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ASYMPTOTIC PROPERTIES OF GAUSSIAN RANDOM FIELDS
BY

CLIFFORD QUALLS AND HISAO WATANABE

ABSTRACT. In this paper we study continuous mean,zeto Gaussian random fields

X(p) with an /V-dimensional parameter and having a correlation function p(p, q)

for which 1 — p(p, q) is asymptotic to a regularly varying (at zero) function of

the distance dis (p, q) with exponent 0 < a, < 2. For such random fields, we ob-

tain the asymptotic tail distribution of the maximum of X(p) and an asymptotic

almost sure property for X(p) as \p\ —► °°. Both results generalize ones previ-

ously given by the authors for N = 1.

1.   Introduction.  In this paper, we are concerned with a real continuous

Gaussian process with an iV-dimensional parameter space. We denote such a ran-

dom field by X = \X{p); p e R    \,  and we assume without loss of generality that

each X(p) has mean zero and variance one.  We also assume throughout this

paper that X  satisfies, for some positive constants C l  and C,,

(1 1} (A)      E{{X{p)-X{q))2)<2C2\ p-q\aH(\p-q\)    and

(B)       E{(X(p) - X{q))2) > 2Cj|p -q\aH(\p - q\)

for all p, q  such that  \p - q\ < some <5,  where 0 < a < 2 and H{s) is a slowly

varying function (at zero). Here and throughout the paper, we define   \p\ =

(2¡ = 1 p ■)   , where p = (pj, • • •, pN).  For the preliminary proofs of §2, we fur-

ther restrict X  to be a stationary isotropic Gaussian random field satisfying

(1.2)        p(p, q) = 1 _ \p -q\aH(\p -q\)+ o(\p - q\aH(\p - q\))     as   \p - q\ — 0,

where p(p, q) = E{X(p)X{q)) is the correlation function of X.

In ^2, we give the asymptotic tail distribution of the maximum Z(D) =

max    D X(p), where D is an open bounded set with Lebesgue measure fi(D) =

fi(D).  This is done first in Theorem 2.1 for stationary isotropic Gaussian random

fields satisfying condition (1.2), then extended in the Corollary to Theorem 2.1 to

obtain asymptotic bounds of the tail distribution of Z(D) for Gaussian random

fields satisfying condition (1.1) for all p, q 6 D with  \p - q\ < 8. Lemma 2.3 and
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156 CLIFFORD QUALLS AND HISAO WATANABE [March

its corollary are useful discrete versions of Theorem 2.1 and its corollary.   The

results of this §2 generalize Theorem 2.1 in Qualls-Watanabe [4] and the results

of Pickands l2]_ from continuous time Gaussian processes to Gaussian random fields.

In §3. we study the event

A, = Í 3 r 0 ; X(p) < </>(|p|) for all p  satisfying   \p\ > rQ\

for arbitrary nondecreasing functions  <p.  In more descriptive language, the com-

plement of A ,   occurs if X(p) crosses the surface </>(|p|) infinitely often as

\p\ —► oo.  For a fairly wide class of Gaussian processes, we can expect that

P(A ,) = 0 or  1.  By using the results of §2, we give a criterion in terms of r/> for

deciding whether the probability of the event A ,   is 0 or  1. In order to obtain

P(A,) = 0, the only hypothesis necessary (beside the requirement on cß) is that

part (A) of condition (1.1) holds for all p, q  such that  |p|, |^| > some T,   and

\p - q\ < some 5j. To obtain P(A,) = 1, we require part (B) of condition (1.1) to

hold for all p,- q  such that \p\, \q\ > some T2  and  \p — q\ < some 5,,  an<^ we

need a mixing condition

(1.3) (C)      p(p, p + q) = 0{\q\ ~"y)    uniformly in p  as   \q\ —► °»,

for some y > 0.  This is an extension of the results in Qualls-Watanabe [4] to

Gaussian random fields.

The proofs of these results of course bear similarities to those for the case

N = 1. However, we take a somewhat different point of view in the present paper;

and the details are considerably different for N > 1. A good source of general

information about Gaussian processes and random fields is the book by Cramer

and Leadbetter, Stationary and related stochastic processes, Wiley, New York, 1967.

2. The asymptotic distribution of the maximum.  We first list some defini-

tions and properties of regular varying functions that will be required in the fol-

lowing.  One general reference on regular variation is Feller LlJ.

Definition 2.1.   A positive function H{x) defined for x > 0 varies slowly at

zero if for all Í > 0

(2.1) lim^=l.
x_o w(x)

Definition 2.2.  A positive function Q{x) defined for x > 0 varies regularly at

zero with exponent  a. > 0 if for all t > 0

(2.2) limöW=/a_
X-.0  0(x)

A function Q(x) satisfies (2.2) if and only if Q(x) = xaf7(x), where  H{x)

varies slowly. Let Q{x) vary regularly with exponent a > 0 and H(x) vary
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slowly at zero.  Then the following properties hold.

(2.3) The limits (2.1) and (2.2) converge uniformly in t on any compact sub-

set of the half line  (0, °<¡).

(2.4) For any e > 0, we have

lim x~ £H(x) = °o    and     lim x H\x) = 0.
x^O x-,0

(2.5) If H{x) is a slowly varying function at zero, then for any  e > 0 and

rQ > 1, there exists a 8 > 0 such that t~e < H{tx)/H{x) < t£ for all x > 0 and all

r > iQ  satisfying tx < 8.

(2.6) Also for any e > 0 and positive t„ < 1, there exists a 8 > 0 such that

ie < H(tx)/H{x) < t~e for all positive / < tQ and all x > 0 satisfying x < 8.

A Gaussian random field X will be called stationary or homogeneous if for

each choice of points p ., p2, • • • , p, in R the joint distribution of X{p.+q),

• • • , X(p, + q) does not depend on q in R . Also X will be called isotropic if

the correlation function pip, q) = E (X(p)Xiq)) depends only on the distanc e

p-q\.
Define the function  a2   by  a2(p, q) = E(|X(p) - X(<?)|2) and also let

a  \s) = 2|s| H\s), where //(•) is a slowly varying function at zero and 0 < a < 2,

When X  is isotropic,  a (p, q) can be written as  a (|p - q\). We assume without

loss of generality that a(-) is monotone near the origin.  Define

A j(r) = inilaip, q)/a(\p - q\); 0 < \p - q\ < t\,

A2{t)= supicHp, q)/o(\p -q\); 0 < \p - q\ < r).

For a space parameter of dimension N > 1, and X satisfying the condition (1.2),

there is no loss in generality in taking 0 < A At) < A  (r) < °° for all r > 0.  For

N = 1, there is very little loss in generality in assuming A j(r) > 0 for all T of
interest; the excluded periodic case is discussed in l3l.

Theorem 2.1.  Let X be a stationary and isotropic, Gaussian random field

satisfying condition (1.2).   Let D  be a bounded open set in RN for which the

Lebesgue measure p.(D) = ¡i{D). Then for Z{D) = sup    D X(p) we have

P(Z{D)>x) —   — H

x^^n(D)i/j{x)(a-Hl/x))
(2.7)

lim   T   N  f     eyP(     sup    y(f    ...,?)>yU
r^oc

ar2<5? 0 < Ha < oo, ^¿ere if/(x) = (2n)   lx   l exp (- x2/2), and \Y{p)\ is a nonhomo-

geneous Gaussian process with  Y(0, • • • , 0) = 0, EY(p) = - |p|a/2 and

Cov{Y(p),Y(q)) = (\P\a+\q\a-\p-q\a)/2.
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158 CLIFFORD QUALLS AND HISAO WATANABE [March

in order to prove this theorem, we first establish the following lemmas.

Define c(x) = (o ~  (l/x))~    for large x. Now by stationarity, we may assume

DCn^j [0, r] for some t > 0.

Lemma 2.1.  Let X satisfy the conditions in Theorem 2.1.   Then for any

a > 0, we have

P(Z(lx[an/c(x)}) > x)
lim-—-- = Ha(a, a)

X-.00 ifj{x)

l+f°°eyP(        max Y{ak) > y) dy
J0 \0st,<n;  k*0 '

<<*>,

where  \Y(p)\ is described in Theorem 2.1, and

I  [aa/c(x)] = ip £ RN; p = flk/c(x), k = {k x, ■ • ■ , kN), 0 < kj < n, k{ integers!.

Proof.

P{Z(lx[an/c(x)} > x) = P(X(0) > x)
+ p(x(0)<x, max X(ak/c(x

\ 0ski<n;  k^O
(*)) > x) •

The second term is equal to

(X P[        Tiax X(ak/cGc)) > x | X(0) = u)(f>{u)du,

where cß{u) is the standard normal density. Substituting u = x - y/x and de-

fining  Y Ap) = x{X{p/c{x)) - x) + y,  the second term becomes

i//bc)Ç°° eyP[        max X(aV/c{x)) > y \ X(0) = x - y/x) exp(- y 2/(2x2))dy

= i£(x)  PeW       max Y Aak) > y \ X{0) = x - y/x) expi-y2/(2x2))dy.
0 \ 0<fe¿<«; k*0 '

Now as in Lemma 2.2 of [4], we can obtain that

E(YAp)\ X(0) = x -y/x)=xípí~ \p\\(x-?-\-x\ +y

—,{,-'few)}+'{,-'few)}
= - x   <7   I-1 -+ o(l) =-+ o(l)    as x —* 00,

\c(x)/    2 2

and
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covv,(,), vlW 1 x(0)., -„/,) .4^ |f -,|) - p^L w)p(¿ 1,|)}

2

=^Hp-?r+ipr+i?ias+o(i) as*-*~.
Consequently,

P(       max        y/ak) >y | X(0) = x -y/x] -+P(       max       Y(ak) > y)  as x — «..

In order to see that the Lebesgue dominated convergence theorem completes

the proof of Lemma 2.1, apply Boole's inequality to the left-hand side of the pre-

vious line to obtain a finite number of terms each dominated by an integrable

function.

Corollary to Lemma 2.1.  Let X satisfy the same conditions as in Theorem

s-~02.1, except that lim     n   a (s)/a   {s) = C > 0.   Then for any a > 0,

P(Z(l lan/cix)]) > x) ,
lim -L__-= H (n, Cl/aa).

iJÁx)x-00

Proof.  We have for the corresponding Y.   in Lemma 2.1,

E(Y(4>)\X(0) = x-y/x) — C\p\a/2    as x — ~
and

CoviYjtp), Yliq)\X(0) = x-y/x) -> C(|p|a+ \q\a - \p-q\a)/2    as x — «,.

Now, set y(ij ••• rN) = Y{Cl^at v-• • , Cl/atN), where  V  is theprocess

defined in Theorem 2.1.   Then

P(      max        Y ¿ak) > y \ X(0) = x - y/x ) — p(       max        Y(ak) > y )

= p(      max       y(C1//<xak)>y]     as x — 00.

Lemma 2.2.   Lei  X satisfy the conditions in Theorem 2.1.   For any a > 0,

P(Z(D,  ,)>*)/

;z£ /x(d)<a(x)c(x)n       V ;
where D,  , = \p:p = czk/c(x) e D, k . integers] and S   denotes the M-fold sum

over 0 < k. < 00 (i = 1,..., N) but k ^ 0.

Proof.  Denoting the event B,  = !X(«k/c(x)) > x\ and using stationarity we

have
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160 CLIFFORD QUALLS AND HISAO WATANABE [March

P(Z,(D(    ) > x) > P ( \J   Bk\

>2\..£P(Bk)-Jí£...£   P(ßknß/)

>#(A)('P(B0)-2N-1   £•••£    HSo03^)'
\ 0<£¿<m;  k^O

where A = !keRN: I a x(k) CD!, #(A) = the cardinal number of A,

la,x&) = \p ePN: a¿./c(x) <p¿<aU¿+ l)/c(x), i = 1,---,N\,

m = [tc(x)/a] + 1,  and  [ ]  denotes the greatest integer function.

We recall the result of Pickands [2, Lemma 2.3]>

P{BQ n Bk) < 2iff(x){l - $(x(l - p)vAl + p)-!/i)\,

where  p = p(a\k\/c{x)) is the correlation coefficient for X(0)  and X(ak/c(x))  and

<£ is the standard normal distribution function and  \k\ = ^/k l + k2 + • • • + kN• Now

we note  that

X(\)/p(D)G-Hl/x))-N =pf\J   I aJk)\L{D)aN-, a~N    as x — -,

since p(dD) = 0.  Therefore we have

P(Z(D,  ,)>x) [ )
Um   -111-> a-N h _ 2N lim     £" • • Z     U - $(x(l - 'a)1/2(l + P)_H)!  •
x-oofi(DV(x)(c(x))/V / x-°° 0<i¡Sm; k/0 (

To study the lim sup of the above sum, we partition the sum into three parts

according to (i)  |k|a < tQ,  (ii) |k|a > tQ,  |k|fl/c(x) < 8, and (iii) |k|a > tQ,
|k|ö/c(x) > 8, where the values of 8 > 0 and tQ > 1   will be selected later.

Since the number of terms in  2   ' is finite, we have

lim   Z(I)(1-^=Z(Í)  lim   (l-$)-
X-..OC X-.00

We may ignore the third sum 2." .  For  |k|fl/c(x) > 5, there exists a constant K

such that  1 - p > K > 0,  and

«U^LtfJil! Y)\ <£m{l-MAK/2)iÁ))<mN<l,U{K/2)H)
,1 + P

< (ic(x)/fl)Nexp(- kx2/2) — 0    as * -» ~.

Now for A.   sufficiently small, we have A.(A,)> 0.   Then for all the terms

S(ii) when  |k|a/c(x) < A      we have
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l-p\\                              1 o{\k\a/c(x))
> xoi\k\a/c{x)l =-

1 + P/ 2   a(l/c(x))

VA1}   Z(\k\a/c(x))      A¿\) ,/r/(|k|a/c(x))V<
_._ -_I LUr''_._> _!_'_ _L1_.= _J_ (|k|fly

"      2 a(l/c(x)) 2 \   W(l/c(x))

By property (2.5), there exists a  5a > 0  such that H(\k\a/c(x))/H{l/c{x)) >

(|k|ß)-<x'/  ,  provided   |k|fl/c(x) < <3a,  and   |k|fl > tQ > 1. Now for the definition of

S(ii),  take S = min(Sa, Aj).  Then

/l-p\*    A (8)
inf     xl-L)    >_i-{\k\af/\

T<.x<oo      \l + p ] 2

provided   |k|fl/c(x) < 8,   \k\a > tn  and  T  is large.
Finally, defining a Ax) = {l - $(x(l - p)'/2(l + p)~Vl)\ for  |k|«/c(x) < 8 and

alc(x) = {l-<I)(2-!A1(5)(|k|fl)a/4)! for  |k|a/e(x) > «5, we have

¿2*    sup flk(x)<Z*il-<D(2-1A1(S)(|k|fl)a/4)!<oc.
T<x<°°

Therefore, it follows that

lim     ¿_ ■ • ■ ¿_,    a Ax) < ¿Z   lim   a Ax)
x-°° 0<ki<m; v*o

= Z*il-<D(2-I(|k|af/2)i<oo,

since

,/ i/      r 1 cr(|k|«/c(x))        i ,_,
x(l - p)*(l + p)-1/^-. o{\k\a/c(x)) ^ - —-»-Ck|*)"/2    as x -, oo.

2 2    SXl/cCc» 2
Lemma 2.2 now follows.

Corollary to Lemma 2.2.   For X  satisfying the same conditions as in Theorem

2.1,  except that  lim     Q ct2(s)/ct 2(s) = C > 0,   we ki/e

P{Z(D,   ,) > x) / _*
Hm-±2—->ß-N(l-2N Z   (l-$(2-1(|k|C1/aa)a/2))!.
x-txlíi(D)¡A(x)(a-1(l/x))-N V '

Proof.   We have only to note that

x(l-p)% + p)-*-^(|k|flf/2CH     as x -.oc.

Lemma 2.3.   Lei  X  satisfy the conditions in Theorem 2.1.   For a > 0,

P(z(D,  ,)>*)       //»
(2.8) iim (*)'

*-°° h(D)i¡j{x){c{x)Y flN
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162 CLIFFORD QUALLS AND HISAO WATANABE [March

where  0 < H a(a) = lim^^H &n, a)/nN) < *>.

Proof.  Let (X )   = |k e RN: k . are nonnegative iritegers,  i = 1, • • • , N\.   For

k 6 (X V, let
ßk = |xUk/c,(x))>xi,

and also for arbitrary n > 0   and / e  (X  )   ,   let

l\n—\ Ijn — X lfln—1

a/=    u        u      •••     U      ßr
;i = (il — 1)M   72 = ('2~ D« ;'/V=(//V-l)n

By stationarity, P(A.) = P(A :     , .   j) for all / with the /f > 1.

(2-9) p(\J   a\<P(Z(D(x))>x)<p( \J   A V
VeAi      / \ieA2      /

where

Ax =i/eRN:/|n)CD|,       A2 = j/ e RN: /<"> n D ¿ 0|

and

/{^-Jp €«":«(/,.- l)«/c(x) <p.<ö/!«/c(x), i = l,...,/Vj.

Consequently,

P(Z(D,   >)>*)< #(A,)PU, ... ,)•

Therefore, using Lemma 2.1, we obtain

P(Z(D,  .)>*) #(A7)P(A.  ..     )     H An-I; a)
(2.10) iim (x) <ITm 2 !'     '

*-°°p.(D)<A(x)(C(x))N      x-~//(DtyUXcU))* «N«N
On the other hand, (2.9) and stationarity imply

p(7Ad(x))>x)> Z---L p(AP-5 £    '£ PUk n A7)
/eA, k*'; kAA!

(2.11) ( j
>#(Aj)   P(Alt...)1)-2A'-1      £     ...              Z               P(Bjnßg)[,

I 0<;j,<w 0S5r'<m;  some 5¿¿« I

where w = [tc(x)/a\ + 1.   We note here that

#(A1)/^(D)(c(x))N -» n~Na~N     as x — «..

Again using Lemma 2.3 in Pickands [2], we obtain

,.       P(Z(D,,)>x) „        Í „   ,  _v**P(B¡nB ))
km-W.-> n-Na-N)H  (n _ j     ) _ 2N-1   1Im £-L__L_J
*-°° |i(D^Kc(x))N " ) *-°° iA<*)      )

>„-"«-"{«> - h a)- 2Nïïn7 £**(l - 4>(*(l - p)Al + p)-1/2))\,
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where  p = p(fl|j - s|/c(x)) and

72—1 n—l      /   oc oo oo n— 1      oo oo

z**=z ■■• z (z z: - Z + £ I - I
n—l n — l oo       \

+ -+I ••• Z    Z   •
In the study of lim S    (l — $), we use the same device as in Lemma 2.2.

So we have

P{Z(D,  ,) > x) / >r ._** ,    v
lim-W-> „-Nß-N iH  ,   _ lf fl) _ 2N £     (1 _ $(2- 1(|   _ s|ßf/2))) _
*-°° p(D)ifÁx)(c{x))N \ /
Since the left-hand side does not depend on n, we have

am   u, *"'W>'> >.-« K '•<-'• ". 2» n„ zf tt
*— p.(D)<A(x)(c(x))N ~ «—• nN "^ ^ n

Now Lemma 2.2 implies 2    ¿._    < oo and then Kronecker's lemma implies

Mel Z**^_>n = 0-i-
Combining (2.10) and (2.12) yields

a~N ÏTnT Ha(n - 1, a) P(Z(D(x)) > x)
n-oo-_-  < lim

nN x^i ^(D)^(x)(c(x))N

P(Z(DU))>x) _N H„(a-l,a)
< hm-< a        hm

* — p.(Dty(x)(c(x))N n-~ „N

This establishes that  lim (W_(n, a)/nN) = H Aa) exists and that

P(Z(D,  ,)>x)       HAa)
hm-«-.
*~°° p{D)if,{x){c(x))N        aN

Now (2.10) implies   Ha(a) < oo.   Since the right-hand side of (2.8) in Lemma

2.3 is positive for all sufficiently large  a, we know Ha(a) > 0 for all a > aQ,   say.

For arbitrary a > 0, we select an integer m  such that ma > aQ.   Then Ha(n, am) <

H a(nm, a) implies 0 < H ¿.am) < mNH Aa).   So H A.a) > 0 for all a > 0.

Corollary to Lemma 2.3.  Let  X be a continuous Gaussian random field with

mean zero and variance one satisfying condition (1.1) for all p, q e D with

\p - q\ < 8.   Then

Ha{C*Vaa) P(Z(D[x))>x)
-< lim-

(2.13) aN x—oc ̂ (DV(x)(c(x))N

_   P{Z(D, .)>*)     HAC*^aa)
<lim-!£>-<_^_J-

*-» p(D)iA(x)(c(x))N aN
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164 CLIFFORD QUALLS AND HISAO WATANABE [March

for any  C,, C 2 such that 0 < C, < C, <C2 <C2.

Proof.  Define two stationary isotropic Gaussian processes X^1', X^2' having

a2(|p - q\) s E(\Xu\p) - X(%)|2) = 2C*\p - q\aH(\p - q\) + o(|p - 9|atf(|p - ?|))

as   |p - g| —> 0.   We use the label (z) in this proof to denote expressions involving

the process X(   .
By hypothesis, we then have

<72(|p - q\) < 2Cxo 2{\p - q\) < a2(p, q) < 2C2a2(\p - q\) < a\{\p - q\)

for all p, q e Tn' (when x  is sufficiently large) and uniformly for / e A-,   So,

using Slepian's result [5], we have

PiA^KPiA^)    for large x,

where A\ \ < _   .   is the event A^  _#>   ^ defined in terms of the process X     . Now

(2.14) —   P(Z(Du))>x)   ^_      #(A2)P(A</>)        tftt(n,Cy/aa)

*— ,i(D^(x)(C(x))N " x™„ ̂ (ntyUXcGc))" " ÂN
and also

p/lj  A A > tfíA^PÍA^)-! £...£ P(Ak n A,).
yeA!      / Y*l

As in the proof of Lemma 2.3, the sum  S P(A^ HA.) can be bounded above

by a sum  1 P(BjD B.).   But
P(ß. O ß.) =  P(ßiU) + P{B.l))-P(B. u B.)

^PCBJ^ + PCBJ^-PÍBJ^UBÍ1*)  =P(ß|U  nßju).
Consequently, as in the proof of Lemma 2.3, the sum S PlAk nA.) can eventu-

ally be ignored (as n —► °o).   So

//(n, C*l/aa)       ,.        P(Z(Df  .)>*)
(2.15) lim   —-< iiffi-21-_ .

aNnN ~ x— ^(DV(x)(c(x))N

From (2.14) and (2.15) follows (2.13).

Lemma 2.4.  Under the same assumptions as in Theorem 2.1, we have, ¡or

any a > 0,  2~^A < b < 1, an¿ y > 0,
_ P(X(0)<x -y/x,   Z(/[a/c(x - y/x)] > x)
lim--—-<M{a, y)
x^<x tfj{x)

where
I [a/c(x - y/x)) = \p e RN : 0 < p . < a/c(x - y/x)!,

,M(«,y) = (VÑ«/2f/22N X 2fe(N-a/2)R(y(l-¿X2AVÑr/2(2a/2^
fe=o

-2-HaVÑ/2)a/22-afe/2),
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and /-oo
r(x) = r (i - <RS))ds.

J X

Proof.   We note that

(X(0) < x - y/x,   Z(/[a/c(x - y/x)]) > x\ £ \J Dk,

D   = t      max       X{a2~kj/c(x - y/x)) < x - ybk/x,

k'

where

- 1      max

* max X(fl2-fe-VC(x-y/x))>x-y^ + 1/xl

E.Also, Dk C  U fc_j Pj ¿ where

B. k = jX(a2~fej/c(x - y/x)) <x - yfcfe/x,

max        X(02-fe//C(x-y/x))>x-y&¿ + 1/xi
2y¿s/¿<2y¿ + i I

By using [4, Lemma 2.6], we obtain

P^]k)< £ p-\l-p2)lÁ4,{x)R(y),
e*0

where p = p(a2~      ' y^j + • • ■ + e^ /c(* - y/*))> 2£;j;0 is a sum over the set

ie^O: e. = 0 or   li,  and y = y(x) = y(l - b)b kpx~ Hi - p2)-'"^ - x(l + p)~l(l - p2^2.

Consequently,

__ P!X(0) < x - y/x,   Z(/[a/c(x - y/x)\) > x\

x-oo ¡Mx)

oo

< lim    X Z p(£, J/«A(*)
x         k = 0  0<;¿<2«-l

OO

< LTnT   £   2Nk  Z p-\l-p2)'ÁR{y{x)).
x-°° k=0 e*o

By using property (2.6) when k is sufficiently large, we can obtain the following

estimates for large x,

xp-Hl - p2)1/j < 2S~1A2 ■ {yßa 2-k~l)af\

and

y=y(x)>2-l\y{\-b)bkSA-l{2k^/a^)a/A-A(\+S)-lA2{2k^/a^)~*/X

where S   = inf0:£s<íJ¡7/c(x_r/x)p(s) and A 2 = A 2{a\JN /c(x - y/x)).   From the

above estimate, we can prove
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£  2Nk     sup     £ p-1(l-p2)^(y(x))<^.
k=0 T<x«x   6*0

Therefore

^_ P(X(0) < x - y/x,    Z(/[a/c(x - y/x)]) >x;
lim-

x-°o t/f(x)

oo

< £   Urn"   2N*  L xp-Hl - p2)'/iP(y(x))
fe = 0 x^°° e*0

OO

= £   2"* £(fl|e|2-*-1)Q/2R(y(l-¿)¿t(fl|e|2-*-1)-a/2-2-1(fl|e|2-*-1)a/2)

<M(a, y).

Proof of Theorem 2.1.  Define
+     __     P{Z(D) > x)

/ya =
*-°° p.(D)«MxXc(x))N

and
P(Z(D)>x)"¡ = Uni

<~°° p(D)ip(x)(c{x))N

Now, since c(x - y/x)/c(x) —» 1  and xf/(x - y/x)/</i(x) = ey  as x —» t»  for y > 0,

we see from Lemma 2.3 that

r      P(Z(D(x_y/x))>x-y/x) H>)
lim- = e '-.

p.(D)<A(x)(c(x))N aN
For y > 0, we obtain

HAa) HAa)

__   P{Z(D) > x) - P(Z(D(x_y/x)) > x - y/x)
= lim-

p{D)ifj{x){c{x))N

^_  P(Z(D)>x,Z(D(x_y/x))<x-y/x)
lim-'-

,W(x)(ax))N

_   #(A2)P(X(0) < x - y/x, Z(/[a/c(x - y/x)]) > x)
< lim

^Dty(x)(c(x))N

1   __   P(X(0) < x - y/x, Z(/[a/c(x - y/x)]) > x)
< — lim-—-—-

N   x^oo l/i(x)

Mia, y)
<-—.

aN
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Therefore

(2.16) 0 <
HAa)               HAa)     Mia, y)                     ».<*)

H *-< H-<-+ (e y - 1 )-,N      ~     a        „N N „N
a a a a

NSince H a  and ¿7 * are finite, we can see that the lim sup and lim inf of H¿.a)/a

as a —► 0 must be finite.   Now choosing y = a? with 0 < ß < a/2 in (2.16), we

have Mia, y)/aN — 0 as a — 0 and H^ s ff* = H~ = limfl_0 Haia)/aN.
In a manner similar to the proof of Theorem 2.1 in [4], we can show

Ha= lim T-N(l+(°°esp(  sup    Yit)>s\ rfs

Corollary to Theorem 2.1.   Let X be a continuous Gaussian random field with

mean zero and variance one satisfying condition (1.1) for all p, q e D with

\p — q\ < 8.   Then
%     „  „v/a PiZiD)>x) _      PiZiD)>x) N.(2.17)    HaC^/a<  lim-< lim-<H   C^n.

x~°° (jLÍD)ifjix)icix))N      *-°° p.iD)iJjix)icix))N
Proof.  If X  satisfies the conditions of the Corollary to Lemma 2.1, then note

that
,. PiZiD)>x) HaiCl'°-a)
lim   —-= Hm-= CN/aH  .
x-°° AD)i¡jix)ic{x))N     a-°        aN

Now let D Cll.=1 [0, t],  let  / be an arbitrary number  < 8/yjN, and let the rec-

tangle  l[ = \p € RN: I . k. < p. < lik. + 1)!.   Let K = ik: l[ n D / 0\.   Then by the
use of Slepian's theorem, we have

PiZiD) > x) < £  P(Z(/k) > x) < #(K)P(Z(2\ll0) > x),
k€K

where Z^Xa) = max    ^X(2)(p)  and  X(2)  is a process defined in the proof of the

Corollary to Lemma 2.3.   Therefore

__      PiZiD)>x) #iK)lN    _ P(Z(2)(/'0)>x)
lim   -< —■—- lim-
x~°° piD)if,ix)icix))N "   fV>    x-°° p{ll0)if,ix)icix))N

tt( K)l^ffwv//      r*N/aN r*N/aH 1 n~WT 2      *     2     « as/_>0-

Since  C2 >C2  is arbitrary, we have the right-hand side of (2.17).
Now by the Corollary to Lemma 2.3,

PiZiD)>x) .      P(Z(1)(D(x))>x)

~°° AD)ifjix)icix))N " *-*°° pÍD)i¡,ix)icix))N

HiC*l/aa)
= ---->C*N'aHa   asa-0.1 Œ
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Since C* < C     is arbitrary, we have the left-hand side of (2.17).

3.  An asymptotic 0-1  behavior.   In this section we will consider the w-set

A¿ = \lrQ:X(p)<cp(\p\) for all   \p\ > rQ\

for an arbitrary nondecreasing function  <f>.    Since  X  is a continuous Gaussian

random field,  A,   is an event.   In earlier papers  [4] and 15], the authors give a

criterion in terms of <p for deciding whether the  P{AA   is  0  or  1   for pro-

cesses with an N = 1 dimensional parameter space.   Here this criterion is genera-

lized to random fields defined on R     with N > 1.   The proofs are based on the

corollaries to Lemma 2.3 and Theorem 2.1 in  §2.

Theorem 3.1. Suppose X is a continuous Gaussian random field with mean

zero and variance one satisfying part (A) of condition (1.1); that is, the correla-

tion function p(p, q) satisfies

(A) l-C2\p-q\aH{\p-q\)<p(p,q),

for all   \p - q\ < some  Sj,   \p\  and  \q\ > some Tv   and some  C? > 0.   // for any
positive nondecreasing junction   (f>\r),

J°° (a - Hl/<t>(r)))-N(</>(r))- ' exp (- V2 <p2(r))rN ~l dr < °°,

then

p(V = i-
Proof. Let r = «A, where A > 0 and n = 1, 2, • • • . From (2.17) we have,

for n  sufficiently large,

P(       max        X(p) > «#,  A < const p{Kn){cf>{r¿Y \a~ l(l/<j>irn))YN
yns\p\<rn+i I

■CKp(-y2<pHrn)),
where  K    = \p: r    <  \p\  < r  +A.   The convergence of the right-hand side of (2.17)

can be shown to be uniform with respect to all the sets  K  ;  we would needr n'

tt(\2)/p(Km)(c(x))N ^n~Na-N

uniformly for  K     as  x —> oo.   But

0 < -Ajl (¿L\N-1< ^a+^-^Wcfe)) < N*K   an
p(K   )\c(x) y   UN N) A      c{x)m     \ i N    m +1 m

uniformly in  m,  where the coefficients SN>  VN  satisfy NVN = SN.    Therefore, we

choose  A  small enough and then  nQ  large enough that
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£   PÍ      max X(p)>0(rn)
n=n0    \rn<\p\<rn+l

< const   £    ^nX<p(rn))-1(a-1(l/0(rn)))-NexP(-^^2(r72))

< const    f       i^r'G-Hl/tm^expi-li^ir^-'dr
r>riQà

< oo.

So when we apply the Borel-Cantelli lemma, we obtain the conclusion of Theorem 3.1.

Theorem 3.2. Suppose X is a continuous Gaussian random field with mean

zero and variance one satisfying part (B) of condition (1.1); that is, there are posi-

tive-constants  C., ¿L, T2 such that

(B) pip,q)<l-C1\p ~q\aHi\p-q\)

for all p, q satisfying  0 < \p - q\ < 8~ and  \p\, \q\ > TT
Suppose  X also satisfies condition (1.3);  that is, there is a y > 0 such that

(C) pip, p + q) = 0(|^|_r) uniformly in  p as   \q\ —> <*>.

//, for any positive nondecreasing function   0(r),

K4>) =f (a - 1(l/#r)))-N(#r))- 1 exp(- V2cp2ir))rN ~ l dr = ~,

then  PiAcp) = 0.

Before giving the proof we need the following lemma.

Lemma 3.1.  // Theorem 3.2 is true under the additional condition that, for

large  r,  2/V log r < (p   ir) < 3<V log r,  then it is true without this restriction.

Proof.   The proof of Lemma 3.1 is accomplished in the same way as for Lemma

3.1 in Quails and Watanabe [4].   So we omit it.

Proof of Theorem 3.2.  Let r   = 2«A, for large A, and let

/) n = \p = (r, <f>1,---,<f>N_1):rn<r<rn + A,  0 < <f>. < n,  0<cpN_l < t \

for e > 0.   Let G    be the set of lattice points in D    obtained by dividing /V-space

into cubes with sides of length  1//  .   Now we take  /   ~ ia ~  il/<f>ir   + A)))~ '.

Now by applying the Corollary to Lemma 2.3, we can estimate the probabilities

of the events E^ = [max    G    X(p) < <f>irn + A)! for large n.   The convergence of

the left-hand side of (2.13) can be shown to be uniform with respect to all the sets
\NKn; for example following inequality (2.11), we would need #iA.)/piK Xc(x))

n     a       uniformly for K     as n  —» oc which can be done as in the proof of Theorem
3.1.   Then
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P(Ecn) > const p{Dn)(a-Hl/cf>{rn + A»)""^ + A))" l exp(- V,<f>2{rn + A))

implies
oo

X    P(H^) > const /(0) = oo.
"=«0

Next we show P(P^ i.o.) = 1, which would imply the conclusion of Theorer

3.2.   Since   Il~_m P(Efe) = 0,  we need to show
('       /     OO \ OO v

p( n ek\ - n p(Ek)\ = o.

Now, by Lemma 1.5 in Quails and Watanabe [3L  we estimate

A

by
p n **)-n pib>)

\k=:m k =77

K¡     Kj

A        <
m ,n — Z       Z    Z   Pf,' gW'i + A), #r . + A), \p)d\,

m£i<j&n  u =0  v= 0

where p = p(p . /i, p. J, Kn = #(Cj - #\pn „; v = 1, 2, • • • , Kj, and g(x, y, p) =
(2»)- Hi - p2)11/2exp(- 2" Hi - p2)' Hx2 - 2pxy + y2)).

Because  \p .   -p . J > A and because of condition (C),  A can be chosen

large enough that, for some positive constant M,

|p(piiJLt> PjiV)\ < M((/ - 0A)_r,    for all j>i>m,

and   |p| < y/6N.   For w   sufficiently large, Lemma 3.1 implies

u2{{2i + DA) = 2N log((2i + DA) < <p2({2i + DA) < 3N log((2i + l)A)svH(2i + DA)

for all i > m.    Now

g((p{(2i + DA), <£((2; + DA), Ap)
< (2tt)-1(1 - p2YXA exp(- ^(<¿>2((2¿ + DA) - 2|p|</>2((27 + DA) + <p2((2/ + l)A)))

< (277)-1(l - (y/6N)2)~iA exp(- H(«2((2i + DA) + (l - 2|p|)«2«2; + DA)))
<(277)-1(l-(y/6,V)2)-^[l/(2¿+DA]N[l/(2/ + DA]N<1-3l^).

Since  L - G-l{l/cp((2i + DA)))"1,  then

K. «. ¡y(D) «, const (2i + l^'Ha " Hl/0((2/ + l)A)))"N     as i — ~.

From Lemma 3.1 and property (2.4), we see that K. < const (2t + l)/V-1(log(2¿ + D)

for large i  and some  f > 0 such-that  a - e > 0.   Consequently, we have, tor

large  m,
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(2Í + l)N-](27+ l)N-1(log(2z+ l)f/{a-e\loSi2j + i)yV(*-í)
A m .« < COnSt X Z        -——-

m<i<j<°° \] — 1)

x[l/(2z- + l)]N[l/(27 + l)f(1-3^l)

- ~ üog(2U + t) + D)2N/(a-eY i \/    i     y-3NiPi
< const x V  /_,-'-1-

tntx h? \p + y\xk + i)+i)

00    °° /i \i-s+r/   i    \i+S-y/2
< const x VWI (-Í—) (log(2U + i)+ l))2A,/(a-e).

imakml \k I \2i + V
Since log*x + y) < log   2x + log'zy  for any ß > 0 and all x, y > 1, we see that

this last sum is convergent if we choose 8 so that y/2 < 5 < y.   Therefore

lim      „A        =0, which completes the proof.m—'Oo      m,oo ' r r
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