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ASYMPTOTIC PROPERTIES OF DOUBLY ADAPTIVE BIASED
COIN DESIGNS FOR MULTITREATMENT CLINICAL TRIALS

BY FEIFANG HU1 AND LI-XIN ZHANG2

University of Virginia and Zhejiang University

A general doubly adaptive biased coin design is proposed for the
allocation of subjects to K treatments in a clinical trial. This design follows
the same spirit as Efron’s biased coin design and applies to the cases where
the desired allocation proportions are unknown, but estimated sequentially.
Strong consistency, a law of the iterated logarithm and asymptotic normality
of this design are obtained under some widely satisfied conditions. For two
treatments, a new family of designs is proposed and shown to be less variable
than both the randomized play-the-winner rule and the adaptive randomized
design. Also the proposed design tends toward a randomization scheme (with
a fixed target proportion) as the size of the experiment increases.

1. Preliminaries.

1.1. Brief history. Adaptive design is a sequential design in which design
points or treatments are selected according to previously chosen design points or
outcomes. Two main goals of adaptive designs are (i) to develop early stopping
rules so that a trial can be terminated early with the possibility of reducing the
overall number of patients on a randomized clinical trial and (ii) to maximize the
total number of patients receiving the better treatment under certain restrictions.

The ideas of adaptive designs can be traced back to Thompson (1933) and
Robbins (1952). Zelen (1969) proposed and studied the play-the-winner rule for
comparing two treatments in clinical trials. In the play-the-winner rule, a success
on one treatment results in the next patient’s assignment to the same treatment,
and a failure on one treatment results in the next patient’s assignment to the
opposite treatment. Since then, two main families of adaptive designs have been
proposed: (1) response adaptive randomization, which is based on an optimal
allocation target, where a specific criterion is optimized based on a population
response model, and (2) design-driven response adaptive randomization, where
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rules are established with intuitive motivation, but are not optimal in a formal
sense [Rosenberger and Lachin (2002)]. Applications of adaptive designs in many
different disciplines can be found in Flournoy and Rosenberger (1995).

1.2. Target allocation proportions. To achieve the two main goals of adaptive
designs, optimal allocation proportions are usually determined according to some
multiple-objective optimality criteria. This has been studied in Hayre (1979)
and Jennison and Turnbull (2000), among others. Jennison and Turnbull (2000)
describe a general procedure for determining optimal allocation.

Here we use binary response to illustrate different target allocation proportions.
In comparing two treatments, 1 and 2, let the responses of treatment 1 follow a
Bernoulli distribution with parameter p1 and the responses of treatment 2 follow a
Bernoulli with parameter p2. Let q1 = 1 −p1 and q2 = 1 −p2. Suppose n1 and n2
are the numbers of patients assigned to treatments 1 and 2, respectively. Let ν =
n1/(n1 +n2) denote the allocation proportion to treatment 1. For equal allocation,
ν = 1/2. Neyman allocation, ν = √

p1q1/(
√

p1q1 + √
p2q2 ), is proposed for

minimizing the variance of p̂1 −p̂2 [Melfi and Page (1998)]. Rosenberger, Stallard,
Ivanova, Harper and Ricks (2001) propose the proportion ν = √

p1/(
√

p1 +√
p2 )

to maximize the expected number of successes νn1p1 + (1 − ν)n2p2 with a fixed
variance of p̂1 − p̂2. Some other optimal proportions are considered in Ivanova
and Rosenberger (2001).

1.3. Response-adaptive randomization procedures. Efron (1971) discussed
the drawbacks of complete randomization and deterministic allocation for cases in
which balance (ν = 1/2) is desired. To overcome these drawbacks, Efron (1971)
and Wei (1978) proposed biased coin designs that offer a compromise between
complete randomization and deterministic allocation to reduce experimental bias
and to increase the precision of inference about treatment difference. Smith (1984)
and Wei, Smythe and Smith (1986) extended these designs to the multitreatment
case when balance is desired or the desired allocation proportions are known.

In many sequential designs, balance is not desired and the desired allocation
proportions may be unknown. For example, both ν = √

p1q1/(
√

p1q1 + √
p2q2 )

and ν = √
p1/(

√
p1 +√

p2 ) depend on unknown parameters p1 and p2. To target
unknown desired allocation proportions, Eisele (1994) and Eisele and Woodroofe
(1995) introduced a doubly adaptive biased coin design for comparing two
treatments. The design follows the same spirit of Efron’s and Wei’s designs, but
depends on both the current proportion of subjects assigned to each treatment and
the current estimate of the desired allocation proportion. Melfi, Page and Geraldes
(2001) proposed an adaptive randomized design to target unknown proportions.

Different from the optimal allocation approach, a design-driven approach has
been developed on an independent track. The basic idea is to use an intuitive
rule (e.g., the play-the-winner rule) to change allocation probabilities sequentially.
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A well-studied family of adaptive designs is based on urn models, which include
the randomized play-the-winner rule [Wei and Durham (1978)] as a special case.
The main properties and some recent developments of urn models are reviewed in
Rosenberger (2002).

1.4. Variability of randomization procedures. Much of the past literature
on adaptive designs has focused on proposing new designs and evaluating
properties of these designs. When a randomization procedure is used in a
clinical study, the number of patients assigned to each treatment is a random
variable. The variability of allocation can have a strong effect on power. This
has been demonstrated by the simulation studies of Melfi and Page (1998)
as well as Rosenberger, Stallard, Ivanova, Harper and Ricks (2001) and more
recently theoretically by Hu and Rosenberger (2003), who show explicitly the
relationship between the power of a test and the variability of the randomization
procedure for a given allocation proportion. In that paper, they show that the
average power of a randomization procedure is a decreasing function of the
variability of the procedure. This allows us to directly evaluate different response-
adaptive randomization procedures and different target allocations in terms of
power and expected treatment failure rate without relying on simulation. So
we can compare response-adaptive randomization procedures by studying their
asymptotic distributions and especially their asymptotic variabilities. Therefore, it
is important to propose new adaptive designs that have smaller variabilities and
maintain certain degrees of randomness at the same time.

1.5. Main results and organization of the paper. Eisele and Woodroofe (1995)
studied the asymptotic properties of doubly adaptive biased coin designs (for two
treatments) under some very restrictive conditions on allocation functions. Indeed,
as pointed out by Melfi, Page and Geraldes (2001): “the example given in their
papers [Eisele (1994, 1995)] makes use of an allocation function which does not
even satisfy these conditions!”

The main purposes of this paper are (i) to propose a new family of doubly
adaptive biased coin designs for two treatments and show some advantages of
the proposed designs, (ii) to generalize doubly adaptive biased coin designs
for K-treatment comparisons and (iii) to study the asymptotic properties of
generalized multitreatment doubly biased coin designs under some widely satisfied
conditions. In this paper, we also show a law of the iterated logarithm of the doubly
adaptive biased coin designs as well as the designs proposed by Wei (1978), Smith
(1984) and Wei, Smythe and Smith (1986). By using martingale methods and
the law of the iterated logarithm, we prove asymptotic normality of allocation
proportions under some general conditions. It is shown that the allocation function
of the example in Eisele (1994, 1995) satisfies the conditions here.

The paper is organized as follows. In Section 2, we propose a new family
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of doubly adaptive biased coin designs for two treatments, which is simple to
implement and easy to understand for the practitioner. The new designs are
compared with both the randomized play-the-winner rule [Wei and Durham
(1978)] and the adaptive randomized design proposed by Melfi, Page and
Geraldes (2001). We show that the new designs have smaller variabilities (force
a small-sized experiment to desired allocation proportions) and tend toward the
randomization scheme (see Remark 2.3) as the size of the experiment increases.
Some examples are also discussed. General doubly biased coin designs for
K treatments are given in Section 3. In Section 4, we state some asymptotic
properties, including strong consistency, law of the iterated logarithm and
asymptotic normality, for both the allocation proportions and the estimates of
the desired proportions. Based on these asymptotic properties, we show that the
new design (for K treatments) has the desired property that it converges toward
the randomization scheme. We conclude our paper with some observations in
Section 5. Technical proofs are given in the Appendix.

2. Doubly adaptive biased coin design (DBCD) for two treatments.

2.1. Allocation rule. For clinical trials with two treatments (1 and 2), let Xm =
(Xm,1,Xm,2) be the treatment assignment of the mth patient. Here Xm = (1,0) in-
dicates that the mth patient is assigned to treatment 1 and Xm = (0,1) indicates
that the mth patient is assigned to treatment 2. Suppose {{ξm,k,m = 1,2, . . .},
k = 1,2} denote the responses, which are assumed to be two sequences (depen-
dent) of i.i.d. random vectors in Rd (usually d = 1), where ξm,k = (ξm,k1, . . . ,

ξm,kd) is the response of the mth patient on the treatment k, k = 1,2. In a real
clinical trial, only ξm,k with Xm,k = 1 (k = 1,2) is observed.

Let Nn = (Nn,1,Nn,2), where Nn,k =∑n
j=1 Xj,k is the number of patients in

treatment k, k = 1,2, for the first n patients and Nn,1 + Nn,2 = n. Let θ1 and θ2
be the corresponding parameters of treatments 1 and 2, respectively. Based on the
first n observations, let θ̂n,1 be the estimator of θ1 and θ̂n,2 be the estimator θ2.
One goal of the allocation scheme is to have Nn,1/n → v1 as n → ∞, where
v1 = ρ(θ1, θ2) is the desired allocation proportion [0 ≤ ρ(θ1, θ2) ≤ 1]. Also let
g(x, y) be a function from [1,0] × [0,1] to [0,1], which is called the allocation
function.

Eisele (1994) and Eisele and Woodroofe (1995) propose the following doubly
adaptive biased coin design (DBCD): (1) To start, allocate n0 ≥ 2 patients to both
treatments 1 and 2, and (2) for the (m+ 1)st stage (m ≥ 2n0), assign the (m+ 1)st
patient to treatment 1 with probability g(Nm,1/m, ρ̂m), where g is an allocation
function and ρ̂m = ρ(θ̂m,1, θ̂m,2).

REMARK 2.1. Eisele and Woodroofe (1995) assume that both ξm,1 and ξm,2
are independent random variables from d-dimensional standard exponential
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families with θ1 and θ2 as their natural parameters, respectively. Here we consider
general distributions of ξm,1 and ξm,2.

For simplicity of notation, we assume that both θ1 and θ2 are d-dimensional
parameters and θ1 = Eξ 1,1 and θ 2 = Eξ 1,2. Otherwise, for example, if there exist
functions f k such that θ k = Ef k(ξ1,k), k = 1,2, then we can use transformations
f k and treat these as the responses. This includes the case of Eisele and Woodroofe
(1995). For MLEs, moment estimators and estimators from estimate equations,
this condition is usually satisfied (asymptotically) after some modifications. This
is demonstrated in Example 1.

Based on the above discussion, we have θ1 = (θ11, . . . , θ1d) and θ2 =
(θ21, . . . , θ2d). We will use sample means to estimate the parameters θ1 and θ2,
that is,

θ̂m,k =
∑m

j=1 Xj,kξ j,k

Nm,k

, k = 1,2.

2.2. Conditions on the allocation function g and asymptotic results. The
properties of the DBCD depend heavily on the allocation function g. To show
the asymptotic properties of the DBCD, Eisele and Woodroofe (1995) assume
the following conditions of the allocation function g and the desired proportion
function ρ:

(i) g is jointly continuous;
(ii) g(x, x) = x for all x ∈ [0,1];

(iii) g(x, y) is strictly decreasing in x and strictly increasing in y on (0,1) ×
(0,1);

(iv) g(x, y) has bounded partial derivatives in both x and y and ∂g(x, y)/

∂x|x=v1,y=v1 �= 0;
(v) there are positive constants C and γ for which

1

ρ
+ 1

1 − ρ
≤ C

(‖E(ξ1,1)‖γ + ‖E(ξ 1,2)‖γ
);

(vi) ρ is a continuous function and it is twice continuously differentiable in a
small neighborhood of (θ1, θ2).

Conditions (iv) and (v) are very restrictive, and it is usually difficult to check
these two conditions. In fact, Melfi, Page and Geraldes (2001) pointed out that
the function g(x, y) = [1 − (1/y −1)x]+ [cf. Eisele (1994, 1995)] does not satisfy
condition (iv). This is because ∂g/∂x|y=x = 1−1/x is not bounded. Condition (v)
is usually not satisfied for ρ → 0 or ρ → 1. In this paper, we will avoid these two
conditions.

Suppose v1 = ρ(θ 1, θ2) is the desired allocation proportion. We introduce the
following condition:
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(vii) there exists δ > 0 such that g(x, y) satisfies

g(x, y) = g(v1, v1) + (x − v1)
∂g

∂x

∣∣∣∣
(v1,v1)

+ (y − v1)
∂g

∂y

∣∣∣∣
(v1,v1)

+ o(|x − v1|1+δ) + o(|y − v1|1+δ)

as (x, y) → (v1, v1).

Now let

λ = ∂g

∂x

∣∣∣∣
(v1,v1)

, γ = ∂g

∂y

∣∣∣∣
(v1,v1)

and

∇(ρ) =
(

∂ρ

∂θ11
, . . . ,

∂ρ

∂θ1d

,
∂ρ

∂θ21
, . . . ,

∂ρ

∂θ2d

)′
.

Also let

σ 2
3 = (∇(ρ)|�)′V∇(ρ)|� and σ 2

1 = v1(1 − v1),

where � = (θ1, θ2) and

V = diag
(

Var(ξ 1,1)

v1
,

Var(ξ1,2)

1 − v1

)
.

THEOREM 2.1. If (i)–(iii), (vi) and (vii) are satisfied and E‖ξ 1,k‖2+ε < ∞,
k = 1,2, for some ε > 0, then

Nn,1

n
− v1 = O

(√
log log n

n

)
a.s.,(2.1)

n−1/2(N[nt],1 − [nt]v1, [nt]ρ̂[nt] − [nt]v1
)

(2.2)
D→
(
σ1t

λ
∫ t

0

dWt

xλ
+ γ σ3t

λ
∫ t

0

Bx

x1+λ
dx, σ3Bt

)
and

n1/2(Nn,1/n − v1, ρ̂n − v1)
D→N(0,�),(2.3)

where Wt and Bt are two independent standard Brownian motions and

� =
σ 2

1 /(1 − 2λ) + 2γ 2σ 2
3 /((1 − λ)(1 − 2λ)) γ σ 2

3 /(1 − λ)

γ σ 2
3 /(1 − λ) σ 2

3

 .
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Results (2.3) and (2.2) agree with Theorems 5 and 6 of Eisele and Woodroofe
(1995), respectively. Result (2.1) is new. Only conditions (i)–(iii), (vi) and (vii)
are used in this theorem. Condition (vii) is a local condition and is not difficult to
check, while condition (iv) of Eisele and Woodroofe (1995) is a global condition.
The g(x, y) = [1 − (1/y −1)x]+ satisfies condition (vii) here. Condition (v) is not
assumed in this paper.

REMARK 2.2. Theorem 2.1 is a special case of Theorems 4.1–4.3 (see
Remark 4.2). It is easy to check the conditions of Theorems 4.1–4.3 from the
conditions of Theorem 2.1. The condition λ < 1/2 is used in Section 4. From
condition (iii) of Theorem 2.1, we have λ < 0, so λ < 1/2 is satisfied. For example,
λ = 1 − 1/v1 < 0 for g(x, y) = [1 − (1/y − 1)x]+. It is true in other examples of
this paper.

2.3. A family of allocation functions and its properties. From Theorem 2.1,
the allocation function g(x, y) plays an important role. If we choose g(x, y) =
1 − x and v1 = v2 = 1/2, we get the adaptive biased coin design proposed by Wei
(1978). If g(x, y) = p(2x − 1), then we obtain the adaptive biased coin designs
studied by Wei (1978) and Smith (1984). Generally, we consider the following
family of allocation functions.

A family of allocation functions. Define the allocation function

g(α)(0, y) = 1, g(α)(1, y) = 0,

(2.4)
g(α)(x, y) = y(y/x)α

y(y/x)α + (1 − y)((1 − y)/(1 − x))α
,

where α ≥ 0. It is easy to see that, if x > y, then g(x, y) < y. This will force
the allocation proportion to the target proportion, which follows the same spirit as
Efron’s biased coin design (1971). Also DBCDs based on this family of allocation
functions are easy to implement because the value is easy to calculate. The
asymptotic properties of this family of designs can be obtained from Theorem 2.1
with λ = −α < 1/2, γ = 1 + α. Now we use the following two examples to
illustrate the properties of this family of allocation functions.

EXAMPLE 1 (Normal responses). This is the example studied in Section 8 of
Eisele and Woodroofe (1995). Suppose

Y1, Y2, . . . ∼ N(µ,σ 2) and Z1, Z2, . . . ∼ N(ν, τ 2),

where µ, ν, σ 2 and τ 2 are four unknown parameters. To test µ = ν, the desired
proportion is

v1 = σ

σ + τ
,
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which is not a direct function of E(Y1) and E(Z1). Let ξm,1 = (Y 2
m,Ym) and

ξm,2 = (Z2
m,Zm). In this case, θ11 = EY 2

1 , θ12 = EY1 = µ, θ21 = EZ2
1 , θ22 =

EZ1 = ν. Then

v1 = ρ(�) = σ

σ + τ
=

√
θ11 − θ2

12√
θ11 − θ2

12 +
√

θ21 − θ2
22

,

and the estimates of σ 2 and τ 2 are

σ̂ 2
m = θ̂m,11 − (θ̂m,12)

2 = 1

Nm,1

(
m∑

j=1

Xj,1(Yj − Ym)2

)

and

τ̂ 2
m = θ̂m,21 − (θ̂m,22)

2 = 1

Nm,1

(
m∑

j=1

Xj,2(Zj − Zm)2

)
,

where

Ym =
∑m

j=1 Xj,1Yj

Nm,1
and Zm =

∑m
j=1 Xj,2Zj

Nm,2
.

Obviously, the function ρ(y) is continuous in {y :y11 > y2
12, y21 > y2

22} and is twice
differentiable at �. Also,

∇(ρ)|� =
(

τ

2σ(σ + τ )2 ,− 2µτ

2σ(σ + τ )2 ,− σ

2τ (σ + τ )2 ,
2νσ

2τ (σ + τ )2

)′
.

Note that (1,−2µ)Var{(Y 2, Y )}(1,−2µ)′ = Var{(Y −µ)2} = 2σ 4 and (1,−2ν)×
Var{(Z2,Z)}(1,−2ν)′ = Var{(Z − ν)2} = 2τ 4. We have

σ 2
3 = τ 22σ 4

4σ 2(σ + τ )4

σ + τ

σ
+ σ 22τ 4

4τ 2(σ + τ )4

σ + τ

τ
= τσ

2(σ + τ )2 .

Therefore, if the allocation function satisfies the conditions of Theorem 2.1, then

Nn,1

n
− v1 = O

(√
log log n

n

)
a.s.

and

n−1/2(Nn,1 − nv1)
D→N

(
0,

[
1

1 − 2λ
+ γ 2

(1 − λ)(1 − 2λ)

]
στ

(σ + τ )2

)
.

If the allocation function g(α) of (2.4) is used, the conditions of Theorem 2.1
are satisfied and

n−1/2(Nn,1 − nv1)
D→N

(
0,

2 + α

(1 + 2α)

στ

(σ + τ )2

)
.
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The asymptotic variance is a monotone decreasing function of α, taking values
from 2στ/(σ + τ )2 to στ/[2(σ + τ )2] as α changes from 0 to ∞.

When α = 0, g(0)(x, y) = y, which does not depend on x. The DBCD becomes
the adaptive randomized design proposed by Melfi, Page and Geraldes (2001). In
this case, the asymptotic variance of n−1/2Nn,1 is 2στ/(σ +τ )2. One disadvantage
of the adaptive randomized design is that, for small experiments, the allocation
could be far from the target proportion. This can be seen in the special case with
a fixed ρ = 1/2 [Efron (1971)]. The DBCD with g(α) (α > 0) always has smaller
asymptotic variance than the adaptive randomized design. If α = 1, the variance of
DBCD is στ/(σ + τ )2, which is half of the variance of the adaptive randomized
design. Therefore, we can force a small-sized experiment to the target proportion
by choosing α of the proposed designs.

EXAMPLE 2 (Binary responses). Suppose the response of a patient on each
treatment is dichotomous (i.e., success or failure). Let p1 = P(success|treatment 1),
p2 = P(success|treatment 2), q1 = 1 − p1 and q2 = 1 − p2. Assume that
0 < p1 < 1 and 0 < p2 < 1. The randomized play-the-winner (RPW) rule [Wei
and Durham (1978)] is often used for ethical reasons. If we use the RPW rule to
assign the patients, then

Nn,1

n
→ v1 =: q2

q1 + q2
a.s. and

√
n

(
Nn,1

n
− v1

)
D→N(0, σ 2

RPW),

whenever p1 + p2 < 3/2 (or q1 + q2 > 1/2), where

σ 2
RPW = q1q2[5 − 2(q1 + q2)]

[2(q1 + q2) − 1](q1 + q2)2

[cf. Smythe and Rosenberger (1995)]. When p1 + p2 > 3/2, the limiting
distributions of the proportions are unknown for the RPW rule [cf. Matthews and
Rosenberger (1997)].

Now we use the doubly biased coin design to target the same allocation
proportions q2/(q1 + q2). Here, ρ(p1,p2) = (1 − p2)/[(1 − p1) + (1 − p2)]. Let
g(x, y) be an allocation function that satisfies the conditions of Theorem 2.1. The
design is defined as follows. At the first stage, n0 patients are assigned to each
treatment. After m ≥ 2n0 patients are assigned, we let Sm,k be the number of
successes of all the Nm,k patients on the treatment k in the first m assignments,
k = 1,2. We let p̂m,k = (Sm,k + 1/2)/(Nm,k + 1) be the sample estimator of pk

and write q̂m,k = 1 − p̂m,k , k = 1,2. At the (m+1)st stage, the (m+1)st patient is
assigned to treatment 1 with probability g(Nm,1/m, ρ̂m), and to treatment 2 with
probability 1 − g(Nm,1/m, ρ̂m), where ρ̂m = q̂m,2/(q̂m,1 + q̂m,2) is the sample
estimate of v1 = q2/(q1 + q2). Then ∇(ρ)|(p1,p2) = (q2/(q1 + q2)

2,−q1/(q1 +
q2)

2),

Nn,1

n
− v1 = O

(√
log logn

n

)
a.s. and n1/2

(
Nn,1

n
− v1

)
D→N(0, σ 2

DBC)
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whenever λ < 1/2, where

σ 2
DBC = q1q2

(1 − 2λ)(q1 + q2)
2 + 2γ 2

(1 − λ)(1 − 2λ)

q1q2(p1 + p2)

(q1 + q2)
3 .

If g(x,ρ) is chosen from (2.4), then

σ 2
DBC = σ 2

α = q1q2

(1 + 2α)(q1 + q2)2
+ 2(1 + α)

(1 + 2α)

q1q2(p1 + p2)

(q1 + q2)3

= q1q2(p1 + p2)

(q1 + q2)3
+ 2q1q2

(1 + 2α)(q1 + q2)3
.

We shall note that the asymptotic normality holds for all 0 < p1 < 1 and 0 <

p2 < 1. It is easily seen that σ 2
α is a strictly decreasing function of α ≥ 0. Also,

σ 2
α < σ 2

RPW for all α > 1. Furthermore, if q1 + q2 is near 1/2, then σα is much
smaller than σRPW. Therefore, the doubly adaptive biased coin design provides a
more stable allocation rule.

REMARK 2.3. From the above two examples (for any fixed α), we find that,
as the size m of the experiment approaches ∞, Nm,1/m → v1, ρ̂m → v1 and
g(Nm,1/m, ρ̂m) → v1 almost surely. Therefore, the (m + 1)st patient is assigned
to treatment 1 with probability g(Nm,1/m, ρ̂m) → v1 as m → ∞. Therefore, the
new designs tend to the randomization scheme with target v1 as m increases.

3. The general model and the assumptions. We now consider general
K-treatment clinical trials. Suppose the patients are randomized sequentially
and respond immediately. In general, after m patients are assigned and the
responses observed, the (m + 1)st patient is assigned to treatment k, with a
probability {pm,k}, k = 1, . . . ,K . The probabilities {pm,k} may depend on both
the treatments assigned and the responses observed of the previous m patients. Let
Xm = (Xm,1, . . . ,Xm,K) be the result of the mth assignment; that is, if the mth
patient is assigned to treatment k, then the kth component Xm,k of Xm is 1 and
other components are 0. We let {{ξm,k,m = 1,2, . . . }, k = 1, . . . ,K} denote the
responses, which are assumed to be K sequences of i.i.d. random vectors in Rd ,
where ξm,k = (ξm,k1, . . . , ξm,kd ) is the response of the mth patient on treatment k,
k = 1, . . . ,K . We also write ξm = (ξm,1, . . . , ξm,K). Then the probabilities pm,k ,
k = 1, . . . ,K , are K functions of Xj and ξ j , j = 1, . . . ,m. Since a treatment may
have several dependent responses (e.g., cure, negative effect, side effect, etc.), we
use a vector to denote a response of a patient on a treatment. Actually, in the
clinical trial, ξm,k appears only when the mth patient is assigned to treatment k,
that is, when Xm,k = 1. But we should assume that all the responses {ξm,k} are
there, and only the nonzero element of Xm,kξm,k is observed in the trial.

Let Nn = (Nn,1, . . . ,Nn,K), where Nn,k =∑n
j=1 Xj,k is the number of patients

assigned to the treatment k in the first m stages, k = 1, . . . ,K . Suppose the
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desired allocation proportion of patients assigned to each treatment is a function
of some unknown parameters of the response {ξn} [see Melfi and Page (1998)
and Rosenberger, Stallard, Ivanova, Harper and Ricks (2001) for some special
cases]. One goal of the allocation scheme is to have Nn/n → v = ρ(�) as
n → ∞, where ρ(z) = (ρ1(z), . . . , ρK(z)) :Rd1×K → (0,1)K is a vector-valued
function satisfying ρ(z)1′ = 1, � = (θ1, . . . , θK) is a vector in Rd1×K and θ k =
(θk1, . . . , θkd1) is an unknown parameter of the distribution of ξ 1,k , k = 1, . . . ,K .
For simplicity of notation, we assume that d = d1 and θ k = Eξ 1,k , k = 1, . . . ,K .
Otherwise, for example, if there exist functions fk such that θ k = Efk(ξ1,k),
k = 1, . . . ,K , we can use the transforms fk(ξ 1,k), k = 1, . . . ,K , of the responses
as the responses themselves. (This has been demonstrated in Example 1, where
d = 1, but d1 = 2. Transformations are used to make d = 2.)

Choose a �0 = (θ0,1, . . . , θ0,K) ∈ Rd×K as the first estimate of �. If m

patients are assigned and the responses are observed, we use the sample means
to estimate the parameters θ k , k = 1, . . . ,K , that is,

θ̂m,k =
∑m

j=1 Xj,kξ j,k + θ0,k

Nm,k + 1
, k = 1, . . . ,K,

and write

�̂m,k = (θ̂m,1, . . . , θ̂m,K).(3.1)

Here, 1 is added in the denominator to avoid the case of 0/0, and θ0,k is added
in the numerator to estimate θ k when no patient is assigned to treatment k,
k = 1, . . . ,K . Usually, �0 is chosen to avoid ρk(�̂m) = 0, k = 1, . . . ,K . In
practice, �0 is a guessed value of � or an estimator of � from other early trials.

Now, we consider the following general adaptive design.

General doubly adaptive biased coin design. Let g(x,y) = (g1(x,y), . . . ,

gK(x,y)) : [0,1]K × [0,1]K → [0,1]K be the allocation rule with g(x,y)1′ = 1.
The first patient is allocated to each treatment with the same probability 1/K .
Let �̂m be estimated as in (3.1) from the first m observations, m = 1,2, . . . .
Then the (m + 1)st patient is assigned to treatment k with probability pm,k =
gk(Nm/m, ρ̂m), k = 1, . . . ,K , where

ρ̂m = ρ(�̂m)(3.2)

is the sample estimate of v = (v1, . . . , vK) = ρ(�) based on the responses
observed from the first m patients.

This design has the desirable property that it offers a compromise between ran-
domization and balance. To obtain the asymptotic properties, we require the fol-
lowing assumptions. In this paper, we assume that 0 < vk < 1, k = 1, . . . ,K . The
following first group of conditions concerns the response {ξn = (ξn,1, . . . , ξn,K)}
and related parameters � = (θ1, . . . , θK) = (θ11, . . . , θ1d, . . . , θk1, . . . , θkd).
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CONDITION A. Assume that the response sequence {ξn = (ξn,1, . . . , ξn,K)},
n = 1,2, . . . , is i.i.d. random vectors and � = Eξn as before. Also:

(A1) E‖ξ 1,k‖ < ∞, k = 1, . . . ,K .
(A2) For some ε > 0, E‖ξ 1,k‖2+ε < ∞, k = 1, . . . ,K .

The second group of conditions concerns the allocation rule g(x,y) = (g1(x,y),

. . . , gK(x,y)).

CONDITION B. The function of allocation rule g(x,y) satisfies the following
conditions:

(B1) g(v,v) = v and g(x,y)−g(x,v) → 0 as y → v along y1′ = 1 uniformly in x
with x1′ = 1. The latter can be implied by the condition that the function
g(x,y) is continuous on {(x,v) : x1′ = 1}.

(B2) There exists a constant 0 ≤ λ0 < 1 such that, for each k = 1, . . . ,K ,

gk(x,v) − gk(v,v)

xk − vk

≤ λ0 for all x with xk > vk, x1′ = 1.

(B3) For any 0 < δ < 1/K and each k = 1, . . . ,K , there exists a constant cδ > 0
such that

gk(x,y)|xk=0 ≥ cδ for all x,y

with x1′ = 1, y1′ = 1, y ∈ [δ,1)K,

lim inf
xk→0+

gk(x,y)

min{x1, . . . , xK} ≥ cδ uniformly in x,y

with x1′ = 1, y1′ = 1, y ∈ [δ,1)K.

(B4) There exists δ > 0 for which the function ρ(x,y) satisfies

g(x,y) = g(v,v) +
K∑

k=1

(xk − vk)
∂g
∂xk

∣∣∣∣∣
(v,v)

+
K∑

k=1

(yk − vk)
∂g
∂uk

∣∣∣∣∣
(v,v)

+ o(‖x − v‖1+δ) + o(‖y − v‖1+δ) as (x,y) → (v,v).

The third group of conditions concerns the proportion function ρ(z).

CONDITION C. The proportion function z = (z1, . . . , zd) = (z11, . . . , z1d, . . . ,

zK1, . . . , zKd) → ρ(z) :Rd×K → (0,1)K satisfies the following conditions:

(C1) ρ(�) = v and ρ(z) is a continuous function.
(C2) There exists δ > 0 for which

ρ(z) = ρ(�) +
K∑

k=1

d∑
j=1

(zkj − θkj )
∂ρ

∂zkj

∣∣∣∣
�

+ o(‖z − �‖1+δ) as z → �.
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For a function h(u,w) :RL × RM → RK , we denote by ∇u(h) and ∇w(h) the
gradient matrices related to the vectors u and w, respectively, that is,

∇u(h) =
(

∂hk

∂ui

; i = 1, . . . ,L, k = 1, . . . ,K

)
L×K

and

∇w(h) =
(

∂hk

∂wj

; j = 1, . . . ,M, k = 1, . . . ,K

)
M×K

.

If conditions (B4) and (C2) are satisfied, then

g
(
x,ρ(z)

)= g(v,v) + (x − v)H + (z − �)∇(ρ)|�E
(3.3) + o(‖x − v‖1+δ) + o(‖z − �‖1+δ)

as (x, z) → (v,�), where

H = ∇x(g)|(v,v) and E = ∇ρ(g)|(v,v)

are two K × K matrices, and

∇y(f )|(v,�) = ∇(ρ)|� ∇ρ(g)|(v,v) = ∇(ρ)|�E

is a (d ·K)× K matrix. Obviously, H1′ = E1′ = 0′ since g(x,y)1′ = 1. Therefore,
H has an eigenvalue λ1 = 0 and has the following Jordan decomposition:

T−1HT = diag[0,J2, . . . ,Js],
where Js is a νt × νt matrix, given by

Jt =


λt 1 0 · · · 0
0 λt 1 · · · 0
0 0 λt · · · 0
...

...
...

. . .
...

0 0 0 · · · λt

 .

We may select the matrix T so that its first column is 1′. Let λ = max{Re(λ2), . . . ,

Re(λs)} and ν = maxj {νj : Re(λj ) = λ}.
Further, if condition (B2) is also satisfied, then due to an argument similar to

that made in Section 3 of Smith (1984) or in the proof of Lemma 3.2 of Wei,
Smythe and Smith (1986),

T−1HT = diag[0, λ, . . . , λ] and H = λH0 = λ(I − 1′u),(3.4)

where H0 = T diag[0,1, . . . ,1]T−1 = I − 1′u, u is the first row of T−1.
We will use conditions (A1), (B1)–(B3) and (C1) to establish the strong

consistency, and conditions (A2), (B4) and (C2) to establish asymptotic normality.
We now make some remarks on the assumptions.
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REMARK 3.1. If g(x,y) and ρ(z) are twice differentiable at points (v,v)

and �, respectively, or the second partial derivatives of them are bounded
in a neighborhood of the points (v,v) and �, respectively, then conditions
(B4) and (C2) are satisfied with δ = 3/4.

REMARK 3.2. Condition (B2) is satisfied with λ0 = 0 if we assume that the
(m+1)st patient is assigned to treatment k with a probability less than vk whenever
Nm,k/m > vk . In this case, the biased coin design analyzed by Smith (1984) and
Wei, Smythe and Smith (1986) is a special case of our general adaptive design.
Their g(x,ρ) does not depend on ρ . By symmetry, condition (B2) can replaced
by:

(B2′) There exists a constant 0 ≤ λ0 < 1 such that, for each k = 1, . . . ,K ,

gk(x,v) − gk(v,v)

xk − vk

≤ λ0 for all x with xk < vk, x1′ = 1.

Or a general one:

(B2′′) There exist two constants 0 ≤ λ0 < 1, c0 �= 0 and an invertible real matrix
S = (s′

1, . . . , s′
K) such that S1′ = c01′ and, for each k = 1, . . . ,K ,

(g(x,v) − g(v,v))s′
k

(x − v)s′
k

≤ λ0 for all x with (x − v)s′
k > 0, x1′ = 1.

In these cases, (3.4) remains true. In practice, we can choose g such that one of
condition (B2), (B2′) and (B2′′) is satisfied.

REMARK 3.3. Condition (B3) is easily understood. At the stage (m + 1), if
all estimated proportions ρ̂m,j , j = 1, . . . ,K , are not very small, but the sample
proportion Nm,k/m is very small, then the probability of the assignment of the
(m + 1)st patient to the treatment k should not be too small to avoid large
experimental bias. This condition can simply be replaced by the condition that

Nn,k → ∞ a.s., k = 1, . . . ,K.(3.5)

If g(x,y) = g(x) is only a function of x, then condition (B3) is not needed,
since this condition or (3.5) is only used for ensuring the consistency of �̂n (cf.
Lemmas A.4 and A.5). Also, if condition (B2′) is satisfied at any point (v,v) and
gk(v,v) = vk , then (B3) is obviously satisfied. Therefore, conditions (ii) and (iii)
of Eisele (1994, 1995) or Eisele and Woodroofe (1995) imply this condition.

REMARK 3.4. Our conditions on the allocation rule are weaker than those
used by Smith (1984). Conditions (B1)–(B3) are weaker than conditions (i)–(iii)
in Eisele (1994, 1995) or Eisele and Woodroofe (1995). Their (iv) is a global
condition; our (B4) is a local one instead. Also, condition (C2) is weaker than
their (vi). Any condition of the form of their condition (v) is not assumed in this
paper. It is usually difficult to verify their (v) in applications.
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4. Asymptotic properties. In this section we state the main asymptotic
theorems.

THEOREM 4.1 (Strong consistency). If conditions (A1), (B1), (B2′′), (B3)
and (C1) are satisfied, then Nn/n → v and ρ̂n → v a.s.

THEOREM 4.2 (Rates of consistency). Suppose Nn/n → v a.s. If conditions
(A2), (B4) and (C2) are satisfied and λ < 1, then for any κ > (1/2) ∨ λ,

n−κ(Nn − nv) → 0 a.s. and ρ̂n − v = O

(√
log logn

n

)
a.s.

Furthermore, if λ < 1/2, then

Nn − nv = O
(√

n log log n
)

a.s.

THEOREM 4.3 (Asymptotic normality). Suppose Nn/n → v a.s. and condi-
tions (A2), (B4) and (C2) are satisfied. Let

Vk = Var(ξ1,k) = (Cov[ξ1,ki , ξ1,kj ]; i, j = 1, . . . , d), k = 1, . . . ,K,(4.1)

V = diag
(

1

v1
V1, . . . ,

1

vK

VK

)
,(4.2)

�3 = (∇(ρ)|�)′V∇(ρ)|� =
K∑

k=1

1

vk

(∇yk
(ρ)|�)′Vk∇yk

(ρ)|�,(4.3)

�1 = diag(v) − v′v, �2 = E′�3E,(4.4)

and let Wt and Bt be two independent standard K-dimensional Brownian motions.
If λ < 1/2, then

n−1/2(N[nt] − [nt]v, [nt]ρ̂ [nt] − [nt]v) D→(Gt , Bt�
1/2
3 )

in the space D[0,1] with the Skorohod topology, where the Gaussian process

Gt =
∫ t

0
(dWx)�

1/2
1

(
t

x

)H
+
∫ t

0

Bx�
1/2
2

x

(
t

x

)H
dx

(4.5)

=
∫ t

0
(dWx)�

1/2
1

(
t

x

)H
+
∫ t

0
(dBx)�

1/2
2

[∫ t

x

1

y

(
t

y

)H
dy

]
is the solution of the equation

dGt = (dWt )�
1/2
1 + Bt�

1/2
2

t
dt + Gt

t
Hdt, G0 = 0,
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and aH is defined to be

aH = eH lna =
∞∑

j=0

(lna)j

j ! Hk.

In particular,

n1/2(Nn/n − v, ρ̂n − v)
D→N(0,�),

where

� =
(

�11 �12
�21 �3

)
(4.6)

and

�11 =
∫ 1

0

(
1

x

)H′
�1

(
1

x

)H
dx

(4.7)

+
∫ 1

0
dx

[∫ 1

x

1

y

(
1

y

)H
dy

]′
�2

[∫ 1

x

1

y

(
1

y

)H
dy

]
,

�′
12 = �21 =

∫ 1

0
dx �3E

[∫ 1

x

1

y

(
1

y

)H
dy

]
= �3E(I − H)−1.(4.8)

REMARK 4.1. If condition (B2) or (B2′′) is satisfied, then by (3.4),

aH =
∞∑

j=0

(λ loga)j

j ! H0 = aλH0 = aλ(I − 1′u).

Also, �11′ = 0 and E1′ = 0. Therefore, H′
0�1H0 = �1, H′

0�2H0 = �2 and
EH0 = E. It follows that

�11 = H′
0�1H0

1 − 2λ
+ 2H′

0�2H0

(1 − λ)(1 − 2λ)
= �1

1 − 2λ
+ 2�2

(1 − λ)(1 − 2λ)
,

�′
12 = �21 = 1

1 − λ
�3EH0 = 1

1 − λ
�3E

and

Gt = tλ
∫ t

0

(dWx)�
1/2
1 H0

xλ
+ tλ

∫ t

0

Bx�
1/2
2

xλ+1 dx

= tλ
∫ t

0

(dWx)�
1/2
1

xλ
+ tλ

∫ t

0

Bx�
1/2
2

xλ+1 dx.

The first part of Gt is a Gaussian process with covariance function tλs1−λ�1/(1 −
2λ), which agrees with (3.1) of Smith (1984). If the desired allocation proportions
are known, then the second part of Gt does not appear since E = 0 and �2 = 0.
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REMARK 4.2. For Theorem 2.1 (K = 2), we have

�1 = σ 2
1

(
1 −1

−1 1

)
, �2 = γ 2σ 2

3

(
1 −1

−1 1

)
, �3 = σ 2

3

(
1 −1

−1 1

)
.

REMARK 4.3. Theorem 4.1 shows that the allocation tends toward the
randomization scheme with the desired probabilities as the size of the experiment
increases. Theorem 4.2 provides the law of the iterated logarithm of the designs.
This theorem also applies to the adaptive bias coin designs [Wei (1978)] and the
designs in Smith (1984) and Wei, Smythe and Smith (1986). The general variance–
covariance formula in Theorem 4.3 is very important because it can be used when
comparing the design with other sequential designs. The results of the above three
theorems can be easily extended to the estimate of the parameter �.

Now we give an example for the multitreatment clinical trial.

EXAMPLE 3. Consider the K-treatment adaptive design, K ≥ 2. Suppose the
responses of patients on each treatment are also dichotomous (i.e., success or
failure). Let pk = P(success|treatment k) and qk = 1 −pk, k = 1, . . . ,K . Suppose
0 < pk < 1, k = 1, . . . ,K . As an extension of the RPW rule, Wei (1979) proposed
a generalized Pólya’s urn (GPU) design in that it also assigns more patients to
better treatments and allows delayed response by the patient. By using his design,
the limiting proportions of patients assigned are

v1 = 1/q1∑K
j=1 1/qj

, . . . , vK = 1/qK∑K
j=1 1/qj

.

However, the limiting distribution of the sample proportions Nn strongly depends
on the eigenvalues of the generating matrix of the model:

M =


p1 q1/(K − 1) · · · q1/(K − 1)

q2/(K − 1) p2 · · · q1/(K − 1)

· · · · · · · · · · · ·
qK/(K − 1) qK/(K − 1) . . . pK

 .

Let τ = max{Re(τ2), . . . ,Re(τK)}, where τ1 = 1, τ2, . . . , τK are all the eigenval-
ues of M. Then the asymptotic normality of Nn holds only when τ ≤ 1/2 and the
variances are very large when τ equals or is near 1/2 [cf. Smythe (1996) and Bai
and Hu (1999)]. However, when K ≥ 3, the expression for τ becomes very com-
plex; it is very hard (even impossible in more general cases) to verify the condition
τ ≤ 1/2.

Now we use the doubly biased coin to assign the patients. We can choose the
allocation function g(x,y) to be

gk(x,y) = {yk(yk/xk)
α} ∧ L∑K

j=1{yj (yj/xj )α} ∧ L
, k = 1, . . . ,K,(4.9)
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where α ≥ 0 and L > 1 are constants. Here the function g depends on the constant
L for technical reasons, but we can choose large L to reduce its influence. For this
function,

H = −α


1 − v1 −v2 · · · −vK

−v1 1 − v2 · · · −vK

· · · · · · · · · · · ·
−v1 −v2 · · · 1 − vK

=: −αH0 and E = (1 + α)H0,

where H0 = I − 1′v. Obviously, g(x,y) satisfies conditions (B1) and (B4). Also,

gk(x,y) ≥ {yk(yk/xk)
α} ∧ L

KL
.

Therefore, (B3) is satisfied. For verifying condition (B2), we let fk(xk) =
{vk(vk/xk)

α} ∧ L, T (x) =∑k
k=1 fk(xk). Obviously, fk(xk) < vk if xk > vk , k =

1, . . . ,K , and

min

{
K∑

k=1

vk

(
vk

xk

)α

:
K∑

j=1

xk = 1,0 < xk < 1, k = 1, . . . ,K

}
=

K∑
k=1

vk = 1.

It follows that T (x) ≥ 1. Therefore,

gk(x,v) − vk = fk(xk) − vk

T (x)
+ vk

(
1

T (x)
− 1

)
≤ 0 if xk > vk.

Condition (B2) is satisfied. Furthermore, since H01′ = 0, ∇(ρ)1′ = 0 and v1′ = 1,
we have

�2 = (1 +α)2H′
0�3H0 = (1 +α)2�3 and �3E = (1 +α)�3H0 = (1 +α)�3.

So, if ρ(z) is chosen to satisfy conditions (C1) and (C2), then by Theorems 4.1–4.3
and Remark 3.1,

Nn

n
− v = O

(√
log logn

n

)
a.s.,

ρ̂n − v = O

(√
log logn

n

)
a.s.

and

n1/2(Nn/n − v, ρ̂n − v)
D→N(0,�),

where

� =
(

(1/(1 + 2α))�1 + (2(1 + α)/(1 + 2α))�3 �3

�3 �3

)
.(4.10)
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Also, �11 → �3 as α → +∞. If the desired allocation proportions are the same
as those in Wei’s design, then the proportion function ρ(z) is

ρk(z1, . . . , zK) = 1/(1 − zk)∑K
j=1 1/(1 − zj )

, k = 1, . . . ,K,

and the estimate of p = (p1, . . . , pk) is(
Sm,1 + 1/2

Nm,1 + 1
, . . . ,

Sm,K + 1/2

Nm,K + 1

)
,

where Sm,k is the number of successes of all the Nm,k patients on treatment k in
the first m stages. In this case,

�3 = (∇(ρ)|p)′ diag(p1q1/v1, . . . , pKqK/vK)
(∇(ρ)|p)

=
K∑

j=1

pjvj

qj

(v − ej )
′(v − ej ),

where ej is the vector of which the j th component is 1 and the others are 0.
Also, if the desired allocation proportions are (

√
p1q1, . . . ,

√
pKqK )/∑K

j=1
√

pjqj , then we can choose

ρ(z) = (√
z1(1 − z1), . . . ,

√
zK(1 − zK)

)/ K∑
j=1

√
zj (1 − zj ).

5. Conclusions. The asymptotic properties of general multiarm doubly adap-
tive biased coin designs under widely satisfied conditions are important in their
own right. But the main contributions of this paper are in proposing the family
of doubly adaptive biased coin designs for K = 2 and showing the two important
properties of the designs: (i) they have smaller variabilities than the randomized
play-the-winner rule and the adaptive randomized design, and (ii) they tend to the
randomization scheme as the number of patients increases.

For the proposed family of designs, we have also demonstrated, in Examples
1 and 2, that the asymptotic variance of the proposed design is a decreasing
function of α. When α = 0, it leads to the adaptive randomized design. When
α = ∞, the variance of the design is minimized, but the design is then completely
deterministic. The practitioners can choose α to balance the degree of randomness
and the variation in applications.

As noted in Remark 2.1, Eisele and Woodroofe (1995) assume that the
responses are from standard exponential distributions. In this paper, we only
assume that the responses have 2 + ε moment (ε > 0). So the results in this paper
can be widely applied. The randomized play-the-winner rule is usually applied to
binary responses, while the doubly adaptive biased coined design can be applied
to both discrete responses and continuous responses.
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Another advantage of the doubly adaptive biased coin design is that it can target
any given allocation proportion, while the urn model [Rosenberger (2002)] can
only target a specific allocation proportion. In Example 2, the randomized play-
the-winner rule can only target the specific v1 = q2/(q1 + q2). But the doubly
adaptive biased coin design can target the Neyman allocation and others.

For clinical trials with delayed responses, we can update the urn when the
response becomes available for urn models. This was first suggested by Wei (1988)
for the randomized play-the-winner rule. Some asymptotic properties of the urn
model with delayed responses are studied in Bai, Hu and Rosenberger (2003). For
doubly adaptive biased coin designs, delayed responses will affect the estimators
of unknown parameters. Their asymptotic properties with delayed responses are
unknown, but we leave this topic for future research. Another topic of future
research is applying the doubly adaptive biased coin design to survival responses.

From the theorems of Sections 2 and 4, the asymptotic properties of the doubly
adaptive biased coin design depend on both the allocation function g and the
target function ρ. Selection of ρ can be found in Jennison and Turnbull (2000). In
applications, the allocation function g(α)(x, y) of (2.4) is recommended for K = 2.
For K ≥ 3, (4.9) can be used. This is because one can choose α to fit in one’s
own application. To apply doubly adaptive biased coin designs, it is important to
calculate their requisite sample sizes. Recently, Hu (2002) proposed some formulas
to calculate sample sizes for response-adaptive randomization procedures with two
treatments, K = 2. These formulas can be used in doubly adaptive biased coin
designs. How to calculate requisite sample sizes for K ≥ 3 is a topic of future
research.

APPENDIX: PROOFS

Let Fm = σ(X1, . . . ,Xm, ξ1, . . . , ξm) be the sigma field generated by the
previous m stages. Then under Fm−1 Xm and ξm are independent, and

E[Xm|Fm−1] = g
(

Nm−1

m − 1
, ρ̂m−1

)
.

To prove Theorems 4.1 and 4.2, we first need some lemmas.

LEMMA A.1. Let Bn,n = I and Bn,i =∏n−1
j=i (I + j−1H). If two sequences of

matrices Qn and Pn satisfy

Qn = Pn +
n−1∑
k=1

Qk

k
H,

that is,

Qn = �Pn + Qn−1

(
I + H

n − 1

)
, n ≥ 2,
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where �P1 = P1, �Pn = Pn − Pn−1, n ≥ 2, are the differences of Pn, then

Qn =
n∑

m=2

�PmBn,m + Q1Bn,1 = (Q1 − P1)Bn,1 +
n∑

m=1

�PmBn,m

(A.1)

= (Q1 − P1)Bn,1 + Pn +
n−1∑
m=1

Pm

H
m

Bn,m+1.

Also,

‖Bn,m‖ ≤ C(n/m)λ logν−1(n/m) for all m = 1, . . . , n, n ≥ 1,(A.2)

where, in the rest of the paper, log x = ln(x ∨ e).

PROOF. Equation (A.1) is easy by induction. Equation (A.2) follows because

T−1Bn,mT =
n−1∏
j=m

(I + j−1 diag[0,J2, . . . ,Js])

= diag

[
1,

n−1∏
j=m

(I + j−1J2), . . . ,

n−1∏
j=m

(I + j−1Js)

]

and ‖∏n−1
j=m(I + j−1Jt )‖ ≤ C(n/m)Re(λt ) logνt−1(n/m). �

LEMMA A.2. If two sequences of matrices Qn and Pn satisfy

�Qn = �Pn + Qn−1

n − 1
H + o

(‖Qn−1‖
n − 1

)
,

then, for any δ > 0,

Qn = O(1)

n∑
m=1

‖Pm‖ 1

m

(
1

m

)λ+δ

.

PROOF. Write

�Qn = �Pn + Qn−1

n − 1
H + ‖Qn−1‖

n − 1
An−1, n ≥ 2,

where ‖An‖ → 0. Then

�Qn =
(
�Pn + ‖Qn−1‖

n − 1
An−1

)
+ Qn−1

n − 1
H.

From (A.1), it follows that

Qn = Pn +
n−1∑
m=1

Pm

H
m

Bn,m+1 +
n∑

m=2

‖Qm−1‖
m − 1

Am−1Bn,m + (Q1 − P1)Bn,1.
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Then by (A.2) there exists a constant C0 ≥ 1 such that

‖Qn‖ ≤ C0

n∑
m=1

‖Pm‖ 1

m

(
n

m

)λ+δ/2

+ C0

n−1∑
m=1

‖Qm‖
m

‖Am‖
(

n

m

)λ+δ/2

.(A.3)

Now we define a sequence of real numbers Dm ≥ 1 such that

‖Qm‖ ≤ C0Dm

m∑
k=1

‖Pk‖1

k

(
m

k

)λ+δ

.

It is easy to define Dm for m = 1, . . . ,9. Assume that n ≥ 10 and Dm is defined
for m = 1, . . . , n − 1. Let n1 = [√n ] and write

�n =
n∑

m=1

‖Pm‖ 1

m

(
n

m

)λ+δ

.

From (A.3), it follows that

‖Qn‖ ≤ C0�n + C0

n−1∑
m=1

C0Dm�m‖Am‖ 1

m

(
n

m

)λ+δ/2

≤ C0�n + C2
0 max

m≤n−1
Dm

n−1∑
k=1

‖Pk‖1

k

(
n

k

)λ+δ n−1∑
m=k

‖Am‖ n−δ/2

m1−δ/2

≤ C0�n + C2
0 max

m≤n−1
Dm

n∑
k=1

‖Pk‖1

k

(
n

k

)λ+δ n1∑
m=k

‖Am‖ n−δ/2

m1−δ/2

+ C2
0 max

m≤n−1
Dm

n∑
k=1

‖Pk‖1

k

(
n

k

)λ+δ n−1∑
m=n1

‖Am‖ n−δ/2

m1−δ/2

≤ C0

{
1 + C0 max

m≤n−1
Dm

2

δ

(
max
m≥1

‖Am‖
(

n1 + 1

n

)δ/2

+ max
m≥n1

‖Am‖
)}

�n,

where
∑k

m=k+1(·) = 0. Now define

Dn = 1 + C0 max
m≤n−1

Dm

2

δ

(
max
m≥1

‖Am‖
( [√n ] + 1

n

)δ/2

+ max
m≥[√n ]

‖Am‖
)
.

Next, it suffices to show the boundedness of Dn. Since ‖An‖ → 0, there exists
an nδ such that

C0
2

δ

(
max
m≥1

‖Am‖
( [√n ] + 1

n

)δ/2

+ max
m≥[√n ]

‖Am‖
)

≤ 1

2
.

Then

Dn ≤ 1 + maxm≤n−1 Dm

2
, n ≥ nδ,
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which, together with induction, implies that Dn ≤ 1 + maxm≤nδ−1 Dm for all
n ≥ nδ . �

LEMMA A.3. Let λ0 ≥ 0 and K0 > 0 be two real numbers and let {qn} be a
sequence of nonnegative numbers and {pn} a sequence of real numbers for which

qn ≤
(

1 + λ0

n − 1

)
(qn−1 ∨ K0) + �pn, n ≥ 2,

where �p1 = p1 and �pn = pn −pn−1, n ≥ 2. Then there exists a constant C > 0
that depends only on λ0 such that

qn ≤ C

{
n∑

m=1

|pm|
m

(
n

m

)λ0

+ max
1≤m≤n

(
n

m

)λ0

|pm| + (K0 + |q1|)nλ0

}
.

PROOF. Without loss of generality, we assume that K0 = 1. Let bn,n = 1,

bn,m =
n−1∏
i=m

(
1 + λ0

i

)
, m = 1,2, . . . , n − 1, n = 1,2, . . . ,

and dn,m = bn,m �pm + bn,m−1 �pm−1 + · · · + bn,n �pn, 1 ≤ m ≤ n. Then

qn ≤ max{bn,n−1qn−1 + dn,n, bn,n−1 + dn,n}
≤ max

{
bn,n−1

[(
1 + λ0

n − 1

)
(qn−2 ∨ 1) + �pn−1

]
+ dn,n, bn,n−1 + dn,n

}
= max{bn,n−2qn−2 + bn,n−1�pn−1 + dn,n, bn,n−2

+ bn,n−1�pn−1 + dn,n, bn,n−1 + dn,n}
= max{bn,n−2qn−2 + dn,n−1, bn,n−2 + dn,n−1, bn,n−1 + dn,n}
≤ · · · ≤ max{bn,n−mqn−m + dn,n−m+1, bn,n−k

+ dn,n−k+1 :k = 1, . . . ,m}
≤ · · · ≤ max{bn,1q1 + dn,2, bn,n−k + dn,n−k+1 :k = 1, . . . , n − 1}
= max{bn,1q1 + dn,2, bn,m + dn,m+1 :m = 1, . . . , n}.

(A.4)

Note that

dn,m =
n∑

k=m

bn,k(pk − pk−1) =
n−1∑
k=m

(bn,k − bn,k+1)pk + bn,npn − bn,mpm−1

=
n−1∑
k=m

λ0
pk

k
bn,k+1 + pn − bn,mpm−1.
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Also,

|bn,m| ≤ C(n/m)λ0, k = 1, . . . , n, n = 1,2, . . . .

It follows that

|dn,m| ≤ C

{
n−1∑
k=m

|pk|
k

(
n

k

)λ0

+ |pn| +
(

n

m − 1

)λ

|pm−1|
}

≤ C

{
n∑

k=1

|pk|
k

(
n

k

)λ0

+ max
1≤k≤n

(
n

k

)λ

|pk|
}
.

Now, by (A.4) we conclude that

qn ≤ C

{
n∑

m=1

|pm|
m

(
n

m

)λ0

+ max
1≤m≤n

(
n

m

)λ0

|pm| + (1 + |q1|)nλ0

}
.

The lemma is proved. �

LEMMA A.4. For each k = 1, . . . ,K , we have

{Nn,k → ∞} a.s. implies

(A.5)


θ̂n,ki → θki, if (A1),

θ̂n,ki − θki = O

(√
log logNn,k

Nn,k

)
, if (A2),

i = 1, . . . , d .

PROOF. For k = 1, . . . ,K , define τ k
i = min{j :Nj,k = i}, where min{∅} =

+∞. Let {ηi,k} be an independent copy of {ξ i,k}, which is also independent
of {Xi}. Define �i,k = ξ τk

i ,kI {τ k
i < +∞} + ηi,kI {τ k

i = +∞}, i = 1,2, . . . . Using
the same argument of Doob (1936), we can show that {�m,k,m = 1,2, . . .} is a
sequence of i.i.d. random vectors, with a common distribution the same as that
of ξ 1,k . Therefore, n−1∑n

m=1 �m,k → θ k a.s. if (A1), and
∑n

m=1 �m,k − nθ k =
O((n log logn)1/2) a.s. if (A2). Now, by noting that

θ̂n,k = 1

Nn,k + 1

(Nn,k∑
i=1

�m,k + θ 0,k

)

on the event {Nn,k → ∞}, (A.5) is proved. �

LEMMA A.5. For the adaptive design 1, if conditions (A1), (B3) and (C1) are
satisfied, then Nn,k → ∞ a.s., k = 1, . . . ,K , and

�̂n → � and ρ̂n → v a.s.
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Further, if condition (A2) is also satisfied, then

θ̂n,ki − θki = O

(√
log log Nn,k

Nn,k

)
a.s., k = 1, . . . ,K, i = 1, . . . , d.

PROOF. By Lemma A.4 and the continuity of ρ(y), it suffices to show that
Nn,k → ∞ a.s., k = 1, . . . ,K . Note that, for each k, k = 1, . . . ,K , on the event
{limn→∞ Nn,k < ∞} the sequence {θ̂n,ki} takes a finite number of values. Also, on
the event {limn→∞ Nn,k = ∞} θ̂n,ki → θki a.s. This shows that {�̂n} is almost
surely a relatively compact set. Since ρ(y) ∈ (0,1)K for any y on the closure
of {�̂n}, by the continuity of ρ(y) almost surely there exists a 0 < δ < 1 such
that

ρ̂n = ρ(�̂n) ∈ [δ,1)K, n = 1,2, . . . .(A.6)

Note that

P(Xn,k = 1|Fn−1) = gk

(
Nn−1

n − 1
, ρ̂n−1

)
, k = 1, . . . ,K.

For each j = 1, . . . ,K , on the event {Nn,j = 0, n = 1,2, . . .}, by (A.6) and
condition (B2) we have

∞∑
n=2

P(Xn,j = 1|Fn−1) ≥
∞∑

n=2

cδ = +∞ a.s.,

which implies {Xn,j = 1, i.o.} = {Nn,j → ∞} almost surely by the generalized
Borel–Cantelli lemma [cf. Corollary 2.3 of Hall and Heyde (1980)]. This is a
contradiction. Therefore,

lim
n→∞Nn,j ≥ 1 a.s., j = 1, . . . ,K.

Then, on the event {limn→∞ Nn,k < ∞}, by (A.6) and condition (B4) again,

P(Xn,k = 1|Fn−1) ≥ cδ

2
min

{
Nn−1,j

n − 1
: j = 1, . . . ,K

}
≥ cδ

2(n − 1)
for n large enough a.s.

Then
∞∑

n=2

P(Xn,k = 1|Fn−1) = +∞ a.s.,

which implies {Xn,k = 1, i.o.} = {Nn,k → ∞} almost surely by the generalized
Borel–Cantelli lemma again. This is also a contradiction. Therefore,

Nn,k → ∞ a.s., k = 1, . . . ,K. �
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PROOF OF THEOREM 4.1. Recall that conditions (A1), (B1), (B2′′), (B3)
and (C1) are assumed. By Lemma A.5, ρ̂n → v a.s. Let Mn =∑n

m=1 �Mm, where
�Mm = Xm − E[Xm|Fm−1]. Then

�(Nn − nv) = Xn − v = �Mn + g
(

Nn−1

n − 1
, ρ̂n−1

)
− v

= �Mn +
(

g
(

Nn−1

n − 1
, ρ̂n−1

)
− g

(
Nn−1

n − 1
,v
))

+ g
(

Nn−1

n − 1
,v
)

− g(v,v).

By condition (B1),

g
(

Nn−1

n − 1
, ρ̂n−1

)
− g

(
Nn−1

n − 1
, v

)
→ 0 a.s.

On the other hand, Mn = o(n) a.s. by the law of large numbers. We shall apply
Lemma A.3. For each k = 1, . . . ,K , let qn = qn(k) = (Nn − nv)s′

k and

�pn = �pn(k) = �Mns′
k +

(
g
(

Nn−1

n − 1
, ρ̂n−1

)
− g

(
Nn−1

n − 1
,v
))

s′
k.

Then pn = Mns′
k +∑n−1

m=1 o(1) = o(n) a.s. and

qn = �pn + qn−1 + (g(Nn−1/(n − 1),v) − g(v,v))s′
k

(Nn−1/(n − 1) − v
)
s′
k

qn−1

n − 1
.

By condition (B2′′), if qn−1 ≥ 0, then

qn ≤
(

1 + λ0

n − 1

)
qn−1 + �pn.

On the other hand, if qn−1 ≤ 0, then

qn = qn−1 + (Xn − v)s′
k ≤ |(Xn − v)s′

k| ≤ K1.

Also, |�pn| ≤ K2. If we choose K0 = K1 + K2, then

q+
n ≤

(
1 + λ0

n − 1

)
(q+

n−1 ∨ K0) + �pn.
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So, from Lemma A.3 it follows that

q+
n ≤ C

{
n∑

m=1

|pm|
m

(
n

m

)λ0

+ max
1≤m≤n

(
n

m

)λ0

|pm| + (K0 + |q1|)nλ0

}

=
n∑

m=1

o(m)

m

(
n

m

)λ0

+ max
1≤m≤n

(
n

m

)λ0

o(m) + O(nλ0) = o(n) a.s.

since 0 ≤ λ0 < 1. Thus,

lim sup
n→∞

(
Nn

n
− v

)
s′
k ≤ 0 a.s., k = 1, . . . ,K.(A.7)

Now suppose that v is a limit of one subsequence of {Nn/n}. Then, by (A.7)

(v − v)s′
k ≤ 0, k = 1, . . . ,K.

All of the above K inequalities must be equalities, since otherwise,

0 = (v − v)1′c0 = (v − v)S1′ =
K∑

k=1

(v − v)s′
k < 0,

which is a contradiction. Therefore, vs′
k = vs′

k, k = 1, . . . ,K , that is, vS = vS. It
follows that v = v. Then Nn/n → v a.s. is proved. Theorem 4.1 is proved. �

PROOF OF THEOREM 4.2. Since Nn/n → v a.s. and vk > 0, k = 1, . . . ,K ,
by Lemma A.4 we have

�̂n − � = O

(√
log logn

n

)
a.s.(A.8)

Then, by condition (C2),

ρ̂n − v = ρ(�̂n) − ρ(�) = O

(√
log logn

n

)
a.s.

On the other hand, Mn = O(
√

n log log n) by the law of the iterated logarithm.
Therefore,

Mn +
n∑

m=1

O(‖ρ̂n −v‖) = Mn +
n∑

m=1

O

(√
log logm

m

)
= O

(√
n log logn

)
a.s.

Now, by condition (B4),

�(Nn − nv) = Xn − v = �Mn + g
(

Nn−1

n − 1
, ρ̂n−1

)
− g(v,v)

=
(

Nn−1

n − 1
− v

)
H + o

(∥∥∥∥Nn−1

n − 1
− v

∥∥∥∥)+ �Mn + O(‖ρ̂n − v‖)
a.s.
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Then, by Lemma A.2,

Nn − nv a.s.=
n∑

m=1

O
(√

m log logm
) 1

m

(
n

m

)λ+δ

(A.9)

=
O

(√
n log log n

)
, if λ + δ < 1/2,

O(nλ+δ), if λ + δ > 1/2.

The proof of Theorem 4.2 is completed by noting that δ > 0 can be chosen
arbitrarily small. �

PROOF OF THEOREM 4.3. Let Qn =∑n
m=1 �Qm, where �Qm = (�Qm,1,

. . . ,�Qm,K) = (�Qm,ki; i = 1, . . . , d, k = 1, . . . ,K) and �Qm,ki = Xm,k(ξm,ki −
θki)/vk , i = 1, . . . , d , k = 1, . . . ,K . Then Qn is a sequence of martingales in
RK×d , and Qn = O(

√
n log logn ) a.s. by (A2) and the law of the iterated log-

arithm. By (A.9), it follows that

θ̂n,ki − θki = 1

Nn,k + 1

{
n∑

m=1

Xm,kξm,ki + θ0,ki

}
− θki

= vk

Nn,k + 1

{
n∑

m=1

Xm,k

ξm,ki − θki

vk

}
+ θ0,ki − θki

Nn,k + 1

= Qn,ki

n
+
(

vk

Nn,k + 1
− 1

n

)
Qn,ki + θ0,ki − θki

Nn,k + 1

= Qn,ki

n
+ O

(√
n log logn

n2

)
O
(√

n log log n
)+ O

(
1

n

)
= Qn,ki

n
+ O

(
log logn

n

)
a.s., k = 1, . . . ,K, i = 1, . . . , d,

that is,

�̂n − � = Qn

n
+ O

(
log logn

n

)
a.s.(A.10)

By (A.8) and condition (C2), we have

ρ̂n − v = (�̂n − �)∇(ρ)|� + o(‖�̂n − �‖1+δ)
(A.11)

= Qn

n
∇(ρ)|� + o(n−1/2−δ/3) a.s.
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On the other hand, by (3.3) and (A.8)–(A.10) we have

�(Nn − nv) = Xn − v = �Mn + g
(

Nn−1

n − 1
, ρ̂n−1

)
− g(v,v)

= �Mn + f
(

Nn−1

n − 1
, �̂n−1

)
− g(v,v)

= �Mn +
(

Nn−1

n − 1
− v

)
H + (�̂n−1 − �)∇(ρ)|�E

+ o

(∥∥∥∥Nn−1

n − 1
− v

∥∥∥∥1+δ)
+ o(‖�̂n−1 − �‖1+δ)

= �Mn + Qn−1

n − 1
∇(ρ)|�E

+
(

Nn−1 − (n − 1)v
n − 1

)
H + o(n−1/2−δ/3)

= �Mn + Qn

n
∇(ρ)|�E +

(
Nn−1 − (n − 1)v

n − 1

)
H + o(n−1/2−δ/3) a.s.

Then, by Lemma A.1, it follows that

Nn − nv =
n∑

m=1

(
�Mm + Qm

m
∇(ρ)|�E + o(m−1/2−δ/3)

)
Bn,m a.s.

=
n∑

m=1

�MmBn,m +
n∑

m=1

m∑
k=1

�Qk∇(ρ)|�E
1

m
Bn,m

+
n∑

m=1

o(m−1/2−δ/3)

(
n

m

)λ

logν−1
(

n

m

)

=
n∑

m=1

�MmBn,m +
n∑

m=1

�Qm∇(ρ)|�E
n∑

k=m

1

k
Bn,k + o(n−1/2−δ/3)

:= Un + o(n−1/2−δ/3) a.s.

(A.12)

Note that Un is a sum of martingale differences, and for some 0 < ε < 1/λ − 2,

1

n1+ε/2

n∑
m=1

{
‖�MmBn,m‖2+ε + ‖�Qm‖2+ε +

∥∥∥∥∥�Qm∇(ρ)|�E
n∑

k=m

1

k
Bn,k

∥∥∥∥∥
2+ε}

≤ C

n1+ε/2

n∑
m=1

{((
n

m

)λ

logν−1
(

n

m

))2+ε

+
(

n∑
k=m

1

k

(
n

k

)λ

logν−1
(

n

k

))2+ε}

≤ C

n1+ε/2

n∑
m=1

{(
n

m

)λ

logν−1
(

n

m

)}2+ε

≤ C

nε/2
→ 0;



A MULTIARM DOUBLY ADAPTIVE BIASED COIN DESIGN 297

that is, the Lindberg condition is satisfied. On the other hand, it is easily seen that

Var[�Mn|Fn−1]
= E[diag(Xn)|Fn−1] − (E[Xn|Fn−1])′E[Xn|Fn−1]

= diag
{
g

(
Nn−1

n − 1
, ρ̂n−1

)}
−
{
g

(
Nn−1

n − 1
, ρ̂n−1

)}′
g

(
Nn−1

n − 1
, ρ̂n−1

)
→ diag{g(v,v)} − {g(v,v)}′g(v,v)

= diag(v) − v′v = �1 a.s.,

Cov{�Mn,�Qn|Fn−1} = 0 a.s.

Also,

Cov[�Qn,ki ,�Qn,lj |Fn−1]

= Cov
[
Xn,k(ξn,ki − θki)

vk

,
Xn,l(ξn,lj − θlj )

vl

∣∣∣Fn−1

]
= 0, k �= l,

and

Cov[�Qn,ki ,�Qn,kj |Fn−1]

= 1

v2
k

gk

(
Nn−1,1

n − 1
, ρ̂n−1,k

)
Cov{ξ1,ki, ξ1,kj }

→ 1

vk

Cov{ξ1,ki, ξ1,kj } a.s.,

that is,

Var[�Qn,k|Fn−1] → 1

vk

Vk, k = 1, . . . ,K,

and

Var[�Qn|Fn−1] → V a.s.

Since E‖�Mn‖2+ε + E‖�Qn‖2+ε ≤ C, n ≥ 1, the above conditioned covariances
are also convergent in L1. It follows that, for any 0 < s < t < 1,

Cov
(
U[ns],U[nt]

)
=

[ns]∑
m=1

B′[ns],m
(
�1 + o(1)

)
B[nt],m

+
[ns]∑
m=1

( [ns]∑
k=m

1

k
B[ns],k

)′(
�2 + o(1)

)( [nt]∑
k=m

1

k
B[nt],k

)
(A.13)
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=
∫ [ns]

1

( [ns]
x

)H′
�1

( [nt]
x

)H
dx

+
∫ [ns]

1
dx

[∫ [ns]
x

1

y

( [ns]
y

)H
dy

]′
�2

[∫ [nt]
x

1

y

( [nt]
y

)H
dy

]

+ o(1)

n∑
m=1

(
n

m

)2λ

log2ν−2
(

n

m

)

= n

∫ s

1/n

(
s

x

)H′
�1

(
t

x

)H
dx

+ n

∫ s

1/n
dx

[∫ s

x

1

y

(
s

y

)H
dy

]′
�2

[∫ t

x

1

y

(
t

y

)H
dy

]
+ o(n)

= n

∫ s

0

(
s

x

)H′
�1

(
t

x

)H
dx

+ n

∫ s

0
dx

[∫ s

x

1

y

(
s

y

)H
dy

]′
�2

[∫ t

x

1

y

(
t

y

)H
dy

]
+ o(n)

= n�11(s, t) + o(n),

and
Cov

[
Q[ns]∇(ρ)|�,U[nt]

]
= (

�3E + o(1)
) [ns]∑
m=1

( [nt]∑
k=m

1

k
B[nt],k

)

= n�3E
∫ s

1/n
dx

[∫ t

x

t

y

(
t

y

)H
dy

]
+ o(n)

= n�3E
∫ s

0
dx

[∫ t

x

t

y

(
t

y

)H
dy

]
+ o(n)

= n�21(s, t) + o(n),

Cov
[
Q[nt]∇(ρ)|�,U[ns]

]
=

[ns]∑
m=1

( [ns]∑
k=m

1

k
B[ns],k

)′(
E′�3 + o(1)

)
= n

∫ s

1/n
dx

[∫ s

x

s

y

(
s

y

)H
dy

]′
E′�3 + o(n)

= n

∫ s

0
dx

[∫ s

x

s

y

(
s

y

)H
dy

]
E′�3 + o(n)

= ns�12 + o(n)

(A.14)
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and

Cov
[
Q[ns]∇(ρ)|�,Q[nt]∇(ρ)|�]
= ns

(
�3 + o(1)

)= ns�3 + o(n),

where

�11(s, t) =
∫ s

0

(
s

x

)H′
�1

(
t

x

)H
dx

+
∫ s

0
dx

[∫ s

x

1

y

(
s

y

)H
dy

]′
�2

[∫ t

x

1

y

(
t

y

)H
dy

]
,

�21(s, t) = �3E
∫ s

0
dx

[∫ t

x

t

y

(
t

y

)H
dy

]
.

This shows that the limiting covariance function of n−1/2(U[nt], Q[nt]∇(ρ)|�)

agrees with the covariance function of (Gt ,Bt�
1/2
3 ). So by the weak convergence

of the martingale [cf. Theorem 4.1 of Hall and Heyde (1980)],

n−1/2(U[nt], Q[nt]∇(ρ)|�) D→(Gt , Bt�
1/2
3 ).

The proof of Theorem 4.3 is now complete by noting (A.11) and (A.12). �
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