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ASYMPTOTIC PROPERTIES OF MAXIMUM LIKELIHOOD
ESTIMATORS BASED ON CONDITIONAL SPECIFICATION!

By PrANAB KUMAR SEN
University of North Carolina, Chapel Hill

Along with the asymptotic distribution, expressions for the asymptotic bias
and asymptotic dispersion matrix of the preliminary test maximum likelihood
estimator for a general multi-sample parametric model (when the null hypothe-
sis relating to the restraints on the parameters may not hold) are derived and
compared with the parallel expressions for the unrestricted and restricted
maximum likelihood estimators. This study reveals the robustness property of
the preliminary test estimator when the assumed restraints may not hold.

1. Introduction. In a parametric model, assuming that the underlying distribu-
tions are of specified forms and the parameter (vector) @ belongs to a suitable
parameter space Q, the (unrestricted) maximum likelihood estimator (MLE) 0 of 0 is
obtained by maximizing (over 8 € Q) the likelihood function of the sample observa-
tions. Under appropriate regularity conditions, 0 is an (asymptotically) optimal
estimator of 8. In certain problems, w, a proper subspace of £, can be identified
from extraneous considerations and a restricted MLE @ of 0 can be derived by
maximizing the likelihood function subject to the restraint that @ € w. When
0 € w, 0 is (asymptotically) a better estimator than . But, if, contrary to this
assumed restrain, actually 8 & «, then § may not only lose its optimality but also
may be a biased (or even an inconsistent) estimator. This lack of validity-robust-
ness of 0 may be of some concern in a class of problems arising in applied
statistics, where w( C §2) can be suggested from certain practical considerations, but,
there may not be sufficient a priori evidence of @ € w so as to warrant the use of 6
without any reservation. In such a case, a compromise between 0 and 0 based on a
conditional specification appears to be appealing: a preliminary test for Hy : 0 € w is
made and the preliminary test estimator (PTE) 0* is then taken to be 6 or @
according as H, is tenable or not. In view of the asymptotic optimality of the
likelihood ratio test, the preliminary test for H,, is generally based on the likelihood
ratio statistics. Thus, the PTE 8* depends on the restricted and unrestricted MLE’s
as well as on-the likelihood ratio test for H, : 0 € w.

For a variety of specific problems, mostly relating to univariate and multivariate
normal distributions, various workers have considered various PTE’s; we may refer
to Kitagawa (1963) and a recent bibliography by Bancroft and Han (1977). The
object of the present investigation is to study the asymptotic properties of the
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PTMLE 0* under the classical regularity conditions pertaining to the asymptotic
theory of Gor [viz., Aitchison and Silvey (1958)]. Huntsberger (1955) has shown
that for normal populations, the actual mean square error of 8* can not be smaller
than that of § when H, : 8 € w holds. Generally, 8* is not (asymptotically) optimal
or unbiased when 0 € w; nevertheless, it has good asymptotic properties when
0 € . For 0 € w, 8* may perform better than either of 0 and 6. Indeed, 0 may lose
its optimality and its bias may push up its variability when H, does not hold and
0* may perform better than 6. For 0 close to the boundary of w, express1ons for the
asymptotic bias and dispersion matrix have been derived here for each of 0, 6 and
0* and these are incorporated in the study of the comparative performances of
these estimators. These results cast light on the asymptotic superiority of 8* to 0 or
6 when H, may not hold. .

Along with the preliminary notions, these estimators are introduced in Section 2.
Section 3 deals with their asymptotic distributions when H; : @ € w holds. Parallel
results for the nonnull case are presented in Section 4. The last section is devoted
to the asymptotic comparisons of these estimators.

2. Preliminary notions. Since, in a PTE problem, typically, a multi-sample
situation may be involved, we conceive of k (> 1) independent samples. Let
X+ * +» X, be n; independent and identically distributed random vectors
(iid. rv) with a distribution function (df) F(x, 0), for i=1,---, k, where
x € EP, the p(> 1)-dimensional Euclidean space and @ = (4,,- - - ,8) € R C E’,
for some 7 > 1. Actually, for every i (=1, - - , k), F; may not depend on all the
parameters 8,, - - - , §,; rather, each element of 8 is associated with at least one df.
Further, we assume that for each 0 € @ and i (=1, - - , k), F(x, 8) admits a
density function f(x, @) (with respect to some sigma-finite measure p). Then, the
(log-) likelihood function is defined by

(2.1) log L,(X,, 0) = 2’:_12,_,1og f(X;, 0), 6eQ,

where n=n, + - -+ +n, and X, = (X;;, - - -, Xy, ) is the sample point (€ E™).
The true parameter 8, (€8) is not known. An unrestricted MLE 0, is an element
of @ such that

(22) , log Ln(xn’ én) = Supyeq log L,(X,, 0).

Suppose now that @, though unknown, belongs to a subset w, where
(2.3) w={0:h(0) = (h(0), - -,h(6)) =0} for somer <.
Then, a restricted MLE én is an element of w such that
24) log L,(X,, 6,) = supy,, log L,(X,, 0).

For testing H, : 0 € w, the classical likelihood ratio statistic is
(25) £, = —2 log{[suppe, Ln(Xs 0)1/[supscq Ln(X, 0]}

-2 log(Ln(X,,; é,,)/L,,(X,,; 6,,)).
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Let /, , be a real number such that
(2.6) P{£, >1, J|Hy} >a>P{E, >1 |H,},
where a(0 < a < 1) is the desired level of significance of the test. Then the
likelihood ratio test consists in rejecting Hy, : § € w when £, >/, and accepting
H,, otherwise. The PTMLE @} is defined by
(2.7) 0r=6, if £ </,
=9, if £, >/,
Our primary concern is to study the asymptotic properties of {0}} and compare
them with those of {8,} and {0,}, when H|, : 8 € w may or may not hold.
For our study, we make the following assumptions: _

[A1] Q is a convex, compact subspace of E’, and for every §, # 0,, (both €Q),
foratleastonei (= 1,- - -, k),

(2.8) fi(x, 0,) #f(x, 0,), atleast on a set of measure nonzero.

[A2] For every 8 €Q and every i (=1,---,k), Z(0) = [z log fi(x, 0)
dF; (x, 0) exists. In fact, for the ith density, the Kullback-Leibler information is
(2.9) I8, 8o) = [ log{ fi(x, 05)/f(x, 0)} dF, (x, 8y) = Z(8,) — Z(6)
where for every 0 € Q, I,(0, 6,) > 0 with the strict equality only when f(x, 8) =
J{(x, 0y) almost everywhere (a.e.)

[A3] Forevery @ € @ andi (=1, - - -, k), log f(x, 8) is (a.e.) thrice differentia-
ble with respect to @ and

(2.10) |(3°/00;136,206;*)log f,(x, 0)| < G,(x), Vx € E?, 0
wheres; > 0,/ =1,2,3,5; + s, + s =s=1,2,3and 1 <a, b, ¢ <t, and where
(2.11) [gG,(x) dF, (x, 0,) < o0 for i=1,---,k and s=1,23.

(It is possible to eliminate the third order derivatives conditions in (2.10)-(2.11) by
imposing the following:
|

)

It is also possible to avoid both the second and third order derivatives conditions in
(2.10)-(2.11) by those in Huber (1967) and Inagaki (1973). But, these alternative
conditions, in turn, require extra conditions on the first and second order moments

f
o SUPs . 0 gy <8](2/90) log fi(x, 8) ]
— (3/36) log £(x, 0) ] o

9 2
Wlogfi(x, 9)

(212) limg, max; ; 1{ [sup,, : 10— 0ol <8

82
— 'a—gj—a'allogj;(x, 0)}

8

(2.13)
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for small § (> 0). In the sequel we shall deal with (2.10)—(2.11) only—though
towards the end of Section 3, we shall make certain comments on these alternative

conditions.)
[A4] Foreveryi(=1,--:,k)and 8 € ,
(2.14) C 1(92/00,00)f(x, 8) du (x) = 0, Vi l=1,---,¢
Let us define foreach i (=1, - - , k)
(2.15)  BY = ((/£(3/26)) log f(x, )(3/36)) log f(x, 8) dF(x, 9))); 121
[A5] BE", - - -, B{® are all continuous in @ in some neighbourhood of 6, and
(2.16) By = Z%_(n,/n)BY) s positive definite.

[A6] h(0) possesses continuous first and second order, derivatives with respect to
0, V0 = Q. Let then

(2.17) H, = (((3/90)h(0)))  (of order z X r).

[A7] Hy, is of rank r (< #).
[A8] The following matrix (of order (r + &) X ( + 1))

B: .—Ho

2.18 ’ °
19 [
is of full-rank and we denote by

B, —H, |7 [P Q
(2.19) o = . . |-

Hp, 0 Qi Rj

Note that Bj (and hence, Pg, Qg and Rj) may depend on n through

ny, -+ -, n.. We make the final assumption:

[A9] lim, 25 = p, and (0 < p, < 1) exists, V1 <i < k and Z%_,p, = 1.
Under [A9], Bg converges to
(2.20) B, = =% 1PiBsi)
and in (2.19), on replacmg B* by B, the corresponding matrices on the right hand
side (rhs) are denoted by P¢,0 Q,, and R,, respectively; these do not depend on n.
Q|| B, -H
(2.21) S | "

Note that, by definition,
J-6 9
6:),, ﬁoo - H;’o 0 0 I

Note that ]_390, l_’,,o and I—(,,o are all symmetric matrices. For later use, we also define
the vectors,

(222) A,(8) = n~7(3/30)log L,(X,, 0),  AJ = A,(8,),

and for vectors or matrices use the notations 0, and 0, (or 0 and 0) in the sense that
these orders apply to the individual elements of them.

P,
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3. Asymptotic distribution theory under H, : 6, € w. First, consider the case of
the unrestricted MLE @,. Under the assumptions made in Section 2, 8, exists (a.e.),
it almost surely (a.s.) converges to 8, and further [viz., Silvey (1959)],

(3.1) n2(0, — 8,) =B 'AS + 0,(1)  as n—oo.
Also, by a direct application of the multivariate central limit theorem,
(32) Ao 9,(0,B,), as n— oo,
Consequently, from (3.1) and (3.2), we have
(3.3) n%(é,, — 0,) =4 %,(0, 1—3,;,‘) as n— oo.

For the restricted MLE §,, consider the equations
n"7A(8) + HA =0

h(8) = 0

where A (EE") is a Lagrangian multiplier vector; the solutions for @ and A are én

and X,,, respectively. From the results in Section 7 of Silvey (1959), we conclude
that under H,, : 8, € w and the regularity conditions of Section 2, as n — oo,

(3.4)

(3.5) ni(6, — 05) = P AL + 0,(1),
(3.6) nik, = QAL + 0,(1)
and, further, for the likelihood ratio statistic £, in (2.5)

(3.7) £, = n(d, — 6,)B, (6, — 8,) + o,(1).

Note _}hat by (2.21), 1_300_?,0 =_I + I-_Ioo()_;,o, ]—3%6‘,0 = Ho,,ﬁoo’ _H;’ol_:oo =0 and
—Hg Q,, = 1. Thus, noting that Pg = P, we have

(3.8) I_, 905001—; ,00 = F ooﬁool_,oo = ﬁoo + ﬁooHooaloo

= Py, + Py H, Qj, = Py,
Hence, from (3.2), (3.5) and (3.8), we have under H,: 0, € w
(3.9) . n3(6, - ) >0 I,(0,P,), as n— oo

Also, from (3.1), (3.5), (3.6) and (3.7), we have (on using the identities presented
before (3.8)) under H, : 0, € w,

£, = Ag(l?,,o — By, ")By,(Py, — By )AS + 0,(1)
(3.10) = AJQqH; By 'H, Q5 A + 0,(1)
= ~MRy A, + 0,(1) = —AJQ, Ry '04 AY + 0,(1),
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where, by using (2.21), it is easy to show that
(3.11) Qu,R,' Q4 Bs Qo Ro, ' Qp,= —Qu,R;,'Q5,
(3.12) Rank of | —QoR,'Q5,] = r(< #).

Hence, by (3.2), (3.10), (3.11), (3.12) and the Cochran theorem on quadratic forms
in (asymptotically) normally distributed random vectors, we obtain that under

Hy: 6, € w,

(3.13) Ln = X2

and let xf,a be the upper 100a% point of the chi-square df with » degrees of
freedom (DF). Then, from (2.6) and (3.13), we have

(3.19) Lo —=x2 as n-—>o00.
Let us now consider the case of {6}}. By (2.7), we have for every y € E’,
(315) P{ni(03 — ) < y|H,) = P{n3(6, ~ 8) <y, &, <1, ./Ho)
+P{n3(0, ~ 0)) <y, £, > 1, JH,).

By (3.2), (3.5), (3.6), (3.10) and (3.14), the first term on the right-hand side of (3.15)
converges to

(3.16) P{PaAS <y, —nA Ry A, < X3, | Ho}.

Note that by (2.21), Q,,OB,,OP,,0 Q,,o + Q,OH,, Q,,o Q,,o Q¢,o 0, so that P,, A?
and n2A are asymptotically independent, and hence, (3.16) reduces (asymptoti-

cally) to
(B17)  P{PAS < ylH,} P{L, < x2 |Ho} — (1 — a)G(y; 0, Py),

where G,(y; p, £) stands for a t-variate multinormal df with mean vector p and
dispersion miatrix Z. Let us also denote by

(3.18) E = {x € E": —xRy'x > xz,,a}.

Then by (3.1), (3.10) and (3.14), the second term on the right-hand side of (3.15) is
asymptotically equivalent to

(3.19) P{By'AS <y, nik, € E||H,}

where by (3.2) and (3.6), under H,, (ﬁ,g A9, nTX,) has asymptotically a (¢ + r)-
variate normal df with 0 mean and dispersion matrix

B, Q,

(3.20) - ,
Qs, Ry,
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so that the conditional df of B,, 1A® given nzA =zis asymptotlcally multinormal
with mean vector Q, R,, 1Z and dispersion matrix B,, + Q,, R, Q,o = P,, Hence,
(3.19) converges to

(3.21) [£,G(y — QoRa;'Z; 0, Py )dG.(Z; 0, —R,).
From (3.15), (3.17), and (3.21), we obtain, that under H, : 0, € w,
necaP {n2(83 — 6) < y)

(3.22) = (1 - a)G(y; 0, Py

+ [5Gy + Qo,R5,'Z; 0, Py )dG,(Z; 0, —R,),
Vy€EE’

lim

Thus, the asymptotic distribution of n%(l),",‘ — 0,) is, in general, nonnormal. In
particular, if Qq R, ! = 0 (which also implies that Py, = B, 1, (3.22) reduces to

(3.23) Gy; 0, By, )(or G(y 5 0, By ')
so that all the three estimators have the same limiting normal distribution.

Remark. Our (3.1), (3.5) and (3.6), as adapted from Silvey (1959), rest on the
assumptions made in Section 2. As mentioned in Section 2, (2.12) may replace
(2.10)—(2.11) for s = 3. In such a case, our (3.1), (3.5) and (3.6), would follow from
the results of Feder (1968). Also, we may proceed as in Inagaki (1973) and show
that (3.1), (3.5) and (3.6) follow, provided (2.13) satisfies appropriate growth
conditions. The rest of the formulae in this section remain the same irrespective of
the particular approach we choose.

4. Asymptotic nonnull distribution theory. Note that if H, : 6, € w does not
hold (i.e., h(8,) # 0), then there exists a *( Ew), such that
4.1) (0/00)Z(0) + HyA*|g_g- = 0 and h(6*) =0
where A*(€ E”) is a Lagrangian multiplier and 6* # 0, (by assumptions [Al] and
[A2]). In this case, 0, in (2.2) stochastically converges to 8, while 8, in (2.4)
converges stochastically to 8* and, hence, £, in (2.5) tends (in probability) to oo as
n — co. Consequently, by (2.7) and (3.14),
4.2) lim, , P{0* +# 0,10, & v} < lim, , P{£, </, ,|0,& w} =0,
and, hence, noting that (3.3) does not depend on H; : 8, € w being true or not, we
have, from (3.3) and (4.2), for every y € E’,

(43) lim,_ P {ni(8] — ) < yl, & «)
= lim,_, P {n2(0 — 8,) <ylo, & w} = G,(y; 0, ]_3,;1).

Thus, for any (fixed) alternative, nE(O:‘ — 6,) and n7(0,, — 0,) are asymptotically
equivalent in probability and have the same (asymptotic) multi-normal distribu-
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tion. The situation becomes different when 0, lies near the boundary of w. For this
study, we conceive of the following sequence { X} of local alternatives:

(4.4) K, :h(6) =n- %y, v real-vector (EE"),

and consider the asymptotic distributions of the estimators under {K,}.
First, (3.3) holds irrespective of H, or {K,}, and hence

(4.5) lim, P {n*(8, — 8) < y|K,} = G(y; 0, By, , VyeE"

Also, under K, the solutions 8*, A* in (4.1) depend on n and are denoted by
0%y, Al respectively. Note that h(6(,)) = 0. Hence, under (4.4) and the assumptions
of Section 2, we have

1

(4.6) H, (n2(8%) — 8y)} = v + o(1),

1 = 1
4.7) Hy {n2)*(,y} = By {n2(0%,) — 8)} + o(1).
From (4.6) and (4.7), we conclude that
(4.8) lim, ,,n2(0%, — ) =y*  and lim, %A%, = A*
both exist, and '
(49) v =Hyy* Hyd* = Boy*(=A* = —RoHv*, v* = B; 'H,\*).

From (3.4), (4.4), (4.6) through (4.9) and under the assumptions of Section 2, we
obtain that under {X,},

(4.10) nzl(én —6y) = v* + Py Al + o,(1),
(4.11) nik, = A* + QA9 + o,(1),

where é,, is the restricted MLE and X,, is the Lagrangian multiplier in (3.4).
Comparing (3.5) and (4.10) and using the same arguments as in (3.8) and (3.9), we
obtain that for every y € E*,

(4.12) lim, . P{n2(6, — 8) < yiK,} = G(y — v*; 0, B,).

It follows similarly that (3.7) continues to hold under {K,)}, where by (3.1) and
(4.10), we have

n%(é,, -0)=vy+ (l_"‘o0 — I_l,;;l)Ag +0,(1)
(4.13) = By 'HgA* + Qp Hy By 'AS + 0,(1)
= QuR;;'{n74,} + 0,(1).
Thus, under {K,}, as n —»
(4.19) L, = —nkRy'A, + 0,(1).
On noting that, by (2.21), B4 Qy = HgRy, and H, Qs = — L, we conclude from
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(4.11) and (4.14) that under {K,,}, £, has asymptotically a noncentral chi-square df
with r DF and noncentrality parameter

(4.15) A* = A*Hy By 'Ho A* = —A*Ry 'A*;
we denote this df by II (x; A*). Then, from (2.7) and (3.14),
P{ni(6; - 6) < ylK,}

= P{n%(én = 05) <V, £, <1,.lK,}
(4.16) 10
+P{ni(8, ~ 0) <¥. £, > 1K),

Vy€eEE'.
Since by (2.21), Pj By Qo, = Py H, Ry, = 0, we conclude from (4.10) and (4.11) that

under K, n%(é,, — 6y) and n%in (and hence, by (4.14), £,) are asymptotically
independent, so that by (3.2), (4.10), (4.11), (4.14) and (4.15), the first term on the
right-hand side of (4.16) converges to

(4.17) Gy — 7% 0, Pg JIL(x2 ,; A%).
Also, let
(4.18) E*(c) = {y eEE:—(y+ c)’l_l,;l(y +¢) > x3 a}, Ve € E".

Then, by (3.1), (3.2), (4.11), (4.14) [ and the fact that by (2.21), Qg R, 'Qj, = Py, —
B,, 1, we obtain, for the second term on the right-hand side of (4.16),

4.19) P{Bg'AS <y, n7A, € E,(0)|K, )
= [5Gy + Qo Rz 'z — A*); 0, B, )dG,(z; A*, —Ry ) + o(1)
= [5,09G(Y + QoRe'x; 0, Pg )dG,(x; 0, —R, )} + o(1).
From (4.16), (4.17) and (4.19), we arrive at the following.
THEOREM 4.1. Under {K,} in (4.4) and the assumptions of Section 2,
lim,.P {n3(8; ~ 8) <y } = G(y — v* 0, B JIL(x2 . A*)
+ f E,(A')G;(Y + aooﬁi) Ix; 0, I_’,,o)dG,(x; 0, —ioo)
(4.20) = GX(y; v) say, (y € E*).
Here also, if Qq R, = 0, (4.20) reduces to
(421) Gy — v 0, Py )IL(x2 s A*) +[1 - TL(x2 .; A*)]G(y; 0, B

(that is a mixture of two multinormal df’s). But, in general, it is nonnormal. For
later use, we denote the probability density functions (pdf) corresponding to G, and
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G’ by g, and g*, respectively. Then,
422)  g* ¥, v) = &(y — v*: 0, Pa )IL(:E . A%)
+/ El(,\.)g,(y + (_)Ooil;, 1x: 0, I_’,,o)g,(x; 0, —l_l,,o)dx, Vye€E"'.

5. Asymptotic comparison of the estimators. Let {T,} be a sequence of estima-
tors of 8, such that n%(T,, — 0,) has a limiting distribution with finite second
moments. Then the mean vector and dispersion matrix (about the origin) of this
limiting df are taken as the asymptotic bias and asymptotic dispersion matrix (a.d.m.)
of n%(T,, — @,). In this section, we study the asymptotic bias and a.d.m. of each of
the three estimators considered in earlier sections and compare them. We confine
ourselves to the sequence { K} of alternative hypotheses in (4.4), so that the null
hypothesis case follows by letting y = 0.

It follows from (3.1), (3.2) and (3.3) that

(5.1) B,(y) = asymptotic bias of n%((;,, — 8,) when { K, } holds
= fE.de,(y; 0, ]_3,,‘01) = 0;
(5.2) »(v) = a.d.m of n7(6, — 8;) when {K,} holds

= [z YdG(y; 0, B;') = B ".
Similarly, from (3.2) and (4.10), we have

(5.3) B.(y) = asymptotic bias of n%(é,, — 0,) when { K,} holds,
=yt = 6001_1;;“*;
(54) v,(v) = a.d.m. of nz(6, — 8,) when {K,} holds

= y*y* + F,,oﬁoo_g,o = y*y* + I—’,,O.
At this stage, we note that for a multinormal df G,(x; 0, D),

(55) f(x+a)’D“(x+a)>chGp(X; 0, D) = a[Hp(C’ 8) - Hp+2(c’ 8)]’
Vac€ El,¢c>0;

f(x+a)'D—'(x+a)>cXX'de(x§ 0,D) = {1 - np+2(0; 8)}])
(56) ~aa (L, (c; 8) — 20T, . o(c; 8) + IL, . (c; 8))
where 8 = a’'D ™ 'a. Thus, from (4.20), (4.21) and (5.5), we have
B*(y) = asymptotic bias of ni (6% — 6,) when {Kn} holds
(5.7) = Y*IL(X}, o5 A%) — QaRe, A [IL(X}, o5 A%) — L, o(x7, o5 8%)]
= Gooio"olA*H,”(xz,,a; A¥), (as Yt = (_),,ol_l,;)‘}\*);
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from (4.20), (4.21) and (5.6), we have
»*(y) = a.d.m. of n2(8* — 8,) when { K, } holds,
= (77" + Po)IL(x2 o5 A%) + P {1 — IL(x2 .5 &%)}
+ Qo Re { —[1 = 1T, 5(x2 o3 A%) [Ry, — N*A¥[IL (X2 ,; A%)
=210, ,5(x% oi A%) + TL, (X2 o5 8%)] [R5 'Qy,
(5.8) =Py, —[1 = TL.5(x3, &3 4%) JQe,Rs, 'Q5,
+y*y* {200, (5% o5 A%) — I, (x% o A%))
= B! + (Po, — By )TL 1503 o A%) + vy {200,15(x2, 5 A%)

Hr+4(x2r, u; A*)}

We now proceed to compare the asymptotic bias and a.d.m. of the three
estimators. First, consider the null hypothesis case where 8, € w, so that y* =0, v
= 0 and A* = 0. From (5.1), (5.3) and (5.7), we obtain that
(59) y* = 0= 8,(0) = B,(0) = B*(0) = 0,
so that all these estimators are asymptotically unbiased. Also, from (5.2), (5.4) and
(5.8), we have for y = 0,

(5.10)

»(0) = E(Z,l’ »(0) = ﬁo0 and »*(0) = ﬁoz,l - (ﬁo_ol - l_)o(,)Hmz(er,m? 0)
where
(5.11) 0 <IL4y(x7 2 0) <IL(x3as0)=1-a <L
Also, by the identities in (3.8) and prior to it, we note that both Bo P,, and
—H,, Qo are idempotent matrices and B,, is nonsingular. Hence, it follows that
(5.12) Eoo - P¢,o is positive semidefinite (p.s.d.).

From (5.10), (5.11) and (5.12), we conclude that
(5.13)  »,(0) — »,(0), »,(0) — »*(0) and »*(0) — »,(0) are all p.s.d.

In the multiparameter case, the relative efficiency may be judged by the
generalized variance (D-optimality) or the trace of the covariance matrix (4-opti-
mality) criterion. In view of the fact that by (2.18)-(2.20), both ﬁo,, and ?oo are of
full-rank, we have »,(0), »,(0) and »*(0) also of full rank. Hence, we have no
difficulty in applying the first criterion. Similar results hold for the second criterion
too. We define the asymprotic generalized variance as the tth root of the determinant
of the a.d.m. In this light, the asymptotic relative efficiency (A.R.E.) of {6*} with
respect to {,} when Hy : 8, € w holds is

(5.14) eo(8*, 6) = {|n,(0)|/p*(0)]}"".
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Similarly, the A.R.E. of {68*) with respect to {8,} is

(5.15) eo(6*, 8) = {|»,(0)|/1*(0)|}"/".
Now, by (5.13), we have
(5.16) (0] > [7*(0)] > |p(0)],

where the equality s1gn (in both places) holds when B,, = I_’,,o ie, H,,OG;,O =0 or
equivalently, Q,, R, = 0. This leads to the following.

THEOREM 5.1.  Under the assumptions made in Section 2, when H, : 8, € w holds,
(5.17) eo(0*, 0) < 1 < (0%, 6),
where in both places the equality sign holds when (_)ool_{,‘ol = 0.

From Theorem 5.1 we conclude that under H,, {0} may not perform as well as

{6,); nevertheless, it is asymptotically at least as good as {0,}, and hence, the
PTMLE {087} may be recommended as a replacement for the unrestricted MLE

(6,}-

Let us next consider the general case when { K} in (4.4) holds. It follows from
(5.1), (5.3) and (5.7) that
(518) B =0,B(v) =y and B*y) =II,,,(x2 .; A*)B,(Y),
where 0 < IT,,,0¢3 o5 %) < I, ,(x% ,; 0) < II /(X% ,;0)=1—a < 1. Thus, on
noting that
(5.19) limgy o811, 4 2(X2, o5 8) = 0,

we conclude that whereas 8, is asymptotically unbiased, é,, and 8% are not so, and,
moreover, 0F has smaller asymptotic bias than é Also, the asymptotic bias of 6
goes to oo if ||y|| — oo, where as l¥]l > o (= A* — ), the asymptotic bias of
0r — 0. Thus, 6 has an edge over 0 with respect to the asymptotic bias. From
(5.2) and (5.4), the A.R.E. of {8} with respect to {0,,} is given by

. A o= 1/
e(d, 8lv*) = {IP,, + v*v*I/1B;|} "
— = - 1/
= {IBo,Payllz + By'y*y|}
(5.20) . _ 1
= ¢(9, OIO){II + P,;'y"‘y*’l}

= ¢(9, é]O){l + y*'I_’_l "‘}l/’

as y*y*' i 1s of rank 1, so that | I + P, y y""l = product of the characteristic roots
of I+ P, -y *y* = | + largest root of P, Yy =1+ 7*’P‘ *. Thus, if we let

(5.21) S = {v*: 1+ y*Byly* > 1/¢'(6, 60) = (B, Py.| ,
then, from (5.20) and (5.21) we conclude that
(5.22) e(0,0vy*)>1, Vyres,.
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Similarly, it follows from (5.4) and (5.8) that

Py, + ¥*v*| 1/
[Ps, + a(8%)(By,' = Py,) + b(A")y*y"]

(523)  e(0%, 0]y*) = {

where
(5.24) a(A*) =1 —1I,,,(x% .; A*)  and
b(A*) = 200, 5(X3, o5 8%) — TL,4(x3 o5 A*).

Now a(A*) > a, VA* > 0 and it converges to 1 as A* — oo. Also, 0 < b(A*) <
H,(xz,'a; A*) - 0 as A* — 0. Thus, by (5.12), (5.23) and (5.24), we conclude that
for y* close to 0, (5.24) is less than 1, while it exceeds 1 for all ¥* for which A* is
> A where

(525) a(ap)[Bg' — P, | =[1 - b(AD]vEW and  yyBeys = 4.
Thus, if we let

(5.26) S; = {v* DY Byt > Aé‘},
then, from (5.23) through (5.26), we conclude that
(5.27) e(0*, 0ly*) > 1, forevery y* €S,

We also note that if 1—3,‘0 = I_’,,o, then for every y* # 0, b(A*) being bounded from
above by 1, (5.23) is greater than 1; it tends to « as A* — o0. In this case, S,
constitutes the entire set of permissible values of y*. This leads us to the following.

THEOREM 5.2. Under the assumptions made in Section 2, when {K,} in (4.4)
holds,

(5.28) e(6*,0ly*) > 1 forevery y*€ES,,
where S, is defined by (5.26). Further, if l—ii = l_’oo, then the strict inequality sign in
(5.28) holds for every y* # 0. Moreover, the AR.E. in (5.28) tends to + o as y*

moves away from 0 i.e., A* goes to + o0.
From (5.2), (5.8) and (5.24), we obtain that

(529) (6%, Oly*) = {IBs' — {1 — a(a%){By,! — Py} + 6(8%) y*vI1Bs)}

= {11+ 6(A"Boy*y* — (1 ~ a(a*))(1 — BoPe )1} "

Thus, for ¥* close to 0, (5.29) exceeds one, while, it is less than or equal to one
when ¥* is away from 0 (in the sense that A* — o). Note that when 1_3",; = l_’,o, the
third term in the determinant on the right hand side of (5.29) drops out and as
b(A*) > O for every A* > 0, (5.29) can not exceed 1 for any y* # 0. Usually b(A*)
is small and (5.29) remains close to 1. Further, 5(A*) converges to 0 as A* —
while a(A*) goes to 1 as A* — oo, and hence, (5.29) converges to 1 as y* moves
away from 0 (i.e., A* — o0). Thus, for large A*, {0*} and {0,) have similar
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performances (better than {6,}), while for smaller values of A*, (8,} appears to
have an edge over the others. In particular, if ﬁi = l—’oo then the restricted MLE
has no better performance even if H, : 6, € w holds, and hence, it should not be
recommended as a substitute for the unrestricted one. Combining these with (5.9),
(5.17) and (5.18), we conclude that the restricted MLE, 0, though is asymptotically
optimal when H,, : 6, € w holds, is (asymptotically) biased and its a.d.m. becomes
larger (in the sense of the generalized variance or the trace) when y* moves away
from 0 and this makes it less efficient when H, : 8, € « may not hold. On the
other hand, the unrestricted MLE @, remains asymptotically unbiased for 8,
irrespective of Hj : 8, € w, but it is usually not optimal when H, holds. As a
compromise, the PTMLE 0 performs better than 9',, when ¥* is small and has
uniformly a lower order of bias than (5,,. For large y*, it performs better than 5,,
and very similar to é,,. Hence, it can be recommended on the grounds of robustness
against any deviation from H, : 6, € «. If, however, ﬁi lm 1300, then the unre-
stricted MLE can be recommended without any reservation and there is no point
in using either a restricted MLE or a PTMLE. Nonoptimality of the PTMLE under
H, has been studied by Huntsberger (1955) for the special case of normal
distributions. His conclusions do not remain valid when H, does not hold. We
define

(5.30) Sy={y:[1- a(8*)][By' - 13,0] ~ b(A%)y*y* isps.d. ;
(5.31) S*=S,n S,

where S, is defined by (5.26). Note that if I_lo‘o = I_’oo, then S* is an empty set.
From (5.27), (5.29), (5.30) and (5.31), we arrive at the following.

THEOREM 53. Under {K.} in (4.4) and the regularity conditions of Section 2,
whenever S* is a nonempty set,

(5.32) e(0*, 0y*) > 1 and e(6* Gly*) > 1, Vy* e St

The last theorem reveals the superiority of the PTMLE near the boundary of w
when 7 is large. We conclude this section with the following remark. The asymp-
totic distribution theory of the PTMLE and the A.R.E. of all the three MLE’s
studied in this paper rest on the asymptotic multinormality of the unrestricted and
the restricted MLE’s as well as on the asymptotic (noncentral) chi-square distribu-
tion of L,, defined in (2.5). In some problems, arising mostly in testing against
one-sided or restricted alternatives, a variant form of L, may arise, which does not
have asymptotically a noncentral chi-square distribution. For example, if k = 2
and F,, F, are both normal with a common variance ¢ and means g, and p,,
respectively, then, for testing Hy : u, = p, against H, : g, > p, (or g, < ), the
one-sided optimal test is based on the Student ¢-statistic which has asymptotically a
normal distribution. In that case, the effect of such a one-sided test will be a
somewhat different asymptotic distribution of the PTMLE where (5.7) may not be
equal to 0 when H,, holds. This asymptotic bias depends on the level of significance
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of the preliminary test but is usually small. This bias of the PTMLE may also affect
(5.17) to a certain extent. In this simple case, the situation is similar to the
nonparametric PTMLE studied by Saleh and Sen (1978) and Sen and Saleh (1979).
But, in a general framework of preliminary tests against restricted alternatives,
expressions for the asymptotic bias and a.d.m. of the PTMLE’s are quite involved
and different from the parallel ones considered here. As a result, conclusions about
the A.R.E. of the PTMLE may also be different from the ones obtained here.

Acknowledgment. Thanks are due to the referees for their critical reading of the
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