corollary 1.

COROLLARY 1. Under the conditions in Theorem 2:

(i) If εT ≍ v−1
T or εT = o(1/vT ), then the acceptance rate associated with the threshold εT is

αT = pr {‖η(z)− η(y)‖ ≤ εT } ≍ (vT εT )
kη × v−kθ

T . v−kθ

T .
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(ii) If εT ≫ v−1
T , then

αT = pr {‖η(z)− η(y)‖ ≤ εT } ≍ εkθ

T ≫ v−kθ

T .

This shows that choosing a tolerance εT = o(1) is equivalent to choosing an αT = o(1) quantile of

‖η(z)− η(y)‖. It also demonstrates the role played by the dimension of θ on the rate at which αT declines

to zero. In Case (i), if εT ≍ v−1
T , then αT ≍ v−kθ

T . On the other hand, if εT = o(1/vT ), as required for

the Bernstein–von Mises result in Theorem 2, the associated acceptance probability goes to zero at the

faster rate, αT = o(1/vkθ

T ). In Case (ii), where εT ≫ v−1
T , it follows that αT ≫ v−kθ

T .

Linking εT and αT gives a means of choosing the αT quantile of the simulations, or equivalently the

tolerance εT , in such a way that a particular type of posterior behaviour occurs for large T : choosing αT &

v−kθ

T gives an approximate posterior distribution that concentrates; under the more stringent condition

αT = o(1/vkθ

T ) the approximate posterior distribution both concentrates and is approximately Gaussian

in large samples. These results give practitioners an understanding of what to expect from this procedure,

and a means of detecting potential issues if this expected behaviour is not in evidence. Moreover, given

that there is no direct link between Πε{· | η(y)} and the exact posterior distribution, these results give

some understanding of the statistical properties that Πε{· | η(y)} should display when it is obtained from

the popular nearest-neighbour version of the algorithm.

Corollary 1 demonstrates that to obtain reasonable statistical behavior, the rate at which αT declines to

zero must be faster the larger the dimension of θ, with the order of αT unaffected by the dimension of η.

This result provides theoretical evidence of a curse-of-dimensionality encountered in these algorithms as

the dimension of the parameters increases, with this being the first piece of work, to our knowledge, to

link the dimension of θ to certain asymptotic properties for Πε{· | η(y)}. This result provides theoretical

justification for dimension reduction methods that process parameter dimensions individually and inde-

pendent of the other dimensions; see, for example, the regression adjustment approaches of Beaumont

et al. (2002), Blum (2010) and Fearnhead and Prangle (2012), and the integrated auxiliary likelihood

approach of Martin et al. (2016).

While Corollary 1 demonstrates that the order of αT is unaffected by the dimension of the summaries,

αT cannot be accessed in practice and so the nearest-neighbour version of Algorithm 1 is implemented

using a Monte Carlo approximation to αT , which is based on the accepted draws of θ. This approximation

of αT is a Monte Carlo estimate of a conditional expectation, and, as such, will be sensitive to the dimen-

sion of η(·) for any fixed number of Monte Carlo draws N ; see Biau et al. (2015) for further discussion

on this point. In addition, it can also be shown that if εT becomes much smaller than 1/vT , the dimension

of η(·) will affect the behavior of Monte Carlo estimators for this acceptance probability. Specifically,

when considering inference on θ0 using the accept/reject approximate Bayesian computation algorithm,

we require a sequence of Monte Carlo trials NT → ∞ as T → ∞ that diverges faster the larger is kη ,

the dimension of η(·). Such a feature highlights the lack of efficiency of the accept/reject approach when

the sample size is large or if the dimension of the summaries is large. However, we note here that more

efficient sampling approaches exist and could be applied in these settings. For example, Li and Fearnhead

(2018a) consider an importance sampling approach to approximate Bayesian computation that yields ac-

ceptance rates satisfying αT = O(1), so long as εT = O(1/vT ). Therefore, in cases where the Monte

Carlo error is likely to be large, these alternative sampling approaches should be employed.

Regardless of whether one uses a more efficient sampling procedure than the simple accept/reject ap-

proach, Corollary 1 demonstrates that taking a tolerance sequence as small as possible will not necessarily

yield more accurate results. That is, Corollary 1 questions the persistent opinion that the tolerance in Al-

gorithm 1 should always be taken as small as the computing budget allows. Once εT is chosen small

enough to satisfy Case (iii) of Theorem 2, which leads to the most stringent requirement on the tolerance,

vT εT = o(1), there may well be no gain in pushing εT or, equivalently, αT any closer to zero, especially

since pushing εT closer to zero can drastically increase the required computational burden. In the follow-

ing section we numerically demonstrate this result in a simple example. In particular, we demonstrate that

for a choice of tolerance εT that admits a Bernstein–von Mises result, there is no gain in taking a tolerance
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that is smaller than this value, while the computational cost associated with such a choice, for a fixed level

of Monte Carlo error, drastically increases.

6·2. Numerical Illustration of Quantile Choice

Consider the simple example where we observe a sample {yt}
T
t=1 from yt ∼ N (µ, σ) with T = 100.

Our goal is posterior inference on θ = (µ, σ)⊺. We use as summaries the sample mean and variance, x̄ and

s2T , which satisfy a central limit theorem at rate T 1/2. In order to guarantee asymptotic normality of the

approximate posterior distribution, we must choose an αT quantile of the simulated distances according

to αT = o(1/T ), because of the joint inference on µ and σ. For the purpose of this illustration, we will

compare inference based on the nearest-neighbour version of Algorithm 1 using four different choices of

αT , α1 = 1/T 1.1, α2 = 1/T 3/2, α3 = 1/T 2 and α4 = 1/T 5/2.

Draws for (µ, σ) are simulated on [0.5, 1.5]× [0.5, 1.5] according to independent uniforms U [0.5, 1.5].
The number of draws, N , is chosen so that we retain 250 accepted draws for each of the different choices

(α1, . . . , α4). The exact finite sample marginal posterior densities of µ and σ are produced by numerically

evaluating the likelihood function, normalizing over the support of the prior and marginalising with respect

to each parameter. Given the sufficiency of (x̄, s2T ), the exact marginal posteriors densities for µ and σ
are equal to those based directly on the summaries themselves. Hence, we are able to assess the impact

of the choice of α, per se, on the ability of the nearest-neighbour version of Algorithm 1 to replicate the

exact marginal posteriors.

We summarize the accuracy of the resulting approximate posterior density estimates, across the four

quantile choices, using root mean squared error. In particular, over fifty simulated replications, and in the

case of the parameter µ, we estimate the root mean squared error between the marginal posterior density

obtained from Algorithm 1 using αj , and denoted by π̂αj
{µ | η(y)}, and the exact marginal posterior

density, π(µ | y), using

RMSEµ(αj) =

[
1

G

G∑

g=1

{
π̂g
αj
{µ | η(y)} − πg(µ | y)

}2

]1/2

. (8)

The term π̂g
αj

is the ordinate of the density estimate from the nearest-neighbour version of Algorithm 1 and

πg is the ordinate of the exact posterior density, at the g-th grid point upon which the density is estimated.

RMSEσ(αj) is computed analogously. The value of RMSEµ(αj) is averaged over fifty replications to

account for sampling variability. For each replication, we fix T = 100 and generate observations using

the parameter values µ0 = 1, σ0 = 1.

Before presenting the replication results, it is instructive to consider the graphical results of one par-

ticular run of the algorithm for each of the αj values. Figure 1 plots the resulting marginal posterior

estimates and compares these with the exact finite sample marginal posterior densities of µ and σ. At the

end of Section 6·1, we argued that for large enough T , once εT reaches a certain threshold, decreasing the

tolerance further will not necessarily result in more accurate estimates of these exact posterior densities.

This implication is evident in Fig. 1: in the case of µ, there is a clear visual decline in the accuracy with

which approximate Bayesian computation estimates the exact marginal posterior densities when choosing

quantiles smaller than α2; whilst in the case of σ, the worst performing estimate is that associated with

the smallest value of αj .
The results in Table 1 report average root mean squared error, relative to the average value associated

with α4 = 1/T 5/2. Values smaller than one indicate that the larger, and less computationally burdensome,

value of αj yields a more accurate estimate than that obtained using α4. In brief, Table 1 paints a similar

picture to that of Fig. 1: for σ, the estimates based on αj , j = 1, 2, 3, are all more accurate than those

based on α4; for µ, estimates based on α2 and α3 are both more accurate that those based on α4.

These numerical results have important implications for implementation of approximate Bayesian com-

putation. In particular, to keep the level of Monte Carlo error constant across the αj quantile choices, as

we have done in this simulation setting via the retention of 250 draws, this requires taking: N = 210e03
for α1, N = 1.4e06 for α2, N = 13.5e06 for α3, and N = 41.0e06 for α4. That is, the computational

burden associated with decreasing the quantile in the manner indicated increases dramatically: approxi-
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Figure 1. Comparison of exact and approximate posterior
densities for various tolerances. Exact marginal posterior
densities (—). Approximate Bayesian computation poste-

rior densities based on α1 = 1/T 1.1. (· · · ); α2 = 1/T 3/2

(- - -); α3 = 1/T 2 (— · —); α4 = 1/T 5/2 —∗—

mate posterior densities based on α4 for example require a value of N that is three orders of magnitude

greater than those based on α1, but this increase in computational burden yields no, or minimal, gain in

accuracy. The extension of such explorations to more scenarios is beyond the scope of this paper; however,

we speculate that, with due consideration given to the properties of both the true data generating process

and the chosen summary statistics and, hence, of the sample sizes for which Theorem 2 has practical

content, similar qualitative results will continue to hold.

Table 1. Ratio of the average root mean square error for marginal

approximate posterior density estimates relative to the average root

mean square error based on the smallest quantile, α4 = 1/T 5/2

α1 = 1/T 1.1 α2 = 1/T 1.5 α3 = 1/T 2

AVG-RMSEµ(αj) 1.17 0.99 0.98

AVG-RMSEσ(αj) 0.86 0.87 0.91

AVG-RMSE is the ratio of the average root mean square errors as defined in (8).
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Asymptotic Properties of Approximate Bayesian Computation:

Supplementary Material

SUMMARY

This supplementary material contains proofs of Theorems 1–4 and Corollary 1 in the paper. In addition,

we illustrate the implications of Theorems 1–3 in the paper with a series of simulated examples based on

the moving average model of Example 1.

7. PROOFS

7·1. Proof of Theorem 1

Let εT > 0, where, by assumption εT = o(1), and assume that y ∈ Ωε = {y : d2{η(y), b(θ0)} ≤
εT /3}. From assumption 1 and ρT (εT /3) = o(1), P0 (Ωε) = 1 + o(1). Consider the joint event Aε(δ

′) =
{(z, θ) : d2{η(z), η(y)} ≤ εT } ∩ d2{b(θ), b(θ0)} > δ′}. For all (z, θ) ∈ Aε(δ

′)

d2{b(θ), b(θ0)} ≤ d2{η(z), η(y)}+ d2{b(θ), η(z)}+ d2{b(θ0), η(y)}

≤ 4εT /3 + d2{b(θ), η(z)}.

Hence (z, θ) ∈ Aε(δ
′) implies that

d2{b(θ), η(z)} > δ′ − 4εT /3

and choosing δ′ ≥ 4εT /3 + tε leads to

pr {Aε(δ
′)} ≤

∫

Θ

Pθ [d2{b(θ), η(z)} > tε] dΠ(θ),
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and

Π[d2{b(θ), b(θ0)} > 4εT /3 + tε | d2{η(y), η(z)} ≤ εT ] = Πε [d2{b(θ), b(θ0)} > 4εT /3 + tε | η(y)]

≤

∫

Θ

Pθ [d2{b(θ), η(z)} > tε] dΠ(θ)
/∫

Θ

Pθ [d2{η(z), η(y)} ≤ εT ] dΠ(θ). (9)

Moreover, since

d2{η(z), η(y)} ≤ d2{b(θ), η(z)}+ d2{b(θ0), η(y)}+ d2{b(θ), b(θ0)} ≤ εT /3 + εT /3 + d2{b(θ), b(θ0)},

provided d2{b(θ), η(z)} ≤ εT /3, then
∫

Θ

Pθ [d2{η(z), η(y)} ≤ εT ] dΠ(θ) ≥

∫

d2{b(θ),b(θ0)}≤εT /3

Pθ [d2{η(z), b(θ)} ≤ εT /3] dΠ(θ)

≥ Π [d2{b(θ), b(θ0)} ≤ εT /3]− ρT (εT /3)

∫

d2{b(θ),b(θ0)}≤εT /3

c(θ)dΠ(θ).

If part (i) of assumption 1 holds,
∫

d2{b(θ),b(θ0)}≤εT /3

c(θ)dΠ(θ) ≤ c0Π [d2{b(θ), b(θ0)} ≤ εT /3]

and for εT small enough, or for T large enough, so that ρT (εT /3) is small,
∫

Θ

Pθ [d2{η(z), η(y)} ≤ εT ] dΠ(θ) ≥ Π [d2{b(θ), b(θ0)} ≤ εT /3]/2,

which, combined with (9) and assumption 2, leads to

Π [d2{b(θ), b(θ0)} > 4εT /3 + tε | d2{η(z), η(y)} ≤ εT ] . ρT (tε)ε
−D
T . 1/M (10)

by choosing tε = ρ−1
T (εDT /M) with M large enough. If part (ii) of assumption 1 holds, a Hölder inequality

implies that
∫

d2{b(θ),b(θ0)}≤εT /3

c(θ)dΠ(θ) . Π [d2{b(θ), b(θ0)} ≤ εT /3]
a/(1+a)

and if εT satisfies

ρT (εT ) = o
{
ε
D/(1+a)
T

}
= O

(
Π [d2{b(θ), b(θ0)} ≤ εT /3]

1/(1+a)
)
,

then (10) remains valid.

7·2. Generalization of Theorem 2 and its Proof

We obtain a generalization of Theorem 2 that allows differing rates of convergence for η(y). We assume

here that there exists a sequence of kη × kη positive definite matrices ΣT (θ) such that for all θ in a

neighbourhood of θ0, where θ0 is in the interior of Θ,

c1DT ≤ ΣT (θ) ≤ c2DT , DT = diag{vT (1), . . . , vT (k)}, (11)

with 0 < c1, c2 < ∞, vT (j) → ∞ for all j and the vT (j) are possibly all distinct. For square matrices

A,B, A ≤ B means that the matrix B −A is positive semi-definite. Thus, this generalization of Theorem

2 does not require identical convergence rates for the components of the statistic η(z). For simplicity, we

order the components so that

vT (1) ≤ . . . ≤ vT (kη). (12)

For any square matrix A of dimension kη , if q ≤ kη , A[q] denotes the q × q square upper sub-matrix of A.

Also, let jmax = max{j : limT→∞ vT (j)εT = 0} and if, for all j, limT→∞ vT (j)εT > 0 then jmax = 0.
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In addition to assumption 2 in Section 3 of the text, the following conditions are needed to establish

this generalization of Theorem 2.

Assumption 11. Assumption 1 holds and the sequence of positive definite matrices {ΣT (θ0)}T≥1 in

(11) exists. For κ > 1 and δ > 0, such that for all ‖θ − θ0‖ ≤ δ, Pθ [‖ΣT (θ0){η(z)− b(θ)}‖ > u] ≤
c0/u

κ for all 0 < u ≤ δvT (1) and c0 < ∞.

Assumption 12. Assumption 3 holds, the function b(·) is continuously differentiable at θ0, and the Ja-

cobian ∇θb(θ0) has full column rank kθ.

Assumption 13. Given the sequence of kη × kη positive definite matrices ΣT (θ) defined in (11), for

some δ > 0 and all ‖θ − θ0‖ ≤ δ, the convergence in distribution: for all open sets B

sup
|θ−θ0|≤δ

∣∣Pθ [ΣT (θ){η(z)− b(θ)} ∈ B]− P
{
N (0, Ikη

) ∈ B
}∣∣ −→ 0

holds, where Ikη
is the kη × kη identity matrix.

Assumption 14. For all ‖θ − θ0‖ ≤ δ, the sequence of functions θ 7→ ΣT (θ)D
−1
T converges to some

positive definite matrix A(θ) and is equicontinuous at θ0.

Assumption 15. For some positive δ and all ‖θ − θ0‖ ≤ δ, and for all ellipsoids

BT =
{
(t1, . . . , tjmax

) :
∑jmax

j=1 t2j/hT (j)
2 ≤ 1

}

with limT→∞ hT (j) = 0, for all j ≤ jmax and all u ∈ R
jmax fixed,

lim
T→∞

sup
|θ−θ0|≤δ

∣∣∣∣∣
Pθ

[
{ΣT (θ)}[jmax]{η(z)− b(θ)} − u ∈ BT

]
∏jmax

j=1 hT (j)
− ϕjmax

(u)

∣∣∣∣∣ = 0,

Pθ

[
{ΣT (θ)}[jmax]{η(z)− b(θ)} − u ∈ BT

]
∏jmax

j=1 hT (j)
≤ H(u),

∫
H(u)du < ∞,

for ϕjmax
(·) the density of a jmax-dimensional normal random variate.

THEOREM 6. Assume that Assumptions 2, 11, with κ > kθ, and 12–14, are satisfied. The following

results hold with P0 probability approaching one:

(i) if limT→∞ vT (1)εT = ∞, the posterior distribution of ε−1
T (θ − θ0) converges to the uniform distribu-

tion over the ellipse {w : w⊺B0w ≤ 1} with B0 = {∇θb(θ0)
⊺

∇θb(θ0)}. Hence, for all f(·) continuous

and bounded,
∫

f{ε−1
T (θ − θ0)}dΠε{θ | η(y)}→

∫

u⊺B0u≤1

f(u)du
/∫

u⊺B0u≤1

du. (13)

(ii) if there exists k0 < kη such that limT→∞ vT (1)εT = limT→∞ vT (k0)εT = c, 0 < c < ∞, and

limT→∞ vT (k0 + 1)εT = ∞, assuming

Leb




k0∑

j=1

[
{∇θb(θ0)(θ − θ0)}[j]

]2
≤ cε2T


 = ∞,

then

Πε [ΣT (θ0){b(θ)− b(θ0)} − ΣT (θ0){η(y)− b(θ0)} ∈ B | η(y)] → 0,

for all bounded measurable sets B, where Leb(.) denotes the Lebesgue measure.



16 D. T. FRAZIER, G. M. MARTIN, C. P. ROBERT, AND J. ROUSSEAU

(iii) if there exists jmax < kη such that limT→∞ vT (jmax)εT = 0 and limT→∞ vT (jmax + 1)εT = ∞, if

assumption 15 is satisfied and κ is such that





jmax∏

j=1

vT (j)





−1/(κ+jmax)

vT (jmax + 1)−κ/(κ+jmax) = o(εT ),

then (13) is satisfied.

(iv) if limT→∞ vT (j)εT = c > 0 for all j ≤ kη or if case (ii) holds with

Leb




k0∑

j=1

[
{∇θb(θ0)(θ − θ0)}[j]

]2
≤ cε2T


 < ∞,

then there exists a non-Gaussian probability distribution on R
kη , Qc, such that

Πε [ΣT (θ0){b(θ)− b(θ0)} − ΣT (θ0){η(y)− b(θ0)} ∈ B | η(y)] → Qc(B).

In particular,

Qc(B) ∝

∫

B

∫

R
kη

1l(z−x)⊺A(θ0)⊺A(θ0)(z−x)ϕkη
(z)dzdx.

(v) if limT→∞ vT (kη)εT = 0 and under assumption 15 holding for jmax = kη , then, for Φkη
(·) the cu-

mulative distribution function of the kη-dimensional standard normal

lim
T→∞

Πε [ΣT (θ0){b(θ)− b(θ0)} − ΣT (θ0){η(y)− b(θ0)} ∈ B | η(y)] = Φkη
(B).

Proof. We work with b(θ) instead of θ as the parameter, with injectivity of θ 7→ b(θ) required to re-

state all results in terms of θ. For mathematical convenience, we demonstrate this result in the case where

d2(η1, η2) = ‖η1 − η2‖, however, it holds for any metric d2 by the equivalence of all metrics on B.

We control the approximate Bayesian computation posterior expectation of non-negative and bounded

functions fT (θ − θ0) by

EΠε
{fT (θ − θ0)} =

∫
fT (θ − θ0)dΠε {θ | η(y)}

=

∫
fT (θ − θ0)1l‖θ−θ0‖≤λT

dΠε {θ | η(y)}+ oP (1)

=

∫
‖θ−θ0‖≤λT

π(θ)fT (θ − θ0)Pθ {‖η(z)− η(y)‖ ≤ εT } dθ∫
‖θ−θ0‖≤λT

π(θ)Pθ {‖η(z)− η(y)‖ ≤ εT } dθ
+ oP (1),

where the second equality uses the posterior concentration of ‖θ − θ0‖ at the rate λT≫1/vT (1). For

b0 = b(θ0), define

Z0
T = ΣT (θ0){η(y)− b0}, ZT = ΣT (θ0){η(z)− b(θ)},

with

ΣT (θ0){η(z)− η(y)} = ΣT (θ0){η(z)− b(θ)}+ΣT (θ0){b(θ)− b0} − ΣT (θ0){η(y)− b0}

= ZT +ΣT (θ0){b(θ)− b0} − Z0
T .

For fixed θ,

‖Σ−1
T (θ0) [ΣT (θ0){η(z)− b(θ)} − ΣT (θ0){b(θ)− b0}] ‖

≍ ‖D−1
T [ΣT (θ0){η(z)− b(θ)} − ΣT (θ0){b(θ)− b0}] ‖

and

ΣT (θ0){b(θ)− b0} − Z0
T = ΣT (θ0)∇θb(θ0)(θ − θ0){1 + o(1)} − Z0

T ∈ B.
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Case (i) : We have limT→∞ vT (1)εT = ∞. Consider x(θ) = ε−1
T {b(θ)− b0} and fT (θ − θ0) =

f{ε−1
T (θ − θ0)}, where f(·) is a non-negative, continuous and bounded function. On the event

Ωn,0(M) = {‖Z0
T ‖ ≤ M/2}, which has probability smaller than ǫ by choosing M large enough, we

have that

Pθ

(
‖ZT − Z0

T ‖ ≤ M
)
≥ Pθ (‖ZT ‖ ≤ M/2) ≥ 1−

c(θ)

Mκ
≥ 1−

c0
Mκ

≥ 1− ǫ

for all ‖θ − θ0‖ ≤ λT . Since, η(z)− η(y) = Σ−1
T (θ0)(ZT − Z0

T ) + εTx(θ), we have that on Ωn,0,

Pθ

{
‖Σ−1

T (θ0)(ZT − Z0
T ) + εTx(θ)‖ ≤ εT

}
≥ Pθ

[
‖Σ−1

T (θ0)(ZT − Z0
T )‖ ≤ εT {1− ‖x(θ)‖}

]

≥ Pθ

[
‖ZT − Z0

T ‖ ≤ vT (1)εT {1− ‖x(θ)‖}
]
≥ 1− ǫ

as soon as ‖x(θ)‖ ≤ 1−M/{vT (1)εT } with M as above. This, combined with the continuity of π(·) at

θ0 and assumption 12, implies that

∫
f{ε−1

T (θ − θ0)}dΠε {θ | η(y)}

=

∫
‖θ−θ0‖≤λT

f{ε−1
T (θ − θ0)}Pθ

{
‖Σ−1

T (θ0)(ZT − Z0
T ) + εTx(θ)‖ ≤ εT

}
dθ

∫
‖θ−θ0‖≤λT

Pθ

{
‖Σ−1

T (θ0)(ZT − Z0
T ) + εTx(θ)‖ ≤ εT

}
dθ

{1 + o(1)}+ oP (1)

=

∫
‖x(θ)‖≤1−M/{vT (1)εT }

f{ε−1
T (θ − θ0)}dθ∫

‖x(θ)‖≤1−M/{vT (1)εT }
dθ

{1 + o(1)}

+

∫
‖θ−θ0‖≤λT

1l‖x(θ)‖>1−M/{vT (1)εT }f{ε
−1
T (θ − θ0)}Pθ

{
‖Σ−1

T (θ0)(ZT − Z0
T ) + εTx(θ)‖ ≤ εT

}
dθ

∫
‖x(θ)‖≤1−M/{vT (1)εT }

dθ

(14)

The first term is approximately equal to

N1 =

∫

‖b(εTu+θ0)−b0‖≤1

f(u)du
/∫

‖b(εTu+θ0)−b0‖≤1

du

and the regularity of the function θ 7→ b(θ) implies that

∫

‖b(εTu+θ0)−b0‖≤εT

du =

∫

‖∇θb(θ0)u‖≤1

du+ o(1) =

∫

u⊺B0u≤1

du+ o(1)

with B0 = ∇θb(θ0)
⊺∇θb(θ0). This leads to

N1 =

∫

u⊺B0u≤1

f(u)du
/∫

u⊺B0u≤1

du.

The second integral ratio in the right hand side of (14) converges to 0. It can be split into an integral over

1 +M/{vT (1)εT } ≥ ‖x(θ)‖ ≥ 1−M/{vT (1)εT } and another over 1 +M/{vT (1)εT } ≤ ‖x(θ)‖. The

first part N2 is bounded as

N2 ≤
‖f‖∞

∫
1+M/{vT (1)εT }≥‖x(θ)‖>1−M/{vT (1)εT }

dθ
∫
‖x(θ)‖≤1−M/{vT (1)εT }

dθ
. {vT (1)εT }

−1 = o(1)

Since

Pθ

{
‖Σ−1

T (θ0)(ZT − Z0
T ) + εTx(θ)‖ ≤ εT

}
≤ Pθ

{
‖Σ−1

T (θ0)(ZT − Z0
T )‖ ≥ εT ‖x(θ)‖ − εT

}

≤ Pθ

[
‖ZT − Z0

T ‖ ≥ vT (1)εT {‖x(θ)‖ − 1}
]
≤ c0[vT (1)εT {‖x(θ)‖ − 1}]−κ,
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the second part of the second term, N3, which is the integral over ‖x(θ)‖ > 1 +M/{vT (1)εT }, is

bounded by

∫
‖θ−θ0‖≤λT

1l‖x(θ)‖>1+M/{vT (1)εT }f{ε
−1
T (θ − θ0)}Pθ

{
‖Σ−1

T (θ0)(ZT − Z0
T ) + εTx(θ)‖ ≤ εT

}
dθ

∫
‖x(θ)‖≤1−M/{vT (1)εT }

dθ

. M−κε−kθ

T

∫

2≥‖x(θ)‖>1+M/{vT (1)εT }

dθ + 2κε−kθ

T

∫

2≤‖x(θ)‖

{vT (1)εT ‖x(θ)‖}
−κdθ

. M−κ + ε−kθ

T

∫

c1εT≤‖θ−θ0‖

{vT (1)‖∇θb(θ0)(θ − θ0)‖}
−κdθ . M−κ,

provided κ > 1. Since M can be chosen arbitrarily large, putting N1, N2 and N3 together, we obtain that

the approximate Bayesian computation posterior distribution of ε−1
T (θ − θ0) is asymptotically uniform

over the ellipsoid {w : w⊺B0w ≤ 1} and (i) is proved.

Case (ii) : We have ∞ > limT→∞ vT (1)εT = c > 0 and limT→∞ vT (kη)εT = ∞. We consider

fT (θ − θ0) = 1lΣT (θ0){b(θ)−b0}−Z0

T
∈B .

With an obvious abuse of notation, we let

x = ΣT (θ0){b(θ)− b0} − Z0
T .

We choose k0 such that, for all j ≤ k0, limT→∞ vT (j)εT = c and for all j > k0, limT→∞ vT (j)εT =
∞. We write ΣT (θ0) = AT (θ0)DT , so that AT (θ0) → A(θ0) as T → ∞, where A(θ0) is positive definite

and symmetric. Then,

Pθ

(
‖Σ−1

T (θ0) [ΣT (θ0){η(z)− b(θ)} − x] ‖ ≤ εT
)
= Pθ

{
‖D−1

T A−1
T (θ0) (ZT − x) ‖ ≤ εT

}

= Pθ

{
‖D−1

T (Z̃T − xT )‖ ≤ εT

}
,

where Z̃T = A−1
T (θ0)ZT −→ N{0, A(θ0)Ikη

A(θ0)
⊺} and xT = A−1

T (θ0)x = A−1(θ0)x+ oP (1).
We then have for MT → ∞, such that MT {vT (k0 + 1)εT }

−2 = o(1),

Pθ

{
‖D−1

T (Z̃T − xT )‖ ≤ εT
}
≤ Pθ




k0∑

j=1

{Z̃T (j)− xT (j)}
2 ≤ vT (1)

2ε2T




≥ Pθ




k0∑

j=1

{Z̃T (j)− xT (j)}
2 ≤ vT (1)

2ε2T
[
1−MT {vT (k0 + 1)εT }

−2
]



− Pθ




k∑

j=k0+1

{Z̃T (j)− xT (j)}
2 > M−1

T {εT vT (k0 + 1)}−2




≥ Pθ




k0∑

j=1

{Z̃T (j)− xT (j)}
2 ≤ vT (1)

2ε2T
[
1−MT {vT (k0 + 1)εT }

−2
]

− o(1).

(15)

This implies that, for all x and all ‖θ − θ0‖ ≤ λT

Pθ

{
‖D−1

T (Z̃T − xT )‖ ≤ εT

}
= Pθ




k0∑

j=1

[{
A−1(θ0)ZT

}
(j)− {A−1(θ0)x}(j)

]2
≤ c


+ o(1).
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Since A−1(θ0)x = DT∇θb(θ0)(θ − θ0)−A−1(θ0)Z
0
T , if

Leb




k0∑

j=1

[
{∇θb(θ0)(θ − θ0)}[j]

]2
≤ cε2T


 = ∞ ,

then as in case (i) we can bound

Πε

[
ΣT (θ0){b(θ)− b0} − Z0

T ∈ B | η(y)
]

≤

∫
A−1(θ0)x∈B

Pθ

(∑k0

j=1

[{
A−1(θ0)ZT

}
(j)− z(j)

]2
≤ c

)
dθ

∫
‖θ‖≤M

Pθ

(∑k0

j=1 [{A
−1(θ0)ZT } (j)− z(j)]

2 ≤ c
)
dθ

+ oP (1),

which goes to zero when M goes to infinity. Since M can be chosen arbitrarily large, (12) is proven.

Case (iii) : We have limT→∞ vT (1)εT = 0 and limT→∞ vT (kη)εT = ∞. Again we consider

fT (θ − θ0) = 1lΣT (θ0){b(θ)−b0}−Z0

T
∈B

and x(θ) = ΣT (θ0){b(θ)− b0} − Z0
T . As in the computations producing (15), and under assumption 15,

we have

Pθ

{
‖D−1

T (Z̃T − xT )‖ ≤ εT

}
≤ Pθ



jmax∑

j=1

vT (j)
−2{Z̃T (j)− xT (j)}

2 ≤ ε2T




≥ Pθ



jmax∑

j=1

vT (j)
−2{Z̃T (j)− xT (j)}

2 ≤ ε2T /2


− Pθ


 ∑

j≥jmax

{Z̃T (j)− xT (j)}
2 > ǫ2T vT (jmax + 1)2/2




≥ ϕjmax
(x[k1]){1 + o(1)}

jmax∏

j=1

{vT (j)εT } − c0{ǫT vT (jmax + 1)/2}−κ

uniformly when ‖θ − θ0‖ < λT where ϕjmax
is the zero mean Gaussian density in jmax dimensions,

with covariance {A(θ0)
2}[jmax] . Since {ǫT vT (jmax + 1)/2}−κ = o

[∏jmax

j=1 {vT (j)εT }
]

this implies, as

in case (ii), that with probability going to one

lim sup
T→∞

Πε

[
ΣT (θ0){b(θ)− b0} − Z0

T ∈ B | η(y)
]
.

∫
A(θ0)B

ϕjmax
(x[jmax])dx∫

‖x‖≤M
ϕjmax

(x[jmax])dx
. M−(kη−jmax)

and choosing M arbitrary large leads to equation (11) in the text.

Case (iv) : We have limT→∞ vT (j)εT = c > 0 for all j ≤ kη . To prove equation (13) in the text, we use

the computation of case (ii) with k0 = kη , so that (15) implies that for all x

Pθ

{
‖D−1

T (Z̃T − x)‖ ≤ εT

}
= Pθ

{
‖Z̃T − x‖2 ≤ vT (1)

2ε2T

}

= P
{
‖A−1(θ0)Z∞ −A−1(θ0)x‖

2 ≤ c2
}
+ o(1)

uniformly in ‖θ − θ0‖ ≤ δ where Z∞ ∼ N (0, Ikη
).

We set u = {∇θb(θ0)
⊺ΣT (θ0)

⊺ΣT (θ0)∇b(θ0)}
1/2(θ − θ0). When ‖θ − θ∗‖ ≤ λT , x(θ) =

ΣT (θ0)∇b(θ0)(θ − θ0)(1 + o(1)) = x(u){1 + o(1)}, we can write x(θ) = x(u) and ‖x(u)‖ = ‖u‖.
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Choosing M and T large enough, by the dominated convergence theorem,

Πε [ΣT (θ0){b(θ)− b0} − Z0
T ∈ B | η(y)

]
≤

∫
x(u)∈B

P
{
‖A−1(θ0)Z∞ −A−1(θ0)x(u)‖

2 ≤ c2
}
du+ op(1)∫

‖u‖≤M
P {‖A−1(θ0)Z∞ −A−1(θ0)x(u)‖2 ≤ c2} du+ op(1)

≥

∫
x(u)∈B

P
{
‖A−1(θ0)Z∞ −A−1(θ0)x(u)‖

2 ≤ c2
}
du+ op(1)∫

‖u‖≤M
P {‖A−1(θ0)Z∞ −A−1(θ0)x(u)‖2 ≤ c2} du+ op(1)

Since M can be chosen arbitrarily large and since, when M goes to infinity, we have
∫

‖u‖≤M

P
{
‖Z̃∞ −A−1(θ0)x(u)‖

2 ≤ c2
}
du →

∫

u∈R
kθ

P
{
‖Z̃∞ −A−1(θ0)x(u)‖

2 ≤ c2
}
du < ∞,

the result follows.

Case (v) : We have limT→∞ vT (k)εT = 0. Take ΣT (θ0) = AT (θ0)DT . For some δ > 0 and all ‖θ −
θ0‖ ≤ δ,

Pθ

[∥∥D−1
T {A−1

T (θ0)ZT −A−1
T (θ0)x}

∥∥ ≤ εT
]
= Pθ

[{
A−1

T (θ0)ZT −A−1
T (θ0)x

}
∈ BT

]
+ o(1).

From both assertions of assumption 15 and by the dominated convergence theorem, the above implies for

jmax = kη that

1
∏kη

j=1 εT vT (j)

∫
Pθ

[{
A−1(θ0)ZT −A−1(θ0)x

}
∈ BT

]
dx =

∫
ϕkη

(x)dx+ o(1) = 1 + o(1) .

Likewise, similar arguments yield

1
∏kη

j=1 εT vT (j)

∫
1lx∈BPθ

[{
A−1(θ0)ZT −A−1(θ0)x

}
∈ BT

]
dx =

∫
1lx∈Bϕkη

(x)dx+ o(1)

= Φkη
(B) + o(1).

Together, these two equivalences yield the result in case (v). �

7·3. Proof of Theorem 3

Case (i) : Define b = b(θ) and b0 = b(θ0) and, with a slight abuse of notation, in this proof we let Z0
T =

vT {η(y)− b0} and x = vT (b− b0)− Z0
T . We approximate the ratio

EΠε
{vT (b− b0)} − Z0

T =
NT

DT
=

∫
xPx {| η(z)− η(y) |≤ εT }π{b0 + (x+ Z0

T )/vT }dx∫
Px {| η(z)− η(y) |≤ εT }π{b0 + (x+ Z0

T )/vT }dx

We first approximate the numerator NT : vT {η(z)− η(y)} = vT (η(z)− b) + x and b = b0 + (x+
Z0
T )/vT . Denote ZT = vT {η(z)− b}, then

NT =

∫
xPx {| η(z)− η(y) |≤ εT }π{b0 + (x+ Z0

T )/vT }dx

=

∫

|x|≤vT εT−M

xPx (| ZT + x |≤ vT εT )π{b0 + (x+ Z0
T )/vT }dx

+

∫

|x|≥vT εT−M

xPx (| ZT + x |≤ vT εT )π{b0 + (x+ Z0
T )/vT }dx,

(16)

where the condition limT vT εT = ∞ is used in the representation of the real line over which the integral

defining NT is specified.

We start by studying the first integral term in (16). If 0 ≤ x ≤ vT εT −M , then

1 ≥ Px (| ZT + x |≤ vT εT ) = 1− Px (ZT > vT εT − x)− Px (ZT < −vT εT − x)

≥ 1− 2(vT εT − x)−κ.
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Using a similar argument for x ≤ 0, we obtain, for all | x |≤ vT εT −M ,

1− 2(vT εT− | x |)−κ ≤ Px (| ZT + x |≤ vT εT ) ≤ 1

and choosing M large enough implies that if κ > 2,

N1 =

∫

|x|≤vT εT−M

xPx (| ZT + x |≤ vT εT )π{b0 + (x+ Z0
T )/vT }dx

=

∫

|x|≤vT εT−M

xπ{b0 + (x+ Z0
T )/vT }dx+O(M−κ+2) .

A Taylor expansion of π{b0 + (x+ Z0
T )/vT } around γ0 = b0 + Z0

T /vT then leads to, for ∇j
bπ(θ) denot-

ing the j-th derivative of π(b) with respect to b,

N1 = 2

k∑

j=1

∇
(2j−1)
b π(γ0)

(2j − 1)!(2j + 1)v2j−1
T

(εT vT )
2j+1 +O(M−κ+2) +O(ε2+β

T v2T ) + oP (1)

= 2v2T

k∑

j=1

∇
(2j−1)
b π(γ0)

(2j − 1)!(2j + 1)
ε2j+1
T +O(M−κ+2) +O(ε2+β

T v2T ) + oP (1),

where k = ⌊β/2⌋. We split the second integral of (16) over vT εT −M ≤| x |≤ vT εT +M and over

| x |≥ vT εT +M . We treat the latter as before: with probability going to one,

| N3 | ≤

∫

|x|≥vT εT+M

| x | Px (| ZT + x |≤ vT εT )π{b0 + (x+ Z0
T )/vT }dx

≤

∫

|x|≥vT εT+M

| x | c{b0 + (x+ Z0
T )/vT }

(| x | −vT εT )κ
π{b0 + (x+ Z0

T )/vT }dx

≤ c0 sup
|x|≥vT εT

|π(x)|

∫

vT εT+M≤|x|≤δvT

| x |

(| x | −vT εT )κ
dx+

vT
(δvT )κ−1

∫
c(θ)dΠ(θ)

. M−κ+2 +O(v−κ+2
T ) .

Finally, we study the second integral term for NT in (16) over vT εT −M ≤| x |≤ vT εT +M . Using the

assumption that π(·) is Hölder we obtain that

| N2 | =

∣∣∣∣∣

∫ vT εT+M

vT εT−M

xPx (| ZT + x |≤ vT εT )π{b0 + (x+ Z0
T )/vT }dx

+

∫ −vT εT+M

−vT εT−M

xPx (| ZT + x |≤ vT εT )π{b0 + (x+ Z0
T )/vT }dx

∣∣∣∣∣

≤ π(b0)

∣∣∣∣∣

∫ vT εT+M

vT εT−M

xPx (| ZT + x |≤ vT εT ) dx+

∫ −vT εT+M

−vT εT−M

xPx (| ZT + x |≤ vT εT ) dx

∣∣∣∣∣

+ L ·Mε1+β∧1
T vβ∧1

T + oP (1)

.

∣∣∣∣∣vT εT
∫ M

−M

{Py (ZT ≤ −y)− Py (ZT ≥ −y)} dy

∣∣∣∣∣

+

∣∣∣∣∣vT εT
∫ M

−M

y {Py (ZT ≤ −y) + Py (ZT ≥ −y)} dy

∣∣∣∣∣+O(Mε1+β∧1
T vβ∧1

T ) + oP (1),
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with M fixed but arbitrarily large. By the dominated convergence theorem and the locally uniform Gaus-

sian limit of ZT , for any arbitrarily large, but fixed M ,

∫ M

−M

{Py (ZT ≤ −y)− Py (ZT ≥ −y)} dy = Mo(1)

and
∫ M

−M

y {Py (ZT ≤ −y) + Py (ZT ≥ −y)} dy =

∫ M

−M

y {1 + o(1)} dy = M2o(1).

This implies that

N2 . M2o(vT εT ) +Mε1+β∧1
T vβ∧1

T + oP (1).

Therefore, regrouping all terms, and since ε1+β∧1
T vβ∧1

T = o(vT εT ) for all β > 0 and εT = o(1), we obtain

the representation

NT = 2v2T

k∑

j=1

∇
(2j−1)
b π(γ0)

(2j − 1)!(2j + 1)
ε2j+1
T +M2o(vT εT ) +O(M−κ+2) +O(v−κ+2

T ) +O(ε2+β
T v2T ) + oP (1) .

We now study the denominator in a similar manner. This leads to

DT =

∫
Px {| η(z)− η(y) |≤ εT }π{b0 + (x+ Z0

T )/vT }dx

=

∫

|x|≤vT εT−M

π{b0 + (x+ Z0
T )/vT }{1 + o(1)}dx+O(1)

= 2π(b0)vT εT {1 + oP (1)}.

Combining DT and NT , we obtain, εT = o(1),

NT

DT
= vT

k∑

j=1

∇
(2j−1)
b π(b0)

π(b0)(2j − 1)!(2j + 1)
ε2jT + oP (1) +O(ε1+β

T vT ). (17)

Using the definition of NT /DT , dividing (17) by vT , and rearranging terms yields

EΠε
(b− b0) =

Z0
T

vT
+

k∑

j=1

∇
(2j−1)
b π(b0)

π(b0)(2j − 1)!(2j + 1)
ε2jT +O(ε1+β

T ) + oP (1/vT ),

To obtain the posterior mean of θ, we write

θ = b−1{b(θ)} = θ0 +

⌊β⌋∑

j=1

{b(θ)− b0}
j

j!
∇

(j)
b b−1(b0) +R(θ),

where | R(θ) |≤ L | b(θ)− b0 |β provided | b(θ)− b0 |≤ δ. We compute the approximate Bayesian mean

of θ by splitting the range of integration into | b(θ)− b0 |≤ δ and | b(θ)− b0 |> δ. A Cauchy-Schwarz

inequality leads to

EΠε
{| θ − θ0 | 1l|b(θ)−b0|>δ

}

=
1

2εT vTπ(b0){1 + oP (1)}

∫

|b(θ)−b0|>δ

| θ − θ0 | Pθ {| η(z)− η(y) |≤ εT }π(θ)dθ

≤ 2κv−κ
T δ−κ

{∫

Θ

(θ − θ0)
2π(θ)dθ

}1/2 {∫

Θ

c(θ)2π(θ)dθ

}1/2

{1 + oP (1)}

= oP (1/vT ),
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provided κ > 1. To control the term over |b(θ)− b0| ≤ δ, we use computations similar to earlier ones so

that

EΠε

{
(θ − θ0)1l|b(θ)−b0|≤δ

}
=

⌊β⌋∑

j=1

∇
(j)
b b−1(b0)

j!
EΠε

[
{b(θ)− b0}

j
]
+ oP (1/vT ),

where, for j ≥ 2 and κ > j + 1,

EΠε

[
{b(θ)− b0}

j
]
=

1

vjT

∫
|x|≤εT vT−M

xjπ{b0 + (x+ Z0
T )/vT }dx

2εT vTπ(b0)
+ oP (1/vT )

=
k∑

l=0

∇
(l)
b π(b0)

2εT v
j+l+1
T π(b0)l!

∫

|x|≤εT vT−M

xj+ldx+ oP (1/vT ) +O(ε1+β
T )

=

⌊(j+k)/2⌋∑

l=⌈j/2⌉

ε2lT ∇
(2l−j)
b π(b0)

π(b0)(2l − j)!
+ oP (1/vT ) +O(ε1+β

T ).

This implies, in particular, that

EΠε
(θ − θ0) =

Z0
T {∇bb

−1(b0)}

vT
+

⌊β⌋∑

j=1

∇
(j)
b b−1(b0)

j!

⌊(j+k)/2⌋∑

l=⌈j/2⌉

ε2lT ∇
(2l−j)
b π(b0)

π(b0)(2l − j)!
+ oP (1/vT ) +O(ε1+β

T ).

Hence, if ε2T = o(1/vT ) and β ≥ 1,

EΠε
(θ − θ0) = {∇θb(θ0)}

−1Z0
T /vT + oP (1/vT )

and EΠε
{vT (θ − θ0)} −→ N [0, V (θ0)/{∇θb(θ0)}

2], while if vT ε
2
T → ∞

EΠε
(θ − θ0) = ε2T

[
∇bπ(b0)

3π(b0)∇θb(θ0)
−

∇
(2)
θ b(θ0)

2{∇θb(θ0)}2

]
+O(ε4T ) + oP (1/vT ),

assuming β ≥ 3.

Case (ii) : Recall that b = b(θ), b0 = b(θ0), and define

EΠε
(b) =

∫
bPb {| η(y)− η(z) |≤ εT }π(b)db∫
Pb {| η(y)− η(z) |≤ εT }π(b)db

.

Considering the change of variables b 7→ x = vT (b− b0)− Z0
T and using the above equation we have

EΠε
(b) =

∫
(b0 + (x+ Z0

T )/vT )Px {| η(y)− η(z) |≤ εT }π{b0 + (x+ Z0
T )/vT }dx∫

Px {| η(y)− η(z) |≤ εT }π{b0 + (x+ Z0
T )/vT }dx

,

which can be rewritten as

EΠε
{vT (b− b0)} − Z0

T =

∫
xPx {| η(y)− η(z) |≤ εT }π{b0 + (x+ Z0

T )/vT }dx∫
Px {| η(y)− η(z) |≤ εT }π{b0 + (x+ Z0

T )/vT }dx
.

Recalling that vT {η(z)− η(y)} = vT {η(z)− b}+ vT (b− b0)− Z0
T = ZT + x we have

EΠε
{vT (b− b0)} − Z0

T =

∫
xPx (| ZT + x |≤ vT εT )π{b0 + (x+ Z0

T )/vT }dx∫
Px (| ZT + x |≤ vT εT )π{b0 + (x+ Z0

T )/vT }dx
=

NT

DT
.

By injectivity of the map θ 7→ b(θ) in assumption 3 and assumption 6, the result follows when

EΠε
{vT (b− b0)} − Z0

T = oP (1).
Consider first the denominator. Define hT = vT εT and V0 = V (θ0) = limT→∞ var[vT {η(y)− b0}].

Using arguments that mirror those in the proof of Theorem 2 part (v), by assumption 15 and the dominated
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convergence theorem

DT

π(b0)hT
= h−1

T

∫
Px(| ZT + x |≤ hT )dx+ oP (1) =

∫
ϕ(x/V

1/2
0 )dx+ oP (1) = 1 + oP (1),

where the second equality follows from assumption 8 and the dominated convergence theorem. The result

follows if NT /hT = oP (1). To this end, define P ∗
x (| ZT + x |≤ hT ) = Px(| ZT + x |≤ hT )/hT and, if

hT = o(1) by assumptions 8 and 10,

NT

hT
=

∫
xP ∗

x (| ZT + x |≤ hT )π{b0 + (x+ Z0
T )/vT }dx

= π(b0)

∫
xϕ(x/V

1/2
0 )dx+

∫
x
{
P ∗
x (| ZT + x |≤ hT )− ϕ(x/V

1/2
0 )

}

× π{b0 + (x+ Z0
T )/vT }dx+ oP (1).

If hT → c > 0, then

NT

hT
= π(b0)

∫
x · pr

{
| N (0, 1) + x/V

1/2
0 |≤ c/V

1/2
0

}
dx

+

∫
x
[
P ∗
x (| ZT + x |≤ hT )− pr{| N (0, 1) + x/V

1/2
0 |≤ c/V

1/2
0 }

]
π{b0 + (x+ Z0

T )/vT }dx

+ oP (1). (18)

The result follows if
∫

x
{
P ∗
x (| ZT + x |≤ hT )− ϕ(x/V

1/2
0 )

}
π{b0 + (x+ Z0

T )/vT }dx = oP (1),

respectively, P ∗
x (| ZT + x |≤ hT )− pr{| N (0, 1) + x/V

1/2
0 |≤ c/V

1/2
0 } = o(1), for which a sufficient

condition is that
∫

| x |
∣∣∣P ∗

x (| ZT + x |≤ hT )− ϕ(x/V
1/2
0 )

∣∣∣π{b0 + (x+ Z0
T )/vT }dx = oP (1), (19)

or the equivalent in the case hT → c > 0.

To show that the integral in (19) is oP (1) we break the region of integration into three areas: (i) | x |≤
M ; (ii) M ≤| x |≤ δvT ; (iii) | x |≥ δvT .

Area (i): When | x |≤ M , the following equivalences are satisfied:

sup
x:|x|≤M

| π{b0 + (x+ Z0
T )/vT } − π(b0) |= oP (1),

sup
|θ−θ∗|≤1/vT

| P ∗
θ (| ZT + x |≤ hT )− ϕ(x/V

1/2
0 ) |= oP (1).

The first equation is satisfied by assumption 10 and the fact that by assumption 6 Z0
T /vT = oP (1). The

second term follows from assumption 10 . We can now conclude that equation (19) is oP (1) over | x |≤
M , using the dominated convergence theorem.

The same holds for the first term in equation (18), without requiring assumption 10.

Area (ii): When M ≤ |x| ≤ δvT , the integral of the second term is finite and can be made arbitrarily small

for M large enough. Therefore, it suffices to show that

∫

M≤|x|≤δvT

|x|P ∗
x (| ZT + x |≤ hT )π{b0 + (x+ Z0

T )/vT }dx

is finite.
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When |x| > M , | ZT + x |≤ hT implies that | ZT |> |x|/2 since hT = O(1). Hence, using assump-

tion 11,

|x|P ∗
x (| ZT + x |≤ hT ) ≤ |x|P ∗

x (| ZT |> |x|/2) ≤ c0
|x|

|x|κ
,

which in turns implies that

∫

M≤|x|≤δvT

P ∗(| ZT + x |≤ hT )π{b0 + (x+ Z0
T )/vT }dx ≤ C

∫

M≤|x|≤δvT

1

|x|κ−1
dx ≤ M−κ+2.

The same computation can be conducted in case (18).

Area (iii): When |x| ≥ δvT the second term is again negligible for δvT large. Our focus then becomes

N3 =
1

hT

∫

|x|≥δvT

|x|P ∗
x (| ZT + x |≤ hT )π{b0 + (x+ Z0

T )/vT }dx.

By assumption 4, for some κ > 2 we can bound N3 as follows:

N3 =
1

hT

∫

|x|≥δvT

|x|Px(| x+ ZT |≤ hT )π{b0 + (x+ Z0
T )/vT }dx

≤
1

hT

∫

|x|≥δvT

|x|c(b0 + (x+ Z0
T )/vT )

(1 + |x| − hT )κ
π{b0 + (x+ Z0

T )/vT }dx

.
v2T
hT

∫

|b−η(y)|≥δ

c(b) | b− η(y) |

{1 + vT | b− η(y) | −hT }κ
π(b)db.

Since η(y) = b0 +OP (1/vT ) we have, for T large,

N3 .
v2T
hT

∫

|b−b0|≥δ/2

c(b)|b|π(b)

(1 + vT δ − hT )κ
db .

v2T
hT

{∫
c(b)|b|π(b)db

}
O(v−k

T ) . O(v1−κ
T εT ) = o(1),

where assumptions 10 and 11 ensure
∫
c(b)|b|π(b)db < ∞. The same computation can be conducted in

case (18).

Combining the results for the three areas we can conclude that NT /DT = oP (1) and the result follows.

7·4. Proof of Theorem 4

The proof follows the same lines as the proof of Theorem 3, with some extra technicalities due to the

multivariate nature of θ. Define G0 = ∇θb(θ0), b0 = b(θ0) and let Z0
T = vT {η(y)− b0} and

x(θ) = vT (θ − θ0)− (G⊺

0G0)
−1G⊺

0Z
0
T .

We show that EΠǫ
{x(θ)} = op(1). We write

EΠǫ
{x(θ)} =

∫
Θ
x(θ)Pθ {‖η(z)− η(y)‖ ≤ εT }π(θ)dθ∫
Θ
Pθ {‖η(z)− η(y)‖ ≤ εT }π(θ)dθ

=
NT

DT
,

and study the numerator and denominator separately. Since for all ǫ > 0 there exists Mǫ > 0 such that,

for all M > Mǫ, Pθ0(‖Z
0
T ‖ > M/2) < ǫ, we can restrict ourselves to the event ‖Z0

T ‖ ≤ M/2 for some

M large.
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We first study the numerator NT and we split Θ into {‖G0x(θ)‖ ≤ vT εT −M}, {vT εT −M ≤
‖G0x(θ)‖ ≤ vT εT +M} and {‖G0x(θ)‖ > vT εT +M}. The first integral is equal to

I1 = π(θ0)

∫

‖G0x(θ)‖≤vT εT−M

{x(θ) +O(vT ε
2
T )}Pθ {‖η(z)− η(y)‖ ≤ εT } dθ

= π(θ0)

∫

‖G0x(θ)‖≤vT εT−M

{x(θ) +O(vT ε
2
T )}dθ

− π(θ0)

∫

‖G0x(θ)‖≤vT εT−M

{x(θ) +O(vT ε
2
T )}Pθ {‖η(z)− η(y)‖ > εT } dθ.

The first term in I1 can be made arbitrarily small for M large enough. For the second term in I1, we note

vT εT < ‖vT {η(z)− η(y)}‖ = ‖ZT − Z0
T + vTG0(θ − θ0)‖+O(‖θ − θ0‖

2)

= ‖ZT − P⊥
G0

Z0
T +G0x(θ)‖+O(‖θ − θ0‖

2)

≤ ‖ZT ‖+ ‖P⊥
G0

Z0
T ‖+ ‖G0x(θ)‖+O(‖θ − θ0‖

2)

≤ ‖ZT ‖+M/2 + ‖G0x(θ)‖+O(‖θ − θ0‖
2) ,

where P⊥
G0

is the orthogonal projection onto the space that is orthogonal to G0. Therefore, if ‖G0x(θ)‖ ≤
vT εT −M , then

M/2 ≤ vT εT −M/2− ‖G0x(θ)‖ ≤ ‖ZT ‖.

Hence, the second term of the right hand side of I1 is bounded by a term proportional to

∫

‖G0x(θ)‖≤vT εT−M

2‖G0x(θ)‖Pθ {‖ZT ‖ > εT vT −M/2− ‖G0x(θ)‖} dθ

.

∫

‖G0x(θ)‖≤vT εT−M

‖G0x(θ)‖

{vT εT −M/2− ‖G0x(θ)‖}κ
dθ

. v−kθ

T

∫ vT εT−M

0

rkθ

(vT εT −M/2− r)κ
dr . εkθ

T M−κ .

The integral over {‖G0x(θ)‖ > vT εT +M}, I3, is treated similarly. This leads to ‖I1 + I3‖ ≤ M−κεkθ

T .

Likewise, using similar arguments we can show

DT &

∫

‖G0x(θ)‖≤vT εT−M

Pθ {‖η(z)− η(y)‖ ≤ εT } dθ & εkθ

T .

All that remains is to prove that the second integral I2, the integral over {vT εT −M ≤ ‖G0x(θ)‖ ≤
vT εT +M}, is op(ε

kθ

T ), with

I2 =

∫

vT εT−M≤‖G0x(θ)‖≤vT εT+M

{x(θ) +O(vT ε
2
T )}Pθ {‖η(z)− η(y)‖ ≤ εT } dθ.

Since

v2T ‖η(z)− η(y)‖2 = ‖ZT − P⊥
G0

ZT −G0x(θ)‖
2 = ‖ZT − P⊥

G0
Z0
T ‖

2 + ‖G0x(θ)‖
2 − 2〈ZT , G0x(θ)〉,
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where 〈·, ·〉 is the inner product, setting u = (G⊺

0G0)
1/2x(θ)‖G0x(θ)‖

−1, r = ‖G0x(θ)‖, Γ0 =
(G⊺

0G0)
−1/2G⊺

0 , then, for S = {u ∈ R
kθ : ‖u‖ = 1}, noting that θ = θ(u, r)

I2 = v−kθ

T (G⊺

0G0)
−1/2

∫ vT εT+M

vT εT−M

rkθ

∫

u∈S

uPθ

(
‖ZT − P⊥

G0
Z0
T ‖

2 + r2 − 2r〈Γ0ZT , u〉 ≤ v2T ε
2
T

)
dudr

+O
(
vT ε

2+kθ

T

)

= v−kθ

T (G⊺

0G0)
−1/2

∫ M

−M

(vT εT + r)kθ×

∫

u∈S

uPθ

(
‖ZT − P⊥

G0
Z0
T ‖

2 − 2r〈Γ0ZT , u〉 − 2εT vT 〈Γ0ZT , u〉 ≤ −r2 − 2rvT εT
)
dudr

+O
(
vT ε

2+kθ

T

)
,

where du denotes the Lebesgue measure on S . Moreover, we have

Pθ

(
‖ZT − P⊥

G0
Z0
T ‖

2 − 2r〈Γ0ZT , u〉 − 2εT vT 〈Γ0ZT , u〉 ≤ −r2 − 2rvT εT
)

= Pθ

{
〈Γ0ZT , u〉 ≥

rεT vT
r + εT vT

+
‖ZT − P⊥

G0
Z0
T ‖

2 + r2

2(vT εT + r)

}

and for any aT > M with aT = o(vT εT ),

Pθ

(
‖ZT − P⊥

G0
Z0
T ‖

2 ≥ aT
)
. c0a

−κ/2
T ,

|Pθ (〈Γ0ZT , u〉 ≥ r)− Pθ {〈Γ0ZT , u〉 ≥ r − 2aT /(vT εT )}| = o(1),

with for all r and u, Pθ (〈Γ0ZT , u〉 ≥ r) = {1− Φ(r/‖Γ0A(θ0)
1/2‖)}+ o(1), uniformly over ‖θ −

θ0‖ ≤ δ and A(θ0) as in the proof of Theorem 2. Since for all r ∈ [−M,M ], (vT εT + r)kθ = (vT εT )
kθ +

O(M(vT εT )
kθ−1), the dominated convergence theorem implies

I2 = εkθ

T (G⊺

0G0)
−1/2

∫ M

−M

∫

u∈S

u
[
1− Φ{r/‖Γ0A(θ0)

1/2‖}
]
dudr + o(εkθ

T ) = o(εkθ

T ),

which completes the proof.

7·5. Proof of Corollary 1

Consider first the case where εT = o(v−1
T ). Using the same types of computations as in the proof of

Theorem 6, case (v), in this Supplementary Material, we have, for ZT = ΣT (θ0){η(z)− b(θ)},

αT =

∫

Θ

Pθ

[
‖ZT − Z0

T − vT {b(θ)− b(θ0)}‖ ≤ εT vT
]
π(θ)dθ

≍ (εT vT )
kη

∫

Θ

ϕ{Z0
T + vT∇θb(θ0)(θ − θ0)}dθ ≍ ε

kη

T v
kη−kθ

T . v−kθ

T .

In the case where εT & v−1
T , then the computations in cases (ii) and (iii) in the proof of Theorem 6 imply

αT = Pθ {‖η(z)− η(y)‖ ≤ εT } ≍

∫

Θ

ϕ{Z0
T +∇θb(θ0)vT (θ − θ0)}dθ ≍ εkθ

T .

8. ILLUSTRATIVE EXAMPLE

In this section we illustrate the implications of Theorems 1–3 in the moving model of order two that

was introduced in Example 1. Consider observations from the data generating process

yt = et + θ1et−1 + θ2et−2 (t = 1, . . . , T ), (20)
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where et ∼ N (0, 1) is independently and identically distributed. Our prior belief for θ = (θ1, θ2)
⊺ is

uniform over the invertibility region

{(θ1, θ2)
⊺ : −2 ≤ θ1 ≤ 2, θ1 + θ2 ≥ −1, θ1 − θ2 ≤ 1} . (21)

We follow Marin et al. (2011) and choose as summary statistics for Algorithm 1 the sample autoco-

variances ηj(y) =
1
T

∑T
t=1+j ytyt−j , for j = 0, 1, 2, so that η(y) = {η0(y), η1(y), η2(y)}

⊺. The binding

function b(θ) then has the simple analytical form:

θ 7→ b(θ) =




Eθ(z
2
t )

Eθ(ztzt−1)
Eθ(ztzt−2)


 ≡



1 + θ21 + θ22
θ1 + θ1θ2

θ2


 .

The following subsections demonstrate the implications of the limit results in the main text within the

confines of the above example. By simultaneously shifting the sample size T and the tolerance parameter

εT we can graphically illustrate Theorems 1–3.

Each demonstration considers minor variants of the following general simulation design: the true pa-

rameter vector generating the observed data is fixed at θ0 = (θ1,0, θ2,0)
⊺ = (0.6, 0.2)⊺; for a given sample

size, T , of 500, 1000, 50000, observed data, y = (y1, . . . , yT )
⊺, is generated from the process in equation

(20); the posterior density is estimated via Algorithm 1 with the tolerance chosen to be a particular or-

der of T , and using N = 50, 000 Monte Carlo draws taken from uniform priors satisfying (21). In these

examples we take d2{η(z), η(y)} = ‖η(z)− η(y)‖.

A central result in the main text is that the choice of εT drives the large sample behavior of the ap-

proximate posterior distribution and its mean. To highlight this fact, our numerical experiments will use

different choices for the tolerance. In particular, and with reference to the illustration of Theorem 2, in the

main text, the choices of εT are {1/T 0.4, 1/T 0.5, 1/T 0.55}. In this example, we have that vT = T 0.5 and

the three tolerance choices represent respectively cases (i), (ii) and (iii) of Theorem 2. Our use of different

tolerances relays the distinction between what condition on εT is required for posterior concentration, and

what is required to yield asymptotic normality of the posterior measure. With regard to Theorem 3, the

choice εT = 1/T 0.4 highlights that asymptotic normality of the posterior mean can be achieved despite a

lack of Gaussianity for the posterior measure itself.

8·1. Theorem 1

Theorem 1 implies that under regularity, as T → ∞, the posterior measure Πε{· | η(y)} concentrates

on sets containing θ0, namely Πε{d1(θ, θ) ≤ δ | η(y)} = 1 + oP (1) for all δ > 0, provided εT = o(1).
To demonstrate this concentration result, we take εT = 1/T 0.4 and run Algorithm 1, taking N = 50, 000
draws from the prior. The results are presented in Fig. 2. To keep the Monte Carlo error at a constant level,

for each sample size we retain 100 simulated values of θ that lead to realizations of ‖η(y)− η(z)‖ below

the tolerance, in agreement with the nearest-neighbor interpretation of algorithm 1.

Figure 2 shows that the posterior measure Πε{· | η(y)} is concentrating on θ0 = (0.6, 0.2)⊺ as T in-

creases. The results in Fig. 2 reflect the fact that a tolerance proportional to εT = 1/T 0.4 will be small

enough to yield posterior concentration. However, and with reference to Theorem 2, this tolerance may

or may not yield asymptotic normality and, hence, correct asymptotic coverage of credible intervals. We

explore this issue in the following section.

8·2. Theorem 2

Theorem 2 states that the shape of the approximate posterior measure is determined in large part by

the speed at which εT goes to 0. If this convergence is too slow, then the posterior measure will have a

non-Gaussian limiting shape.

This result can be visualized by considering two alternative values for the tolerance: εT = 1/T 0.4 and

εT = 1/T 0.55. Figure 3 and Fig. 4 display the resulting approximate posterior density estimates using

these two tolerance rules for sample size T = 500 and T = 1000, respectively. Figure 3 demonstrates

that at T = 500 neither posterior density, for θ1 or θ2 and across both tolerance rules, has a shape that

is particularly Gaussian. However, at T = 1000, and for both θ1 and θ2, Fig. 4 demonstrates that the
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Figure 2. Posterior concentration demonstration. Estimated
approximate posterior distributions across sample sizes

T=500 (- - -); T=1000 (– · –); T=5000 ( —).
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Figure 3. Comparison of two tolerance rules for εT : εT =
1/T 0.4 (– · –); εT = 1/T 0.55 (—); The sample size is T =

500.
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Figure 4. Same information as Fig. 3 but for T = 1000.

posterior densities based on the tolerance εT = 1/T 0.55, which satisfies the conditions for the Bernstein–

von Mises result, appear to be approximately Gaussian. In contrast, the approximate posterior densities

constructed from εT = 1/T 0.4 display non-Gaussian features.

From a practical perspective, the key result of Theorem 2 is that for credible regions built from

Πε{· | η(y)} to have asymptotically correct frequentist coverage, it must be that εT = o(1/vT ), where

vT is such that ‖η(z)− b(θ)‖ = OP (1/vT ). In the moving average model example, vT = T 0.5 and The-

orem 2 implies that choosing a tolerance εT = 1/T 0.4, which corresponds to case (i) of Theorem 2, will
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yield credible sets whose coverage converges to one asymptotically; choosing a tolerance of εT = 1/T .55,

which corresponds to case (iii) of Theorem 2, will lead to asymptotically correct coverage rates; a tol-

erance of εT = 1/T 0.5 will yield coverage that is asymptotically of the correct magnitude, in that the

coverage will not be zero or one, but will in general differ from the nominal level.

To demonstrate this point we generate 1000 observed artificial data sets with sample sizes T = 500 and

T = 1000, and for each data set we run Algorithm 1 for all three alternative values of εT . For a given

sample, and a given tolerance, we produce the approximate Bayesian computation posterior density in the

manner described above and compute the 95% credible intervals for θ1 and θ2. The average length and

the Monte Carlo coverage rate, across the 1000 replications, is then recorded in Table 2 for each scenario.

The average length of the credible regions is clearly larger, and the Monte Carlo coverage further from

the nominal value of 95%, the further is the tolerance from the value required to produce asymptotic

Gaussianity, namely εT = 1/T 0.55, which provides numerical support for the theoretical results.

Table 2. Gaussianity of the approximate posterior dis-

tributions: the tolerances are ε1 = 1/T 0.4, ε2 = 1/T 0.5

and ε3 = 1/T 0.55

Width Cov.

T=500 ε1 ε2 ε3 ε1 ε2 ε3
θ1 0.2602 0.2294 0.2198 96.30 95.60 95.60

θ2 0.3212 0.3108 0.3086 98.30 97.00 96.00

T=1000

θ1 0.1823 0.1573 0.1484 96.80 96.20 95.50

θ2 0.2366 0.2244 0.2219 96.60 94.30 94.50

Width stands for average length and Cov. for Monte Carlo coverage

rate.

8·3. Theorem 3

The key result of Theorem 3 is that even when Πε{· | η(y)} is not asymptotically Gaussian, the poste-

rior mean associated with Algorithm 1, θ̂ = EΠε
(θ), can still be asymptotically Gaussian, and asymptoti-

cally unbiased so long as limT vT ε
2
T = 0. However, as proven in Theorem 2, the corresponding confidence

regions and uncertainty measures built from Πε{· | η(y)} will only be an adequate reflection on the actual

uncertainty associated with θ̂ if εT = o(1/vT ).
In this section we once again generate 1000 observed data sets of a given sample size (T = 500 and

T = 1000) according to equation (20) and θ0 = (0.6, 0.2)⊺, and produce 1000 posterior densities based

on the tolerance εT being one of {1/T 0.4, 1/T 0.5, 1/T 0.55}. For each of the three values of εT , and for a

sample size of T = 500, we record the posterior mean across the 1000 replications and plot the relevant

empirical densities in Fig. 5. Figure 6 contains the results for T = 1000.

Figure 5 demonstrates that the standardized Monte Carlo sampling distribution of θ̂ = EΠε
(θ), over the

1000 replications, and for each of the three values of εT , is approximately Gaussian for both parameters

and centered at zero. This accords with the theoretical results, which only require that limT εT = 0, for

asymptotic Gaussianity, and limT vT ε
2
T = 0, for zero asymptotic bias, a condition that is satisfied for each

of the three tolerance values. This result is also in evidence for T = 1000, as can be seen in Fig. 6.

[Received March 2018. Revised March 2018]
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Figure 5. Comparison of different tolerance rules for εT :
εT = 1/T 0.4 (- - -); εT = 1/T 0.5 (– · –); εT = 1/T 0.55

(—); The sample size is T = 500.
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Figure 6. Same information as Fig. 5 but for T = 1000.


