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Summary

In this paper we study the class of penalized regression spline estimators, which

enjoy similarities to both regression splines (without penalty and with less knots

than data points) and smoothing splines (with knots equal to the data points and

a penalty controlling the roughness of the fit). Depending on an assumption on the

number of knots, sample size and penalty, we show that the theoretical properties

of penalized regression spline estimators are either similar to those of regression

splines or to those of smoothing splines, with a clear breakpoint distinguishing the

cases. We prove that using less knots results in better asymptotic rates than when

using a large number of knots. We obtain expressions for bias and variance and

asymptotic rates for the number of knots and penalty parameter.

1 Introduction

Penalized regression spline smoothing has gained much popularity over the last decade.

This smoothing technique with flexible choice of bases and penalties can be viewed as a

compromise between regression and smoothing splines. In this paper we obtain in a uni-

fied way asymptotic properties of such estimators and relate them to known asymptotic
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results for regression splines and smoothing splines, which can be seen as the two ex-

treme cases, with penalized regression splines situated in between. It is known that both

‘extremes’ enjoy different asymptotic properties. Important theoretical results on (unpe-

nalized) regression splines are obtained by Zhou et al. (1998). We employ these results

in an elegant way by constructing an additive expansion of the penalized spline estimator

about the regression spline estimator, for the situation of a relatively small number of

knots. Speckman (1985) obtained the optimal rates of convergence for smoothing spline

estimators. Based on this result and following Utreras (1980, 1981) who showed the con-

vergence of eigenvalues associated to smoothing splines to the eigenvalues of a differential

operator, we obtain the asymptotic properties for the penalized regression splines for the

case of a relatively large number of knots, similar to those of smoothing spline estimators.

One of the main results of this paper is that we find a clear breakpoint between the

two estimation methods, which is an explicitly defined function of the number of knots

K, the sample size n and the penalty parameter λ (see further). Depending on whether

the value of this function is below or above the threshold value of one, the asymptotic

results are related to those of regression splines or to those of smoothing splines.

Another interesting finding is that it is better to use a smaller number of knots (close

to regression splines case), since that results in a smaller mean squared error (with optimal

rate), while such optimal rate cannot be reached for the other situation that is similar to

smoothing splines, without imposing strong assumptions on the boundary behaviour.

The combination of regression splines (with K less than n) and a penalty has been

studied by several authors. O’Sullivan (1986) used penalized fitting with cubic B-splines in

the context of inverse problems with as penalty the integrated squared second derivative of

the spline function. Schwetlick and Kunert (1993) decoupled the order of the B-spline and

the derivative used in the penalty function. This same idea has further been promoted by

Eilers and Marx (1996) who propose to use a difference penalty on the spline coefficients.

Many applications and examples of penalized regression splines are presented in Ruppert
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et al. (2003).

There is a rich literature on smoothing splines, which we shall only briefly touch here.

Reference books on this topic are Wahba (1990), Green and Silverman (1994) and Eubank

(1999). For smoothing splines, the penalty is the integrated squared qth derivative of the

function, leading to a smoothing spline of degree 2q−1. Rice and Rosenblatt (1981, 1983)

study the estimator’s integrated mean squared error and effects of boundary bias, see also

Oehlert (1992) and Utreras (1988). In a series of papers, of which Wahba (1975) and

Craven and Wahba (1978) are early references, the averaged mean squared error is used,

also in connection to the choice of the smoothing parameter. Cox (1983) studies rates

of convergence for robust smoothing splines and local properties of smoothing splines are

studied by Nychka (1995).

For regression splines, the integrated mean squared error was studied by Agarwal and

Studden (1980), and Huang (2003a,b) obtained local asymptotic results by considering

the least squares estimator as an orthogonal projection.

Theoretical properties of penalized spline estimators are less explored. Some first re-

sults can be found in Hall and Opsomer (2005) who used a white noise representation of

the model to obtain mean squared error and consistency of the estimator. Kauermann

et al. (2007) work with generalized linear models. Li and Ruppert (2008) used an equiv-

alent kernel representation for piecewise constant and linear B-splines and first or second

order difference penalties. Their assumption on the relative large number of knots (close

to smoothing splines case) allowed them to ignore the approximation bias.

In this paper we provide a general treatment (any order of spline and general penalty)

and we study with one theory the two asymptotic situations, either close to regression

splines or close to smoothing splines. In the same time, we obtain the breakpoint between

the two cases as a function of the number of knots, sample size and penalty parameter.

We include in our study both the approximation and shrinkage bias. We study both

B-splines and truncated polynomial spline basis functions and relate the corresponding
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results.

The paper is organized as follows. Section 2 defines the penalized spline estimators,

gives relations between the use of different types of spline basis functions and states some

results on regression splines that will be used later. Section 3 contains the results on the

average mean squared error of the estimator and obtains the breakpoint that separates

both asymptotic cases. Pointwise bias and variance are obtained in Section 4. We conclude

in Section 5. The proofs are given in the Appendix.

2 Penalized splines

Based on data pairs (Yi, xi), xi ∈ [a, b], i = 1, . . . , n with true relationship

Yi = f(xi) + εi, (1)

we aim to estimate the unknown smooth function f(·) ∈ Cp+1([a, b]), a p + 1 times

continuously differentiable function, with penalized splines. The residuals εi are assumed

to be uncorrelated with zero mean and variance σ2 > 0.

2.1 Penalized splines with B-spline basis functions

The idea of penalized spline smoothing traces back to O’Sullivan (1986) (see also Schwetlick

and Kunert, 1993), but it was Eilers and Marx (1996) who introduced the combination

of B-splines and difference penalties which they called P-splines. Classically, B-splines

are defined recursively (see de Boor, 2001, ch. IX). Let the value p denote the degree

of the B-spline, implying that the order equals p + 1. On an interval [a, b], define a

sequence of knots a = κ0 < κ1 < . . . < κK < κK+1 = b. In addition, define p knots

κ−p = κ−p+1 = . . . = κ−1 = κ0 and another set of p knots κK+1 = κK+2 = . . . = κK+p+1.

The B-spline basis functions are defined as

Nj,1(x) =

{
1, κj ≤ x < κj+1

0, otherwise
,
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Nj,p+1(x) =
x − κj

κj+p − κj

Nj,p(x) +
κj+p+1 − x

κj+p+1 − κj+1

Nj+1,p(x),

for j = −p, . . . , K. Thereby the convention 0/0 = 0 is used. With the use of the additional

knots, this gives precisely K + p + 1 independent basis functions.

We define the P-spline estimator as the minimizer of

n∑

i=1

(
Yi −

K∑

j=−p

βjNj,p+1(xi)

)2

+ λ

∫ b

a






(
K∑

j=−p

βjNj,p+1(x)

)(q)





2

dx, (2)

where the sum of squared differences is penalized with the integrated squared qth order

derivative of the spline function, which is assumed to be finite. Since the p+1st derivative

of a spline function of degree p + 1 contains Dirac delta functions (see also Section 2.2),

it is a natural condition to have q ≤ p. However, we give a separate treatment to the

case of truncated polynomial basis functions where q = p + 1, see Section 2.2 and the

end of Section 4. The penalty constant λ plays the role of a smoothing parameter. Note

that letting λ → 0 implies an unpenalized estimate, while λ → ∞ forces convergence of

the qth derivative of the spline function to zero, with the consequence that the limiting

estimator is a (q− 1)th degree polynomial. The derivative formula for B-spline functions,

as given in de Boor (2001, ch. X), states that

(
K∑

j=−p

βjNj,p+1(x)

)(q)

=
K∑

j=−p+q

Nj,p+1−q(x)β
(q)
j ,

where the coefficients β
(q)
j are defined recursively via

β
(1)
j = p(βj − βj−1)/(κj+p − κj),

β
(q)
j = (p + 1 − q)(β

(q−1)
j − β

(q−1)
j−1 )/(κj+p+1−q − κj), q = 2, 3, . . . . (3)

Thus we can rewrite the penalty term in (2) as λβt∆t
qR∆qβ, where matrix R has elements

Rij =
∫ b

a
Nj,p+1−q(x)Ni,p+1−q(x)dx, for i, j = −p + q, . . . , K and ∆q denotes the matrix

corresponding to the weighted difference operator defined in (3), i.e. β(q) = ∆qβ. Note
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that for the special case of equidistant knots, i.e. κj −κj−1 = δ for any j = −p+1, . . . , K,

there is an explicit expression of the matrix ∆q in terms of the qth backward difference

operator ∇q. This latter matrix is defined recursively via ∇q = ∇1(∇q−1), ∇1βj =

βj−1 − βj. For equidistant knots it holds ∆q = δ−q
∇q. For the special case p = q,

matrix R reduces to a diagonal matrix with diagonal elements (κj − κj−1), which are

further simplified to δ for equidistant knots. Another special case of p = q +1 results in a

tridiagonal matrix R, with the integrals of the squared linear (order equal to 2) B-splines

on the main diagonal.

Further, define the spline basis vector of dimension 1 × (K + p + 1) as N (x) =

{N−p,p+1(x), . . . , NK,p+1(x)}, the n× (K + p + 1) spline design matrix N = {N (x1)
t, . . . ,

N (xn)t}t, and let Dq = ∆t
qR∆q. With this notation the P-spline estimator takes the

form of a ridge regression estimator

f̂ = N (N tN + λDq)
−1N tY , (4)

where f̂ = {f̂(x1), . . . , f̂(xn)}t and Y = (Y1, . . . , Yn)t.

Originally, Eilers and Marx (1996) simplified (4) by suggesting to use equidistant knots

and a combination of cubic splines (p = 3) and second order penalty (q = 2). Moreover,

they only took into account the diagonal elements of R, resulting in the simpler penalty

matrix cδ−4
∇

t
2∇2, with c =

∫ b

a
{N j,2(x)}2dx. Since c is a constant, it can be absorbed

in the penalty constant. For our theoretical investigation we use the general definition of

penalty matrix Dq.

2.2 Penalized splines using truncated polynomial basis func-

tions

Ruppert and Carroll (2000) used truncated polynomials as basis functions. In particular,

with truncated polynomials of degree p based on K inner knots a < κ1 < . . . < κK < b,

the penalized spline estimator is defined as the solution to the penalized least squares
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criterion
n∑

i=1

{Yi − F (xi)α}2 + λp

K∑

j=1

α2
j+p,

with F (x) = {1, x, . . . , xp, (x − κ1)
p
+, . . . , (x − κK)p

+} and α = (α0, . . . , αK+p), so that

F (x)α = α0 + α1x + . . . + αpx
p +

K∑

k=1

αk+p(x − κk)
p
+.

The resulting estimator is a ridge regression estimator given by

f̂ p = F (F tF + λpD̃p)
−1F tY , (5)

where F = {F (x1)
t, . . . , F (xn)t}t and D̃p is the diagonal matrix diag(0p+1, 1K), indicating

that only the spline coefficients are penalized. Note that λp → ∞ results in the pth degree

polynomial limiting fit.

The ridge penalty imposed on the spline coefficients can also be viewed as a penalty

containing the integrated squared (p + 1)th derivative of the spline function, where the

(p + 1)th derivative is a generalized function. Indeed,

(F (x)α)(p) = p! αp + p!
K∑

j=1

αk+pI[κj ,∞)(x).

Since the derivative of an indicator function is a Dirac delta function, one finds that

∫ b

a

{
(F (x)α)(p+1)

}2
dx = (p!)2

K∑

j=1

α2
j+p.

Truncated polynomials and B-splines are directly connected, which can be seen from

the alternative definition of B-splines as appropriately scaled (p + 1)th order divided

differences of the truncated polynomials (see de Boor, 2001),

Nj,p+1(x) = (−1)(p+1)(κj+p+1 − κj)[κj, . . . , κj+p+1](x − ·)p
+, j = −p, . . . , K, (6)

where [κj, ..., κj+p+1](x−·)p
+ denotes the (p+1)th order divided difference of (x−·)p

+ as a

function of knots κj for fixed x. In case of equidistant knots (6) simplifies to Nj,p+1(x) =
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(−1)(p+1)δ−p∇p+1(x−·)p
+/p!. B-spline and truncated polynomial basis functions span the

same set of spline functions (de Boor, 2001, ch. IX). Thus there exist coefficient vectors

α and β such that Nβ = Fα, implying equivalence of unpenalized estimators. In other

words, there exists a square and invertible transition matrix L (see further), such that

N = FL.

The equivalence of the penalized spline estimators f̂ and f̂ p is not automatic, but

will follow when there is equality of the penalties. We work out the case of fitting with

B-splines and obtaining the same penalized estimator as f̂ p in (5) with D̃p as penalty

matrix. Using the equality N = FL for the penalized estimator f̂ p, implies that we

can write it as f̂ p = N (N tN + λpL
tD̃pL)−1N tY . Thus, fitting with B-splines yields

an equivalent estimator to f̂ p if we use the penalty term λpL
tD̃pL instead of λDq. This

penalty matrix can be explicitly obtained for equidistant knots. By writing (N (x)β)p =
∑K

j=0 Nj,1(x)β
(p)
j =

∑K
j=1 I[κj ,∞)(x)(β

(p)
j − β

(p)
j−1) we find that

∫ b

a

{
(N (x)β)(p+1)

}2
dx =

K∑

j=1

(β
(p)
j − β

(p)
j−1)

2.

We formally generalize (3) to β
(p+1)
j = (β

(p)
j − β

(p)
j−1)/δ and obtain that

(p!)2αtD̃pα =
K∑

i=1

(δβ
(p+1)
j )2 = δ−2pβt

∇
t
p+1∇p+1β.

Thus, in this case, for equivalence of the estimators, the penalty matrix using B-splines

should be LtD̃pL = δ−2p
∇

t
p+1∇p+1/(p!)2. In addition, these calculations provide a method

to obtain the transformation matrix L. In general, also for unequispaced knots, L can be

found from the equation βtLtD̃pLβ =
∑K

j=1(β
(p)
k − β

(p)
j−1)

2/(p!)2.

2.3 Regression splines

An unpenalized estimator with λ = 0 in (4) is referred to as a regression spline estimator.

More precisely, the regression spline estimator of order (p + 1) for f(x) is the minimizer
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of
n∑

i=1

{Yi − f̂reg(xi)}
2 = min

s(x)∈S(p+1;κ)

n∑

i=1

{Yi − s(xi)}
2,

where

S(p + 1; κ) =
{

s(·) ∈ Cp−1[a, b] : s is a p degree polynomial on each [κj, κj+1]
}

, p > 0

is the set of spline functions of degree p with knots κ = {a = κ0 < κ1 < . . . <

κK < κK+1 = b} and S(1, κ) is the set of functions with jumps at the knots. Since

Nj,p+1(·), j = −p, . . . , K form a basis for S(p + 1, κ) (see Schumaker, 1981), f̂reg(x) =

N (x)(N tN )−1N tY ∈ S(p + 1, κ). Further we denote with sf (·) = N (·)β ∈ S(p + 1, κ)

the best L∞ approximation to function f(·).

The asymptotic properties of the regression spline estimator f̂reg(x) have been studied in

Zhou et al. (1998) where the following assumptions are stated.

(A1) Let δ = max0≤j≤K(κj+1 − κj). There exists a constant M > 0, such that

δ/ min0≤j≤K(κj+1 − κj) ≤ M and δ = o(K−1).

(A2) For deterministic design points xi ∈ [a, b], i = 1, . . . , n assume that there exists a

distribution function Q with corresponding positive continuous design density ρ such

that, with Qn the empirical distribution of x1, . . . , xn, supx∈[a,b] |Qn(x) − Q(x)| =

o(K−1).

(A3) The number of knots K = o(n).

Zhou et al. (1998) obtained the approximation bias and variance of the regression spline

estimator as

E{f̂reg(x)} − f(x) = ba(x) + o(δp+1), (7)

Var{f̂reg(x)} =
σ2

n
N (x)G−1N t(x) + o{(nδ)−1}, (8)
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where G =
∫ b

a
N (x)tN (x)ρ(x)dx and the approximation bias

ba(x) = −
f (p+1)(x)

(p + 1)!

K∑

j=0

I[κj ,κj+1)(x)(κj+1 − κj)
p+1Bp+1

(
x − κj

κj+1 − κj

)
, (9)

with Bp+1(·) denoting the (p + 1)th Bernoulli polynomial (see Abramowitz and Stegun,

1972, p. 804).

We will come back to these results in Section 4 where they will be used for the case

of penalized regression splines.

3 Average mean squared error of a penalized spline

estimator

In this section we investigate the average mean squared error (AMSE) of a penalized

spline estimator and discuss the optimum choice of smoothing parameter λ and number

of knots K.

With the Demmler-Reinsch decomposition (Demmler and Reinsch, 1975) the average bias

and variance can be expressed in terms of the eigenvalues obtained from the singular value

decomposition

(N tN )−t/2Dq(N
tN )−1/2 = Udiag(s)U t, (10)

where U is the matrix of eigenvectors and s is the vector of eigenvalues sj. Denote

A = N (N tN )−1/2U . This matrix is semi-orthogonal with AtA = IK+p+1 and AAt =

N (N tN )−1N t. We can rewrite the penalized spline estimator (4) as

f̂ = A{In + λ diag(s)}−1AtY (11)

= {In + λ Adiag(s)At}−1AAtY = {In + λ Adiag(s)At}−1f̂ reg. (12)

Equation (12) clearly shows the shrinkage effect of including the penalty term. Equality

(11) provides an expression that is straightforward to use to obtain the average mean
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squared error

AMSE(f̂) =
1

n
E{(f̂ − f)t(f̂ − f)}

=
σ2

n

K+p+1∑

j=1

1

(1 + λsj)2
+

λ2

n

K+p+1∑

j=1

s2
jb

2
j

(1 + λsj)2
+

1

n
f t(In − AAt)f ,

where f = {f(x1), · · · , f(xn)}t and b = Atf with components bj. Since AAt is an

idempotent matrix and AAtf = E(f̂ reg) we obtain that

AMSE(f̂) =
σ2

n

K+p+1∑

j=1

1

(1 + λsj)2
+

λ2

n

K+p+1∑

j=1

s2
jb

2
j

(1 + λsj)2
+

1

n

n∑

j=1

[
E{f̂reg(xj)} − f(xj)

]2

.

The first term in this equation is the average variance, the second term is the average

squared shrinkage bias and the last component is the average squared approximation bias,

which can be obtained from (7).

We now study optimum orders of the smoothing parameter λ and of the number of

knots K. A study of asymptotic properties of spline estimators via eigenvalues goes back

to at least Utreras (1980), see also Utreras (1981, 1983). Speckman (1981, 1985) extended

these results and a version of that we use below. Lemma 1 is adopted from Speckman

(1985, eqn. 2.5d), see also Eubank (1999, p. 237).

Lemma 1 Under design condition (A2) and for the eigenvalues obtained in (10),

s1 = · · · = sq = 0

sj = n−1(j − q)2qc1{1 + o(1)}, j = q + 1, . . . , K + p + 1,

where c1 is a constant that depends only on q and the design density.

With a slightly different assumption on the design density, namely that the design density

is regular in the sense that for i = 1, . . . , n,
∫ xi

a
ρ(x)dx = (2i− 1)/(2n), Speckman (1985)

obtained the exact expression of the constant as c1 = π2q(
∫ b

a
ρ(x)1/2qdx)−2q. Although
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originally obtained for smoothing splines, this result remains valid for this situation with

K < n.

Using

K+p+1∑

j=1

1

(1 + λsj)2
= q +

K+p+1∑

j=q+1

1

(1 + λn−1c̃1(j − q)2q)2

=

(
c̃1λ

n

)−1/2q ∫ Kq

0

du

(1 + u2q)2
+ q − 1 + rq,

with

Kq = (K + p + 1 − q)(λc̃1)
1/2qn−1/2q, (13)

c̃1 = c1{1 + o(1)} and rq = O(1) as the remainder term of the Euler-Maclaurin formula,

we can rewrite

AMSE(f̂) =
σ2

n

(
c̃1λ

n

)−1/2q ∫ Kq

0

du

(1 + u2q)2
+

λ2

n

K+p+1∑

j=q+1

b2
js

2
j

(1 + λsj)2

+
∑n

i=1{ba(xi)}
2/n + o(δ2(p+1)) + σ2(q − 1 + rq)/n.

(14)

This expression is exact, not a bound. Depending on whether Kq in (13) is smaller or

larger than one (and thus depending on K, λ and q), we obtain a different value for the

integral in (14) and thus the following results.

Theorem 1 Under assumptions (A1)–(A3) and for p ≤ 2q − 1 it holds

(a) If Kq < 1

AMSE(f̂) =
σ2

n
c2(K + p + rq) +

λ2

n
c3 βtDq(N

tN )−1Dqβ

+ o(λ2n−2δ−2q) +
1

n

n∑

i=1

{ba(xi)}
2 + o(δ2(p+1))

= O

(
K

n

)
+ O

(
λ2

n2
K2q

)
+ O(K−2(p+1)),

12



for c2 = c2(Kq, q) ∈ (0.6, 1] for any Kq ∈ (0, 1) and q > 0 and some constant

c3 ∈ [1/4, 1]. For K = O(n1/(2p+3)) and λ = O(nγ) with γ ≤ (p + 2 − q)/(2p + 3)

one gets AMSE(f̂) = O(n−(2p+2)/(2p+3)).

(b) If Kq > 1

AMSE(f̂) ≤
σ2

n

{
q − 1 + rq +

(
c4 − K1−4q

q c5

) (
c̃1λ

n

)−1/2q
}

+
λ

4n
βtDqβ + o(λn−1) +

1

n

n∑

i=1

{ba(xi)}
2 + o(δ2(p+1))

= O

(
n1/2q−1

λ1/2q

)
+ O

(
λ

n

)
+ O(K−2(p+1)),

for constants c4 =
∫ ∞

0
(1 + u2q)−2du and c5 = c5(Kq, q) ∈ (0, 1/3]. For λ =

O(n1/(2q+1)) and K = O(nν) with ν > 1/(2q+1) one gets AMSE(f̂) = O(n−2q/(1+2q)).

Note that for the case Kq = 1, there is a discontinuity in the calculation of the

integral in (14) as the part of the averaged variance (see the proof of this theorem),

leading to a clear separation between the two cases. Case (a) with Kq < 1 results in

the asymptotic scenario similar to that of regression splines. The AMSE is determined

by the average asymptotic variance and the average approximation bias. The average

shrinkage bias becomes negligible for small λ, that is for γ < (p + 2 − q)/(2p + 3). The

asymptotically optimal number of knots has the same order as that for regression splines,

that is K = O(n1/(2p+3)). Case (b) with Kq > 1 results in the asymptotic scenario close to

that of smoothing splines. The AMSE is dominated by the average asymptotic variance

and shrinkage bias, while the average approximation bias is negligible for the chosen

asymptotic order of the number of knots K. The asymptotic order of the AMSE depends

only on the order of the penalty q.

The bound of the average mean squared error, obtained in case (b) of Theorem 1 is

precisely the same as known from the smoothing spline theory, up to the average squared

13



approximation bias, which is negligible for Kq > 1. It is well known that the AMSE of a

smoothing spline estimator is dominated by the bias in the boundaries and the optimal

rate of convergence can not be reached unless boundary conditions are imposed on the

true function (e.g. Speckman and Sun, 2001). If the boundary conditions are satisfied, the

asymptotic order of the average squared shrinkage bias is found to be O(λ2n−2), implying

that the smoothing parameter λ = O(n(2q+1)/(4q+1)) and AMSE(f̂) = O(n−4q/(4q+1)),

which is optimal. However, in our general setting for penalized splines no boundary

conditions on the true functions are imposed, leading to inevitable domination of boundary

effects in the AMSE, so that the optimal convergence rate can not be reached.

The result of Theorem 1 saying that the AMSE is smaller (and optimal) for the case

Kq < 1 (K small), than for Kq > 1 (K large) supports the simulation study of Ruppert

(2002) who “found examples where having too many knots degrades the performance of

the spline estimator”. This seems to be the first rigorous proof of those empirical findings.

4 Asymptotic bias and variance

4.1 Penalized splines with a “small” number of knots

In the case of a penalized spline estimator f̂(x) with a relatively small number of knots,

determined by Kq < 1, we are able to derive expressions for the pointwise asymptotic bias

and variance. First we relate the penalized spline estimator (4) with q ≤ p to a regression

spline estimator. We define GK,n(x) = N tN/n and make the following assumption.

(A4) Eigenvalues of λn−1G−1
K,nDq are less than 1.

This allows us to relate regression and penalized spline estimators using a series expansion

around λ = 0. We start with

f̂(x) = N (x)

(
1

n
N tN +

λ

n
Dq

)−1
1

n
N tY

14



= N (x)
{

IK+p+q −
λ

n
G−1

K,nDq +

(
λ

n
G−1

K,nDq

)2

− . . .
} 1

n
G−1

K,nN
tY (15)

= f̂reg(x) −
λ

n
N (x)G−1

K,nDqG
−1
K,n

1

n
N tY + rn. (16)

The first term in (16) is the regression spline estimator and the second term gives the

difference between the penalized and unpenalized (regression spline) estimator, which also

contributes to the bias and variance. Assumption (A4) ensures convergence of the series

in (15). Note that (A4) is equivalent to the assumption Kq < 1 in case (a) of Theorem 1,

since K2q
q is the maximum eigenvalue of matrix λn−1G

−t/2
K,n DqG

−1/2
K,n , which as a matrix is

similar to λn−1G−1
K,nDq, and thus has the same eigenvalues.

From this expansion we obtain the following result.

Theorem 2 Suppose f(·) ∈ Cp+1[a, b], assumptions (A1) − (A4) hold and p ≤ 2q − 1.

Then,

E{f̂(x)} − f(x) = ba(x) + bλ(x) + o(δp+1) + o(λn−1δ−q), (17)

Var{f̂(x)} =
σ2

n
N (x)G−1N t(x) − λc7

σ2

n2
N (x)G−1DqG

−1N t(x)

+ o{(nδ)−1} + o(λn−2δ−(2q+1)), (18)

with penalization or shrinkage bias

bλ(x) = −
λ

n
c6 N (x)G−1Dqβ = −

λ

n
c6 N (x)G−1∆t

qWs
(q)
f (τ ),

where c6 ∈ [1/2, 3/2] and c7 ∈ [3/4, 2] are constants, W = diag
(∑j+p−q

l=j

∫ κl+1

κl
N j,q(t)dt

)

and s
(q)
f (τ ) = {s

(q)
f (τ−p+q), . . . , s

(q)
f (τK)}t with some τj ∈ [κj, κj+p+1−q], j = −p + q, ..., K.

Thus, apart from the approximation bias ba(x) the asymptotic bias of a penalized spline

estimator has an additional component – the shrinkage bias bλ(x). It is easy to see that

for equidistant knots and p = q = 1

bλ(x) =
λ

n
c6 s

(1)
f

K∑

j=0

I[κj ,κj+1)(x)
[
(κj+1 − x)

{
(G−1)j+1,1 + (G−1)j+1,K+2

}

+ (x − κj)
{
(G−1)j+2,1 + (G−1)j+2,K+2

} ]
,
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Figure 1: True function sin(2πx) (solid) and its estimate (bold) based on 35 equidistant

knots and p = q = 2 (left) and the shrinkage bias (right).

where s
(1)
f (x) = s

(1)
f is a constant for sf (·) ∈ S(2, κ). Since |(G−1)k,l| = ̺|k−l|O(δ−1) for

some ̺ ∈ (0, 1) (see Lemma 6.3 in Zhou et al., 1998), the elements (G−1)j,1 decrease expo-

nentially with growing j, while the (G−1)j,K+2 increase with growing j. Thus, for j close

to [K/2], both (G−1)j,K+2 and (G−1)j,1 are small, implying that bλ(x) has much bigger

values for x near the boundaries. Similar, but somewhat more complicated expressions

can be obtained for more general settings. In contrast to the approximation bias ba(x),

the shrinkage bias bλ(x) depends on the design density ρ(x).

Figure 1 shows the shrinkage bias and the penalized regression spline estimator for

the true function f(x) = sin(2πx). The function is evaluated at n = 300 equally spaced

points on the (0, 1) interval and errors are taken to be i.i.d N(0, 0.32). We used B-splines

of degree two and a second order penalty, based on K = 35 equidistant knots. The larger

bias near the boundaries is clearly observed.

Unpenalized regression splines do not suffer from boundary effects (Gasser and Müller,

1984) and their approximation bias ba(x) has the largest values in the regions with large

|f (p+1)(x)|. Huang (2003b) notices that when the degree of the spline approximation is

larger or equal to (p + 1), the number of continuous derivatives of f , then the term ba(x)
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is not present. For example, if the twice continuously differentiable function is estimated

by linear splines, the approximation bias is given by ba(x). If, for the same function, we

use splines of second or third degree the approximation bias is negligible. This motivates

to use in practice splines of higher degree. Thus, it is recommendable to choose the

upper bound in the condition on p of Theorem 1, that is p = 2q − 1, which corresponds

exactly to the degree of a smoothing spline estimator penalized with integrated squared

qth derivative.

Finally, we investigate the asymptotic orders of variance and bias components. We

use the optimal asymptotic orders of the smoothing parameter λ and number of knots K,

obtained in Section 3 for case (a). Since under assumptions (A1)-(A4) and for p ≤ 2q− 1

it holds

−[E{f̂(x)} − f(x)] = O(δp+1) + O(λn−1δ−q)

Var{f̂(x)} = O(n−1δ−1) − O(λn−2δ−(2q+1)),

we find for

K = O(n
1

2p+3 ), λ = O(nγ) with γ ≤
p + 2 − q

2p + 3

that for γ = (p + 2 − q)/(2p + 3) both bias components ba and bλ have the same order,

which is O(n−(p+1)/(2p+3)), while the second component in the variance is of negligible

order. If γ < (p + 2 − q)/(2p + 3), then penalization looses its influence and asymptotic

orders of the bias and variance are determined by those of an unpenalized estimator.

Moreover, Zhou et al. (1998) note that the asymptotic variance of f̂reg(x) has much bigger

values near the boundary, than in the interior. Apparently, adding penalization has no

effect on the asymptotic variance.

The case of a penalized estimator (5) using a truncated polynomial basis needs a

separate treatment since a different penalty matrix is used. A closed form expression

of the penalization matrix is available for equidistant knots only. Replacing λDq by
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λpδ
−2p

∇
t
p+1∇p+1/(p!)2 and modifying (A4) accordingly, in full analogy we obtain that

E{f̂p(x)} − f(x) = ba(x) −
λpδ

−p

(p!)2n
c6 N (x)G−1

∇
t
p+1s

(p+1)
f (κ) + o(δp+1) + o(λn−1δ−p)

= O(δp+1) + O(λn−1δ−p), (19)

Var{f̂p(x)} =
σ2

n
N (x)G−1N t(x) −

λpδ
−2pσ2

(p!n)2
c7 N (x)G−1

∇
t
p+1∇p+1G

−1N t(x)

+ o{(nδ)−1} + o(λn−2δ−(2p+2)) = O{(nδ)−1} + O(λn−2δ−(2p+2)), (20)

where s
(p+1)
f (κ) = {s

(p)
f (κ1), s

(p)
f (κ2)− s

(p)
f (κ1), . . . , s

(p)
f (κK)− s

(p)
f (κK−1)}

t. It follows that

taking K = O(n1/(2p+3)) and λp = O(nγ) with γ ≤ 2
2p+3

leads to the optimal rate of

convergence. Moreover, in this setting not only approximation and shrinkage biases are

balanced, both components of the asymptotic variance are of same asymptotic order. More

details on the asymptotics of a generalized penalized estimator with truncated polynomial

basis functions are available in Kauermann et al. (2007).

4.2 Penalized splines with a “large” number of knots

A penalized spline estimator with a relatively large number of knots, determined by

Kq > 1, behaves asymptotically similar to a smoothing spline estimator. Thus, a study

of the asymptotic bias and variance of a penalized spline estimator in this case can be

carried out through derivation of an equivalent kernel, similar to the classical results on

smoothing splines (see e.g. Eubank, 1999). We consider this task beyond the scope of our

paper, and plan to address this issue in a separate work. However, we discuss here the

available results of Li and Ruppert (2008), who studied the asymptotic properties of a

penalized spline estimator by deriving an equivalent kernel.

Note that the general setting of Li and Ruppert (2008) differs from the one adopted

in the current paper. Using B-spline basis functions of degree p and equidistant knots,

Li and Ruppert (2008) employ a simplified version of penalty Dq, namely just ∇
t
q∇q.
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Also, the spline degree and the penalty order are decoupled, so that cases with q > p are

possible, in contrast to our setting with q ≤ p. Moreover, the true function is assumed to

be 2q times continuously differentiable, compared to f(·) ∈ Cp+1 adopted in our paper.

However, the case of linear splines penalized with the first order penalty (p = q = 1) fits

into both settings - the one of Li and Ruppert (2008) as well as of the current paper,

making comparison between both results possible.

For interior points, Li and Ruppert (2008) obtain the asymptotic orders K = O(nν),

ν > 1/5 and λn = O(n2ν−2/5), where λn is connected with smoothing parameter λ corre-

sponding to our setting through λn = λ(K2/n), resulting in λ = O(n3/5). Clearly, ν > 1/5

implies Kq = K1 = (K + p)(λc̃1/n)1/2 = O(nνn−1/5) > 1 for n sufficiently large. The

optimal rates for K and λ of Li and Ruppert (2008) are given for the non-boundary region

and differ from those obtained in case (b) of Theorem 1, since the average shrinkage bias

(and thus AMSE(f̂)) is dominated by the boundary behavior of the estimator. However,

since the average variance is not affected by the boundary behavior, one can observe that

the asymptotic rates for K and λ obtained in Li and Ruppert (2008) imply the optimal

rate of convergence for the average variance O{(nλ)−1/2} = O(n−4/5). Note that a further

study of the estimator in the boundary is possible, using results on kernel smoothing for

boundary values (in Li and Ruppert (2008), the local boundary behavior of a penalized

spline estimator is considered only for the cases p = 0). For the global penalized spline

estimator, the results at boundary and interior points would need to be combined to be

able to obtain global rates of convergence for the AMSE.

5 Discussion

The results in this paper (and in particular Theorem 1) provide a theoretical justification

of the empirical findings that a smaller number of knots indeed leads to a smaller averaged

mean squared error (Ruppert, 2002). Moreover we were able to precisely characterize
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through Kq in (13) the relation between K, λ and n which determines the breakpoint

between a “small” and “large” number of knots, or in other words, between the asymptotic

scenario close to that of regression splines on the one hand and of smoothing splines on

the other hand. This paper made a unifying theory, valid for both situations. Results of

this paper also made it clear that for the best rates the choices of the degree of the spline

p, and the order of the penalty q are connected through p ≤ 2q− 1, and with better rates

for p as large as possible, leading to the familiar p = 2q − 1 from the smoothing spline

theory.

Penalized regression splines gained a lot of their popularity because of the link to

mixed models where the spline coefficients are modeled as random effects, see Brumback

et al. (1999), and earlier Speed (1991) for the case of smoothing splines. An interesting

topic of further research would be a detailed study of the asymptotic properties of the

estimators in this setting, building further on Kauermann et al. (2007) who verified the

use of the Laplace approximation for a mixed model with a growing number of spline

basis functions. Since mixed models are tightly connected to Bayesian models using a

prior distribution on the spline coefficients, this could also bring additional insight in

Bayesian spline estimation (e.g. Carter and Kohn, 1996; Speckman and Sun, 2003).

The results of this paper are expected to hold for the more general class of likelihood

based models, in particular for the generalized linear models as in Kauermann et al. (2007);

a detailed study is interesting, though beyond the scope of the current paper. Other

worthwhile routes of further investigation include models for spatial data, incorporating

correlated errors and heteroscedasticity.

Appendix. Technical details

For the subsequent proofs we make use of the following results

(R1) ‖G−1
K,n‖∞ = O(δ−1), ‖G−1

K,n − G−1‖∞ = o(δ−1) and ‖GK,n − G‖∞ = o(δ) (Lemmas
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6.3 and 6.4 in Zhou et al., 1998).

(R2) ‖Dq‖∞ = O(δ−2q+1) (Lemma 6.1 in Cardot, 2000).

(R3) Under (A1) - (A3) it holds maxq≤j≤K

∫ b

a
Nj,p+1(u){f(u) − sf (u)}dQn(u) = o(δp+2)

(Lemma 6.10 in Agarwal and Studden, 1980) and thus

E{f̂reg(x) − sf (x)} = N (x)G−1
K,n

1

n
N (f − sf ) = o(δp+1),

with f = {f(x1), . . . , f(xn)}t and sf = {sf (x1), . . . , sf (xn)}t.

Lemma 2 max
1≤i,j≤K

|(G−1
K,nDqG

−1
K,n)i,j − (G−1DqG

−1)i,j| = o(δ−(2q+1)).

Proof. Rewriting

G−1
K,nDqG

−1
K,n − G−1DqG

−1 = G−1
K,nDq(G

−1
K,n − G−1) + G−1Dq(G

−1
K,n − G−1)

+ G−1
K,nDqG

−1 − G−1DqG
−1
K,n

and using (R1) – (R2) we obtain

‖G−1
K,nDqG

−1 − G−1DqG
−1
K,n‖∞ = ‖G−1

K,n(DqG
−1 − GK,nG

−1DqG
−1
K,n)‖∞

= ‖G−1
K,n(DqG

−1 − (GK,n − G)G−1DqG
−1
K,n − DqG

−1
K,n)‖∞

= ‖G−1
K,nDq(G

−1 − G−1
K,n + o(δ−1))‖∞ = o(δ−(2q+1)),

from which the result follows. ¤

Lemma 3 For any K + p + 1 dimensional vectors v and w such that vtw ≥ 0 it holds

0 ≤ vt(N tN )−1Dqw ≤
c̃1

n
(K + p + 1 − q)2qvtw.

Proof. Since matrices (N tN )−1Dq and (N tN )−1/2Dq(N
tN )−1/2 are similar, they

have the same eigenvalues. Thus, (N tN )−1Dq = Ũdiag(s)Ũ
t
, with Ũ a matrix of

eigenvalues and where s is defined in Lemma 1, so that min1≤j≤K+p+1(sj) = 0 and
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maxq+1≤j≤K+p+1(sj) = (K + p + 1 − q)2q c̃1n
−1. Since (N tN )−1Dq and wvt are posi-

tive semidefinite and vt(N tN )−1Dqw = tr{(N tN )−1Dqwvt} = tr{diag(s)Ũ
t
wvtŨ},

the results follows from

0 ≤ tr{diag(s)Ũ
t
wvtŨ} ≤

c̃1

n
(K + p + 1 − q)2qvtw,

see Fang et al. (1994) or Xing et al. (2000). ¤

If vtw ≤ 0, the lemma leads to the following result

0 ≤ |vt(N tN )−1Dqw| ≤
c̃1

n
(K + p + 1 − q)2q|vtw|.

A.1 Proof of Theorem 1

Let us first consider case (a), that is Kq < 1. Using a series expansion around zero of

(1 + x)−2 =
∑∞

j=0(−1)j(j + 1)xj for |x| < 1 we easily find

∫ Kq

0

du

(1 + u2q)2
= Kq

∞∑

j=0

(−1)j(j + 1)
K2qj

q

2qj + 1
= Kq 2F1

(
2,

1

2q
;
1 + 2q

2q
,−K2q

q

)
=: Kqc2,

where 2F1(2, 1/(2q); 1 + 1/(2q),−K2q
q ) denotes the hypergeometric series (see Ch. 15 of

Abramowitz and Stegun, 1972), which for any Kq < 1 and q > 0 converges to some

c2 = c2(Kq, q) ∈ (0.6, 1]. With this we obtain that the average variance in case (a) has

the asymptotic order O(K/n).

Using the definitions of b and s we can represent the average squared shrinkage bias as

λ2

n

K+p+1∑

j=q+1

b2
js

2
j

{
1 −

λsj(2 + λsj)

(1 + λsj)2

}
=

λ2

n
{βt

fDq(N
tN )−1Dqβf − rb},

where rb =
∑∞

j=1 λj(−1)j+1(j + 1)βt
f{Dq(N

tN )−1}jDq(N
tN )−1Dqβf and βf =

(N tN )−1N tf . With Lemma 3 we can bound

0 ≤ rb ≤
K2q

q (2 + K2q
q )

(1 + K2q
q )2

βt
fDq(N

tN )−1Dqβf ,
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so that for Kq < 1 there exists a constant c3 ∈ [1/4, 1] such that average squared shrinkage

bias equals λ2c3β
t
fDq(N

tN )−1Dqβf/n. Adding and subtracting sf from f in βf we find

βt
fDq(N

tN )−1Dqβf = βtDq(N
tN )−1Dqβ

+ 2(f − sf )
tN (N tN )−1Dq(N

tN )−1Dq(N
tN )−1N tsf

+ (f − sf )
tN (N tN )−1Dq(N

tN )−1Dq(N
tN )−1N t(f − sf )

= βtDq(N
tN )−1Dqβ + o(δp+1−4qn−1) + o(δ2p+2−4qn−1),

where (R3) and Lemma 3 where applied to obtain the orders of two last terms. To find

the asymptotic order of βtDq(N
tN )−1Dqβ we again apply Lemma 3 and obtain

βtDq(N
tN )−1Dqβ ≤

c̃1(K + p + 1 − q)2q

n
βtDqβ

=
c̃1(K + p + 1 − q)2q

n

∫ b

a

[
{N (x)β}(q)

]2

dx.

Since the penalty was assumed to be finite (see below eqn. (2)) and p ≤ 2q − 1 we obtain

that

λ2

n
c3 βt

fDq(N
tN )−1Dqβf =

λ2

n
c3 βtDq(N

tN )−1Dqβ + o(λ2n−2δ−2q) = O

(
λ2

n2
K2q

)
.

Finally, the average squared approximation bias has the asymptotic order O(K−2(p+2)), as

follows from (9). We now choose orders of K and λ, so that they ensure the best possible

rate of convergence. As shown in Stone (1982) a p + 1 times continuously differentiable

function has the optimal rate of convergence n−(2p+2)/(2p+3). It is straightforward to see

that choosing K = n1/(2p+3) implies the average variance and squared approximation

bias to have the same order O(n−(2p+2)/(2p+3)). The shrinkage bias is controlled by the

smoothing parameter λ. Choosing λ = O(n(p+2−q)/(2p+3)) balances both bias components,

while λ values of a smaller asymptotic order make the shrinkage bias negligible.

For values Kq > 1 we can find the integral in (14) as the difference
∫ ∞

0

du

(1 + u2q)2
−

∫ ∞

Kq

du

(1 + u2q)2
=: c4 −

∫ ∞

Kq

du

(1 + u2q)2
.
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Changing the integration variable to its reciprocal in the second integral and using a series

expansion of (1 + x)−2 again, one easily obtains that

∫ ∞

Kq

du

(1 + u2q)2
=

∞∑

j=0

(−1)j(j + 1)
K

−2q(j+2)+1
q

2q(j + 2) − 1

= K1−4q
q 2F1

(
2,

4q − 1

2q
;
6q − 1

2q
,−K−2q

q

)
(4q − 1)−1 =: K1−4q

q c5,

where 2F1(2, (4q− 1)(2q)−1; (6q− 1)(2q)−1,−K−2q
q ) is a converging hypergeometric series,

with c5 = c5(Kq, q) ∈ (0, 1/3] for any Kq > 1 and q > 0. Thus, for case (b) the average

variance has the asymptotic order O(n1/2q−1λ−1/2q).

Since the function x(1 + x)−2 ≤ 1/4 for any x > 0, one can bound the average shrinkage

bias

λ

n

K+p+1∑

j=q+1

b2
jsj

λsj

(1 + λsj)2
≤

λ

4n

K+p+1∑

j=q+1

b2
jsj =

λ

4n
βfDqβf .

Again, adding and subtracting sf from f in βf we find

βfDqβf = βDqβ + o(δp+1−2q).

Thus, the average squared approximation bias is of order O(λ/n). It is straightforward

to see that λ = O(n1/(2q+1)) balances the average squared shrinkage bias and the average

variance. For the condition Kq > 1 to be fulfilled, the number of knots should satisfy

K = O(nν), with ν > 1/(2q + 1). This implies that the average approximation bias is

negligible with the order O(n−(2p+2)/(2q+1)). Thus, AMSE(f̂) = O(n−2q/(1+2q)). ¤

A.2 Proof of Theorem 2

From (16) we obtain that

E{f̂(x)} − f(x) = E{f̂reg(x)} − f(x) −
λ

n
N (x)G−1

K,nDqG
−1
K,nN t 1

n
f + E(rn).

24



Rewriting

E(rn) =
λ

n

∞∑

j=1

(−1)j+1

(
λ

n

)j

N (x)(G−1
K,nDq)

jG−1
K,nDqG

−1
K,nN t 1

n
f

and using Lemma 3 we find

|E(rn)| ≤
K2q

q

1 + K2q
q

λ

n
|N (x)G−1

K,nDqG
−1
K,nN t 1

n
f |.

Since Kq < 1 according to assumption (A4), Kq/(1 + Kq) < 1/2 and thus there exists

some constant c6 ∈ [1/2, 3/2], such that

E{f̂(x)} − f(x) = E{f̂reg(x) − sf (x)} + {sf (x) − f(x)} +
λ

n
c6 N (x)G−1

K,nDqG
−1
K,nN

t 1

n
sf

−
λ

n
c6 N (x)G−1

K,nDqG
−1
K,nN t 1

n
(f − sf ).

The order of the first component is given by (R3). According to Barrow and Smith

(1978) it holds that sf (x)−f(x) = ba(x)+o(δp+1). With Lemma 3, assumption (A4) and

result (R3) we obtain

λ

n
c6 |N (x)G−1

K,nDqG
−1
K,nN t 1

n
(f − sf )| ≤

λc̃1

n
c6 (K + p + 1 − q)2qo(δp+1) = o(δp+1).

Thus,

E{f̂(x)} − f(x) = ba(x) +
λ

n
c6 N (x)G−1

K,nDqβ + o(δp+1),

with β = G−1
K,nN tsf/n = (N tN )−1N tsf . Using the definition of penalty Dq and noting

that s
(q)
f (x) = (N (x)β)(q) = N q(x)∆qβ, with N q(x) = {N−p+q,p+1−q(x), . . . , NK,p+1−q(x)}

we can apply the mean value theorem and rewrite

−
λ

n
c6 N (x)G−1

K,nDqβ = −
λ

n
c6 N (x)G−1

K,n∆
t
q

∫ b

a

N t
q(x)s

(q)
f (x)dx

= −
λ

n
c6 N (x)G−1

K,n∆
t
qWs

(q)
f (τ ),

where W = diag
(∑j+p−q

l=j

∫ κl+1

κl
Nj,q(x)dx

)
and τ = (τ−p+q, . . . , τK)t with some τj ∈

[κj, κj+p+1−q], j = −p + q, . . . , K.
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Let us consider the shrinkage bias term in more detail. First, we decompose ∆t
q =

[∆q,1,∆q,2,∆q,3]
t with ∆t

q,1 and ∆t
q,3 as q× (K +p+1−q) dimensional matrices and ∆t

q,2

as a (K + p + 1 − 2q) × (K + p + 1 − q) matrix of weighted differences as defined in (3),

so that ∆t
qWs

(q)
f (τ ) = [{∆t

q,1Ws
(q)
f (τ )}t, {∆t

q,2Ws
(q)
f (τ )}t, {∆t

q,3Ws
(q)
f (τ )}t]t. Since for

equidistant knots {W }jj = ω̃, a constant, for all j and ∆t
q,2 is the matrix corresponding

to a divided difference operator of order q, we can rewrite

∆t
qWs

(q)
f (τ ) = ω̃[{∆t

q,1s
(q)
f (τ )}t, {s

(2q)
f (τ̃ )/q!}t, {∆t

q,3s
(q)
f (τ )}t]t,

for some τ̃ = (τ̃−p+q, . . . , τ̃K−q) with τ̃j ∈ [τj, τj+q], j = −p + q, . . . ,K − q. Since sf (x)

is a piecewise polynomial of degree p, s
(2q)
f (x) disappears if p ≤ 2q − 1. For p > 2q − 1

we find s
(2q)
f (x) 6= 0 and thus the order of the shrinkage bias would increase with δ−1.

Using assumption (A1) one can show that {∆t
q,2Ws

(q)
f (τ )}t is asymptotically small for

p ≤ 2q − 1. These considerations justify the assumption on the relationship between p

and q made in Theorem 1.

Further, since Nj,q(·) ≤ 1, one finds ‖W ‖∞ = O(δ). Moreover, by definition ‖∆q‖∞ =

O(δ−q) (see also Lemma 6.1 in Cardot, 2000). Thus, using (R1) and noting that ‖s
(q)
f (τ )‖∞ =

O(1) and s
(2q)
f (x) = 0 we obtain the shrinkage bias bλ(x) as

−
λ

n
c6 N (x)G−1∆t

qWs
(q)
f (τ ) −

λ

n
c6 N (x)(G−1

K,n − G−1)∆t
qWs

(q)
f (τ )

= −
λ

n
c6 N (x)G−1∆t

qWs
(q)
f (τ ) + o(λn−1δ−q)

def
= bλ(x) + o(λn−1δ−q).

From (15) we find

Var{f̂(x)} =
σ2

n
N (x)

(
In −

λ

n
G−1

K,nDq + . . .

)2

G−1
K,nN

t(x)

= Var{f̂reg(x)} − 2λ
σ2

n2
N (x)G−1

K,nDqG
−1
K,nN t(x)

+3λ2σ2

n3
N (x)G−1

K,nDqG
−1
K,nDqG

−1
K,nN

t(x) + . . .
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with Var{f̂reg(x)} as given in (8). Applying Lemma 3 again, we can rewrite

Var{f̂(x)} = Var{f̂reg(x)} − λ
σ2

n2
c7 N (x)G−1

K,nDqG
−1
K,nN t(x),

with some c7 ∈ [3/4, 2]. Finally, using Lemma 2 we obtain that

− λ
σ2

n2
c7 N (x)G−1DqG

−1N t(x) − λ
σ2

n2
c7 N (x)

(
G−1

K,nDqG
−1
K,n − G−1DqG

−1
)
N t(x)

= −λ
σ2

n2
c7 N (x)G−1DqG

−1N t(x) + o(λn−2δ−(2q+1)),

proving Theorem 2. ¤
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