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ASYMPTOTIC PROPERTIES OF CRITERIA FOR SELECTION
OF VARIABLES IN MULTIPLE REGRESSION

By RYUEI NisHII

Hiroshima University, Japan

In normal linear regression analysis, many model selection rules proposed
from various viewpoints are available. For the information criteria AIC, FPE,
C,, PSS and BIC, the asymptotic distribution of the selected model and the
asymptotic quadratic risk based on each criterion are explicitly obtained.

1. Introduction. In normal linear regression analysis, many model selec-
tion rules are available. Most of these selection rules are obtained by estimates
of risk functions, for example (—1) X (Kullback-Leibler information) or predictive
mean squared error. (See the review articles by Hocking, 1976, Thompson,
1978a,b.) It is known that some criteria are asymptotically equivalent to each
other. But the equivalence of two criteria may only assert that the value of one
criterion function converges asymptotically to the other criterion function under
the null hypothesis. Such an equivalence does not always imply that the risk
based on one criterion will converge to the risk based on the other criterion. The
equivalence of criteria should be defined by the risk function based on one
criterion converging to the risk function based on the other.

Consider the information criteria AIC, FPE, C,, PSS and BIC, which are
respectively proposed by Akaike (1973, 1970), Mallows (1973), Allen (1971) and
Schwarz (1978). This paper is concerned with applications of these criteria for
selection of variables and prediction in multiple regression. We give explicitly
the asymptotic distributions of the selected model and the quadratic risk when
the model is selected by these criteria. This result will prove that AIC, FPE, C,
and PSS are asymptotically equivalent in the above two senses under general
conditions. However, BIC or its generalization GIC has different properties from
those of AIC. See Sugiura (1978) and Hashimoto et. al (1981) for numerical
studies.

2. Regression model and information criteria. Consider the multiple
regression model

(2.1) : y=X8 +e,

where y is an N X 1 vector of observations, X is a known N X K design matrix,
B=(B, ---,Pk)’ is an unknown parameter vector and e is an N X 1 error vector
whose elements are assumed to be independently normally distributed with mean
0 and unknown variance ¢? i.e., € ~ N(0, o’Iy). Under this setup, we select
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variables which enable us to give good prediction for future observations by some

information criterion. We say the model is j = {j;, -+, il 1 =1 < -+ - <jp =<

K) if and only if 8; # 0, - - -, B;, # 0 and other elements of 8 are all zeros. Then

the number of unknown parameters is defined by k(j) = k& + 1 because o? is

treated as unknown. Let D; be a K X k matrix of zeros and ones such that XD;

contains columns ji, - - -, j, of X. When the model j is given, we regard (2.1) as
y=XB(j) +e

where 8(j) = D;DjB8 = D;(B;,, ---, B;,)'. Let J be a set of models j under
consideration. For example, ¢/ is a hierarchic model J; = {J,, - - -, J k| where J,
=f{1, ..., t} (¢t =1, ..., K). Throughout this paper we make the following

assumption:

ASSUMPTION 1. The true model is jo, = {1, ...‘, ko} and J includes j,. The
matrix X’X is positive definite, and M = limy_..N'X’X exists and is positive
definite.

This assumption implies rank (XD, ) = k, that is, D/ X’ XD); is positive definite.
For the model j € J we define the following quantities:

B(j) = D;(D; X'XD;)"'D} X'y = MLE of 8(j),
Q(j) = XD;(D; X'XD;)'D} X'
= projection operator w.r.t. column space of XD;,
7%(j) = N7'y'{Iy — Q(j)ly = MLE of ¢*
We discuss the following information criteria:
AIC(j) = N log ¢*(j) + ak(j),
Co(j) = N6*(j)/6*(Jx) + atk(j) — 1},
FPE(j) = [N + afk(j) — 1}16°()),
PSS(j) = y'{In — QU)HIN — AG N — Q()}Y,
GIC(j) = N log 6%(j) + ank(j),

where a is a positive constant (usually a is defined to be 2), A(j) is a diagonal
matrix whose diagonal elements are given by those of Q(j), and ay > 0 is a
sequence such that limy_.ay = © and limy_,.N *ay = 0. When ay = log N, GIC
is known as BIC. We select model j in the set J by minimizing the value of a
criterion. In this paper, our asymptotic study of criteria has K and 8 fixed as
N — . For alternative asymptotics, see Stone (1979) and Shibata (1981).

3. Goodness of criterion and general results. Let j be the model se-
lected from J by some information criterion. We assess the goodness of the
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criterion in terms of

(@) {pn(j) = Pr{j =j};j € J}, and
(i) Ry = E,[| X8 - X8(j) 1%,
where |- || denotes the Euclidean norm. The expected mean squared error of

future observations is given by Ry + N¢2 The risk function Ry is expressed by
Ry = ¥ esRn(j) where Ry(j) = E,[| X8 — XB(j)II*I;-] and I, denotes an
indicator function of (-). Shibata (1976) considered these measures of goodness
in selection of the order of an autoregressive model by AIC, and Fujikoshi (1982)
considered them in selection of variables in two-group discriminant analysis.

Let Jy = {j € J|j 2Jjo} and J, = {j € J|j 2 jo}. We define the following
conditions on a criterion:

CONDITION 1. limpy_Npn(j) =0 forj € J;.
CONDITION 2. limy_.pn(j) =0 forj € J; — {jo}.
Some implications of these conditions for {Ry(j)} are given by:

THEOREM 1. (i) If a criterion satisfies Condition 1, then limy_...Rn(j) = 0 for
J € J1. (ii) If a criterion satisfies Condition 2, then limy_,Rn(j) = 0 for j € J, —
{Jol.
ProoF. Forj € J, we have
Ry(j) =B8'X"{In— Q(j)}XB -pn(j) + Ele’'Q(j)e-I;-j) = I, + L.
By Schwarz’s inequality,
I; = [E{e’Q(j)el’pn(j)]V? = o™[{k(j)? — 1}pn(j)]V2

(i) Letj € J;. Then
imy_.N7'8'X"{In — Q(j)} X8 = B’{M — MD;(D;MD;)"'D; M} > 0
or
B'X'{In — Q(j)}XB = O(N)
by Assumption 1. Therefore we have I, I, — 0 as N — o because py(j) =

o(N™Y).

(i) Letj€dJy— {jo}. Then 8’ X'{Iy— Q(j)}XB=8'X"{Q>jo) — Q(j)}XB =
0. By Condition 2, we have I, — 0 as N — o,

REMARK. For a criterion satisfying Conditions 1 and 2, we have

limN_,ooRN = limN—moRN(j()) = koo’z.

4. Asymptotic properties of criteria. In this section, we derive the
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asymptotic distribution of j and the limit of Ry for the information criteria AIC,
C,, FPE, PSS and GIC.

Let M2 be an upper triangular matrix of order K satisfying (MY%)'M? = M
and, for 7 € J,, let L, be a (K — ko) X k¥ matrix defined by

k, E}
5 k * *
121 — 0
MTD= g g, (o L)
where £} = k(/) — k(j,). For 7 € J,, we define
(4.1) ¢, =2z'A,z and £ =&, — ak*,

where z ~ N(0, Ix—x,) and A, = L, (L/L,)"'L/. In the case of ko = K, L,, z and
A, are defined to be zeros. .

LEMMA 1. Let/ € J,. Then AIC(j,) — AIC(#) converges in law to the random
variable £ as N — o,

THEOREM 2. (Asymptotic properties of { py(j)} and Ry for AIC).
(i) (a) For j € J, and any positive constant h,
limN_,thpN(j) = 0.
(b) Forj € J,, pn(j) converges to

(4.2) p(j) = Pr{gf® = £ for 7 € J,}.
(ii) The risk function Ry converges to
(4.3) R = o¢’[ko + YienBE L1 @2t2 forredn}].

ProOOF. We shall prove only (i) (a). Let j € J,. From Assumption 1, we have
pn(j) = Pr{AIC(j) = AIC(») for 7 € J} = Pr{AIC(j) = AIC(j,)}
=Pr{X + Yy + NY%cy < Zn},
where X = 2(A\nN)"%e’'QXB ~ N(0, 1),
Yn = (AxN)"?e’Qe —» 0,
Zn = byAN*N~%e'{In — Q(jo)}e —p O,

by = Nfexp(apN™") — 1}, p = k(jo) — k(j), @ = Q(jo) — Q(j), An = 40°N™*
- B'X’'Q*X8 > 0, and cy = AV/2N"'8'X’'QXB > 0. By the assumption, Ay, by
and cy converge, respectively, to A = 462(MY28)"{S(jo) — S(j)}I2M?8 > 0, ap
and ¢ = NYAMY%8)'{S(jo) — S(j)}MY?8 > 0 as N — o where S(j) =
M'2D;(D;MD;)™'D;(M"?)’ for j € J. The formula (4.5) is dominated by

Pr{X = — NY%cy + 2N"4} + Pr{—Yy > NY4} + Pr{Zy > N4

since P(F) <= P(FNGN H) + P(G°) + P(H®) for events F, G and H. Let dy =
ey — 2N7Y* = O(1). For large N, an inequality for the standard normal distri-
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bution function implies
Pr{X < — NY2dy} = N72dN'¢(NY2dy) = o(e~<iN/2)

where ¢(x) = (27) Y%exp(—x%/2). By a relationship between a distribution
function and its moment generating function, we have

Pr{—Yy > NY4 < e N"E[e~¥V]
= e Iy + 26((NAN)V2Q |72 = o(e7),
Pr{Zy > NY4 < e N"'E[e?¥]
= eV (1 — 202N AR/ANTY/2) "N -R)/2 = (=N,

This completes the proof.

In case J = J, p(j) and R (defined in (4.2) and (4.3) respectively) can be
reduced to computable forms and this result is essentially due to Shibata (1976).
In case J is the family of all subsets of jx and M is diagonal, p(j) and R can be
reduced to

{Pr(xi = a)}* ™{Pr(xi < a)}** and o*ko + (K — ko)Pr(x3 = a)},

respectively, where j € J,, k(j) = k + 1 and x2 denotes a random variable which
has a chi-squared distribution with g degrees of freedom.

REMARK. We note that Lemma 1 and Theorem 2 remain valid if AIC is
replaced by FPE or C,.

Theorem 2 shows that p(j,) is a monotone increasing function of a. This may
suggest that, for large N, the constant a should be chosen large. But when a is
large, { pn(j); ] € J1} converge to zero more slowly than for small a, while both
pn(j) for large a and for small a are o(N~") for j € J, and h > 0.

Next, we consider PSS introduced by Allen (1971) as an estimate of the mean
squared error of prediction in multiple regression. In the general case, cross-
validation was derived from an idea similar to PSS, and Stone (1977) proved the
asymptotic equivalence of choice of model by AIC and cross-validation under the
null hypothesis and some restrictions. Our next purpose is to give the asymptotic
equivalence of AIC and PSS under weaker conditions than those of Stone (1977)
in the context of multiple regression.

ASSUMPTION 2. Let ¢{™ = 0 be diagonal elements of @( jk). Then

. () (N)
limy_..maxfc; , ---, ¢y} = 0.

This assumption implies that, for any j € J,
limy_.max{c(j), -+, ¢ (j)} = 0,

where ¢M(j) = 0 are diagonal elements of Q(j).
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Under Assumption 2, we have the following two lemmas:

LEMMA 2. (a). For j € J, let A(j) be a diagonal matrix of order N whose
diagonal elements are given by ¢N'(j) and let A(j) = {In — Q(J)}{In — A(j)}2-
{In — Q(j)}. Then

limy_-NT'X’A(j)X = M — MD;(D} MD;)"'D} M.
(b) Forj € J, let
unv = 4N76?8'X’A(j)’XB >0
and
u=4¢6"{M — MD;(D;MD;)"'D’}M}8 > 0.
Then limy_euy = u. ‘

LEMMA 3. Let j € Jo. Then PSS(jo) — PSS(j) converges in law to 5;2) as
N — o, where 5;2) is given in (4.1).

PRrOOF. It is sufficient to prove that PSS(j) — FPE(j) —p 0 as N — o for
j € J; and a = 2 in FPE(j), because FPE(j,) — FPE(j) —. £°. Set A(j) =
{In — A(j)}™2 — Iy — 2A(j). For simplicity, we treat j as fixed and omit it from
the notations. Then

PSS(j) — FPE(j) = 2[e’(I — Q)A(I — @)e — {k(j) — 1}N"'e’(I — Q)e]
+e'(I-Q)A(I — Q)e.
By large-number theory, we have p-limy_..N e’ (Iy — Q)e = ¢% We shall prove
Uy=o07%(In— QAInN—Q)e —>p k(j) -1
and
Vy=0"%"(In — Q)A(Iy — Q)e —5 0.

Assumption 2 yields E[Uy] = trA — tr QA = k(j) — 1 + o(1), V[Upx] =
tr(I — Q)A(I — @A — Q) =o0(1), E[VNn] = 0(1) and V[Vy] = 0(1). Let Whe a
random variable such that Pr{W > 0} = 1. Then Pr{W > w} < E[W]/w for w >
0. Putting. W = {Uy — k(j) + 1}? or V%, we have the required statements.

THEOREM 3. Under Assumption 2, the asymptotic properties of {pnx(j)} and
Ry for PSS are the following:

(i) (a) Forj € J, and any constant h >0, pn(j) = o(N 7).
(b) Forj € J,, py(j) converges to p(j) defined in (4.2) with a = 2.
(i1) The risk function Ry converges to R defined in (4.3) with a = 2.

ProoF. (1) (a). Forj € J,, we have
pn(j) < Pr{PSS(j) < PSS(jo)} = Pr{X + Yy + NY%ey < 0}
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where
X = 2(unN)%e’A(j)XB ~ N(0, 1),

Yn = (unN) e’ {A(j) — A(jo)le —p O,
en = uN/*N7'8'X'A(j) X8 > 0,
un is defined in Lemma 2, and limy_=ey = (46%)~'u**> 0 by Lemma 2. Applying
the same technique as in the proof of Theorem 2, we have
PI‘{X =-Yy— NI/ZQN} = PI‘{X = —N1/2CN + NlM} + Pl’{—YN > N1/4’.
Hence py(j) is o( N~*) for j € J, and for any positive constant h. Lemma 3 yields
(1) (b) and (ii).

As we have seen in previous theorems, criteria AIC, FPE, C, and PSS are
asymptotically equivalent under some conditions. Asymptotically, these criteria
have positive probability of selecting models that properly include the true model.
However, GIC obtained by a generalization of BIC, has slightly different asymp-
totic properties: GIC is a “consistent” estimator of the true model as follows:

THEOREM 4. (Asymptotic properties of {pn(j)} and Ry for GIC).
(i) (a) Letj € Jy. Then py(j) = o(N~"*) for any positive constant h.
(b) Let j € J = {jo}. Then pn(j) = o(1).
(ii) The risk function Ry converges to koo® as N — o.
Proor. (i) (a). Forj € J,,
pn(j) < Pr{X + Yy + NY%cy — \N2bEN2 < Z¥%}
where X, Yn, ¢, p and Ay are defined in the proof of Theorem 2,
Z% = \NbEN[e’{Iy — Q(jo)le — ¢*N],
and b% = N{exp(pNlay) — 1} = O(ay). Hence pn(j) = o(N~") for any h > 0.
(i) (b). For j € J5 — {jo}, we have
pn(j) = Pr{GIC(j) = GIC(jo)} = Pr{x = N7'b%xn}
< Pr{x = b%(1 — a@®} + Pr{xy = N(1 — ax'?)}

where p = k(j) — k(jo) > 0, x = 0 *N{5*(jo) — ¢%(j)} = o%e’{Q(j) — Q(jo)}e ~
x2 and xy = 6 2N6*(j) = o7%"{Iy — Q(j)}e ~ xX-r(j)+1- The assumption that
ay — © yields limy_b}(1 — ax’?) = . Therefore Pr{x = pb%(1 — an'/?)} =
o(1). By an inequality on a chi-squared distribution, Pr{x} = k — 8} =<
exp{—(4k)~16%} for 6 > 0 (see Shibata, 1981), so we have

Pr{xny < N — Nay'* < exp(-%Nay') = o(1)
since limy_.»N tay = 0. Hence pn(j) is o(1).

(ii) From (i), GIC satisfies Conditions 1 and 2. By the Remark following Theorem
1, we have the required result, completing the proof.
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As we have seen in Theorems 2-4 and a Remark, all criteria discussed in this
paper have Pr{j=j} =o(N~") forj € J; and h > 0. This result implies that

Pr{j = j} = Pr{CRITERION(j) = CRITERION(¥) for /7 € J,} + o(N7"),
Ry = Yjes,Rn(j) + o(N7").
Hence asymptotic expansions of Pr{j =j} and Ry are given by those of
Pr{CRITERION(j) = CRITERION(?) for 7 € J3} or Y jcs,Rn(j).

The asymptotic properties of the cr1ter1a may be studied by these expansions, if
possible.
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