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ASYMPTOTIC PROPERTIES OF LINEAR
FOURTH ORDER DIFFERENTIAL EQUATIONS

SHAIR AHMAD

Abstract. Asymptotic behavior of solutions is studied for the general

fourth order linear homogeneous differential equation with bounded coeffi-

cients. It is shown that roughly the same qualitative behavior as in the

constant coefficient case holds.

1. Introduction. Consider the general fourth order linear homogeneous

differential equation written in the form

u(4) = b3it)u'" + b2(t)u" + bxit)u' + b0(t)u.

If bk e C[a, oo), k — 0, 1, 2, and b3 G C3[a, oo), the substitution

uit) =yit)expy^f^ b3is)dsj

simplifies this differential equation to the form

(L) yW = pit)y" + q(t)y + r{t)y

with p, q and r continuous on [a, oo). In this paper we study the asymptotic

behavior of a class of differential equations of the form (L).

Our motivation comes from the following two observations:

1. If p, q, and r are constants with p > 0, q > 0, and r > 0 and S denotes the

vector space of solutions of (L) which together with their derivatives tend to zero

as t —» +oo, then S has dimension three. If y is any solution of(L) not in S, then

\y^{t)\ -> +oo as t -* +oo, k = 0, 1, 2,_

2. If p, q, and r are constants with p > 0, q < 0, and r > 0, then S has

dimension one. Any solution o/(L) not in S cannot be bounded.

These observations follow easily by studying the location of the zeros of the

characteristic polynomial A4 — p\2 — qX — r.

The object of this paper is to show that the solutions of (L) have roughly the

same qualitative behavior as in the constant coefficient cases (1) and (2),

respectively, under the following two sets of conditions:

Ci: p, q, r, p', r' continuous on the half-axis [a, oo), pit) > 0, r(r) > m > 0,

r'it) < 0, p'it) — 2qit) < —d < 0; p and q bounded.
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C2: p, q, r, p', r' continuous on [a, oo), p(t) > 0, r(t) > 0, r'(t) > 0, p'(t)

— 2q(t) > d > 0; p, q and r bounded.

Using techniques of Lazer [4], Singh [5] studied third order linear differen-

tial equations with bounded coefficients. Similarly, the author [1] studied a

simple selfadjoint differential equation of order four. The results in this paper

are mainly motivated by [4] and [5].

2. First we state three almost obvious facts in the form of lemmas. The

proofs of these lemmas are elementary and trivial.

Lemma 1. Let f G Cx[a, oo). Iff™f2(t)dt < +oo andf'(t) is bounded, then

f(t) -> 0 as t -» oo.

Lemma 2. Let f G C2[a, oo). Iff(t) -> 0 as t -* oo andf"(t) is bounded, then

f'(t) -* 0 as t -* oo.

Lemma 3. // / G C2[a, oo) and f(t) and /"(/) are bounded, then f'(t) is

bounded.

In this section we consider the behavior of solutions of (L) subject to the

conditions Ci. If _v(/) is a solution of (L) and

F[y(t)\ m r(t)y(t)2 - 2y'"(t)y'(t) + y"(t)2 + p(t)y'(t)2,

then, as may be verified by differentiation,

(1) F[y(t)] = F[yia)\ + [' r'is)yis)2ds - f' [2q(s) - p'is)]y'(s)2ds.
Ja Ja

Under the conditions Ci it is easy to see that if yit) is any nontrivial solution

of (L), y'it) cannot be identically equal to zero in any interval. Hence, the

conditions Ci imply that for any nontrivial solution yit) of (L), F[>>(7)] 7s strictly

decreasing.

Lemma 4. Let the conditions Ci hold. If yit) is a solution of (L) for which

F[y(t)] > Ofor all t G [a, oo) then y(k)(t) -> 0 as t -> oo, k = 0, 1, 2, 3, 4.

Proof. Since r'(t) < 0 and 2.7(7) - p'(t) > d > 0, it follows from (1) that

for all 7 > a, Sa y(s)2ds < F[y(a)]/d and hence

(2) I    /(.j)2c* < +00.
Ja

We assert that y"(t) is bounded. To see this, consider the two possibilities:

(i) y'"(t) vanishes for arbitrarily large values of 7; (ii)y(7) =£ 0 for 7 > 6 > a.

If (i) holds and x is a zero of /"(') then

yAx)2 < f(xMx)2+y"(x)2+/>(x)/(x)2 = F[y(x)] < F[^a)].

Thus if (i) holds, y"(t) is bounded on the set of zeros of y'"(t) and hence

bounded on [a, 00). If (ii) holds, there exists c > b such that y'"(t)y"(t) ¥= 0

for 7 > c. The inequality y'"(t)y"(t) > 0 for t > c implies lim,_>00>''(7) = ±00,

contrary to (2), thus y'"(t)y"(t) < 0 for t > c. Hence, if (ii) holds, /'(/)

approaches a finite limit as t -» 00 and is therefore bounded on [a, 00).
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From the boundedness of y"{t), Lemma 1 and (2) we conclude that

(3) lim /CO = o.
v   ' t—»00

We assert that/(r) must be bounded on [a, oo). To see this consider the two

possibilities: (i)/(0 vanishes for arbitrarily large values of t; (ii)/(0 # 0 for

/ > b > a. If (i) holds and x is a zero of y(f) then, since rix) > m > 0,

yix)2 < m-x[rix)yix)2 + y"{x)2] = m~xF[yix)] < m~xF[yia)].

Thus, if (i) holds, yit) is bounded on the set of zeros of y'(f) and hence bounded

on [a, oo). If (ii) holds, yit) must tend to a finite limit or ±oo as t -> oo. But

since p, q, y' and y" are bounded and r(f) > m > 0 the equality

(4) yW = pit)y" + q(t)y + r(0^

implies that lim,.,^ yit) must be finite so that (ii) implies the boundedness of

From the boundedness of y, y', y", p, q, and r it follows that y"'{t) is

bounded on [a, co), and so by Lemma 3, y"'(f) is bounded on [a, oo). From (3)

and Lemma 2 applied to y'(t) it follows that

(5) lim y"(t) = 0.

The boundedness of .y'4'(0 and (5) together with Lemma 2 imply that

(6) lim /"(/) = 0.

It remains to show that >>(,■) -^ 0 as / -^ oo. To this end we consider F[^(/)].

Since F[^(?)] is nonincreasing and nonnegative, lim^^Ft>>(.")] exists. Thus

(3), (5), (6) and the boundedness of pit) implies

lim F[yit)) = lim (r(t)y(t)2 - y"'{t)yV) + y"{t)2 + p(t)y(t)2)
t—>cc 7->oo

= lim 0(0/(0).
I—>00

Thus, since /-(r) > m > 0 and r'(t) < 0, lim,.,^^?) exists. If this limit were

nonzero, (3), (4), (5), and the boundedness of p and q would imply that

lim,^,^y™(t) exists and is nonzero, contradicting (6). Hence lim,^^^/) = 0

and the proof of Lemma 4 is complete.

Lemma 5. Let the conditions Cx hold. If zit) is a solution of ih) satisfying the

initial conditions z(a) = 0, zfa) = 0, z"(a) = 0, z'"(a) > 0, then lim.^^z^)

= +oo and limj^^z'it) = +oo.

Proof. Since F[z(a)] = 0 and F[z(r)] is strictly decreasing,

F[z(t)] = rOMO2 " 2z"'(0^'(0 + z"it)2 + pit)z'it)2 < 0

for t > a. Hence z'"(t)z'{t) > 0 for / > a and so z'"(0 > 0 for / > a. From

this the conclusion of the lemma follows immediately.
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Theorem 1. Let the conditions C( hold. Let S denote the vector space of

solutions of(L) which tend to zero with their first four derivatives. S has dimension

three,andify(t) is any solution of(V) not in S then lim,^^ \y(t)\ = lim,.,^ \y'(i)\

= oo.

Proof. Let z0, zu z2, z3 denote the solutions of (L) satisfying the initial

conditions

( 0,   k #y,

zf\a) = Skj =j j, k = 0, 1, 2, 3.

( 1.   k=j,

For each positive integer n > a, let a0n, ain, b]n , bin, c2n and c3n be numbers

such that

a0«zo(") + a3nz3(n) = °> blnz'\(n) + b3nzl(n) = °>

c2t.z2(") + c3nz3(n) = °-

and

(7) a\n + a]n = ftf„ + b\n = c22„ + c32„ = 1.

Let un(t), vn(i) and wn(t) be the nontrivial solutions of (L) defined by

"„ = d0nz0 + a3nz3> vn = b\nzl + b3nz3> wn = c2nz2 + c3nz3-   Since   F[u„(t)],

F[vn(t)], and ^"[^(7)] are strictly decreasing on [a, 00) and F[un(n)] > 0,

F[vn(n)] > 0, and F[wn(n)] > 0, it follows that

(8) F[un(t)} > 0,    F[v„(t)} > 0,    F[wn(t)] > 0    for all t G [a,«).

From (7) there exists a sequence of integers [nk) and numbers a0, a3, b\, by,

c2 and c3 such that a0„k -> a0> fl3«* ~» «3> V ~» *i - ^ -» ^3> c2„* -» c2> c3n*

—» c3 as /ir. —> 00. Clearly,

(9) a2, + a2 = Tj2 + 7>2 = c2 + c2 = 1.

Let u(t), v(t) and w(t) be the solutions of (L) defined by

(10) U = <2qZq + (33Z3,     V = b{ Zi  + 63Z3,     w = C2Z2 + C3Z3-

By the linear independence of z0, zl, z2 and z3 and (9) it follows that u, v, and

w are nontrivial solutions of (L). Clearly, u)/J(t) —> u^'(t),j = 0, 1, 2, 3, as

nk -* 00, thus F[«„t(7)] -> F[w(7)] as nk -> 00. Thus, by (8), F[w(7)] > 0 for all

7 > a and similar reasoning shows that /r[f(7)] > 0 and /-"[h^/)] > 0 for all

7 > a. Hence by Lemma 4, u, v and w are members of 5. If h, v, and w were

linearly dependent there would exist constants k{, k2, and 7c3, not all zero, such

that /ej u(t) + k2v(t) + k^w(t) = 0. Hence by (10) and the independence of z0,

zj, z2 and z3 it would follow that 0 = kxa0 = k2bx = /v3c2. If k{ ¥= 0 then

u(7) = ±z3(7), hence by Lemma 5, lim,^^ |w(f)| = 00, contradicting the fact

that u G S. Similarly the assumptions k2 ¥= 0 and /c3 ^ 0 lead to contradic-

tions. Hence w, v, and w are independent and the dimension of 5 is at least

three.
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Consider the solutions u, v, w, and z3. If for some constants a, b, c, and d,

not all zero, auit) + bv{i) + cw{i) + dz3it) = 0 then by the independence of u,

v, and w, d =£ 0 which implies z3 e S, contradicting Lemma 5. Hence u, v, w,

and z3 are independent, and since the order of (L) is four, it follows from the

theory of linear differential equations that for any solution y of (L), y

= au + bv + cw + dz3 for some constants a, b, c and d. Since u, v, and w are

in S and lim,_>00|z3(?)| = +oo,_y e S if and only if d = 0. Hence the

dimension of S is exactly three and for any solution yit) of (L) not in S both

|j>(0| and |/(0| tend to infinity as t tends to infinity.

3. We will now consider the behavior of the solutions of (L) subject to the

conditions C2. Under these conditions if yit) is any nontrivial solution of (L),

/(/) cannot be identically equal to zero in any interval. Moreover the

conditions r'{t) > 0, /(/) - 2qit) > d > 0 and the identity

F[y{t)] = F[yia)] + [' rfs)y2is)ds + V [p\s) - 2qis)]y'is)2ds
Ja Ja

imply that // the conditions C2 hold then for any nontrivial solution yit) of (L) the

function F[yit)] is strictly increasing.

Theorem 2. Let the conditions C2 hold. There exists a solution wit) of(L) with

the properties wit) > 0, wft) < 0, w"(0 > 0, w'"(t) < 0 for all t E [a, oo) and

lim,^ wit) = lim,.^ w'(t) = lim,^ w"(t) = 0.

Proof. Let z0{t), zx it), z2(0 and z3(f) denote the solutions of (L) introduced

in the proof of Theorem 1. For each integer « > a it follows from elementary

algebra that there exist numbers c0n, cXn, c2n and c3n such that

COnzo(n) + c\nz\(") + c2nz2{n) + c3«z3(")  = °-

(11) c0nz'0iri) + cXnz\iri) + c2nz'2in) + c3nz'3in) = 0,

c0„z'6(") + c\nz"\(n) + c2nz2(n) + C3nZ3in) = 0,

c\n + c2Xn + c\n + c\n = 1.

Let wnit) be the solution of (L) defined by wn = c0„z0 + cXnzx + c2nz2

+ c3nz3. By the independence of the solutions z0, zx, z2, z3 and (11), wn is a

nontrivial solution of (L) so that

F[w„(t)] = rit)w2it) - 2<'(/K(0 + <{t? + p{t)w'nit)2

is strictly increasing. Thus, since F[vvn(n)] = 0 it follows that

(12) F[w„(/)]<0   iort G [a,n).

By (11) there exists a sequence of integers nk and numbers C:,j = 0, 1, 2, 3,

such that lim„ ->xCjn = Cj. Let w(f) be the solution of (L) defined by

w = c0z0 + cxzx + c2z2 + c3z3. From the independence of the Zj,j = 0, 1,2,

3, and the equality C2, + c2 + c\ + c3 = 1, it follows that w is a nontrivial

solution of (L) so that F[w(/)] is strictly increasing. Moreover, since for each

fixed t, wjj)(t) -* wV>(t),j = 0, 1, 2, 3, as nk -> oo, F[w„t(?)] -» F[iv(f)] as nk
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-» oo, and so by (12)

(13) F[w(t)\ < 0,    7 G [a,oo).

If for some x G [a, oo), F[w(.x:)] = 0 then, since F[w(7)] is increasing, it would

follow that F[w(t)] > 0 for 7 > x, contradicting (13). Hence

F[w(t)\ = r(7)w(7)2 - 2w'"(t)w'(t) + w"(7)2 + p(t)w'(t)2 < 0

for all 7 G [a, oo). From this we infer (i) w"'(7)w/(7) > 0 for all t G [a, oo); (ii)

lim,^,^ F[w(/)] exists. By interchanging the roles of w(t) and — w(t) we can

assume

(14) w"'(t)<0,    w'(t)<0,    7G[a,oo).

From (ii), the conditions r'(t) > 0, p'(t) - 2q(t) > d > 0 and the identity

F[wit)} = F[w(a)] + f r'is)w(s)2ds + f [/,'(*) - 2qis)]w'is)2ds
Ja Ja

we infer that

(15) w'is)2ds < +oo.
./a

(14) implies that w"(0 ^ 0 for sufficiently large t, and (14) and (15) imply that

w"it) > 0 for sufficiently large 7. Hence by (14),

(16) w"(t) > 0   for all t G [a, oo).

By (14), wit) ¥* 0 for large 7. If w(7) < 0 for large t, lim,^ w(t) = m < 0 or

lim,^00w(7) = -oo. But (14) and (16) imply that w"it) and w'it) are bounded

and so, if the above condition held, the boundedness of pit), qit), Lemma 2,

and the conditions rit) > 0, r'(t) > 0 would imply that w^ = pit)w"

+ qit)w' + rit)wit) < 0 for large 7 which together with (14) contradicts (16).

Hence wit) > 0 for large 7 and so by (14), wit) > 0 for all t G [a, oo). Thus

lim,^00w(7) = c > 0. If c > 0, w^4\t) > a > 0 from a certain point on,

contradictine (14). Hence lim,^^ wit) = 0 and similarly lim,^^ w'(7)

= li ~>roves the theorem.

ons C2 TWri. Let yit) be a nontrivial solution o/(L)

/(?/• i. -'.'it7i /[>(<)] > 0/ / some x G [a, oo). _y(?) cannot be bounded on [a, oo).

Proof. Although an elementary proof based on Lemmas 1, 2, and 3 can be

given, for brevity we will rely on the following nontrivial result due to E.

Esclangon [3] (for another source see [2]): Le7 the functions Pj(t), i = 0, 1, ...,

n, be continuous and bounded for t > t0. If y^"' + P\it)y^"~{' + ••■ + pnil)y

= Poit) and yit) is bounded for t > 70, then its derivatives y^k> (1 </<<«) are

also bounded for t > 70.

To prove the lemma we shall assume that yit) is a nontrivial bounded

solution of (L) with F[.y(7o)] > 0, 70 > a and arrive at a contradiction. Since

n*t)\ = rit)yit)2 - 2y'"(t)/(t) + /'«2 + pi.t)y'(t)2
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is strictly increasing and since Esclangon's theorem and the boundedness of p

and r imply the boundedness of F[.y(0], lini/->oo ̂ MO] exists and is equal to

a positive number a. Hence for t > a,

fcy'isfds < ^[ /fl' [/CO - 2,70)]/0).* + fa r'is)yis)2ds + F[/«)]]

= d~xF[yit)\ < a/d,

and so frf y'{t) dt < +00. Since yA[t) is bounded it follows from Lemma 1

that lim^^y'it) = 0. The boundedness of y'"(t) and y^'{t) and Lemma 2

imply that linr.^/XO = 0 and lim.^/'XO = 0. Thus lim^^Ff//)]
= lim,^^ rit)yit)2. But r(i) > 0, r'(f) > 0 and r(f) is bounded so that

lim,_>ooj'(0 = 8 ¥= 0. Hence lim^^y4'^) = y =£ 0 which contradicts

lim,_,0O/"(0 = 0- This contradiction proves the lemma.

Theorem 3. Let the conditions C2 hold. If zit) is a bounded solution of (L) then

for some constant k, zit) = kwit) where wit) is the solution of (L) whose existence

was established in Theorem 2.

Proof. Let z(/) be a bounded solution of (L) and let k be a number such

that zfa) - kw\a) = 0. Let y(i) = z{t) - kwit). If yit) were not identically

zero then, since F[/a)] > 0, it would follow from Lemma 6 that yit) could

not be bounded, contradicting the boundedness of wit) and zit). This

contradiction proves the theorem.
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