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Summary. The problem of testing a general parametric hypothesis following a
preliminary test on some other parametric restraints is considered. These
tests are based on appropriate likelihood ratio statistics, The effect of
the prelimianry test on the size and power of the ultimate test is studied.
In this context, some asymptotic distributional properties of some likelihood

ratio statistics are studied and incorporated in the study of the main results.

1. Introduction,

In a parametric model, the underlying distributions are of assumed forms and
the parameter § belongs to a parameter space { . Let Ln(g), 6 € 2, be the
likelihood function and let W be a subspace of §i ., For testing the null
hypothesis Hy: § € w against H;: ) ¢ w , the usual Iikelihood ratio test

(LRT) is based on the (log-) likelihood ratio statistic (LRS)

L9 = 2 105{6%%Pa L_(8)/6%%Pw L_(9)} (1.1
n ~ n~e o

and the null hypothesis H_. 1is rejected when L(g) is significantly large.

0

This unrestricted LRT possesses some (asymptotic) optimal properties when

6 1is not restricted to some particular subspace of Q ,
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In certain problems of inference, Q*(c ), a subset of Q , may be
identified form some eXtraneous considerations, and one may like to test
for Hy: f €w, given that § € o + This may conveniently be made by .
setting Hy: @ € w*(=w n Q*) and ﬁic 8 € @"\w* , so that the corresponding ;

LRT is based on

L = 2 log{g®Po* L,(@)/8%¢u* 1_(®)} (1,2)

and ﬁb is rejected for significantly large values of Ln . When § € o* s
the restricted LRT based on I; usually performs better than L(g) and,
under suitable regularity conditions, given 0 € o , Ln possesses some
(asymptotic) optimality properties too. On the other hand, if, contrary
to the assumption, § ¢ Q* , then Ln may become inefficient and even
inconsistent. Hence, one may not advocate the restricted LRT unless one
has high confidence in the assumption that 0 € Q* .
In a variety of practical problems, though some Q* may be framed
from certain practical considerations, there may not be sufficient grounds ‘ ‘
to enforce a restricted LRT. At the same time, considerations of the
possible gain in power (when [ Q*) advocate the use of the restricted
LRT over the unrestricted one. Often, as a compromise, in such a case,
a preliminary test is made of Hg: 0 e Q" (against H;: 6 ¢ Q*) and
an appropriate LRS is used (depending on the acceptance/rejection of Hg).

For this preliminary test, consider the LRS

*
L, = 2 1og{g°Pa 1_(8)/9%¢Pa* L (@}, (1.3)

where Hg is rejected when L: is 2 L; oF the upper 1000*% point of
? -

the distribution of L; (under HS) and a* (0 < 0¥ < 1) is the Zlevel of

significance (size) of the preliminary test, Then the actual test for

H.: 8 ¢ w 1is based on the test statistic L , Where
o ! : °

* *
Lo, 4F Ly < Ly %, (1.4)

n 1(0) o g%
L$O i Ly 2 Ly g%
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*

, and Ln are not independent (even under

Since, in general, Léo), L
HO and asymptotically), it is clear from (1,4) that the distribution of Ln
(even under HO) generally depends on o as well as the joint distribution

o LO *
n ’ n

and I; [actually, through the bivariate distributions of

(I;, L:) and (Léo), L:)]. We are primarily concerned with a systematic

study of the asymptotic properties of the test leased on Ln' In particular,
the effect of the preliminary test on the size and power of the ultimate

test is the main objective of our study. In some special problems (arising

in the classical analysis of variance tests for some linear models with
normally distirbuted errors), the effect of preliminary tests on the size

and power of some ultimate tests has been studied by Bechhofer (1951) and
Bozivich, Bancroft and Hartley (1956), among others. Some nonparametric
procedures are due to Tamura (1956) and Saleh and Sen (1980), among others.

Sen (1979) has recently studied some asymptotic properties of maximum
likelihood estimators (MLE) under conditional specification, These

results are incorporated here in-the main study, In this context, the

(joint) distribution theory of correlated quadratic forms (in normally distributed
random vectors), studied by Jensen (1970) and Khatri, Krishnaiah and Sen (1977)
palys a vital role,

Along with the preliminary notions, the proposed precedure is outlined
in Section 2. Section 3 deals with the asymptotic distribution theory of
various statistics involved in the proposed testing procedures. These
results are then incorporated in Section 4 in the study of the asymptotic
size and asymptotic power function of the test based on Ln in (1.4).

Some general remarks are made in the concluding section.

2, . Basic regularity conditions and the proposed tests.

Bearing in mind that, typically, a multisample situation may be involved in

a preliminary testing problem, as in Sen (1979), we conceive of the following
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model, Let there be k (2 1) independent samples; for the 1P sample, let

gil""’zin be n, independent and identically distributed random vectors
i

(i,i.d,r.v.) with a distribution function (df) Fi(x;g), for i=1,,..,k ,
where x € EP » the p (2 1)~dimensional Euclidean space and

6 = (9 .,et)' e Q& Et , for some t21 , Note that F, may not depend on

1,10 i

all © .,Gt , for every 1i=1,...,k , but each element of 6 1is associated

1,0'
with at least one df. Further, we assume that for each § ¢ Q and
i(=1,...,k), Fi(x,g) admits a density function fi(z;g) (with respect to

some sigma-finite measure U ). Then, the log-likelihood function is defined

by
kO
log Ln(g) = log Ln(gn,g) = .Z .z log fi(gij,g) » 86 , (2.1)
i=1 j=1
where gn = (511,...,§knk) and n = nl+---+nk . Suppose now that a subset

w (¢ Q) be specified by

w = {Q e Q: h(9) = (hl(g),...,hr(g))' = g} , for some r<t, (2.2)

where h(8) satisfies some regularity conditions, to be specified later on.
We are primarily interested in testing Hy: § ¢ w against H;: § ¢ w.

An unrestircted MLE (én) of 8 1is an element of Q , guch that
A - aSup
log L (X .8 ) =8 ¢QlogL (X,0 , (2.3)
while, én s the restricted MLE is an element of w , such that

_ aSup
log _(X ,8 ) = 6°%Pu log L (X ,8) . (2.4)

Suppose now that a subset ¥ (c Q) be specified by

" = {0 € 2 g(®) = (8,(8),.1,8,(8))" = 0} , for some s < t , (2.5)

where g satisfies certain regularity conditions, to be specified later on.

* *
Then, by (2,2), (2,5) and the definition of w (=w N Q) , we have

W' = {8 e n(® =0, g@® =0} . (2.6)
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A% é* * *
Let gn and @ be respectively MLE of O under § e Q and § ew ,

Then, parallel to (1,1), (1,2) and (1,3), we have

§

0
L(n) = 2 log Ln(gn’ﬁn) ~ 2 log Ln(),\,(n:,\,n) ) 2.7)

- % *

Ln = 2 log Ln(zn,én) - 2 log Ln(gn,én) . (2.8)
* A A%

Ln = 2 log Ln(gn,gn) - 2 log Ln(gﬁ@n) . 2.9)

For latter use, we also introduce the following statistic

— * *
n Ln + Ln = 2 log Ln(zn’én) = 2 log Ln(gn’én)

2 10g{g°0 1_(8)/6°%w’ L (®)} . (2.10)

Finally, we formulate the test function v , corresponding to (1.4), as

n
follows. Let a(0 < a < 1) and aO(O < ao < 1) be positive numbers

* .
and o be defined as in (1.3)-(1.4). Then, we take

1, if L < L

v o= or L =1L

B8 % B *

50 » (2.11)

0, otherwise,

where Ln 3 and Lioio are respectively the upper 1000% and 100aoz points of

? ’

the (null) distributions of Ln and Lio). The size of the test of (1.4)

and (2,11) is therefore
_ aSup
a =08¢cwkElv} (2.12)
and its power is given by

B.(®) =Elv}, eecq . (2.13)

We are primarily concerned with the study of (2,12)-(2.13). For this
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purpose, we introduce the following regularity conditions [adapted from
Aitchison and Silvey (1958) and Sen (1979)]: .
[A1] & is a convex, compact subspace of Et, and for every Ql 1 92

(both in ), for at least one 1i(=1,,..,k),

fi(g;gl) + fi(g;gz), at least on a set of measure nonzero (2.14)

[A2] For every 8 ¢ @ and every 1i(=1,,,.,k), zi(g) = f log fi(g;g)
EP

dFi(z;eo) exists, where 0 is the true parameter point, Note that for the

~0
ith density, the Kullback-Leibler information is

1,(8,89) = [ log{f, (x:8,)/f, (ks }F, (x38) =2,(8,) - Z(®) , (2.15)

0 EP

where Ii(g,go) 2 0, VO € Q and the strict equality sign holds only when
fi(z;g) = f1(§;90) almost everywhere (a.e.)

[A3] For every 8 ¢ @ and i(<1,..,,k), log fi(§;g) is (a.e,) twice
differentiable with respect to § and . g

s S
| 3%/26_"08, %) log £, (x; )| < G ), Vx e B, §eQ, (2.16)

where s, 2 0, s, 2 0, g + s, =8 = 1,2 and 1 < a, b £ t, and where

Gs(g)dFi(§;go) < o, ¥i(=l,...,k) and s = 1,2 . (2.17)

Further,
sup a2 32 '
Lim ;max, E|Q: 118-8,11<s 3596, log £, (x,38)| - R log £, (x,;9) =0 (2.18)
5 So

[It is also possible to avoid (2,18) by some alternative conditions, as in
Huber (1967) and Inagaki (1973), but, those will require in turn, some other
extra conditions on the first derivatives,]

[A4] For every i(=1,...,k) and 0§ € @ , ’
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fp € /ae 90 £, (x;9)du(x) = 0,V a,b=1,,,,,t, (2.19)
E

We then define for each i(=1,,,.,,k)

géi) - Eg[(—gz/agag') log £, Gx,38)) . (2.20)
[A5] gél),...,gék) are all continuous in § in some neighborhood of

QO and ) )
230 = El(n /n)B( 1) is positive definite (p.d.) (2.21)

[A6] 1lim (n ln ) pi(O < Py < 1) exists, for every i(=l,...,k) and

n>0
]
p, =1 .
i=1 1
Note that under [A6], as nx,
) B> > B = Zp g{) (2.22)
~Bg ~8o 1~6

[A7] h(8) possesses continuous first and second order derivatives with

respect to 6,V 6 € R, Let then
= (((3/99)h(8)))  (of order txr) (2.23)
[A8] ¢ is of rank r(<t)

~0

[A9] ggg) possesses continuous first and second order derivatives with

respect to § ,V 9 € Q. Let then

= (((Q/ag)g(ﬁ))) (of order txs) (2,24)

~

[A10] Dy is of rank s(<t),
~0

. [A11] t > s+r and the following matrix (of order (s+t+r) x (s+t+r))



~0 0 0
NQO is of full-rank, (2,25)
Q
. ~0 J
We denote by
( 3 ( 3
:B: -C —De -1 :E_, §
~0 ~0 ~0 ~0 ~0
-4 - ; (2.26)
< —, —
9 % K
-D! ~0 ~0
L -0 \ J
[ _ -1 ( )
By G B Q%
’QO 'QO 'QO Q'O
= , (2.27)
-G} 0 Q' BA
~0 'QO '@0
\ J
and
'd _ j_l
- %%k %%k
B Dg BE* Q%
~0 ~0 0 ~0
= . (2.28)
-D! Q g**' .13,**
2o %0 %o
L J
Note that B, B, R, P*, R*¥, P** and R¥* are all symmetric matrices.
Finally, we denote by
_ =1/2
A =nu (3/39) log Ln(%’g)‘go . (2.29)
Then, under the assumed regularity conditions, when 60 obtains,
A is asymptotically N_(0,B, ) . (2.30)
~n £~
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T
E'.E'.g n-*

*
3. Asymptotic digtribution theory of Léo), Ln’ !

To study the asymptotic nature of (2,12) and (2.13), we need to study
0)

* * —
first the asymptotic joint distributions of (Lﬁ . Ln) and (Ln , Ln),

* —_
when the null hypotheses HO, HO and HO , may or may not hold.
1 (0)
n

*
For and Ln , we may directly use the results of Sections 3 and

—%
4 of Sen (1979) with the allied restraints in (2,2) and (2.5), while for Ln’

we need to put the dual restraints in (2.6), Let us denote by

0) =-1.= =-1 -1

A7 = (8 -B B, (BE -Bg ) = Q&'CRE T QE (3.1)
8, R R0, B8, R %, 7%, %,

—1 —d, _ -1

A* = (@f* - Bg OBy (BE* - By ) = Q8F'CRENT g, (3.2)
0 R0 R Ro R R R

B = @y BgDBy By BeD =T B, Gl
o 2% % 8 "R R R

A = Ax - A* = (B, -P¥*)B. (B, -BX*) . (3.4)

@ 8 "8 "8 "8 "o

Then, proceeding as in Section 3 of Sen (1979) (with direct extensions for
the multiple restraints under consideration), we obtain that under the

regularity conditions of Section 2,

0) _ (0)
Ln = Q;é An + op(l) (under Ho), (3.5)
*
= AY
Ln Ané*An + op(l) (under Hg),
% — —
= | ]
Ln Ané*én + op(l) (under HO) , (3.7
Ln = A'AAn + op(l) (under HO) s (3.8)

where

é(0)— A(0)%(_0) , A¥Bg A*=A%, AxBo Av=p* ,  (3.9)

B
® 2o R0 20
B, A=A and B, A*=Q . (3.10)
~0 ~20

w1
th g
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From (2,30) and (3.5)-(3.10), we conclude that under the regularity conditions

of Section 2,

(0) 2 * 2 *

Ln 5+ X, (under Ho), Ln 5* Xs (under HO) (3.11)
T aT 2 (under ¥

N .5+ Xpqg 20 n-ﬁ» Xy (under HO) (3.12)

— *
and, further, Ln and Ln are asymptotically independent under HO’

here Xi stands for a r.v, having the chi square d.f. with q degrees of
freedom (DF), and we denote its upper 1000% point by Xi(a). Then, by

(2.11) and (3.11)-(3,12), we have, for n+o,

L a7 Xy ‘@, L o xz(a*) and Lr(l?()xo > xi(ao) . (3.13)

On the other hand, in general,

(O)Be A is not a null matrix, (3.14)
0

*
and Ln are not, generally, asymptotically independent (even

so that L(O)
n

under ﬁb). However, joint distributions of correlated quadratic forms,
developed in Jensen (1970) and Khatri, Krishmaiah and Sen (1977) may be
incorporated here in the study of the joint asymptotic distrib ution of

Léo) and L:.

First consider the case where ﬁb holds. Consider the following

probability density function (pdf)

® a,la,! b6
z fmt+1/2 z a 172" "1 2 (3.15)
= <

wcg;mgm;g)

where

u = (ul,uz)ZO_, l)‘ = (bl,b2)>g, 9 = (ul,az)’ m = (m ,m) s

-u, bi-l
e o™ /[B;}, Osu<e, b20 , (3.16)
1

= o

Ylush) =

i

the Laguerre polynomials La are defined by

~
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o a
ay oy W QERIL, (gik) = (=d/dw®[u, ! w2 Y(e;p)] , @20 (3.17)

and the ag are suitable coefficients, Then, by (2.30), (3.5), (3.6), (3.9,

(3.14) and Theorem 2 of Jensen (1970), we conclude that under ﬁb and the

regularity conditions of Section 2, for every x20,

Lim o O 1 e |53 = Jotus £/2 5 s/2)d (3.18)
h~+0 n 1’ n 2% ON,r sy S u , .

where ¢(u; !.(r,s)) is defined by (3,15),
In the above development, we have confined ourselves to the case where
an appropriate null hypothesis holds. But to study the nature of (2.12)

*
and (2.13), we need to consider the case where HO or H0 may not hold.

For this purpose, we consider some local alternatives and study the
asymptotic behavior of the various LRS under such alternatives., We

conceive of the following sequence { Kn} of alternatives

K: b8y =Py, gey = a7Ey (3.19)

where 11 and Y, arer- and s-vectors of real arguments and QO is the

*
true parameter point. Then, under HO’ X = 0; HO, Xy = 0 and

ﬁb: X = 9, X = 0., Again, we basically follow the steps in Section 4

* * * *
of Sen (1979) and define X Al’ X, and AZ by letting
X, = C} x* c A*- B x* Y, = D} x* D. Ar =B x* (3.20)
% - ~ 4 ~ - ~ , - ~ ? ~ ~ = ~ . .
1~ %8t St Rg it L2 T mg tor Rg Ry T Rg o

* * * *
Then, X, and X, are both t-vectors, while Al and 52 are r- and s-
vectors, respectively, Under {Kn} in (3.19) and the regularity conditions of

Séction 2, we have as in Section 4 of Sen (1979),

(0) Tkt %! * -1 * *
Ln = (Angeo+&l )(—Eeo) (Sgoén+xl) + op(l), (3.21)
* U okk! k! *k 1 Kk *
= - . .22
Ly = Qe+ ) (Rg D™ @ A} + 0 (D) (3.22)
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Thus, by (2,30), (3,1) (3.2), (3.9) and (3,21)~(3,22), we conclude that under

{Kn} and the regularity conditions of Section 2, marginally,

(0) 2 * 2

Ln D Xr, a0 and Ln 0 Xs,n* (3.23)
2

where Xq A stands for a r,v, having the noncentral chi-square d.f, with
’

q DF and noncentrality parameter A, and
0 k- % %1 * v ' %
A" = Xl Egoll - Xl QQOA1 = 11&1 = —1159011 ’ (3.24)

* * 1—

*
A =% Egoxz = -nggoxz (3.25)

In a similar manner, it follows that under {Kn} and the regularity conditions

of Section 2,

pa— _ ot %! —_ -1 — —
L = (Angggg ) (-Rg ) (ggogn+g ) +o (1), (3.26)

0

] ]
), we define

]
where letting Yy = (Xl,lz
)
S0l _ _
X ={pr (* and (ge s 26 YAk = ge Y* (3.27)
Dg R0 Ro R0
~0
so that
T™* 2 LR "
o 07 Xrs,a% 0 B = LB X 328
ince T =T +L", T 20, L
Since n - n+ n’ 29 n-0, by (3.22), (3.23), (3.26), (3.28) and the

Cochran theorem, we conclude that under {Kn},

T 2 - - —
- = Km Ak = 1 IDk*
Ln 0 Xr,A’ A = A*-p X BQOI+1259012 (3.29)
and furhter that
- *
Ln and Ln are asymptotically independent under {Kn}. (3.30)

*
The situation is somewhat different with the joint distribution of (L£O)’Ln)
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under {K } . Firstly, by (3,14), (3.21) (3,22) and (2,30), they are not
generally (asymptotically) independent, Secondly, we have the non-central
case where Theorem 2 of Jensen (1970) may not apply, However, we are able
to use the results in Khatri, Krishnaiah and Sen (1977) and these provide
us with some exact as well as asymptotic expressions,

Note that by [Al1], (2.30), (3.21), and (3.22), we can use a suitable

(not necessarily unique) non-singular transformation on An and write

L(O) = z(l)'z(l) + 0 (1), L* = z(z)'z(z) + o (1) (3.31)
n ~n ~n P n ~n ~n P

where gil) and %22) are r- and s-vectors and, under {Kn} s
= (7D (2N . *
Z =@ "~ ,2 '~ ) 1is asymptotically N (&I (3.32)
here 7 and X* depend on B Q* g** A* A* R* and R.
whe Z P ) » s D4 LHse B ~ .
Ro0 "Ro " LT 72 TR, 2o
*
Furhter, I 1is non-singular. Let then
A= Diag(Gllr, GZLS), S = (61,62) > 0, (3.33)
-1 A = a7t 3.34
R = Lho 42 and B = A " . (3.34)

The choice of § 1is arbitrary and the convergence rate of the infinite

*
expansion (to follow) depends on ¢ and Z . Let then
L = ]£-§|-l/2exp{-l/2 trace[(L-g)—lB]}. (3.35)

and for every k>0,
6, (wik) = {(26) MY e 205, o, (3.36)
Finally, let

* . . .
¢ (wl,wz) = 1021291i¢1(w1; r/2 +Jl)¢2(w2, s/2+J2) (3.37)
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where j = (j j,) and the coefficients #,, j20 are suitable constants,

Some formulae for the computation of the &, are also given in Khatri, .

i
Krishnaiah and Sen (1977), Then, by (3.31), (3.32) and by (2,11)-(2.12)

of Khatri, Krishnaiah and Sen (1977), we obtain that under {Kn} and the

regularity conditions of Section 2, for every x = (xl,xz)zo,

. (0) *
lig P{Ln =, Ln5x2|Kn} (3.38)

*
¢ (w)dw = zoiioliél(xl;r/2+j1)®2(x2;s/2+32),

~

IO— W

where ¢j is the d.f. corresponding to the pdf ¢j, ji=1,2.

*
Note that by (3.34), Il—§| = |z |/6;6; and we need to choose 61, 62,
such that I-R is p.d. In the central case ( where =0), we may take

r.s *
2,=1, by letting 6162=|Z | .

4. Asymptotic performance of the three LRT.

We shall study now the comparative performance of the three LRT's

based on L;O), I# and Ln' In addition to (2.11), we let

(1 O, (®
’ - H
v(O) = n n,o 4.1)
na 0, otherwise ;
_ 1, T =T ,
vna = % " m.e (4.2)
LO’ otherwise
and * *
’ L, Ln = th,a%
via* = ? (4.3)

0, otherwise

where, by virtue of (3,13), in the asymptotic case, we may replace the exact

2 * 2, &
by Xr(a) and Ln * by Xs(a ).

critical values L(O) and L
n,o n,o ,0

Note that under the regularity conditions of Section 2, for any (fixed) .

* * *
6 ¢Q and a': 0< o* < 1, Ee{vna*} +1 as m> ,
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so that by (2,11), (4,1) and (4,3), for eyery (fixed) a* € (0,1) and
* . 0
5] ¢ Q] = v 1is asymptotically equivalent to Vg0 (4,4)

*
The picture is different when § ¢ 2 (or on a shrinking boundary of Q*).

In fact, this is domain where we would like to study the behavior of vig),

Gga and v . Towards this end, we consider the set of alternatives {Kn}

* -
in (3.19), so that Hys Ho and H, are respectively characterized by xl=g, Xz=9

and Y =0, Y,=0.

Note that by (4,1) and the results of Section 3,

(0) _
E {vna IHO} = o, whatever X, may be . (4.5)

2o

Also, note that by (3.29), for xl=g,
s = |0
A=-(0", YR, [T | + LIR**y, > 0, (4.6)
2% Iy, | * 128
where the equality sign holds when x2=g. Thus, by (3,29) and (4.2),

N

E |
no.

i 2 2
'90{ Y;=0} »> P{er 2X (0)}(z ), (4.7)

where the equality sign holds when A=0 (i.e., xz=g). This explains the

lack of robustness of the restricted LRT based on Ln. Under ﬁb (i.e., Xl=g’ 12=g),

of course, A=0 and the size of the test based on I; is o. But, under

HO: xl=g, when nothing is specified of 12’ this may be generally 2 a. Thus,
unless we feel that A » defined by (4.6) is very close to 0, the use of

the restricted LRT may result in a significance level greater than the specified
level «, The discouraging fact is that for the set of Xy leading to large
values of 'Z, EQO(G;alxl=g) tends to 1, so that the restricted LRT may even

be inconsistent against such alternatives,

Now, by (2.11), (3.11). (3.12) and (3.18), we obtain that
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Efv_[B.}> 31=0™ + [T [T ¢u; y (r,8)dy, (4.8)
nt 0 NACKH IV Cl ’

where ¢(*,*) 1is defined by (3,15)~(3,17) and the coefficients therein
(0 and Eé (and these may be evaluated by a procedure
~0 :
suggested in Khatri, Krishnaiah and Sen (1977)). Alternately, the right hand

depend on A*,‘é

side of (4.8) is bounded from above by ‘a(l—a*) + a*AaO, which may be

equated to the desired o. Actually, if both a and a® are chosen

very close to (but less than) o and a* is small, then this upper bound
provides a close approximation, or even, in (4.8), the series in (3.15) may be
approximated by a few terms., Parallel to (4.7), we now consider the

case, where Xl=g but Y, may not be 0, Then, by (2.11), (3.19) and the
results of Section 3,

By 1,70} » PG pe < Xe@IP0E 52 2@ 4.9

+ 8681008 (170, 0 @0 37/ 243) 1 [1-0, 0L (0w 58/245 )1

where 'Z, defined by (4.6) is 2 0 (with the equality sign for 12=g) and

¢, are defined as in (3.38) and these depend

Zo,ﬂi, j20 as well as @l, 9
on é(o), A*, Eb and 12. In this context, note that
~0
(1-0*2)P{x° . <x2(0*)} is ¥ in A*(z 0) (4.10)
S,A% g ’
(o S)P{xf - zxi(?i)} is [ in 2(z 0), (4.11)
s A

and the second term on the right hand side of (4.9) is bounded by
0 2 2, .
a AP{XS’A* 2 x (o )} . (4.12)

Thus, unlike (4,7), though (4,9) is affected by xz*g it may not converge

to 1 as A or A* blows up, Or, in the other words, it is more robust

against 12*9’ than the restricted LRT, Hence, from considerations of
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validity~-robustness, Vn may be preferred to G#a .

. If, in particular, A(O)Ee A* 1is a null matrix, then (4.9) reduces to
~0
2 2 1. 2 2~
g{xs,A* < Xs(a*)}P{Xr;Z 2 xr(a) +

2 2 2
P{XS’A* 2 x _(o%) }P{xr’o > xi(ao)}

(4.13)
2 2 - 2 2 — 0
= * e f— -
% *+ P, <X (@ VHEX, X (@) - o],

and the validity-robustness picture becomes more clear. In this case,
we have

0 -~ 0

o =a + (1-a%)(a-0") , (4.14)

so that on letting a0= a;a, one may choose o* arbitrarily.

Let us now proceed to the study of the asymptotic power functions of
. ‘ the three LRT's. As in (4.4), for any fixed alternative, there is not
much interest in studying these (as the limits dagenerate at o or 1,
and hence, we confine ourselves to local alternatives, as in (3.19), for
which the limits are different from 1.

First, consider the case of the unrestricted LRT V(O). From

no

(3.21), (3.23) and (3.24), we obtain that

lim . (0) ) 2

s E{vna |Kn} = P{xr’AO 2x (@}, (4.15)
vhere A0 is defined by (3.24). Similarly, by (3.28) and (3.29),

lim

- ~ 2
Tirco E{vlen} = P{x 2 X (@}, (4.16)

where A is defined by (3.29)., For a comparison of (4,15) and (4.16),

we may note that by (2,25)~(2,28),

~C}
| R, =[ o BEi(-c, -p )17t (4.17)
~20 "|B8 |70 8y "B

%

~
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-—l "l ""l rl
~R%¥ = (C} ByGq ) ~ and ~R¥* = (D} B, Dy ), (4.18)
«Qo 'Q'O 'Q'O =0 .@,o 'Q'O .Q,o 9
Thus,
0 -1 ~1 —1 -1
A7 = x1(C By Co ) X, = xF'CH (CL BiCh ) TCh XF (4.19)
1780780780 "1 71 78780078y F8yTL
- —1 -1 —1 -1
A=x"{(Cq Ry ) By (€a By )} "X - x2(BREB Dy ) Y
.Q ,@ ‘Q‘O .@,0 ’Q‘O “~ .@0 <0 60 2
= ((;-Dvp) "2*(py-Ixy) (4.20)
- z z
where writing (C Qe )‘E;l(ge Qe ) = le 212 , we have
20 R0 0 <0 <0 R21 R22
-1 -1 -1 (4.21)
= . * = -
L= -1ty and X (Z117Z10809801)
Hence, from (4.19), (4.20) and (4.21), we have
e L _ ' _ _ ! -1
b= A7 = =T "2y ~Tp) - X%y - (4.22)
From (4.22), we immediately claim that
Y, = 9= & > 4% with = holding for I, =0.  (4.23)

* -
Hence, if HO: 12 = 0 holds, then the restricted LRT vna has an asymptotic

power (against: h(B) = n_l/le) greater than or equal to that of the unrestricted
*
LRT vig). The picture may be different when HO may not hold, For

example, if Y, ¥ 0 but y = [y,, then by (46.22), B&=0, A% >0, so

that the unrestricted LRT performs better than the restricted one. 1In general,

—_ 0 * B -1

where. chl stands for the largest characteristic root, Clearly, in a

neighborhood of Exz, this may not hold, This explains the lack of

*
efficiency-robustness of the restricted LRT, when Hy may not hold.
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For the preliminary test LRT vn in (2,11), we obtain that

1me|K}—HXA*<xw>nu 2 2@ )

2 2 2 2 4,25
+ PG e 2 X @05 g0 2 (DT 42

2
where (Xs,A*’ X:,AO) has (jointly)a bivariate chi-square distribution

(non-central case), given by (3.37), with the coefficients depending on

A AO and QEé . If, in particular, é(o)géfé* is 0, then (4.25) reduces to
0 ~0
PO p0 2 Xp@D} + BUC < X2@0} P0G 5 2 @) - 2OC p0 2 x2@DI,  (4.26)

so that by argmments similar to in (4.22)-(4.24), we conclude that (4.26),
lies in between (4.15) and (4.16). In particular, if ao =q = o, then
(4.26) reduces further to
2 2 £ 2 2, .
P{Xr,AO > xr(a)}P;xs,A* > XS(OL )+

(4.27)
[1 - P{xi,A* 2 xi(a*)}]P{xf 32 xi(a)},

}
which is an weighted average of (4.15) and (4,16). 1In general,

*
(for A( )% not necessarily 0), the second term on the right hand
~0
side of (4.25) can be evaluated by using (3.38) and it may be concluded that

(0 )

the asymptotic power of Va lies in between that of v and ;;a , and
*
further, v is more (less) efficiency-robust than vn(vi )) when H0

may not hold.

5. Some general remarks.

From the results of Section 4, it follows that unlike the case of the
unrestricted LRT, for the preliminary test LRT, the computation of the

size needs elaborate expansion as in (3.38)., The situation becomes simpler

- %
when A(o) 6 A is 0Q; the later case arises in many linear models, where

~0
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the design matyix permits this condition, Also, both an and Vo have
*
0'.

than G;a against departures from g(8) = 0, Thus, from validity-robustness

size and power affected by the validity of H But, Vo is more robust

- *
point of view, vn may be preferred to Vna' On the other hand, for HO

being true, but h(@) * 0, the asymptotic power of ;;a is better than that
(0)

*
of Vo and Vna , although a different picture may emerge when HO may not hold

and Xy is close to Exz, in which case, V_ performs better than ;£a'

Thus, from the efficiency-robustness point of view, v, may be preferred

0 —
A% (0) or Vv .
no no

to

The actual computations of the asymptotic size and power function of the

three LRT depend on Ry as well as X0 Xp - In some simple case, this
~0
may however be done. For example, for testing for the intercept parameter

(when the regression parameter may or may not be equal to 0) in a simple
regression model (which includes the two-sample location model as a
special case), this comparative picture is very similar to the nonparametric

case dealt with in Saleh and Sen (1980). A definite advantage of vn
0
( ))

na may be seen from the numerical values presented there.

over V ( or v
no.
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