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We investigate the asymptotic properties of the inhomogeneous nonautonomous evo-
lution equation (d/dt)u(t) = Au(t)+ B(t)u(t)+ f (t), t ∈ R, where (A,D(A)) is
a Hille-Yosida operator on a Banach space X, B(t), t ∈ R, is a family of opera-
tors in �(D(A),X) satisfying certain boundedness and measurability conditions and
f ∈ L1

loc(R,X). The solutions of the corresponding homogeneous equations are repre-
sented by an evolution family (UB(t, s))t≥s . For various function spaces � we show
conditions on (UB(t, s))t≥s and f which ensure the existence of a unique solution con-
tained in �. In particular, if (UB(t, s))t≥s is p-periodic there exists a unique bounded
solution u subject to certain spectral assumptions on UB(p,0), f and u. We apply
the results to nonautonomous semilinear retarded differential equations. For certain
p-periodic retarded differential equations we derive a characteristic equation which is
used to determine the spectrum of (UB(t, s))t≥s .

1. Introduction

Consider the inhomogeneous nonautonomous evolution equation

d

dt
u(t)= A(t)u(t)+f (t), t ∈ R, (1.1)

where A(t), t ∈ R, are (unbounded, linear) operators on a Banach space X and f ∈
L1

loc(R,X). Assume that the homogeneous equation

d

dt
u(t)= A(t)u(t), t ∈ R, (1.2)

is well posed in the sense that the solutions of (1.2) define a uniquely determined
evolution family (U(t, s))t≥s of bounded operators on X. In that case solutions u :
R →X of the integral equation

u(t)= U(t,s)u(s)+
∫ t

s

U(t,σ )f (σ )dσ, t ≥ s, (1.3)
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can be interpreted as mild solutions of (1.1). It has been shown in [5, 22, 23] that for
each f ∈ Cb(R,X) (respectively, C0(R,X)) equation (1.1) has a unique mild solution
u ∈ Cb(R,X) (respectively, C0(R,X)) if and only if the evolution family (U(t, s))t≥s
has an exponential dichotomy (see also [12, 24] when the operators A(t), t ∈ R, are
bounded). For a detailed account of the numerous other results in this direction we refer
to [7, 22].

Now assume that (1.2) is p-periodic, that is, A(t +p) = A(t), t ∈ R. It has been
shown in [6, 19, 27, 30] that under a certain spectral condition (nonresonance condition)
on the monodromy operator U(p,0) and the inhomogeneity f there is a p-periodic
(respectively, almost periodic) mild solution of (1.1) provided that f has the same
property. Moreover, u is unique subject to certain spectral assumptions. If (U(t, s))t≥s
has an exponential dichotomy, then the nonresonance condition is always satisfied and
we obtain existence and uniqueness of a p-periodic (respectively, almost periodic) mild
solution of (1.1) for every p-periodic (respectively, almost periodic) inhomogeneity f .
We point out that in [10, 31] related results are discussed for Volterra equations (see
also [32]).

In the present paper, we study the modified equation

d

dt
u(t)= (

A+B(t))u(t)+f (t), t ∈ R, (1.4)

where (A,D(A)) is a Hille-Yosida operator on the Banach space X, B(t), t ∈ R, is
a family of operators in �(D(A),X), and f ∈ L1

loc(R,X). We stress that, in general,
X0 = D(A) is a proper subspace of X from which the main difficulties arise. Our
approach is based on the theory of extrapolation spaces associated with the operator A
(see Section 2 and [26]). In particular, it is used in our definition of mild solutions of
(2.3). Moreover, it allows to show that under a certain boundedness and measurability
condition on the family B(t), t ∈ R, there is a (unique) evolution family (UB(t, s))t≥s
on X0 associated with the homogeneous equation

d

dt
u(t)= (

A+B(t))u(t), t ∈ R, (1.5)

(cf. [9, 33]). The evolution family (UB(t, s))t≥s is used to derive another representation
of the mild solutions of (2.3) (see Theorem 2.2). This representation is crucial for
the investigations in Section 3. There we extend the above-mentioned results on the
existence and uniqueness of mild solutions of (1.1) satisfying a particular asymptotic
behavior to mild solutions of (2.3). We point out that in the autonomous case, that
is, B(t) = B, similar results are obtained in [2]. In Section 4, we discuss asymptotic
properties of mild solutions of the semilinear nonautonomous equation

d

dt
u(t)= (

A+B(t))u(t)+F (
t,u(t)

)
, t ∈ R, (1.6)

where the nonlinearity F : R ×X0 → X satisfies a standard Lipschitz condition. In
Section 5, the advantage of our approach becomes visible when we study inhomoge-
neous nonautonomous retarded differential equations

d

dt
w(t)= Cw(t)+K(t)wt+h(t), t ∈ R, (1.7)
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on a Banach space Y . A standard procedure (cf. [16, 33, 39]) allows to transform
(5.1) into an equation of the form (2.3) on a different Banach space. Now the results
of Section 3 can be applied to investigate asymptotic properties of mild solutions of
(5.1). For a special periodic retarded differential equation we derive a characteristic
equation which makes it easier to verify the spectral conditions in our results (see
Theorem 5.9). Finally, we point out that in finite dimensions asymptotic properties
of solutions of inhomogeneous retarded differential equations have been studied in
[37] under the assumption that the corresponding homogeneous equation admits an
exponential dichotomy (see also [17, Section 6.6.2], [29]).

2. Mild solutions and extrapolation spaces

We first recall some properties of Hille-Yosida operators and extrapolation spaces. For
more details we refer to [26] and the references therein. Throughout the whole paper
X denotes a Banach space and (A,D(A)) is a Hille-Yosida operator on X, that is, A is
linear and the resolvent set ρ(A) of A contains a half-line (ω,∞) such that

M = sup
{∥∥(λ−ω)nR(λ,A)n∥∥ : λ > ω; n ∈ N

}
<∞, (2.1)

where R(λ,A) = (λ−A)−1 is the resolvent of A at λ. It is well known that the
part A0 of A in X0 = D(A) generates a C0-semigroup (T0(t))t≥0 on X0 and that
‖T0(t)‖ ≤ Meωt , t ≥ 0. For λ ∈ ρ(A0) the resolvent R(λ,A0) is the restriction of
R(λ,A) to X0.

Typical examples of Hille-Yosida operators appearing in partial differential equations
can be found, for example, in [11], see also Section 5. On X0 we introduce the norm
‖x‖−1 = ‖R(λ0,A0)x‖, where λ0 ∈ ρ(A) is fixed. A different choice of λ0 ∈ ρ(A)
leads to an equivalent norm. The completion X−1 of X0 with respect to ‖ · ‖−1 is
called the extrapolation space of X0 with respect to A. The extrapolated semigroup
(T−1(t))t≥0 consists of the unique continuous extensions T−1(t) of the operators T0(t),
t ≥ 0, to X−1. The semigroup (T−1(t))t≥0 is strongly continuous and its generator A−1

is the unique continuous extension of A0 to �(X0,X−1). Moreover, X is continuously
embedded in X−1 and R(λ,A−1) is the unique continuous extension of R(λ,A) to
X−1 for λ ∈ ρ(A). Finally, A0 and A are the parts of A−1 in X0 and X, respectively. It
follows from [26, Proposition 3.3], that for f ∈ L1

loc(R,X) and t ≥ s∫ t

s

T−1(t−σ)f (σ )dσ ∈X0,

(t, s) �−→
∫ t

s

T−1(t−σ)f (σ )dσ is continuous,∥∥∥∥
∫ t

s

T−1(t−σ)f (σ )dσ
∥∥∥∥ ≤M1

∫ t

s

eω(t−σ)‖f (σ)‖dσ for a constant M1 ≥ 1.

(2.2)
We consider the inhomogeneous nonautonomous evolution equation

d

dt
u(t)= (

A+B(t))u(t)+f (t), t ∈ R, f ∈ L1
loc(R,X), (2.3)
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where (A,D(A)) is a Hille-Yosida operator on the Banach spaceX andB(t)∈�(X0,X),
t ∈ R, is a family of operators such that t �→ B(t)x is strongly measurable for every
x ∈ X0 and ‖B(·)‖ ≤ b(·) for a function b ∈ L1

loc(R). For our purposes the notion of a
mild solution of (2.3) is most useful. We point out that our definition of a mild solution
coincides with that given in [8], the F -solutions in [11], the weak solutions in [13] and
the integral solutions in [39].

Definition 2.1. If f ∈ L1
loc(R,X) and T ≥ s, then u= u(·,f ) ∈ C([s,T ],X0) is called

a mild solution of (2.3) on [s,T ] if

u(t)= T0(t−s)u(s)+
∫ t

s

T−1(t−σ)
(
B(σ)u(σ )+f (σ))dσ for t ∈ [s,T ]. (2.4)

A function u = u(·,f ) ∈ C(R,X0) that satisfies (2.4) for all t ≥ s in R is called a
mild solution on R of (2.3).

Under our assumptions on A and B(t), t ∈ R, it follows that for f ∈ L1
loc(R,X) and

s ∈ R there is a unique mild solution u= u(·,f,s,x) ∈ C([s,∞),X0) of

d

dt
u(t)= (

A+B(t))u(t)+f (t), t ≥ s, u(s)= x ∈X0, (2.5)

(cf. [15] or Theorem 2.2). Mild solutions of the homogeneous equation

d

dt
v(t)= (

A+B(t))v(t), t ∈ R, (2.6)

have another representation. For that we need the following notion. A family (U(t, s))t≥s
in �(X0) is called an evolution family on X0 if U(t, t) = Id, U(t,r)U(r,s) = U(t,s)
for t ≥ r ≥ s and (t, s) �→ U(t,s)x is continuous for t ≥ s and x ∈X0. It is known (cf.
[9, Theorem 2.3], [33, Theorem 2.3], where a slightly more special situation is consid-
ered) that there exists a unique evolution family (UB(t, s))t≥s on X0 that satisfies the
variation-of-parameters formula

UB(t,s)x = T0(t−s)x+
∫ t

s

T−1(t−σ)B(σ)UB(σ,s)x dσ, t ≥ s, x ∈X0. (2.7)

Thus t �→ UB(t,s)x is the unique mild solution on [s,∞) of the initial value problem

d

dt
u(t)= (

A+B(t))u(t), t ≥ s, u(s)= x ∈X0. (2.8)

Gronwall’s inequality (cf. [1, Corollary II.6.2]), the estimate in (2.2), and (2.7) imply∥∥UB(t,s)∥∥ ≤Meω(t−s)+M1
∫ t
s b(σ )dσ , t ≥ s, (2.9)

for the constantsM ,M1 ≥ 1. In particular, if ‖B(·)‖ is bounded from above by a function
b ∈ L1

loc,u(R), that is, ‖b‖1,loc,u = supt∈R

∫ t
t−1 |b(σ )|dσ <∞, then the evolution family

(UB(t, s))t≥s is exponentially bounded, that is, ‖UB(t,s)‖ ≤ Neβ(t−s) for t ≥ s and
constants N ≥ 1, β ∈ R. In the following result we give a representation of mild
solutions of (2.3) in terms of the evolution family (UB(t, s))t≥s . A special case has
been discussed in [16, Theorem 3.6].
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Theorem 2.2. Let f ∈ L1
loc(R,X), s ∈ R, and x ∈ X0. Then there is a unique mild

solution u ∈ C([s,∞),X0) of (2.5) given by

u(t)= UB(t,s)x+ lim
λ→∞

∫ t

s

UB(t,σ )λR(λ,A)f (σ )dσ for t ≥ s. (2.10)

Moreover, limλ→∞
∫ t
s
UB(t,σ )λR(λ,A)f (σ )dσ ∈ X0 exists uniformly for t ≥ s in

compact sets in R.

Proof. Let λ > ω and set

wλ(t,s)=
∫ t

s

UB(t,σ )λR(λ,A)f (σ )dσ, t ≥ s. (2.11)

Then (2.7) leads to

wλ(t,s)=
∫ t

s

T0(t−σ)λR(λ,A)f (σ )dσ

+
∫ t

s

(∫ t

σ

T−1(t−τ)B(τ)UB(τ,σ )λR(λ,A)f (σ )dτ
)
dσ

= λR(λ,A0)

∫ t

s

T−1(t−σ)f (σ )dσ

+
∫ t

s

(∫ τ

s

T−1(t−τ)B(τ)UB(τ,σ )λR(λ,A)f (σ )dσ
)
dτ

= λR(
λ,A0

)∫ t

s

T−1(t−σ)f (σ )dσ +
∫ t

s

T−1(t−σ)B(σ)wλ(σ,s)dσ, t ≥ s.
(2.12)

If z(t, s)= ∫ t
s
T−1(t−σ)f (σ )dσ , t ≥ s, then by (2.2) for λ,µω∥∥wλ(t,s)−wµ(t,s)∥∥ ≤ ∥∥(

λR
(
λ,A0

)−µR(
µ,A0

))
z(t, s)

∥∥
+M1

∫ t

s

eω(t−σ)b(σ )
∥∥wλ(σ,s)−wµ(σ,s)∥∥dσ. (2.13)

From (2.2) it follows that z is a continuous mapping into X0. Hence

lim
λ,µ→∞

∥∥(
λR

(
λ,A0

)−µR(
µ,A0

))
z(t, s)

∥∥ = 0 (2.14)

uniformly for t ≥ s in compact intervals. Thus if ε > 0 and I ⊆ R is a compact interval,
then by (2.13) there is a constant M̃ depending only on the length of I such that

∥∥wλ(t,s)−wµ(t,s)∥∥ ≤ ε+M̃
∫ t

s

b(σ )
∥∥wλ(σ,s)−wµ(σ,s)∥∥dσ (2.15)

for t ≥ s in I and λ,µ > ω sufficiently large. An application of Gronwall’s inequality
(see [1, Corollary II.6.2]) leads to the estimate

‖wλ(t,s)−wµ(t,s)‖ ≤ εeM̃
∫ t
s b(σ )dσ (2.16)



174 Asymptotic properties of mild solutions of nonautonomous …

for t ≥ s in I and λ,µ > ω sufficiently large. Hence w(t,s)= limλ→∞wλ(t,s) exists
uniformly for t ≥ s in compact intervals.

Since A is a Hille-Yosida operator it follows from the definition of wλ that
sup{‖wλ(t,s)‖ : λ > ω+1; t ≥ s in I } <∞. Hence, by (2.12) and Lebesgue’s domi-
nated convergence theorem, we have

w(t,s)=
∫ t

s

T−1(t−σ)B(σ)w(σ,s)dσ +
∫ t

s

T−1(t−σ)f (σ )dσ, t ≥ s. (2.17)

Now consider the function

u(t)= UB(t,s)x+ lim
λ→∞

∫ t

s

UB(t,σ )λR(λ,A)f (σ )dσ = UB(t,s)x+w(t,s), t ≥ s.
(2.18)

By (2.17) and (2.7), we obtain

u(t)= UB(t,s)x+
∫ t

s

T−1(t−σ)B(σ)w(σ,s)dσ +
∫ t

s

T−1(t−σ)f (σ )dσ

= T0(t−s)x+
∫ t

s

T−1(t−σ)B(σ)
(
UB(σ,s)x+w(σ,s))dσ

+
∫ t

s

T−1(t−σ)f (σ )dσ

= T0(t−s)x+
∫ t

s

T−1(t−σ)
(
B(σ)u(σ )+f (σ))dσ.

(2.19)

Hence u is a mild solution of (2.3).
If ũ ∈ C([s,∞),X0) is another mild solution of (2.5) we obtain

u(t)− ũ(t)=
∫ t

s

T−1(t−σ)B(σ)
(
u(σ)− ũ(σ ))dσ, t ≥ s, (2.20)

and an application of Gronwall’s inequality yields u= ũ. �

Remark 2.3. If in Theorem 2.2 we assume that f ∈ L1
loc(R,X0), then the function

u ∈ C([s,∞],X0) is a mild solution of (2.5) if and only if

u(t)= UB(t,s)x+
∫ t

s

UB(t,σ )f (σ )dσ, t ≥ s. (2.21)

Theorem 2.2 has the following immediate consequence.

Corollary 2.4. If f ∈ L1
loc(R,X), then u ∈ C(R,X0) is a mild solution of (2.3) if and

only if

u(t)= UB(t,s)u(s)+ lim
λ→∞

∫ t

s

UB(t,σ )λR(λ,A)f (σ )dσ for t ≥ s. (2.22)
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In our next result we improve the convergence of the integrals considered in Theorem
2.2. By BUCr (R,X) we denote the space of bounded, uniformly continuous functions
f from R into X such that f has relatively compact range.

Proposition 2.5. Let ‖B(·)‖ ≤ b(·) for some b ∈ L1
loc,u(R) and let f ∈ BUCr (R,X).

Then, for fixed s > 0, the limit

lim
λ→∞

∫ t

t−s
UB(t,σ )λR(λ,A)f (σ )dσ (2.23)

exists uniformly for t in R.

Proof. We claim that the function

ψ : R −→X0 : t �−→ z(t, t−s)=
∫ t

t−s
T−1(t−σ)f (σ )dσ =

∫ s

0
T−1(σ )f (t−σ)dσ

(2.24)
has relatively compact range. In fact, fix ε > 0. There exists δ = s/n > 0 for an n ∈ N

and a function g : R →X such that g is constant on each interval [kδ,(k+1)δ),k ∈ Z,
the range of g is contained in a finite set K ⊆ X, and ‖f − g‖∞ ≤ ε. From (2.2) it
follows that the mapping

(r,x) �−→
∫ r

0
T−1(σ )x dσ (2.25)

from R+ ×X into X0 is continuous. The range of

φ : R −→X0 : t �−→
∫ s

0
T−1(σ )g(t−σ)dσ (2.26)

is contained in K0 = {nT0(τ )
∫ r

0 T−1(σ )x dσ : 0 ≤ τ , r ≤ s; x ∈ K}, and hence, K0

is compact. On the other hand, by (2.2), there is a constant N independent of t ∈ R

such that∥∥∥∥
∫ s

0
T−1(σ )

(
f (t−σ)−g(t−σ))dσ∥∥∥∥ ≤N

∫ s

0
‖f (t−σ)−g(t−σ)‖dσ ≤Nsε.

(2.27)
Thus the range of ψ is contained in K0 +NsεBX0 , where BX0 denotes the closed unit
ball of X0. In particular, the range of ψ is totally bounded, which proves the claim.

Since ψ has relatively compact range we obtain

lim
λ→∞

(
λR

(
λ,A0

)−µR(
µ,A0

))
z(t, t−s)= 0 uniformly for t ∈ R. (2.28)

If wλ(t, t − s) = ∫ t
t−s UB(t,σ )λR(λ,A)f (σ )dσ , t ∈ R, then as in the proof of

Theorem 2.2 we derive from (2.28) and (2.13) that

lim
λ,µ→∞

∥∥wλ(t, t−s)−wµ(t, t−s)∥∥ = 0 (2.29)

uniformly for t ∈ R. This completes the proof. �
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The following lemma will be used in Section 3.

Lemma 2.6. Let f ∈ L1
loc(R,X) and let u ∈ C(R,X0) be a mild solution of (2.3). If

φ ∈ C1(R), then φu is a mild solution of (1.4) with f replaced by φ′u+φf .

Proof. If t ≥ s, then the representation of u obtained in Theorem 2.2 leads to

∫ t

s

UB(t,σ )φ
′(σ )u(σ )dσ

=
∫ t

s

UB(t,σ )φ
′(σ )UB(σ,s)u(s)dσ

+ lim
λ→∞

∫ t

s

UB(t,σ )φ
′(σ )

∫ σ

s

UB(σ,τ )λR(λ,A)f (τ)dτdσ

= (
φ(t)−φ(s))UB(t,s)u(s)

+ lim
λ→∞

∫ t

s

∫ t

τ

φ′(σ )UB(t,τ )λR(λ,A)f (τ)dσdτ

= φ(t)
(
UB(t,s)u(s)+ lim

λ→∞

∫ t

s

UB(t,τ )λR(λ,A)f (τ)dτ

)

−UB(t,s)φ(s)u(s)− lim
λ→∞

∫ t

s

UB(t,τ )λR(λ,A)φ(τ)f (τ)dτ.

(2.30)

Another application of Theorem 2.2 establishes the result. �

3. Asymptotic properties of solutions of inhomogeneous equations

In this section, we discuss conditions on the evolution family (UB(t, s))t≥s and the
inhomogeneity f ∈ L1

loc(R,X) which ensure that (2.3) has a (unique) mild solution u
with a prescribed asymptotic behavior. For the rest of the paper we impose the following
condition on the perturbation (B(t))t∈R.

(B) ‖B(·)‖ ≤ b(·) for some b ∈ L1
loc,u(R).

Note that (B) implies exponential boundedness of the evolution family (UB(t, s))t≥s
(see (2.9)).

At first we discuss the case where (UB(t, s))t≥s has an exponential dichotomy. We
recall the following notion (see [12, 18, 21, 23, 24, 25, 36]).

Definition 3.1. An evolution family (U(t, s))t≥s on the Banach space Z has an ex-
ponential dichotomy with constants α > 0, L ≥ 1 if there exists a bounded, strongly
continuous family of projections (P (t))t∈R ⊆ �(Z) such that for t ≥ s

(i) P(t)U(t, s)= U(t,s)P (s),
(ii) the map U|(t, s) : (Id−P(s))Z→ (Id−P(t))Z : z �→ U(t,s)z is invertible,

(iii) ‖U(t,s)z‖ ≤ Le−α(t−s)‖z‖ for z ∈ P(s)Z,
(iv) ‖U|(t, s)−1z‖ ≤ Le−α(t−s)‖z‖ for z ∈ (Id−P(t))Z.
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In that case the family (6(t, s))(t,s)∈R2 ⊆ �(Z) given by

6(t,s)=
{
P(t)U(t, s)P (s), t ≥ s,
−(
Id−P(t))[U|(s, t)

]−1(
Id−P(s)), t < s,

(3.1)

is called the corresponding Green’s operator function.

Remark 3.2. It is shown in [38, Lemma VI.9.15] that (t, s) �→ [U|(t, s)]−1(Id−P(t))
is strongly continuous for t ≥ s.

The existence of an exponential dichotomy for the evolution family (U(t, s))t≥s on
the Banach space Z allows to connect asymptotic properties of the solution u(·,f ) ∈
C(R,Z) of the integral equation

u(t,f )= U(t,s)u(s,f )+
∫ t

s

U(t,τ )f (τ )dτ, t ≥ s, (3.2)

with asymptotic properties of the function f ∈ C(R,Z). We recall the following result
in [22, Theorem 2.1], (see also [23, Section 10.2, Theorem 1], [5, Theorem 4]). By
Cb(R,Z) we denote the set of all bounded, continuous, Z-valued functions on R, and
C0(R,Z) is the space of all functions in Cb(R,Z) vanishing at ±∞.

Theorem 3.3. Let (U(t, s))t≥s be an exponentially bounded evolution family on the
Banach space Z and let �(R,Z) be the space C0(R,Z) or Cb(R,Z). Then (U(t, s))t≥s
has an exponential dichotomy if and only if for every f ∈ �(R,Z) there exists a unique
solution u(·,f ) ∈ �(R,Z) of (3.2). In that case u(·,f ) is given by

u(t,f )=
∫ ∞

−∞
6(t,σ )f (σ )dσ, t ∈ R. (3.3)

We will show a corresponding result on asymptotic properties of the mild solutions
of the inhomogeneous equation (2.3). We stress that in our case the evolution family
(UB(t, s))t≥s given by equation (2.7) consists of operators on the Banach space X0

whereas the inhomogeneity f has values in the larger space X. The following lemma
plays a central role. ByL1

loc,u(R,X)we denote the space of uniformly locally integrable

functions from R into X equipped with the norm ‖f ‖1,loc,u = supt∈R

∫ t
t−1 ‖f (σ)‖dσ .

Lemma 3.4. Assume that (UB(t, s))t≥s has an exponential dichotomy with constants
α > 0, L ≥ 1, and projections (PB(t))t≥0. For f ∈ L1

loc,u(R,X) and λ > ω define
uλ(·,f ) ∈ C(R,X0) by

uλ(t,f )=
∫ ∞

−∞
6B(t,σ )λR(λ,A)f (σ )dσ, t ∈ R, (3.4)

where (6B(t, s))(t,s)∈R2 is the Green’s operator function corresponding to (UB(t, s))t≥s .
Then

(i) ‖uλ(·,f )‖ ≤ C‖f ‖1,loc,u for a constant C independent of λ≥ ω+1 and f .
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(ii) (uλ(·,f )) is uniformly convergent on compact intervals in R as λ→ ∞.
(iii) If f ∈ BUCr (R,X), then (uλ(·,f )) is uniformly convergent on R as λ→ ∞.

Proof. Let QB(t) = Id − PB(t), t ∈ R. Since (UB(t, s))t≥s has an exponential di-
chotomy and A is a Hille-Yosida operator we obtain for t ∈ R and λ≥ ω+1

∥∥uλ(t,f )∥∥ ≤
∫ ∞

t

∥∥∥[
UB|(σ, t)

]−1
QB(σ)λR(λ,A)f (σ )

∥∥∥dσ
+

∫ t

−∞
∥∥UB(t,σ )PB(σ )λR(λ,A)f (σ )∥∥dσ

≤
∑
k≥0

Le−αk‖λR(λ,A)‖
∫ t+k+1

t+k
∥∥QB(σ)∥∥‖f (σ)‖dσ

+
∑
k≥0

Le−αk‖λR(λ,A)‖
∫ t−k

t−k−1

∥∥PB(σ)∥∥‖f (σ)‖dσ

≤ C‖f ‖1,loc,u,

(3.5)

where C is a constant independent of f . This proves assertion (i) and the continuity of
uλ follow.

In order to show (ii) note that

uλ(t,f )= UB(t,s)uλ(s,f )+
∫ t

s

UB(t,σ )λR(λ,A)f (σ )dσ for t ≥ s (3.6)

(see [22, Proof of Proposition 1.2]). For λ,µ > ω+1, t ∈ R, and r > 0 we have

∥∥PB(t)(uλ(t,f )−uµ(t,f ))∥∥
≤ ∥∥UB(t, t−r)PB(t−r)(uλ(t−r,f )−uµ(t−r,f ))∥∥

+
∥∥∥∥PB(t)

∫ t

t−r
UB(t,σ )

(
λR(λ,A)−µR(µ,A))f (σ)dσ∥∥∥∥

≤ Le−αrC1 +
∥∥∥∥PB(t)

∫ t

t−r
UB(t,σ )

(
λR(λ,A)−µR(µ,A))f (σ)dσ∥∥∥∥,

(3.7)

where C1 = sup{‖PB(t)‖‖uλ(t,f )−uµ(t,f )‖ : t ∈ R;λ,µ > ω+1}. By Theorem 2.2,
limλ→∞λ

∫ t
s
UB(t,σ )λR(λ,A)f (σ )dσ exists uniformly for t ≥ s in compact intervals

in R. Thus, if in (3.7) we choose r > 0 sufficiently large and then consider λ, µ→ ∞
we obtain

lim
λ,µ→∞

∥∥PB(t)(uλ(t,f )−uµ(t,f ))∥∥ = 0 (3.8)

uniformly for t in compact intervals in R.
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On the other hand, for λ,µ > ω+1, t ∈ R, and r > 0 we obtain∥∥∥[
UB|(t+r, t)

]−1
QB(t+r)

(
uλ(t+r,f )−uµ(t+r,f )

)∥∥∥
≥ ∥∥QB(t)(uλ(t,f )−uµ(t,f ))∥∥

−
∥∥∥∥[UB|(t+r, t)

]−1
QB(t+r)

∫ t+r

t

UB(t+r,σ )
(
λR(λ,A)−µR(µ,A))f (σ)dσ∥∥∥∥.

(3.9)

Thus∥∥QB(t)(uλ(t,f )−uµ(t,f ))∥∥
≤ Le−αr

(
C2 +

∥∥∥∥QB(t+r)
∫ t+r

t

UB(t+r,σ )
(
λR(λ,A)−µR(µ,A))f (σ)dσ∥∥∥∥

)
,

(3.10)

where C2 = sup{‖QB(t)‖‖uλ(t,f )−uµ(t,f )‖ : t ∈ R; λ, µ > ω+1}. As above, if we
choose r > 0 sufficiently large and apply Theorem 2.2 we obtain

lim
λ,µ→∞

∥∥QB(t)(uλ(t,f )−uµ(t,f ))∥∥ = 0 (3.11)

uniformly for t in compact intervals of R. Assertion (ii) is now an immediate conse-
quence of (3.8) and (3.11).

Finally, if f ∈ BUCr (R,X), then (3.7) and (3.10) together with Proposition 2.5
imply that

lim
λ,µ→∞

∥∥PB(t)(uλ(t,f )−uµ(t,f ))∥∥ = 0,

lim
λ,µ→∞

∥∥QB(t)(uλ(t,f )−uµ(t,f ))∥∥ = 0,
(3.12)

uniformly for t ∈ R. This proves (iii). �

We come to our first main result. It is an analogue of Theorem 3.3 and connects
asymptotic properties of mild solutions of (2.3) with the existence of an exponential
dichotomy for the evolution family (UB(t, s))t≥s . In the special case where B(t) = B
is constant a similar result has been shown in [2] by completely different methods.

Theorem 3.5. The following assertions are equivalent.
(i) The evolution family (UB(t, s))t≥s has an exponential dichotomy.

(ii) For every f ∈ L1
loc,u(R,X) there is a unique mild solution u ∈ Cb(R,X0)

of (2.3).
(iii) For every f ∈ Cb(R,X) there is a unique mild solution u ∈ Cb(R,X0) of (2.3).
(iv) For every f ∈ C0(R,X) there is a unique mild solution u ∈ C0(R,X0) of (2.3).

In that case the function u= u(·,f ) is given by

u(t,f )= lim
λ→∞

∫ ∞

−∞
6B(t,σ )λR(λ,A)f (σ )dσ, t ∈ R, (3.13)

where (6B(t, s))(t,s)∈R2 is the Green’s operator function corresponding to (UB(t, s))t≥s .
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Proof. (i)⇒(ii). Assume that (UB(t, s))t≥s has an exponential dichotomy and let f ∈
L1

loc,u(R,X). Lemma 3.4 implies that the limit function u= u(·,f ) in (3.13) is defined
and u∈Cb(R,X). We claim that u(·,f ) is a mild solution of (2.3). In fact, if t ≥ s,
then

u(t,f )−UB(t,s)u(s,f )
= lim
λ→∞λ

(∫ ∞

−∞
6B(t,σ )R(λ,A)f (σ )dσ −

∫ s

−∞
UB(t,σ )PB(σ )R(λ,A)f (σ )dσ

+
∫ t

s

UB(t,σ )QB(σ)R(λ,A)f (σ )dσ

+
∫ ∞

t

[
U|B(σ, t)

]−1
QB(σ)R(λ,A)f (σ )dσ

)

= lim
λ→∞λ

(∫ ∞

−∞
6B(t,σ )R(λ,A)f (σ )dσ −

∫ t

−∞
UB(t,σ )PB(σ )R(λ,A)f (σ )dσ

+
∫ t

s

UB(t,σ )R(λ,A)f (σ )dσ

+
∫ ∞

t

[
U|B(σ, t)

]−1
QB(σ)R(λ,A)f (σ )dσ

)

= lim
λ→∞

∫ t

s

UB(t,σ )λR(λ,A)f (σ )dσ.

(3.14)

By Theorem 2.2, u(·,f ) is a mild solution of (2.3). To show that u(·,f ) is the only
mild solution of (2.3) belonging to Cb(R,X) we can assume that f ≡ 0 and repeat the
arguments in [22, proof of Proposition 1.2].

Since Cb(R,X)⊆ L1
loc,u(R,X) the implication (ii)⇒(iii) is obvious.

(iii)⇒(iv). From the definition of a mild solution it follows immediately that the
operator G assigning to each f ∈ Cb(R,X) the unique mild solution u = u(·,f ) ∈
Cb(R,X0) of (2.3) is closed. Hence, G is bounded. Now let f ∈ C0(R,X). We
have to show that also u(·,f ) ∈ C0(R,X). Let n ∈ N and choose tn > n such that
sup|t |>tn−n ‖f (t)‖< 1/n. For |t |> tn choose φt ∈ C1(R) such that 0 ≤ φt ≤ 1, φt (t)=
1, suppφt ⊆ [t−n, t+n], and ‖φ′

t‖ ≤ 2/n. By Lemma 2.6,G(φ′
t u+φtf )= φtu. Hence

∥∥φtu∥∥∞ ≤ ‖G‖∥∥φ′
t u+φtf

∥∥∞ ≤ n−1‖G‖(2‖u‖∞ +1
)
. (3.15)

In particular, ‖u(t)‖ = ‖φt (t)u(t)‖ ≤ n−1‖G‖(2‖u‖∞ + 1) for |t | > tn. Hence
u ∈ C0(R,X0). Since C0(R,X0) ⊆ C0(R,X) implication (iv)⇒(i) follows from
Theorem 3.3. �

Remark 3.6. The arguments in the proof of (iii)⇒(iv) can be used to simplify parts of
the proof of [22, Theorem 2.1] considerably.

Now we assume that the evolution family (UB(t, s))t≥s is p-periodic, in the sense
that there exists p > 0 such that UB(t+p,s+p) = UB(t,s) for t ≥ s. From formula
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(2.7) we see that (UB(t, s))t≥s is p-periodic provided that t �→ B(t) is p-periodic, that
is, B(t)= B(t+p). We call UB(p,0) the monodromy operator of the evolution family
(UB(t, s))t≥s . On C(R,X0) we define the operator T by

T h(t)= UB(t, t−p)h(t−p), h ∈ C(R,X0), t ∈ R. (3.16)

If u ∈ C(R,X0) is a mild solution of (2.3), then the representation formula for u
obtained in Theorem 2.2 leads to

(Id−T )u(t)= lim
λ→∞

∫ t

t−p
UB(t,σ )λR(λ,A)f (σ )dσ, t ∈ R. (3.17)

We need the notion of the spectrum sp(f ) of a Banach space-valued function f : R → Z

(cf. [3, 20, 23, 32, 35]). If f ∈ Cb(R,Z) we set

sp(f )= {
ξ ∈ R : for every ε > 0 there exists φ ∈ L1(R),

such that supp(φ̂)⊆ [ξ−ε,ξ+ε] and φ :f �= 0
}
,

(3.18)

where φ̂ denotes the Fourier transform of φ and φ :f is the convolution of φ and f .
Moreover, we set

;p(f )= sp(f )+(2π/p)Z ⊆ R. (3.19)

We obtain the following extension of [6, Theorem 3.8].

Theorem 3.7. Assume that the evolution family (UB(t, s))t≥s is p-periodic. Let f ∈
Cb(R,X) and suppose that σ(UB(p,0))∩{eiηp : η ∈ sp(f )} = ∅. Then

(a) There is at most one mild solution u ∈ Cb(R,X0) of (2.3) such that sp(u) ⊆
;p(f ).

(b) Let �(R,X0) be a closed, translation-invariant subspace of BUC(R,X0) such
that s �→ e2πins/pRh(s) belongs to �(R,X0) whenever h ∈ �(R,X0), R ∈ �(X0), and
n ∈ Z. Suppose that f ∈ BUCr (R,X) such that λR(λ,A)f (·) ∈ �(R,X0) for λ > ω.
Then there exists a mild solution u ∈ �(R,X0) of (2.3), and u has relatively compact
range.

Proof. In order to prove (a) consider

� = {
h ∈ Cb

(
R,X0

) : sp(h)⊆;p(f )
}
. (3.20)

In [6, proof of Theorem 3.8] it is shown that the operator T defined in (3.16) maps �
into itself and the restriction T|� of T to � is bounded and satisfies 1 ∈ ρ(T|�). The
invertibility of Id−T|� and (3.17) show that there is at most one mild solution u of
(2.3) contained in �.

For the proof of (b) let

� = {
h ∈ �

(
R,X0

) : sp(h)⊆;p(f )
}
. (3.21)

In [6, proof of Theorem 3.8] it is shown that � is T -invariant and 1 ∈ ρ(T|�). For λ > ω
set fλ = λR(λ,A)f (·). Note that sp(fλ)⊆ sp(f ). By [6, Theorem 3.8] for each λ > ω
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there is a (unique) mild solution uλ ∈ �(R,X0) of (1.4) with fλ instead of f such that
sp(uλ)⊆;p(fλ)⊆;p(f ), and uλ has relatively compact range. Let

wλ(t)=
∫ t

t−p
UB(t,σ )λR(λ,A)f (σ )dσ, t ∈ R, λ > ω. (3.22)

Since f ∈ BUCr (R,X) Proposition 2.5 implies that w(t) = limλ→∞wλ(t) exists uni-
formly for t in R. From (3.17) we obtain (Id−T|�)uλ = wλ, λ > ω. In particular, wλ ∈
� for λ > ω, and uλ = (Id−T|�)−1wλ converges uniformly to u= (Id−T|�)−1w ∈ �
as λ→ ∞. From Theorem 2.2 and the fact that each uλ is a mild solution of (1.4) with
f replaced by fλ it follows that the limit function u is a mild solution of (2.3). More-
over, since each uλ has relatively compact range also u has relatively compact range.
This completes the proof. �

Recall that a function h ∈ BUC(R,Z) is almost periodic if the set of translates
{h(· + t) : t ∈ R} is relatively compact in BUC(R,Z). By AP(R,Z) we denote the
space of almost periodic,Z-valued functions. Theorem 3.7 has the following immediate
consequence (cf. [6, Corollary 3.9]).

Corollary 3.8. Assume that (UB(t, s))t≥s is p-periodic. Let f ∈ AP(R,X), and sup-

pose that σ(UB(p,0))∩{eiηp : η ∈ sp(f )} = ∅. Then there is a unique u ∈ Cb(R,X0)

such that u is a mild solution of (2.3) and sp(u)⊆;p(f ). Moreover, u ∈ AP(R,X0).

Let S1 = {λ ∈ C : |λ| = 1} be the unit circle.

Corollary 3.9. If the evolution family (UB(t, s))t≥s is p-periodic, then the following
assertions are equivalent.

(i) S1 ⊆ ρ(UB(p,0)).
(ii) For every f ∈ AP(R,X) there is a unique mild solution u ∈ AP(R,X0)

of (2.3).

Proof. Note that (i) is equivalent to the existence of an exponential dichotomy for
(UB(t, s))t≥s (see [19, Theorem 3.2.2], [18, Theorem 7.2.3]). Hence if (i) is satisfied
and f ∈ AP(R,X), the existence of a mild solution u ∈ AP(R,X0) of (2.3) follows
from Corollary 3.8, whereas the uniqueness is a consequence of Theorem 3.5. The
converse implication (ii)⇒(i) follows immediately from [27, Lemma 4]. �

By Pp(R,Z) we denote the space of p-periodic, continuous, Z-valued functions
on R.

Corollary 3.10. If the evolution family (UB(t, s))t≥s is p-periodic, then the following
assertions are equivalent:

(i) 1 ∈ ρ(UB(p,0)).
(ii) For every f ∈ Pp(R,X), there exists a unique mild solution u ∈ Pp(R,X0)

of (2.3).
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Proof. Assume that (i) is satisfied. If f ∈ Pp(R,X), then sp(f ) ⊆ (2π/p)Z (see [32,
Example 0.1]). Hence, by Theorem 3.7, there is a unique mild solution u ∈ Pp(R,X0)

of (2.3). The implication (ii)⇒(i) follows immediately from [19, Theorem 3.3.4] (see
also [27, Proposition 1]). �

Remark 3.11. The operator TPp on Pp(R,X0) satisfies TPph(t) = UB(t, t −p)h(t),
h ∈ Pp(R,X0), t ∈ R. Moreover, 1 ∈ ρ(UB(p,0)) implies 1 ∈ ρ(UB(t+p,t)) for all
t ∈ R (see [18, Lemma 7.2.2]). From this we obtain (Id−TPp)−1h(t)= (Id−U(t, t−
p))−1h(t), h ∈ Pp(R,X0), t ∈ R. In particular, by (3.17), the mild solution u obtained
in Corollary 3.10(ii) has the representation

u(t)= lim
λ→∞

(
Id−UB(t, t−p)

)−1
∫ t

t−p
UB(t,σ )λR(λ,A)f (σ )dσ, t ∈ R. (3.23)

4. The semilinear equation

In this section, we apply the results of Section 3 to the semilinear equation

d

dt
u(t)= (

A+B(t))u(t)+F (
t,u(t)

)
, t ∈ R, (4.1)

where A and B(t), t ∈ R, are as in the previous sections and F : R×X0 →X is jointly
continuous and Lipschitz continuous in the second variable with Lipschitz constant l
independent of t and x. Moreover, we assume that t �→ F(t,0) is a bounded function
on R. Our definition of a mild solution of (4.1) is similar to Definition 2.1.

Definition 4.1. A function u ∈ C(R,X0) is called a mild solution of (4.1) if

u(t)= T0(t−s)u(s)+
∫ t

s

T−1(t−σ)
(
B(σ)u(σ )+F (

σ,u(σ )
))
dσ for t ≥ s. (4.2)

The following conditions will be needed.
(H1) The evolution family (UB(t, s))t≥s has an exponential dichotomy with con-

stants α > 0, L ≥ 1, and projections (PB(t))t∈R, and l < α/2LC, where C = supt∈R

×supλ>ω{‖λPB(t)R(λ,A)‖,‖λ(Id−PB(t))R(λ,A)‖}<∞.
(H2) The evolution family (UB(t, s))t≥s is p-periodic, 1 ∈ ρ(UB(p,0)), and l <

(C̃pC)−1, where C = supt∈R ‖(Id−U(t, t−p))−1‖ and C̃ = supt∈R ‖U(t, t−p)‖.

Theorem 4.2. If condition (H1) holds, then there exists exactly one mild solution
u ∈ Cb(R,X0) of (4.1).

Proof. For f ∈ Cb(R,X0) set

Sf (t)= lim
λ→∞

∫ ∞

−∞
6B(t,σ )λR(λ,A)F

(
σ,f (σ )

)
dσ, t ∈ R. (4.3)
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By Lemma 3.4 and the boundedness of F(·,0), S is well defined and maps Cb(R,X0)

into itself. If f,g ∈ Cb(R,X0), then

‖Sf −Sg‖∞ = sup
t∈R

∥∥∥∥ lim
λ→∞

∫ ∞

−∞
6B(t,σ )λR(λ,A)

(
F

(
σ,f (σ )

)−F (
σ,g(σ )

))
dσ

∥∥∥∥
≤ sup
t∈R

CL

∫ ∞

−∞
e−α|t−σ |l‖f −g‖∞ dσ ≤ 2CL

α
l‖f −g‖∞.

(4.4)

By our assumption (2CL/α)l < 1. Hence S is a contraction, and by Banach’s fixed
point theorem there is a unique function u ∈ Cb(R,X0) such that

u(t)= lim
λ→∞

∫ ∞

−∞
6(t,σ )λR(λ,A)F

(
σ,u(σ )

)
dσ, t ∈ R. (4.5)

Theorem 3.5 implies that u is the unique mild solution of (4.1) contained in Cb(R,X0).
�

In the same way, the following two results can be derived from Theorem 3.5 and
Corollary 3.9, respectively.

Proposition 4.3. Assume that condition (H1) holds and that limt→±∞F(t,y) = 0
uniformly for y in compact sets in X0. Then there exists exactly one mild solution
u ∈ C0(R,X0) of (4.1).

Proposition 4.4. Assume that condition (H1) holds and that the evolution family
(UB(t, s))t≥s is p-periodic. If F(·,x) is almost periodic uniformly for x in compact
sets in X0, that is, for every compact set K in X0 and every sequence (tn) in R there
is a subsequence (sn) of (tn) such that (F (t+ sn,x)) converges uniformly for (t,x) in
R×K , then there is exactly one mild solution u ∈ AP(R,X0) of (4.1).

The following result is the semilinear version of Corollary 3.10.

Theorem 4.5. Assume that condition (H2) holds and that F(t +p,x) = F(t,x) for
every t ∈ R and every x ∈X0. Then there exists exactly one mild solution u ∈ Pp(R,X0)

of (4.1).

Proof. For f ∈ Pp(R,X0) set

Sf (t)= lim
λ→∞

(
Id−UB(t, t−p)

)−1
∫ t

t−p
U(t,σ )λR(λ,A)F

(
σ,f (σ )

)
dσ, t ∈ R.

(4.6)
By Proposition 2.5 and Remark 3.11, S is well-defined and maps Pp(R,X0) into itself.
If f,g ∈ Pp(R,X0), then
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‖Sf −Sg‖∞ = sup
t∈R

∥∥∥∥ lim
λ→∞

(
Id−UB(t, t−p)

)−1

×
∫ t

t−p
UB(t,σ )λR(λ,A)

(
F

(
σ,f (σ )

)−F (
σ,g(σ )

))
dσ

∥∥∥∥
≤ C̃pCl‖f −g‖∞.

(4.7)

Since C̃pCl < 1, the map S is contractive and there is a unique function v ∈ Pp(R,X0)

such that

v(t)= lim
λ→∞

(
Id−UB(t, t−p)

)−1
∫ t

t−p
UB(t,σ )λR(λ,A)F

(
σ,v(σ )

)
dσ, t ∈ R.

(4.8)
By Corollary 3.10, there is a unique mild solution u ∈ Pp(R,X0) of (1.4) where f is
replaced by the function F(·,v(·)). The representation of u obtained in Remark 3.11
shows that u= v, and hence v is a mild solution of (4.1). On the other hand, it follows
from (3.17) and Remark 3.11 that each p-periodic mild solution of (4.1) satisfies (4.8).
Hence v is the only p-periodic mild solution of (4.1). �

5. Nonautonomous retarded differential equations

In this section, we apply the results obtained for (1.4) to retarded differential equations.
Throughout the whole section Y is a fixed Banach space. We consider the inhomoge-
neous nonautonomous retarded differential equation

d

dt
w(t)= Cw(t)+K(t)wt+h(t), t ∈ R, (5.1)

where (C,D(C)) is a Hille-Yosida operator on Y and h ∈ L1
loc(R,Y ). The part C0 of

C on Y0 = D(C) generates a C0-semigroup (S0(t))t≥0 on Y0, and by (S−1(t))t≥0 we
denote the corresponding extrapolated C0-semigroup on the extrapolation space Y−1.
We set E = C([−p,0],Y0), p > 0, and for a function w ∈ C(R,Y0) we define wt ∈ E
by wt(r) = w(t+ r), r ∈ [−p,0]. Finally, we assume that K(t), t ∈ R, is a family of
operators in �(E,Y ) such that t �→ K(t)φ is strongly measurable for every φ ∈ E,
and ‖K(·)‖ ≤ d(·) for a function d ∈ L1

loc,u(R). We define mild solutions of (5.1) as
follows (cf. [4, 15, 16, 28, 34, 40]).

Definition 5.1. If h ∈ L1
loc(R,Y ), then w = w(·,h) ∈ C(R,Y0) is called a mild solution

of (5.1) if

w(t)= S0(t−s)w(s)+
∫ t

s

S−1(t−σ)
(
K(σ)wσ +h(σ))dσ for t ≥ s. (5.2)

Remark 5.2. If C is the generator of a C0-semigroup on Y , then the above definition
of a mild solution coincides with that given in [15, 28, 34, 40].
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In [16] (see also [33, 39]) it is shown how (5.1) can be transformed into an equation
of the form of (1.4). For this we set X = Y ×E and consider the equation

d

dt
u(t)= Au(t)+B(t)u(t)+f (t), t ∈ R, (5.3)

where A :D(A)→X is the linear operator on X given by

A

(
0
φ

)
=

(−φ′(0)+Cφ(0)
φ′

)
,

D(A)=
{(

0
φ

)
∈ {0}×E : φ ∈ C1([−p,0],Y0

)
, φ(0) ∈D(C)

}
,

(5.4)

B(t) ∈ �({0}×E,X), t ∈ R, is defined by

B(t)

(
0
φ

)
=

(
K(t)φ

0

)
, (5.5)

and f (·) = (
h(·)

0

)
. It is shown in [33] that A is a Hille-Yosida operator on X, and the

C0-semigroup (T0(t))t≥0 generated by the part A0 of A in X0 = D(A) = {0}×E is
given by

(
T0(t)|Eφ

)
(r)=



φ(t+r) if t+r ≤ 0,

S0(t+r)φ(0) if t+r > 0.
(5.6)

We recall the following results obtained in [16, Theorem 5.3 and Proposition 5.4].

Proposition 5.3. (a) If for u ∈ C(R,E) the map t �→ ( 0
u(t)

)
is a mild solution of (2.3),

then t �→ u(t)(0) is a mild solution of (5.1) and u(t)(ξ) = u(t + ξ)(0) for t ∈ R and
ξ ∈ [−p,0].

(b) If w ∈ C(R,Y0) is a mild solution of (5.1), then t �→ (
0
wt

)
is a mild solution

of (2.3).

Proposition 5.4. If (UB(t, s))t≥s is the evolution family on E determined by the
variation-of-parameters formula(

0
UB(t,s)φ

)
= T0(t−s)

(
0
φ

)
+

∫ t

s

T−1(t−σ)B(σ)
(

0
UB(σ,s)φ

)
dσ, (5.7)

t ≥ s, φ ∈ E, then each mild solution w ∈ C(R,Y0) of (5.1), with h(t) = 0 for all t ,
satisfies

wt = UB(t,s)ws for t ≥ s. (5.8)

Furthermore, if φ ∈ E and t ≥ s, then

(
UB(t,s)φ

)
(ξ)=




S0(t+ξ−s)φ(0)

+
∫ t+ξ

s

S−1(t+ξ−σ)K(σ)UB(σ,s)φ dσ, t+ξ ≥ s,

φ(t+ξ−s), t+ξ ≤ s.

(5.9)
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Asymptotic properties of the mild solutions of (5.1) are connected with properties of
the evolution family (UB(t, s))t≥s on E in the following way.

Theorem 5.5. Assume that the evolution family (UB(t, s))t≥s defined by (5.7) has an
exponential dichotomy. Then

(a) For every h ∈ L1
loc,u(R,Y ) (in particular, for every h ∈ Cb(R,Y )) there exists a

unique mild solution w ∈ Cb(R,Y0) of (5.1).
(b) For every h ∈ C0(R,Y ) there exists a unique mild solutionw ∈ C0(R,Y0) of (5.1).

Proof. If h is in L1
loc,u(R,Y ) (respectively, C0(R,Y )), then f : R → X defined by

f (t)= (
h(t)

0

)
is in Cb(R,X) (respectively, C0(R,X)). Proposition 5.3 shows that there

is a one-to-one correspondence between the mild solutions w ∈ C(R,Y0) of (5.1)
and the mild solutions u ∈ C(R,X0) of (2.3), and w is in Cb(R,Y0) (respectively,
C0(R,Y0)) if and only if u is in Cb(R,X0) (respectively, C0(R,X0)). An application
of Theorem 3.5 and proves the theorem. �

In the same way the following results can be derived from Corollary 3.9 and
Corollary 3.10.

Theorem 5.6. If the evolution family (UB(t, s))t≥s defined by (5.7) is p-periodic and
S1 ⊆ ρ(UB(p,0)), then for every h ∈ AP(R,Y ) there is a unique mild solution w ∈
AP(R,Y0) of (5.1).

Theorem 5.7. If the evolution family (UB(t, s))t≥s defined by (5.7) is p-periodic and
1 ∈ ρ(UB(p,0)), then for every h ∈ Pp(R,Y ) there is a unique mild solution w ∈
Pp(R,Y0) of (5.1).

To give more concrete results we impose the following additional condition on the
family K(t), t ∈ R.

(K) Each operator K(t), t ∈ R, is of the form

K(t)φ = K̂(t)φ(−p), φ ∈ E, (5.10)

where K̂(t), t ∈ R, is a p-periodic family in �(Y0,Y ) such that t �→ K̂(t)y is strongly
measurable for all y ∈ Y0, and ‖K̂(·)‖ ≤ d(·) for some d ∈ L1

loc(R).
If condition (K) holds, then the evolution family (UB(t, s))t≥s is p-periodic. Now,

we want to determine the spectrum σ(UB(p,0)) of the monodromy operator UB(p,0).
To that purpose we consider for each λ ∈ C the evolution family (V λK(t, s))t≥s on Y0

determined by the integral equation

V λK(t, s)y = S0(t−s)y+
∫ t

s

S−1(t−σ)e−λpK̂(σ )V λK(σ,s)y dσ (5.11)

for y ∈ Y0 and t ≥ s. The existence of (V λK(t, s))t≥s is guaranteed by the same reasons
as for the evolution family (UB(t, s))t≥s in (2.7). One can easily see that (V λK(t, s))t≥s
is p-periodic for every λ ∈ C.
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Remark 5.8. If λ ∈ C and y ∈ Y0, then t �→ V λK(t, s)y, t ≥ s, is the unique mild solution
of the initial value problem

d

dt
w(t)= Cw(t)+e−λpK̂(t)w(t), t ≥ s,

w(s)= y ∈ Y0.

(5.12)

Next we derive a generalized characteristic equation for (5.1), with h(t) = 0 for all t ,
under the additional condition (K). In the finite dimensional case, that is, Y = C

n,
C = 0, and K̂(t)y = k(t)y, where k is a p-periodic matrix-valued function, this leads
to the classical characteristic equation as it can be found, for example, in [17, Theorem
8.3.1]. In the autonomous case, that is, K̂(t)= K̂ ∈ �(Y0), a related result is shown in
[14, Chapter VI, Proposition 6.7].

Theorem 5.9. Assume that condition (K) holds and let λ ∈ C. If (UB(t, s))t≥s is the
evolution family defined in (5.7) and (V λK(t, s))t≥s is the evolution family defined in
(5.11), then

eλp ∈ ρ(UB(p,0)) if and only if eλp ∈ ρ(V λK(p,0)). (5.13)

Proof. First we show the “only if” part. Let eλp ∈ ρ(UB(p,0)). Then for every φ ∈ E
there exists ψφ ∈ E such that φ = eλpψφ−UB(p,0)ψφ . By (5.9) we have

φ(−p)= eλpψφ(−p)−ψφ(0), (5.14)

and

φ(ξ)= eλpψφ(ξ)−S0(p+ξ)ψφ(0)−
∫ p+ξ

0
S−1(p+ξ−σ)K̂(σ )ψφ(σ −p)dσ

= eλpψφ(ξ)+S0(p+ξ)φ(−p)−eλpS0(p+ξ)ψφ(−p)

−
∫ ξ

−p
S−1(ξ−σ)K̂(σ )ψφ(σ )dσ

(5.15)

for ξ ∈ [−p,0]. In order to show surjectivity of eλpId−V λK(p,0) fix y ∈ Y0 and set

φ(ξ)= S0(p+ξ)y, ξ ∈ [−p,0]. (5.16)

Then (5.15) leads to

ψφ(ξ)= S0(p+ξ)ψφ(−p)+
∫ ξ

−p
S−1(ξ−σ)e−λpK̂(σ )ψφ(σ )dσ, ξ ∈ [−p,0].

(5.17)
By Remark 5.8, ξ �→ V λK(ξ,−p)ψφ(−p) is the unique mild solution of (λP )−p,ψφ(−p).
Hence ψφ(ξ)= V λK(ξ,−p)ψφ(−p) for ξ ∈ [−p,0]. Since φ(−p)= y we obtain from
(5.14)

y = eλpψφ(−p)−V λK(0,−p)ψφ(−p) (5.18)

which proves the surjectivity of eλpId−V λK(p,0).
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In order to prove injectivity assume that V λK(0,−p)x = eλpx for some x ∈ Y0. Let
ψx(ξ) = V λK(ξ,−p)x, ξ ∈ [−p,0]. Using (5.11), (5.9), and condition (K), a straight-
forward computation shows that UB(0,−p)ψx = eλpψx . Thus ψx = 0. In particular,
x = ψx(−p)= 0.

Now we prove the “if” part. Let φ ∈ E. An application of the generalized form of
Banach’s fixed point theorem shows that for every y ∈ Y0 there is ψy ∈ E such that

eλpψy(ξ)= φ(ξ)+S0(p+ξ)y+
∫ ξ

−p
S−1(ξ−σ)K̂(σ )ψy(σ )dσ (5.19)

for ξ ∈ [−p,0]. By subtracting (5.11) we obtain

eλpψy(ξ)−V λK(ξ,−p)y

= φ(ξ)+
∫ ξ

−p
S−1(ξ−σ)e−λpK̂(σ )(eλpψy(σ )−V λK(σ,−p)y)dσ. (5.20)

For y1, y2 ∈ Y0 this leads to

eλpψy1(ξ)−V λK(ξ,−p)y1 −eλpψy2(ξ)+V λK(ξ,−p)y2

=
∫ ξ

−p
S−1(ξ−σ)e−λpK̂(σ )(eλpψy1(σ )−V λK(σ,−p)y1

−e−λpψy2(σ )+V λK(σ,−p)y2
)
dσ.

(5.21)

An application of Gronwall’s inequality yields

eλpψy1(ξ)−V λK(ξ,−p)y1 = eλpψy2(ξ)−V λK(ξ,−p)y2 for ξ ∈ [−p,0]. (5.22)

By the assumption and the y-independence of eλpψy −V λK(·,−p)y, we can choose
ỹ ∈ Y0 such that

eλpỹ−V λK(0,−p)ỹ = φ(0)+
∫ 0

−p
S−1(−σ)e−λpK̂(σ )

(
eλpψỹ(σ )−V λK(σ,−p)ỹ

)
dσ.

(5.23)
Evaluation of (5.20) at ξ = 0 then leads to

ỹ = ψφ,ỹ(0). (5.24)

By using (5.9) and (5.19) a direct computation yields UB(0,−p)ψỹ = eλpψỹ − φ,
which shows the surjectivity of eλp−UB(p,0).

To prove injectivity assume that eλpψ−UB(p,0)ψ = 0 for some ψ ∈ E. Then (5.9)
leads to

eλpψ(ξ)−S0(p+ξ)ψ(0)−
∫ ξ

−p
S−1(ξ−σ)K̂(σ )ψ(σ)dσ = 0 for ξ ∈ [−p,0].

(5.25)
Since ξ �→ V λK(ξ,−p)ψ(0) is the unique mild solution of (λP )−p,ψ(0), we obtain
eλpψ(ξ)= V λK(ξ,−p)ψ(0), ξ ∈ [−p,0]. In particular eλpψ(0)= V λK(0,−p)ψ(0), and
the invertibility of eλpId−V λK(0,−p) implies ψ(0) = 0. Hence ψ = e−λpV λK(·,−p)×ψ(0)= 0. �
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As a concrete example we discuss the retarded differential equation

∂

∂t
w(t,x)= ∂2

∂x2
w(t,x)−aw(t,x)−b(t)w(t−1,x)+f (t,x), 0 ≤ x ≤ 2π, t ≥ s,
w(t,x)= ϕ(t−s,x), 0 ≤ x ≤ 2π, s−1 ≤ t ≤ s,

(5.26)
with initial value ϕ ∈ C([−1,0] × [0,2π ]). We assume that a ∈ R, b : R → R is
1-periodic and locally integrable, and f : R×[0,2π ] → R is continuous. It is known
(see [11]) that on the Banach space Y = C[0,2π ] the operator (C,D(C)) given by

(Cψ)(x)= ∂2

∂x2
ψ(x)−aψ(x), x ∈ [0,2π ],

D(C)= {
ψ ∈ C2([0,2π ]) : ψ(0)= ψ(2π)= 0

}
,

(5.27)

is a Hille-Yosida operator. The spectrum of the part C0 of C in Y0 = D(C) = {ψ ∈
C[0,2π ] : ψ(0) = ψ(2π) = 0} is the set {−n2 − a : n = 1,2,3, . . .}. For E =
C([−1,0],Y0) and t ∈ R we define

K(t) : E −→ Y0 : ϕ �−→ −b(t)ϕ(t−1, ·). (5.28)

Clearly, the operator family (K(t))t∈R satisfies condition (K) for p = 1. The evolution
family (UB(t, s))t≥s onE given by (5.7) is 1-periodic. Hence we can apply Theorem 5.9
to determine the spectrum of UB(1,0). We set b̄ = ∫ 1

0 b(τ)dτ .

Proposition5.10. eλ ∈ σ(UB(1,0)) if and only if there exists k ∈ Z and n∈{1,2,3, . . .}
such that

λ+2πik = −e−λb̄−n2 −a. (5.29)

Proof. The evolution family (V λK(t, s))t≥s defined in (5.11) is given by

V λK(t, s)= e−
∫ t
s e

−λb(τ )dτ S0(t−s), t ≥ s, (5.30)

where (S0(t))t≥0 is the C0-semigroup on Y0 =D(C) generated by C0. From Theorem

5.9 it follows that eλ ∈ σ(UB(1,0)) if and only if eλ ∈ σ(e−
∫ 1

0 e
−λb(τ )dτ S(1)). Since

for C0 the spectral mapping theorem holds we have

σ
(
S(1)

) = {
e−n2−a : n= 1,2,3, . . .

}
. (5.31)

Thus eλ ∈ σ(UB(1,0)) if and only if

eλ = e−
∫ 1

0 e
−λb(τ )dτ e−n2−a = e−e−λb̄−n2−a for some n ∈ {1,2,3, . . .}. (5.32)

However, this is the case if and only if

λ+2πik = −e−λb̄−n2 −a for some n ∈ {1,2,3, . . .} and some k ∈ Z. (5.33)
�
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While it appears difficult to determine the set of all λ ∈ C satisfying (5.29), there
are results saying for which values of n2 +a and b̄ all solutions µ ∈ C of

µ= −e−µb̄−n2 −a (5.34)

have negative real part (cf. [17, page 135]). This is the case if (n2 +a, b̄) belongs to the
shaded region shown in Figure 5.1.

a+n2
(−1,0)

(−1,1)

b̄

Figure 5.1.

Since n2 ≥ 1, we obtain Reµ < 0 for each µ satisfying (5.34) for some n ∈
{1,2,3, . . .} if (a, b̄) is in the shaded region in Figure 5.2.

For example, if a = −1 and b̄ = π/3, then all λ ∈ C such that eλ ∈ σ(UB(1,0))
have negative real part. Hence (UB(t, s))t≥s is exponentially stable and, in particular,
has an exponential dichotomy. Note that in this case the semigroup (S0(t))t≥0 does not
have an exponential dichotomy. The proof our next theorem follows from Theorem 5.5
and Theorem 5.6.

Theorem 5.11. Assume that (a, b̄) belongs to the shaded region shown in Figure 5.2.
Then the following holds.

(i) If the function f is bounded, then there exists exactly one bounded mild solution
w of (5.26).

(ii) If f (·,x) ∈ C0(R) for every x ∈ [0,2π ], then there exists exactly one mild
solution w of (5.26) such that limt→±∞w(t,x)= 0.

(iii) If f (·,x) is almost periodic uniformly for x ∈ [0,2π ], then there exists exactly
one mild solution w of (5.26) such that w(·,x) is almost periodic uniformly for x ∈
[0,2π ].

Proposition 5.10 and Theorem 5.7 lead to conditions for the existence of a unique
periodic mild solution.
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a
(−1,0)

(−2,1)

b̄

Figure 5.2.

Theorem 5.12. If f (·,x) ∈ Pp(R) for all x ∈ [0,2π ] and b̄+ a �= n2 for all n ∈
{1,2,3, . . .}, then there exists exactly one mild solution w of (5.26) such that w(·,x) ∈
Pp(R).
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