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ASYMPTOTIC PROPERTIES OF BROWNIAN MOTION

DELAYED BY INVERSE SUBORDINATORS

MARCIN MAGDZIARZ AND RENÉ L. SCHILLING

(Communicated by Mark M. Meerschaert)

Abstract. We study the asymptotic behaviour of the time-changed stochas-
tic process fX(t) = B(fS(t)), where B is a standard one-dimensional Brow-
nian motion and fS is the (generalized) inverse of a subordinator, i.e. the
first-passage time process corresponding to an increasing Lévy process with
Laplace exponent f . This type of processes plays an important role in statis-
tical physics in the modeling of anomalous subdiffusive dynamics. The main
result of the paper is the proof of the mixing property for the sequence of
stationary increments of a subdiffusion process. We also investigate various
martingale properties, derive a generalized Feynman-Kac formula, the laws of
large numbers and of the iterated logarithm for fX.

1. Introduction

Let (Ω,F ,P) be some probability space. A subordinator T f (t), t ≥ 0, is an
increasing Lévy process, i.e. a stochastic process with stationary and independent
increments whose sample paths are right-continuous with finite left limits. Being a
Markov process, the law of T f is uniquely characterized by the one-step transition
functions. By definition, these are one-sided and infinitely divisible, and the Laplace
transform of T f (t) can be written as (cf. [53])

E

(
e−uT f (t)

)
= e−tf(u),

where the characteristic (Laplace) exponent f(u) is a Bernstein function; it is well
known (cf. [54]) that all characteristic exponents are of the form

f(u) = λu+

∫
(0,∞)

(1− e−ux) ν(dx),

where λ ≥ 0 is the drift parameter and ν is a Lévy measure, i.e. a measure supported
in (0,∞) such that

∫
(0,∞)

min{1, x} ν(dx) < ∞. For simplicity, we will assume that

λ = 0. In order to exclude the case of compound Poisson processes, we will further

assume that ν(0,∞) = ∞; in particular, the sample paths t �→ T f
t are a.s. strictly

increasing.
The first-passage time process of the subordinator T f is the (generalized, right-

continuous) inverse

fS(t) = inf{τ > 0 : T f (τ ) > t}, t ≥ 0.(1)
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We will call fS(t) an inverse subordinator. The assumption ν(0,∞) = ∞ guaran-
tees that the sample paths of T f are a.s. strictly increasing, i.e. almost all paths
t �→ fS(t) are continuous. Since the closure of the range of T f has zero Lebesgue
measure, the trajectories of fS are singular with respect to Lebesgue measure.
Note also that T f is a transient Lévy process and its potential measure satisfies
U([0, x]) = E(fS(x)). Moreover U([0, x])/x is bounded as x → ∞; see [5, p. 41].

In what follows we denote by ĥ(u) the Laplace transform of a function h(t), i.e.

ĥ(u) =

∫ ∞

0

e−uth(t) dt.

It is straightforward to verify that

(2) ŝ(x, u) =
f(u)

u
e−xf(u),

where s(x, t) is the probability density function of fS(t) (existence of s(y, t) under
the assumption ν(0,∞) = ∞ was proved in [41] Theorem 3.1). In particular, we
get for any independent, exponentially distributed random time τ ∼ u e−ut dt

(3)

Eeξ·
fS(τ) =

∫ ∞

0

∫ ∞

0

eξxs(x, t)u e−ut dt dx

=

∫ ∞

0

eξxf(u) e−xf(u) dx =
f(u)

f(u)− ξ
.

Inverse subordinators have found many applications in probability theory. For
their relationship with local times of some Markov processes, see [5]. Similarities
between inverse subordinators and renewal processes were investigated in [7,17,27].
Applications of inverse subordinators in finance and physics are discussed in [57]
and [22, 35, 56], respectively.

In this paper we study some sample path properties of the process

(4) fX(t) = B(fS(t)), t ≥ 0.

Here, B is a standard one-dimensional Brownian motion (Wiener process) and fS is
an inverse subordinator; we assume that fS and B are independent. For every jump
of the subordinator T f there is a corresponding flat period of its inverse fS. These
flat periods represent trapping events in which the test particle gets immobilized
in a trap. Trapping slows down the overall dynamics of the diffusion process B,
therefore fX(t) = B(fS(t)) is called a subdiffusion process.

In Physics, subdiffusive dynamics is frequently described by fractional diffusion
equations [44]. Using the relation P(fS(t) ≤ s) = P(T f (s) ≥ t) and the Fourier-
Laplace transform in x and t, respectively, one sees that the probability density
function p(x, t) of the process fX(t) satisfies the following generalized diffusion
equation

(5)
∂p(x, t)

∂t
=

1

2
Φt

∂2

∂x2
p(x, t)

(cf. [15, 29, 55]); this is also a special case of Theorem 2 below.
Here, Φt is an integro-differential operator given by

(6) Φtg(t) =
d

dt

∫ t

0

M(t− s)g(y) ds
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for sufficiently smooth functions g. The memory kernel M(t) is defined via its
Laplace transform

(7) M̂(u) =

∫ ∞

0

e−utM(t) dt =
1

f(u)
.

One can also write (5) with an operator Φ−1
t on the left, i.e. a truly “fractional”

time evolution. This operator is also a convolution operator, where the convolution
kernel has the Laplace transform f(u)/u.

The most important case in applications is the case of α-stable waiting times,
which corresponds to f(u) = uα with α ∈ (0, 1) being the stability parameter. In
this case, the operator Φt is the Riemann-Liouville fractional derivative 0D

1−α
t (cf.

[52]),

Φtg(t) = 0Dt
1−αg(t) =

1

Γ(α)

d

dt

∫ t

0

(t− y)α−1g(y) dy.

Then, (5) becomes the fractional diffusion equation [2, 35, 36, 43, 50]. The case of
space-time fractional derivative operators can be found in [1]. Subdiffusion phe-
nomena with α-stable waiting times have been empirically confirmed in a number
of settings: Charge carrier transport in amorphous semiconductors, nuclear mag-
netic resonance, diffusion in percolative and porous systems, transport on fractal
geometries, dynamics of a bead in a polymeric network, and protein conformational
dynamics; see [44]. The corresponding process fX appears in a natural way as a
scaling limit of uncoupled continuous-time random walk with heavy-tailed waiting
times [3, 40]. Path properties of fX with f(u) = uα have been investigated in
[31, 39, 46].

Another important example is the tempered-stable case [11, 48], which corre-
sponds to f(u) = (u + λ)α − λα with λ > 0 and 0 < α < 1. This type of
anomalous dynamics has recently been investigated in [15, 37, 42]. Tempered sta-
ble distributions are particularly attractive in the modeling of transition from the
initial subdiffusive character of motion to the standard diffusion for long times. In
physics, applications of tempered stable distributions in the context of astrophysics
and relaxation can be found in [56]. Modeling of the lipid granules dynamics with
the use of tempered subdiffusion has recently been proposed in [20]. Note that the
subordinate process B(T f (t)), where T f (t) is the tempered stable subordinator, is
the relativistic stable process with Fourier exponent equal to (ξ2 + m2/β)β/2 −m
[25]. Here λ = m2/β and α = β/2.

Another interesting example is the distributed order fractional diffusion equa-
tions [12, 24, 38], which correspond to the case f(u) =

∫∞
0

(1 − e−ux) ν(dx) with

ν(t,∞) =
∫ 1
0
t−β μ(dβ). Here, β ∈ (0, 1) and μ is some distribution supported in

[0, 1]. This type of Laplace exponent leads to the ultra-slow dynamics displayed by
fX. The corresponding fractional Cauchy problem has recently been analyzed in
[45].

Our paper is organized as follows: In the next section, we will investigate var-
ious properties of the subdiffusion process fX. In particular, we will describe its
martingale properties, derive a generalized Feynman-Kac formula, and the laws of
large numbers and of the iterated logarithm for fX. Our results extend those for
the α-stable case in [31, 46]. In Section 3 we will construct a stationary sequence
of increments of the appropriately modified process fX. We will show that this
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sequence is ergodic and mixing. This is the main result of the paper; it can be ap-
plied to verify ergodicity and mixing of all subdiffusive complex systems modeled
by the generalized diffusion equation (5).

2. Asymptotic behaviour of trajectories

We begin with a result which establishes martingale properties of the subdiffusion
process fX.

Theorem 1. (i) Both fX(t) and fY (t) := exp
{
fX(t)− 1

2
fS(t)
}
, t ≥ 0, are mar-

tingales with respect to the probability measure P.
(ii) Let t ∈ [0, T ]. Then for each ε ≥ 0 the process fZ(t) = exp

{
fX(t)
}

is a
martingale with respect to the probability measure Pε defined as

Pε(A) = cε ·
∫
A

exp

{
−1

2
fX(T )−

(
ε+

1

8

)
fS(T )

}
dP.

Here A ∈ F and c−1
ε =

∫
Ω
exp
{
− 1

2
fX(T )−

(
ε+ 1

8

)
fS(T )
}
dP is the normalizing

constant.

Proof. (i) The proof of this part is similar to the proof [31, Theorem 2.1]. Note first
that the quadratic variation of fX(t) satisfies 〈fX, fX〉t = f〈B,B〉t = fS(t). Set

(8) Ft =
⋂
u>t

σ
(
{B(y) : 0 ≤ y ≤ u}, {fS(t) : t ≥ 0}

)
.

By definition, {Ft} is right-continuous, (B(t),Ft)t≥0 is a martingale, and for every
fixed t0 > 0 the random variable fS(t0) is a stopping time with respect to {Ft}.
Thus {Gt} where Gt = FfS(t) is a well-defined filtration. Let us introduce the
sequence of {Ft}-stopping times

Tn = inf{u > 0 : |B(u)| = n}.
By Doob’s optional sampling theorem we have for s < t

E(B(Tn ∧ fS(t)) | Gs) = B(Tn ∧ fS(s)).

The right-hand side of the above equation converges to B(fS(s)), whereas the left-
hand side converges to E(B(fS(t)) | Gs) as n → ∞. Therefore, fX is a martingale.

From [47, Proposition IV.3.4] we get that fY is a local martingale. To prove that
it is also a martingale, we have to verify the integrability of the random variable
sup0≤u≤t

fY (u). Using Doob’s maximal inequality and the independence of B and
fS, we get

E

[(
sup

0≤u≤t
exp
{
B(fS(u))

})2]
≤ 4E
[
exp
{
2B(fS(t))

}]
= 4E
(
exp
{
2 · fS(t)

})
.

Assume that the parameter u of τ in (3) is so large that f(u) > 2. Then we see
that the expression on the right-hand side is finite. Thus, E

[
sup0≤u≤t

fY (u)
]
< ∞,

and fY is a martingale.
(ii) Put

V (t) = exp

{
−1

2
B(t)− 1

8
t

}
and W (t) = exp {B(t)} .

Then

V (t)W (t) = exp

{
1

2
B(t)− 1

8
t

}
.
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Therefore, the product V ·W is an (Ft,P)-martingale, and so is the stopped pro-

cess V (· ∧ fS(T ))W (· ∧ fS(T )). Since the bounded random variable e−εfS(T ) is

F0-measurable, it follows that e−εfS(T )V (· ∧ fS(T ))W (· ∧ fS(T )) is an (Ft,P)-
martingale. This in turn implies that W (· ∧ fS(T )) is an (Ft,Pε)-martingale.

Denote by E
Pε the expectation with respect to the measure Pε. Then, one shows

similarly to (i) that

E
Pε

(
sup
t≥0

W (t ∧ fS(T ))

)
= E

Pε

(
sup

t≤fS(T )

W (t)

)
< ∞.

Thus, W (· ∧ fS(T )) is a uniformly integrable (Ft,Pε)-martingale. Consequently,
there exists a random variable H such that W (t ∧ fS(T )) = E

Pε (H|Ft). Moreover

fZ(t) = W (fS(t) ∧ fS(T )) = E
Pε
(
H|FfS(t)

)
,

and this implies that fZ is an (FfS(t),Pε)-martingale. �

The next result is a generalization of the Feynman-Kac formula. Consider the
standard diffusion process V given by the following Itô stochastic differential equa-
tion:

dV (t) = μ(V (t)) dt+ σ(V (t)) dB(t),

V (0) = x.

In order to ensure the existence and uniqueness of the solution we assume the usual
(local) Lipschitz and (global) growth conditions on μ and σ. Then the infinitesimal
generator of V (t) is

Aφ(x) = μ(x)
∂

∂x
φ(x) +

1

2
σ2(x)

∂2

∂x2
φ(x), φ ∈ C2

c (R).

Theorem 2. Let g and h be continuous functions, such that g is bounded and
h ≥ 0. Then the function

(9) v(x, t) = E
x

(
exp

{
−
∫ fS(t)

0

h(V (u)) du

}
g(V (fS(t)))

)

satisfies the generalized Feynman-Kac equation

(10)
∂v(x, t)

∂t
= Φt [Av(x, t)− h(x)v(x, t)]

with the initial condition v(x, 0) = g(x) and the operator Φt from (6).

Proof. Denote by w(x, t) the function

w(x, t) = E
x

(
exp

{
−
∫ t

0

h(V (u)) du

}
g(V (t))

)

and recall that s(y, t) is the probability density of fS(t). With the above assump-
tions on g and h, w(x, t) is in C2,1(R× R+).

Using the classical Feynman-Kac formula, we get that w(x, t) satisfies in the
Laplace space the equation

(11) uŵ(x, u)− w(x, 0) = Aŵ(x, u)− h(x)ŵ(x, u).

Since fS and B are independent, we obtain

v(x, t) =

∫
R

w(x, y)s(y, t) dy,
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which by (2) implies that

(12) v̂(x, u) =
f(u)

u
ŵ(x, f(u)).

Replacing u by f(u) in (11) we get

f(u)ŵ(x, f(u))− w(x, 0) = Aŵ(x, f(u))− h(x)ŵ(x, f(u)).

Consequently, applying (12) and the fact that w(x, 0) = v(x, 0), we conclude that
v̂(x, u) satisfies

uv̂(x, u)− v(x, 0) =
u

f(u)
[Av̂(x, u)− h(x)v̂(x, u)] .

Inverting the Laplace transform, we get that v(x, t) satisfies (10). �

We will now study the asymptotic behaviour of the trajectories of fX.

Theorem 3 (Law of large numbers). The trajectories of fX(t) satisfy

lim
t→∞

fX(t)

t
= 0 a.s.

Proof. Fix ε > 0 and define

An =

{
sup

2n≤t≤2n+1

∣∣∣∣ fX(t)

t

∣∣∣∣ > ε

}
.

Using Markov’s inequality we get that

ε2P(An) ≤ E

⎡
⎣
(

sup
2n≤t≤2n+1

∣∣∣∣ fX(t)

t

∣∣∣∣
)2
⎤
⎦ ≤

E

[(
sup2n≤t≤2n+1

∣∣fX(t)
∣∣)2]

22n
.

Using the fact that fX(t) is a martingale, we obtain from Doob’s maximal inequality
the bound

E

⎡
⎣
(

sup
2n≤t≤2n+1

∣∣fX(t)
∣∣)2
⎤
⎦ ≤ 4E

(∣∣fX(2n+1)
∣∣2) = 4E

(
fS(2n+1)

)
.

Since E(fS(x))/x = U([0, x])/x is bounded as x → ∞, we get

E
(
fS(2n+1)

)
≤ c 2n+1

for large n and some positive constant c. Thus

P(An) ≤
4c 2n+1

22nε2

for large enough n, and so
∞∑

n=1

P(An) < ∞.

Finally, using the Borel-Cantelli lemma we obtain the desired result. �

Now, we turn to the law of the iterated logarithm. It is known that for the
inverse subordinator fS(t) we have (see [14])

lim sup
t→∞

fS(t)

φ(t)
= 1
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for a certain function φ(t). Thus, by the celebrated law of the iterated logarithm
for a Brownian motion B, we obtain the following bound for fX(t) = B(fS(t)):

lim sup
t→∞

fX(t)√
2φ(t) log log(φ(t))

≤ 1.

This result is, however, not sharp (cf. [31]): Just observe that the large increments
of B do not coincide with those of fS. The next theorem determines precisely the
asymptotic behaviour of the trajectories of fX for small and large times.

Theorem 4 (Law of the iterated logarithm). (i) Assume that for some ε > 0 the
Laplace exponent of T f satisfies f(u) ≥ uε for sufficiently large u. Then, for γ > 1
there exists a constant c > 0 such that

lim sup
t↘0

fX(t)

g(t)
= 1 and lim inf

t↘0

fX(t)

g(t)
= −1 a.s.

(ii) Assume that for some ε > 0 the Laplace exponent of T f satisfies f(u) ≤ uε

for sufficiently small u. Then, for γ > 1 there exist a constant c > 0 such that

lim sup
t↗∞

fX(t)

g(t)
= 1 and lim inf

t↗∞

fX(t)

g(t)
= −1 a.s.

Here, the function g(t) is the inverse of

(13) h(t) =
c log(| log(t)|)

η (γt−1 log(| log(t)|)) ,

and η(u) = f−1(u2/2).

Proof. In the proof we will apply the method used in [6] in the context of iterated
Brownian motion.

(i) Put
B∗(t) = sup

s∈[0,t]

B(s)

and
fX∗(t) = sup

s∈[0,t]

fX(s) = B∗(fS(t)).

Let us introduce
S1/2(t)= inf{τ : B∗(τ ) > t}.

It is known [53] that S1/2(τ ) is the 1/2-stable subordinator with Laplace transform

E

(
e−uS1/2(τ)

)
= e−τ

√
2u.

Additionally, we have
fX∗(t)= inf

{
τ : T f (S1/2(τ )) > t

}
.

The Laplace transform of the subordinator T f (S1/2(t)) is given by

E

(
e−uT f (S1/2(t))

)
= E

(
e−S1/2(t)f(u)

)
= e−t

√
2f(u).

Using the assumptions on the Lévy exponent f(u), we can apply [14, Theorem 1]
to get

lim inf
t↘0

T f (S1/2(t))

h(t)
= 1,

where h(t) is defined in (13).
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Since
B∗(fS(T f (S1/2(t)))) = t,

we obtain that

P
(
B∗(fS(c0h(t))) ≥ t infinitely often as t ↘ 0

)
=

{
1, if c0 > 1,

0, if c0 < 1.

This in turn implies that

lim sup
t↘0

B∗(fS(t))

g(t)
= 1,

where g(t) is the inverse of h(t). Clearly, B∗ in the numerator can be replaced by
B, and we obtain

lim sup
t↘0

fX(t)

g(t)
= 1,

which proves the first half of part (i).
The result

lim inf
t↘0

fX(t)

g(t)
= −1,

is a consequence of the symmetry of B.
The proof of part (ii) of the theorem is analogous. �

Remark. In some particular cases it is possible to find the explicit form of the nor-
malizing function g. For example in the α-stable case g(t)∼c0t

α/2(log | log t|)(2−α)/2

as t → 0+ and t → ∞, where c0 is an appropriate positive constant; cf. [31, 46].

3. Ergodic properties

Our standard reference for the ergodic theory of dynamical systems is [28]. For
the convenience of our readers let us recall some basic facts.

Let (X,A, υ, S) be a measure-preserving dynamical system: X is the phase
space, A is a σ-algebra on X, υ is a probability measure on X, and S : X → X is
a measure-preserving transformation. A set A ∈ A is invariant if S−1(A) = A. We
say that (X,A, υ, S) is ergodic, if every invariant set A ∈ A is trivial, i.e. if either
υ(A) = 0 or υ(X \A) = 0. We say that (X,A, υ, S) is mixing, if for all A,B ∈ A

lim
n→∞

υ(A ∩ S−nB) = υ(A)υ(B).

Clearly, mixing is stronger than ergodicity.
Ergodicity and mixing have their origins in statistical physics. Intuitively, a

system is ergodic if the phase space X cannot be divided into two regions such
that a phase point starting in one region will always stay in that region. Thus,
for ergodic transformations every phase point will visit the whole phase space.
Another important property of ergodic systems is that their temporal and ensemble
averages coincide, which follows from Birkhoff’s ergodic theorem; cf. [28]. Mixing
can be viewed as the asymptotic independence of the sets A and B under the
transformation S.

In the context of stochastic processes, we use the following setup. Consider a
real-valued stationary process Y (n), n ∈ N. In its canonical representation, {Y (n)}
can be identified with its law which is a probability measure P on the space RN. On
this space we use the canonical σ-algebra B generated by the cylinder sets, and we
consider the standard shift transformation S : RN → R

N. Stationarity of {Y (n)}
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implies that the shift S is measure-preserving. Note that (RN,B,P, S) is a typical
object of study in the theory of dynamical systems. Therefore, ergodic properties
of stationary stochastic processes can be studied in the framework of the theory of
dynamical systems. A detailed analysis of ergodicity and mixing for the classes of
infinitely divisible and fractional processes, can be found in [9, 10, 19, 49] and [32],
respectively.

Here we will study ergodic properties of the anomalous diffusion process fX.
However, one cannot verify ergodicity and mixing of fX in a straightforward man-
ner, since neither fX nor its increments are stationary. Therefore, we will introduce
a modification.

Let us assume that the first moment of T f is finite: μ := E(T f (1)) < ∞. Let

T̃ f (t) = T0 + T f (t)

denote the generalized subordinator whose initial distribution is given by

P(T0 ≤ x) =
1

μ

∫ x

0

∫ ∞

y

ν(ds) dy =
1

μ

∫ ∞

0

min(s, x) ν(ds),

where T0 is assumed to be independent of T f . The corresponding inverse subordi-
nator is

(14) fS̃(t) = inf
{
τ > 0 : T̃ f (τ ) > t

}
.

With this choice of the initial distribution of T0, the process fS̃ has stationary
increments; cf. [27]. Consequently, the modification of fX defined as

fX̃(t) = B(fS̃(t)),

has stationary increments as well. We denote this stationary sequence by

(15) fỸ (n) = fX̃(n+ 1)− fX̃(n), n ∈ N.

Now we are in position to verify its ergodicity and mixing properties.

Theorem 5. The stationary sequence fỸ defined in (15) is ergodic and mixing.

Before we embark on the proof of the above theorem, we need two lemmas. The
first shows that the increments of fS are asymptotically stationary. More precisely,
the increments of fS converge in distribution to the increments of fS̃.

Lemma 6. Let M ∈ N, zj ∈ R+, bj ∈ R+, j = 1, . . . ,M , with zi < zj for i < j.
Then

E

(
exp

{
−

M∑
j=1

bj
(
fS(zj + 1 + n)− fS(zj + n)

)})

−−−−→
n→∞

E

(
exp

{
−

M∑
j=1

bj
(
fS̃(zj + 1)− fS̃(zj)

)})
.

Proof. Assume that M = 1. We will show that

(16)

E

(
exp

{
− b1
(
fS(z1 + 1 + n)− fS(z1 + n)

)})

−−−−→
n→∞

E

(
exp

{
− b1
(
fS̃(z1 + 1)− fS̃(z1)

)})
.
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Observe that fS̃(t) ≤ fS(t) and that, by (3) and the continuity of t �→ fS(t), fS(t)
has exponential moments for any t > 0. Therefore, the moments determine the
distribution of fS̃(t); cf. [13, Chapter VII, Section 3]. Consequently, the distribution

of the random variable fS̃(z1+1)− fS̃(z1) is also determined by its moments. This
means that it is enough to prove the convergence of moments

(17) E

[(
fS(z1 + 1 + n)− fS(z1 + n)

)k] −−−−→
n→∞

E

[(
fS̃(z1 + 1)− fS̃(z1)

)k]
for every k ∈ N.

Denote by U(t) = E(fS(t)) the renewal function of fS and by U(dx) the measure
induced by U . We introduce another measure on [z1, z1 + 1] defined as

Un[z1, x] = U(x+ n)− U(n), x ∈ [z1, z1 + 1].

Applying the renewal theorem we get that

Un[z1, x] −−−−→
n→∞

x

μ
pointwise,

where μ = E(T f (1)). This implies that

Un −−−−→
n→∞

λ

μ
weakly,

where λ is Lebesgue measure on [z1, z1 + 1].
Now, using [27, Theorem 1], we obtain

E

[(
fS(z1 + 1 + n)− fS(z1 + n)

)k]

= k!

z1+1+n∫
z1+n

z1+1+n∫
x1

. . .

z1+1+n∫
xk−1

U(dxk − xk−1) . . . U(dx2 − x1)U(dx1)

= k!

z1+1∫
z1

z1+1∫
y1

. . .

z1+1∫
yk−1

U(dyk − yk−1) . . . U(dy2 − y1)Un(dy1),

where the last equality was obtained by changing the variables yi = xi − n, i =
1, . . . , k. By the weak convergence of Un to λ/μ and [27, Theorem 1], we get

E

[(
fS(z1 + 1 + n)− fS(z1 + n)

)k]

−−−−→
n→∞

k!

z1+1∫
z1

z1+1∫
y1

. . .

z1+1∫
yk−1

U(dyk − yk−1) . . . U(dy2 − y1)
dy1
μ

= E

[(
fS̃(z1 + 1)− fS̃(z1)

)k]
.

This ends the proof for M = 1.
The proof for arbitrary M ∈ N is similar. Note first that the random variable

M∑
j=1

bj
(
fS̃(zj + 1)− fS̃(zj)

)
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is determined by its moments. So, it is enough to show

E

[( M∑
j=1

bj
(
fS(zj+1+n)−fS(zj+n)

))k]
−−−−→
n→∞

E

[( M∑
j=1

bj
(
fS̃(zj+1)−fS̃(zj)

))k]

for any k ∈ N. As before, using the multinomial formula( M∑
j=1

xj

)k
=

∑
k1,...,kM≥0

k1+···+kM=k

k!

k1! . . . kM !
xk1
1 . . . xkM

M ,

one needs to show the convergence

(18) E

[
M∏
j=1

(
fS(zj +1+n)− fS(zj +n)

)kj

]
−−−−→
n→∞

E

[
M∏
j=1

(
fS̃(zj +1)− fS̃(zj)

)kj

]

with
∑

kj = k. Applying [27, Theorem 1], we obtain

E

(
M∏
j=1

(
fS(zj + 1 + n)− fS(zj + n)

)kj

)
=

M∏
i=1

ki!
k∏

j=1

∫
C

U(dxj − xj−1),

where C = {(x0, . . . , xk) : x0 = 0, zj + n < xk0+...+kj−1+1 < . . . < xk0+...+kj
≤

zj + 1 + n, j = 1, . . . ,M, k0 = 0}. Finally, changing the variables yi = xi − n,
i = 1, . . . , k, and using the weak convergence of Un to λ/μ, we get (18). �

We will use the following recursive relations for inverse subordinators from [23]:

E

(
exp

{ M∑
j=1

θj
fS(τj)

})
= E

(
exp

{ M∑
j=2

θj
fS(τj)

})
(19)

+
θ1∑M
j=1 θj

∫ τ1

0

E

(
exp

{ M∑
j=2

θj
fS(τj − x)

})
dxE

(
exp

{
fS(x)

M∑
j=1

θj

})
,

E

(
exp

{ M∑
j=1

θj
fS̃(τj)

})
= E

(
exp

{ M∑
j=2

θj
fS̃(τj)

})
(20)

+
θ1∑M
j=1 θj

∫ τ1

0

E

(
exp

{ M∑
j=2

θj
fS(τj − x)

})
dxE

(
exp

{
fS̃(x)

M∑
j=1

θj

})
,

where M ≥ 2, 0 ≤ τ1 ≤ · · · ≤ τM , θ1, . . . , θM ∈ R.
We will also need the following technical result.

Lemma 7. Let m,M ∈ N with 1 ≤ m ≤ M , 0 ≤ z1 ≤ . . . ≤ zM , bj ∈ R for
j = 1, . . . ,m and bj ∈ R+ for j = m+ 1, . . . ,M . Then

E

(
exp

{ m∑
j=1

bj
fS(zj)−

M∑
j=m+1

bj
(
fS(zj + 1 + n)− fS(zj + n)

)})
(21)

−−−−→
n→∞

E

(
exp

{ m∑
j=1

bj
fS(zj)

})
E

(
exp

{
−

M∑
j=m+1

bj
(
fS̃(zj + 1)− fS̃(zj)

)})
.

Proof. We will prove formula (21) by induction on the parameter M .
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Step I. Let M = 1. Then m = 1 and the formula is trivially fulfilled.

Step II. Assume that the formula (21) holds for M −1. We will show that it is also
true for M . Applying (19) we have

E

(
exp

{ m∑
j=1

bj
fS(zj)−

M∑
j=m+1

bj
(
fS(zj + 1 + n)− fS(zj + n)

)})

= E

(
exp

{ m∑
j=2

bj
fS(zj)−

M∑
j=m+1

bj
(
fS(zj + 1 + n)− fS(zj + n)

)})

+
b1∑m
j=1 bj

∫ z1

0

E

(
exp

{ m∑
j=2

bj
fS(zj − x)

−
M∑

j=m+1

bj
(
fS(zj + 1 + n− x)− fS(zj + n− x)

)})
dxE

(
exp

{
fS(x)

m∑
j=1

bj

})
.

Now, if m > 1 we apply the induction assumption, the dominated convergence
theorem to get that the expression above converges to

E

(
exp

{ m∑
j=2

bj
fS(zj)

})
E

(
exp

{
−

M∑
j=m+1

bj
(
fS̃(zj + 1)− fS̃(zj)

)})

+ E

(
exp

{
−

M∑
j=m+1

bj
(
fS̃(zj + 1)− fS̃(zj)

)})

× b1∑m
j=1 bj

∫ z1

0

E

(
exp

{ m∑
j=2

bj
fS(zj − x)

})
dxE

(
exp

{
fS(x)

m∑
j=1

bj

})

and this is, by (19), equal to

E

(
exp

{ m∑
j=1

bj
fS(zj)

})
E

(
exp

{
−

M∑
j=m+1

bj
(
fS̃(zj + 1)− fS̃(zj)

)})
.

For m = 1 we apply Lemma 6 and use the same argumentation. This ends the
proof. �

Now we are ready to prove our main result.

Proof of Theorem 5. In order to prove that fỸ (n) defined in (15) is mixing, it is
sufficient to show the following convergence of characteristic functions (cf. [34]):

E

(
exp

(
i

m∑
j=1

aj
fỸ (zj) + i

M∑
j=m+1

aj
fỸ (zj + n)

))

−−−−→
n→∞

E

(
exp

(
i

m∑
j=1

aj
fỸ (zj)

))
E

(
exp

(
i

M∑
k=m+1

aj
fỸ (zj)

))
,
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for m,M ∈ N, 1 ≤ m ≤ M , a1, . . . , aM ∈ R and 0 ≤ z1 ≤ · · · ≤ zM . By the
definition of fỸ (t) we get that the above convergence is equivalent to

E

(
exp

{
−

m∑
j=1

cj
(
fS̃(zj + 1)− fS̃(zj)

)
−

M∑
j=m+1

cj
(
fS̃(zj + 1 + n)− fS̃(zj + n)

)})

−−−−→
n→∞

E

(
exp

{
−

m∑
j=1

cj
(
fS̃(zj + 1)− fS̃(zj)

)})

× E

(
exp

{
−

M∑
j=m+1

cj
(
fS̃(zj + 1)− fS̃(zj)

)})
,

where cj = a2j/2. We will prove the following more general assertion:

E

(
exp

{ m∑
j=1

bj
fS̃(zj)−

M∑
j=m+1

bj
(
fS̃(zj + 1 + n)− fS̃(zj + n)

)})
(22)

−−−−→
n→∞

E

(
exp

{ m∑
j=1

bj
fS̃(zj)

})
E

(
exp

{
−

M∑
j=m+1

bj
(
fS̃(zj + 1)− fS̃(zj)

)})
,

where m,M ∈ N with 1 ≤ m ≤ M , 0 ≤ z1 ≤ . . . ≤ zM , bj ∈ R for j = 1, . . . ,m and
bj ∈ R+ for j = m+ 1, . . . ,M .

The proof follows the same lines as Lemma 7. To show (22) we will use induction
on the parameter M :

Step I. For M = 1 also m = 1 and the convergence trivially holds.

Step II. Assume that the formula (22) holds for M − 1. We will show that it holds
also for M . We apply (20) to get

E

(
exp

{ m∑
j=1

bj
fS̃(zj)−

M∑
j=m+1

bj
(
fS̃(zj + 1 + n)− fS̃(zj + n)

)})

= E

(
exp

{ m∑
j=2

bj
fS̃(zj)−

M∑
j=m+1

bj
(
fS̃(zj + 1 + n)− fS̃(zj + n)

)})

+
b1∑m
j=1 bj

∫ z1

0

E

(
exp

{ m∑
j=2

bj
fS(zj − x)

−
M∑

j=m+1

bj
(
fS(zj + 1 + n− x)− fS(zj + n− x)

)})
dxE

(
exp

{
f̃S(x)

m∑
j=1

bj

})
.

Now, applying the induction assumption for the first summand, Lemma 7 for the
expression inside the integral, and the dominated convergence theorem we obtain
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that the above formula converges to

E

(
exp

{ m∑
j=2

bj
fS̃(zj)

})
E

(
exp

{
−

M∑
j=m+1

bj
(
fS̃(zj + 1)− fS̃(zj)

)})

+ E

(
exp

{
−

M∑
j=m+1

bj
(
fS̃(zj + 1)− fS̃(zj)

)})

× b1∑m
j=1 bj

∫ z1

0

E

(
exp

{ m∑
j=2

bj
fS(zj − x)

})
dxE

(
exp

{
fS̃(x)

m∑
j=1

bj

})
,

which is, by (20), the same as

E

(
exp

{ m∑
j=1

bj
fS̃(zj)

})
E

(
exp

{
−

M∑
j=m+1

bj
(
fS̃(zj + 1)− fS̃(zj)

)})
.

This shows that fỸ (n) is mixing and therefore also ergodic. �
Remark. We point out that Theorem 5 holds only if E(T f (1)) < ∞. In particular
this result can be applied in the case of tempered stable laws. This class of distribu-
tions is especially important in applications [20,56], since it can model the so-called
transient subdiffusion [37, 42]. The characteristic feature of transient subdiffusion
processes is the transition from power-law to linear scaling of the variance, which
is very different from the behavior of the standard Brownian diffusion.

For E(T f (1)) = ∞ one cannot construct the stationary-increment modification of
fS as in (14). As a consequence, the so-called weak ergodicity breaking is observed;
see [4].
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[9] S. Cambanis, K. Podgórski, and A. Weron, Chaotic behavior of infinitely divisible processes,
Studia Math. 115 (1995), no. 2, 109–127. MR1347436 (96g:60049)

[10] Stamatis Cambanis, Clyde D. Hardin Jr., and Aleksander Weron, Ergodic properties of sta-
tionary stable processes, Stochastic Process. Appl. 24 (1987), no. 1, 1–18, DOI 10.1016/0304-

4149(87)90024-X. MR883599 (88m:60037)
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[23] I. Kaj, A. Martin-Löf, Scaling limit results for the sum of many inverse Lévy subordinators.
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[49] Jan Rosiński and Tomasz Żak, Simple conditions for mixing of infinitely divisible processes,
Stochastic Process. Appl. 61 (1996), no. 2, 277–288, DOI 10.1016/0304-4149(95)00083-6.
MR1386177 (97d:60126)

[50] A. Piryatinska, A. I. Saichev and W.A. Woyczynski, Models of anomalous diffusion: The
subdiffusive case, Phys. A, 349 (2005), 375–420.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=2546742
http://www.ams.org/mathscinet-getitem?mr=2546742
http://www.ams.org/mathscinet-getitem?mr=2739351
http://www.ams.org/mathscinet-getitem?mr=2739351
http://www.ams.org/mathscinet-getitem?mr=2825444
http://www.ams.org/mathscinet-getitem?mr=2825444
http://www.ams.org/mathscinet-getitem?mr=0285046
http://www.ams.org/mathscinet-getitem?mr=0285046
http://www.ams.org/mathscinet-getitem?mr=1917983
http://www.ams.org/mathscinet-getitem?mr=1917983
http://www.ams.org/mathscinet-getitem?mr=2537547
http://www.ams.org/mathscinet-getitem?mr=2537547
http://www.ams.org/mathscinet-getitem?mr=2996975
http://www.ams.org/mathscinet-getitem?mr=2776466
http://www.ams.org/mathscinet-getitem?mr=2776466
http://www.ams.org/mathscinet-getitem?mr=2431539
http://www.ams.org/mathscinet-getitem?mr=2431539
http://www.ams.org/mathscinet-getitem?mr=2074812
http://www.ams.org/mathscinet-getitem?mr=2074812
http://www.ams.org/mathscinet-getitem?mr=2442372
http://www.ams.org/mathscinet-getitem?mr=2442372
http://www.ams.org/mathscinet-getitem?mr=1809268
http://www.ams.org/mathscinet-getitem?mr=1809268
http://www.ams.org/mathscinet-getitem?mr=3168478
http://www.ams.org/mathscinet-getitem?mr=2566748
http://www.ams.org/mathscinet-getitem?mr=2566748
http://www.ams.org/mathscinet-getitem?mr=1725357
http://www.ams.org/mathscinet-getitem?mr=1725357
http://www.ams.org/mathscinet-getitem?mr=2327834
http://www.ams.org/mathscinet-getitem?mr=2327834
http://www.ams.org/mathscinet-getitem?mr=1386177
http://www.ams.org/mathscinet-getitem?mr=1386177


ASYMPTOTIC PROPERTIES OF DELAYED BROWNIAN MOTION 4501

[51] H. Scher, G. Margolin, R. Metzler, J. Klafter, and B. Berkowitz, The dynamical foundation of
fractal stream chemistry: The origin of extremely long retention times, Geophys. Res. Lett.,
29 (2002), 1061.

[52] S. G. Samko, A. A. Kilbas and D. I. Marichev, Integrals and Derivatives of the Fractional
Order and Some of Their Applications, Gordon and Breach, Amsterdam, 1993.
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Studies in Mathematics, vol. 37, Walter de Gruyter & Co., Berlin, 2010. Theory and appli-
cations. MR2598208 (2011d:60060)

[55] I. M. Sokolov and J. Klafter, Field-induced dispersion in subdiffusion, Phys. Rev. Lett., 97
(2006), 140602.

[56] Aleksander Stanislavsky, Karina Weron, and Aleksander Weron, Diffusion and relaxation
controlled by tempered α-stable processes, Phys. Rev. E (3) 78 (2008), no. 5, 051106, 6, DOI
10.1103/PhysRevE.78.051106. MR2551366 (2010i:82145)

[57] Matthias Winkel, Electronic foreign-exchange markets and passage events of independent
subordinators, J. Appl. Probab. 42 (2005), no. 1, 138–152. MR2144899 (2006b:60102)

[58] V. M. Zolotarev, One-dimensional stable distributions, Translations of Mathematical Mono-
graphs, vol. 65, American Mathematical Society, Providence, RI, 1986. Translated from the
Russian by H. H. McFaden; Translation edited by Ben Silver. MR854867 (87k:60002)

Hugo Steinhaus Center, Institute of Mathematics and Computer Science, Wroclaw

University of Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland

E-mail address: marcin.magdziarz@pwr.wroc.pl

Technische Universität Dresden, Institut für Mathematische Stochastik, 01062 Dres-

den, Germany

E-mail address: rene.schilling@tu-dresden.de

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1739520
http://www.ams.org/mathscinet-getitem?mr=1739520
http://www.ams.org/mathscinet-getitem?mr=2598208
http://www.ams.org/mathscinet-getitem?mr=2598208
http://www.ams.org/mathscinet-getitem?mr=2551366
http://www.ams.org/mathscinet-getitem?mr=2551366
http://www.ams.org/mathscinet-getitem?mr=2144899
http://www.ams.org/mathscinet-getitem?mr=2144899
http://www.ams.org/mathscinet-getitem?mr=854867
http://www.ams.org/mathscinet-getitem?mr=854867

	1. Introduction
	2. Asymptotic behaviour of trajectories
	3. Ergodic properties
	Acknowledgement
	References

