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0. ABSTRACT

This paper develops an asymptotic theory for residual based tests for
cointegration. These tests involve procedures that are designed to detect
the presence of a unit root in the residuals of (cointegrating) regressions
among the levels of economic time series. Attention is given to the aug-
mented Dickey-Fuller (ADF) test that is recommended by Engle-Granger (1987)
and the Za and Zt unit root tests recently proposed by Phillips (1987).

Two new tests are also introduced, one of which is invariant to the normal-
ization of the cointegrating regression. All of these tests are shown to be
asymptotically similar and simple representations of their limiting discri-
butions are given in terms of standard Brownian motion. The ADF and Zt

tests are asymptotically equivalent. Power properties of the tests are also
studied. The analysis shows that all the tests are consistent if suitably
constructed but that the ADF and Zt tests have slower rates of divergence

under cointegration than the other tests. This indicates that, at least in
large samples, the Za test should have superior power properties.

The paper concludes by addressing the larger issue of test formulation.
Some major pitfalls are discovered in procedures that are designed to test a
null of cointegration (rather than no cointegration). These defects provide
strong arguments against the indiscriminate use of such test formulations
and support the continuing use of residual based unit root tests.

First version: June 1987
Revision: July 1988

*We are grateful to Lars Peter Hansen and two referees for helpful comments
on the original version of this paper. Our thanks also go to Glena Ames for
her skill and effort in keyboarding the manuscript of this paper and to the
NSF for research support under grant number SES 8519595. Sam Ouliaris is
now at the University of Maryland and is presently visiting the National
University of Singapore.



1. INTRODUCTION

The purpose of this paper is to provide an asymptotic analysis of
residual based tests for the presence of cointegration in multiple time
gseries. Residual based tests rely on the residuals calculated from regres-
sions among the levels (or log levels) of economic time series. They are
designed to test the null hypothesis of no cointegration by testing the null
that there is a unit root in the residuals against the alternative that the
root is less than unity. If the null of a unit root is rejected then the
null of no cointegration is also rejected. The tests might therefore be
more aptly named residual based unit root tests. Some of the tests we shall
study involve standard procedures applied to the residuals of the cointe-
grating regression to detect the presence of a unit root. Two of the pro-
cedures we shall look at are new to this paper. They all fall within the
framework of residual based unit root tests.

Approaches other than residual based tests for cointegration are also
available. A likelihood ratio test has been considered by Johansen (1988)
in the context of vector autoregresssions (VAR's). A common stochastic
trends test has been proposed by Stock and Watsen (1986). A bounds test has
been suggested by the authors in earlier work (1988). None of these tests
rely on the residuals of ceintegrating regressions. However, it is the
residual based procedures which have attracted the attention of empirical
researchers. This is partly because of the recommendations of Engle and
Granger (1987), partly because the tests are so easy and convenient te apply
and partly because it is clear intuitively what they set out to test.

Unfortunately, little is known from existing work about the properties

of residual based unit root tests. Engle and Granger (1987) provide some



experimental evidence on the basis of which they recommend the use of the
augmented Dickey-Fuller (ADF) t-ratio test. They also show that this test
and many others are similar tests when the data follows a vector random walk
driven by iid normal innovations. They conjecture that the ADF procedure is
asymptotically similar {n more general time series settings. The present
paper confirms that conjecture. We also study the asymptotic behavior of
various other tests, including the Za and zt tests recently suggested in
Phillips (1987). Our asymptotic theory covers both the null of no cointe-
gration and the alternative of a cointegrated system. It is shown that the
pover properties of many of the tests depend critically on their method of
construction. In particular, test consistency relies on whether residuals
or first differences are used in serial correlation corrections that are
designed to eliminate nuisance parameters under the null. OQur analysis of
power also indicates some major differences between the tests. In particu-
lar, t-.ratio procedures such as the ADF and the Zt test diverge under the
alternative at a slower rate than direct coefficient tests such as the Za
test and the new variance ratio tests that are developed in the paper. This
indicates that coefficient and variance ratio tests should have superior
power properties over t-ratio tests at least in large éamples.

One of the new tests developed in the paper is invariant to the normal-
ization of the cointegrating regression. This is in contrast to other
residual based tests, such as the ADF, which are numerically dependent on
the precise formulation of the cointegrating regression. Invariance is a
useful property, since it removes conflicts that can arise in empirical work
where the test outcome depends on the normalization selected.

The general question of how to formulate tests for the presence of co-



integration is also addressed. In particular, we examine the potential of
certain procedures which seek to test a null of cointegration against an
alternative of no cointegration, rather than vice versa. This question of
formulation is important. It arises frequently in seminar and conference
discussions (for example Engle (1987)) where it is often argued that a null
of cointegration is the more appe#ling. But the question has not teo our
knowledge been formally addressed in the literature until now. Our analysis
points to some major pitfalls in the alternate approach. The source of the
difficulties lies in the failure of conventional asymptotic theory under a
null of cointegration. This is not just a matter of nonstandard limit
theory. In fact, no gemeral limit theory applies in this case to certain
statistics (like long run variance estimates) that are most relevant to the
null. Moreover, if tests based on a specific distribution theory are used
they turn out to be inconsistent. These difficulties provide good arguments
for the continuing use of tests that are based on the composite null of no
cointegration.

The plan of the paper is as follows. Section 2 provides some prelimin-
ary theory, including a theorem that is likely to be very useful on invari-
ance principles for processes which are linear filters of other time series.
This theory is needed for an asymptotic analysis of the ADF. In Section 3
we review a class of residual based tests for cointegration and develop two
new procedures: a variance ratio test and a multivariate trace test. Both
tests have interesting interpretations and the second has the invariance
property mentioned earlier. An asymptotic theory for the tests is developed
in Section 4 and it is shown that the Zﬂ . Zt and ADF tests all have lim-

iting distributions which can be simply expressed as stochastic integrals.



The ADF and Zt tests are asymptotically equivalent. Section 5 studies
test consistency and the asymptotic behavior of the tests under the alterna-
tive of cointegration. Issues of test formulation are considered in Section
6 and some conclusjons are drawn in Section 7. Proofs are given in the
Appendix A,

In matters of notation we use the symbol " = " to signify weak con-
vergence, the symbol " = * .to signify equality in distribution and the
inequality " > 0 " to signify positive definite when applied tec matrices.
Continuous stochastic processes such as the Brownian motion B{(r) on [0,1)
are written as B to achieve notationmal economy. Similarly, we write inte-

grals with respect to Lebesgue measure such as 1B(s)ds more simply as
e 0

1
JoB -

2. RELI Y THEQ

Let {zt]; be an m-vector integrated process whose generating mechan-

ism is
(1) z, =2, 1 + ft , t=1,6 2

Qur results do not depend on the initialization of (1) and we therefore

allow z, to be any random variable including, of course, a constant. The

random sequence lEtl; is defined on a probability space (X, F, P) and is

assumed to be strictly stationary and ergodic with zero mean, finite vari-

ance and spectral density matrix f E(A) . We also require the partial sum

£

process constructed from (£_) to satisfy a multivariate invariance princ-

t

iple. More specifically, for r € {0,1] and as T - « we require



(C1) p(x) = T-1/2E{Tr]§t = B(r) (R-mixing)

where B{(r) 1s m-vector Brownian motion with covariance matrix

-] T T.,
(2) Q= 1imT*m T E{(Elft)(ﬂlft)l - 2rf$€(0)
Writing
we have

] = QO + Ql + 01 .

The convergence condition (Cl) is Reyni-mixing (R-mixing). This requires
the random element XT(r) to be asymptotically independent of each event

EeF 1i.e.

P({XT €+ NE)+P(B € «)P(E) , T~»w .,

In this sense, the random element XT may be thought of as escaping from
its own probability space when R-mixing applies. The reader is referred to
Hall and Heyde (1980, p. 57) for further discussion. Functional limit
theorems under R-mixing such as (Cl) are known to apply in very general sit-
uations. For example, the theorems of McLeish (1975) that were used in the
paper by Phillips (1987) are all R-mixing limit theorems. Extensions to
multiple time series follow as in Phillips and Durlauf (1986).

It will be convenient for much of this paper to take ft to be the

linear process generated by



(3) Q-%m%%j.%“ﬁﬂ<w.ﬁn-%_ﬁ

where the sequence of random vectors [ct} is 11d(0,¥) with Z > 0 and

ﬂCjH - maxk{zzicjkjl} where C, - (cjkj) . This includes all stationary
ARMA processes and is therefore of wide applicability. The process Et has

a continuous spectral density matrix given by

1ja.*

0y = (120, ¢, e x5z ¢, o132

fee 3 3

In addition to the absolute summability of ({(C,} in (3) we will use the

J
following condition (based on (5.37) of Hall and Heyde (1980))

R N (N R I F R

which is again satisfied by all stationary ARMA models. Note that (C2)
holds for all sequences [Cj} that are l-summable in the sense of
Brillinger (1981, equation 2.7.14).

Let {aj} be a scalar sequence that is absolutely summable and define

the new process

* - -] L] 8
(4) £x zj__aajgt_j . Z__l3l Iaj] <w, s>1
and the associated random element

(5) xa(r) = 7 /2T ey

Let a(l) = ijaj . We shall make use of the following important lemma

describing the asymptotic behavior of X%(r)



LEMMA 2.1. If (C2) holds then as T = =

(6) sup |R&(r) - a(L)X (r)| —~ O
O=sr=l XT xT P

and

(7N x{(r) = B¥(r) = a(l)B(r)

. . , . 2
or vector Brownian motion with covariance matrix 0Ok = a(l)™0Q .

We now partition zt - (yt, xé)' into the scalar variate yt _and the

n-vector X, (m = n+l} with the following conformable partitions of Q

and B(r)
1 n
w w? 1 B,(r) 1
Q- 11 21 . B(r) = i .
w5q 022 n Bz(r) n

We shall assume 022 > 0 and use the block triangular decomposition of Q

- 2 0
(8) g-rL, L= 1
21 L2
with
1/2
- - ! -1 -1/2 - 1/2
(9 21 [”11 ”21“22“21] o Bgy T g wgp v Loy = lpy

let W(r) Dbe m-vector standard Brownian motion and define:

417 81

21 892

A= fésa' -
a



£ £
Fefpme - | B

£1 Fp

’ -nt -1 - —Fr -1
n (1: 321A22) ) x (1) f21F22) ’

-1
Qr) = W (r) - [I§w1w§][féw2w§] W)

(a) B(xr) = L'W(r) ;
(®) Lp = &,k n'Gn = w0y, o'k
(¢} n'B(r) = £,,Q(x) ;
srlo oo, 1
(d) n'fBdB'n = w,, ,fo0dQ ;

. _ 1.2
(&) n'An = a)y 5 =y, g0

where
“11.2 7911 7 wélﬂgéWZI - £
and
311.2 T 211 TAafnda
REMARKS
{(a) This lemma shows how to reformulate some simple linear and quadratic

functionals of the Brownian motion B{r) into distributionally equiv-
alent functionals of standard Brownian motion. These representations
turn out to be very helpful in identifying key parameter dependencies
in the original expressions. As is clear from (b)-(e) the conditional

variance w is the sole carrier of these dependencies in (b)-(e}.

11.2



(b)

(<)

(10)

Note that det { = det {1 and is zero iff w - 0 (given

“11.2 22 11-2

922 > 0 ). Note alsc that we may write

2 2, -1
©17,9 = @1 (1= P7) 4 p7 =g fyowyy /gy

where p2 is a squared correlation coefficient. When Wig,0 = 0

(p2 = 1) then I is singular and Ve and Xx_ are cointegrated, as

t
pointed out in Phillips (1986). At the other extreme when there is no
correlation between the innovations of Ye and x, we have p2 =0,
i nonsingular and a regression of Yo °on X, is spurious in the
sense of Granger and Newbold (1974).

Consider the Hilbert space L2[0,1] of square integrable functions on
the interval [0,1] with inner product jéfg for £, g € L,(0,1] . 1In

this space, Q 1is the projection of Ul on the orthogonal complement

of the space spanned by the elements of W2 .

3. RESIDUAL BASE STS OF COI G ON

We consider the linear cointegrating regressions

~

- ' o G .
Y = B+ U

Residual based tests seek to test a null hypothesis of no cointegration us-

ing scalar unit root tests applied to the residuals of (10).

ameter w

This null may be feormulated in terms of the conditional variance par-

11.2 @S the composite hypothesis
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The alternative is simply

leading to p2 = 1 and cointegration, as pointed out above. Engle and
Granger (1987) discuss the procedure and suggest various tests. Their main
recommendation is to use the augmented Dickey-Fuller (ADF) test and they
provide some critical wvalues obtained by Moente Carlo methods for the case
m=2.

We shall consider the asymptotic properties of the following residual

based tests:

(1) Augmented Dickey Fuller:

~ AA P A A
= La - + .
ADF t in the regress ion AU a. . u I‘.I 1¢ i Au i + Vv :

* * t-1 - - tp
(ii) s’ 987 Za test:
regress U, = au . + kt and compute
. 2 2. . -2.T.2 .1
Za = T(a-1l) - (1/2)(ST1 - sk)(T ZZut-l)
where
-1.T2
s, =T Elkt .
2 -1_T.2 -1_¢ T .2
(11) Stp ~ T zlkt + zs-lwsl t-s+1ktkt-s

for some choice of lag window such as Vo~ 1 - s/(2+1) ;
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(iii) Phillips' (19873 Zt test:

ct

-~ A A
e - gu + k and compute
regress U, =1 . ol

A 1/2 1/2,-1
. T.-.2 A~ 2 2 —2 TAZ
2, = () @D/sgy - (/D sy sk)[srz(T Zple-1) ]
with s2 and 52 as in (ii);
k T2 !
(iv) ¥ e _rati L
2 -1_T.2
(123 P - Twll 2/(T 21 t)
where & -0 1“ and
11.2 11~ 21 22%21
A l TA ~ 1 j T N A‘
(13) -1 215 $ +T Es 1Vs2 t—s+1(5 Et-s ec-set)

for some choice of lag window such as =1 - s/(4+]l) (see

Yse
Phillips and Durlauf (1986), Newey and West {1987)) and where

[£t} are the residuals from the least squares regression:

(14) zt - Iz -1 + £

(v) A multivariate trace statistic:

5 w1l -1.T_ _,
P,=Ter@M¥ ), M =T Zjzz

-~

where I is as in (13).
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REMARKS

(a)

{b)

(e)

(d)

Note that Za and Zt are constructed using an estimate s%i that is

Y
~

based on the residuals k_ from the autoregression of ﬁt on &,

When the estimate 5%2 is based on first differences Aﬁt in place of

kt (as suggested by the null of no cointegration) we shall denote the

resulting tests by Za and zt . The distinction is important since
these tests have very different properties under the altermative hy-

pothesis of cointegration, as we see below.
A A
In a similar way, Pu and Pz are constructed using the covariance
A o~

matrix estimate I that is based on the residuals Et from the first
order vector autoregression (l4). When the estimate 0 is based on

first differences § =4z we denote the resulting tests by Pu and

Pz . Again the distinction is important since Pu and P, have dif-

ferent properties under the alternative from those of Pu and Pz .
~
The variance ratio test Pu is new. Its construction is intuitively

A

appealing. P, measures the size of the residual variance from the co-

"'l TAZ
, viz. T Zlut .

of a direct estimate of the population conditional variance of Ye

integrating regression of Y, on x against that

t

iven x_, wviz. If the model (1) is correct and has no
g t

€112
degeneracies (i.e. 1 nonsingular) then the variance ratio should sta-
bilize asymptotically. If there is a degeneracy in the model, then
this will be picked up by the cointegrating regression and the variance
ratio should diverge.

The multivariate trace statistic 52 is also new. Its appeal is simi-

lar to that of Pu . Thus, tf is a direct estimate of the covariance

matrix of zt , Wwhile Mzz is simply the observed sample moment



(=)

(13)

13

matrix. Any degeneracies in the model such as cointegration ultimately
manifest themselves in the behavior of sz and, hence, that of the
statistic ;z . This behavior will be examined in detail below. Note
that ;z is constructed in the form of Hotelling's Tg statistic,
which is a common statistic (see, e.g., Muirhead (1982, Chapter 10)) in
multivariate analysis for tests of multivariate dispersion.

Note that none of the tests (i)-(iv) are invariant to the formulation
of the regression equation (10). Thus, for these tests, different out-
comes will occur depending on the normalization of the equation. Ome
way around this problem is to employ regression methods in fitting (10)

which are invariant to normalization. The obvious candidate is ortho-

gonal regression, leading to

where

-

B =argminb’'M_b, b'b=1.
zZZ

Here b 1is the direction of smallest variation in the observed moment

matrix Mzz and corresponds to the smallest principal component with

-1.T~-2 =, -
T Elut - b szb = Amin(sz)

where Amin(Mzz) is the smallest latent root of Mzz . Smallest latent

root tests based on *min(uzz) may be constructed. For example, an

-~

orthogonal regression version of the variance ratioc statistic Pu

would be:
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A

P, =T A, (@)/)

, 1,

min‘''zz

A~

Unfortunately, P, has a limiting distribution which depends on the

nuisance parameter £ . The multivariate trace statistic Pz offers a
very convenient alternative, Pz is a normslization invariance ana-
logue of Pu and has the same general appeal as statistics such as

-~

P yet, as we see below, its asymptotic distribution is free of

PR
nuisance parameters.

(f) Each of the test statistics (i)-(iv) has been constructed using the
residuals ﬁt of the least squares regression (10). These statistics

may alsc be constructed using the residuals Gt " of the least squares

regression

(16) Ve = a + E'xt +u,

with a fitted intercept. In a similar way, for test (v) the statistic

= -1_T - -, :
Pz may be constructed using sz =T Z‘l(zt - z)(zt -~ Z) and resid-

A

uals Et from a VAR such as (14) with a fitted intercept. These
modifications do not affect the interpretation of the tests but the
alternate construction does have implications for the asymptotic eriti-

cal values. These will be considered below.

4. YMPTOT

Our first concern is to develop a limiting distribution theory for the
tests (i)-(v) under the null of no cointegration. In this case, the co-
variance matrix £ is positive definite. The statistic that presents the

main difficulty in this analysis is the ADF. We shall give the asymptotic
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theory for this test separately in the second result below.

o

THEOREM &.1. If {zt}0 is generated by (1), if @ > 0 and if (Cl) holds
then as T » = :
. 1
() 2,= fORdR ;
() Z. = [iRres ;
t 9]
- 1.2 -1 .
() P = (Jo@D
(@ P = eoi(fhwnh
z #]
where notations are the same as in Lemma 2.2 and

1.2 1/2
R(r) = o)/ (fR7Y

s(r) = Q(r)/(x' k)2

We require the lag truncation parameter § +ow as T~ = and 2 = of(T)
REMARKS
(a) Recall from Lemma 2.2 that
1 13t
Q(r) = W (x) - jOWIWé{f0w2Wé] W, ()

whose distribution depends on a single parameter n = dimension of

W2 . Recall too that

S T A

whose distribution is also independent of nuisance parameters.

(b) We deduce from the preceding remark that the limiting distributions of

>
>

A

2, Z , Pu and Pz are free of nuisance parameters and are depen-



(e}

{d)

16

dent only on the known dimension number n (or m = n+l in the case

of Pz ). These statistics therefore lead to (asymptotically) similar

tests. Critical values for these statistics have been computed by
simulation and are reported in Appendix B. For the case of the ét
statistic demeaned (i.e. computed from the regression (16) with a
fitted intercept) the values in Table 2b in Appendix B correspond
closely with those reported by Engle and Yoo (1987, Table 2, p. 157)
for the Dickey Fuller t statistic. Differences occur only at the
second decimal place and are likely to be the result of: (i) differ-
ences in the actual sample sizes used in the simulations (T =« 200 in
Engle and Yoo (1987); and T = 500 in ours); and (ii) sampling error.
The éa and Et tests have the same limiting distribution in the gen-
eral case as the Dickey Fuller residual based o and t tests do in
the highly restrictive case of iid(0,() errors. This point is dis-
cussed further in the original version of the paper which is available
as a technical report on request, Phillips and CQuliaris (1987). Thus,
the Ea and Et tests have the same property in this context of coin-
tegrating regressions for which they were originally designed in
Phillips (1987) as scalar unit root tests, viz. that they eliminate
nuisance parameters and lead to limit distributions which are the same
as those possessed by the Dickey-Fuller tests in the iid error environ-
ment. However, the limiting distributions here, ngdR and féRdS ,
are different from the simple unit root case, and they are dependent on
the dimension number n .

P , P

We remark that the limiting distributions of 2, L. By z

(the statistics mentioned earlier which are based on first differences
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~

kt - Aﬁt and st - Azt rather than regression residuals kt and

~ Y ~ A A

{t ) are the same as those of za . Zt ) Pu ' Pz given in Theorem
4.1. This follows in a straightforward way from the proof given in
the Appendix,

(e) Note, finally, that if the statistics are based on the regression (16)

A

.wity a fitted intercept then the limiting discributions of Ea , Zt
and ;u have the same form as in (a)-{(c) but now R, § and Q are
functionals of the demeaned standard Brownian motion

W(r) = W(r) - féw . Observe that ¥ 1is the projection in L,(0,1] eof
W onto the orthogonal complement of the constant function, thereby jus-
tifying this terminclogy. In a similar way, if the cointegrating
regression involves fitted time trends the limiting distributions in

(a)-(c) continue to retain their stated form but involve functionals of

correspondingly detrended standard Brownian motiomn,

THEOQREM &4.2. Let {zt} be generated by (1) and suppose {ft] follows a

stacionary vector ARMA process. If Q> 0 and (Cl) holds thenas T = =
1
ADF = joads

provided the order of the autoregression in the ADF is such that p - = as

T~o and p = o(T/3)
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REMARKS

{a)

(b}

(e

Theorem 4.2 shows that ADF and it have the same limiting distribu-
tion. This distribution is conveniently represented as & stochastic
integral in terms of the continuous stochastic processes

(R(r), S(r)) . These processes are, in turn, continuous functionals of
the m-vector standard Brownlan motion W(r) . In accord with our earl-
ier remarks concerning Et , the limiting distribution of the ADF
depends only on the dimension number n (the number of regressors in
(10) or, equivalently, the system dimension m (= n+l) . Given m ,
the ADF is an asymptotically similar test.

The proof of Theorem 4.2 depends critically on the fact that the order
of the autoregression p -+ « ., While this behavior is alsoc required
for a general unit root test in the scalar case (see Said and Dickey
(1984)) it is not required when the scalar process is driven by a fin-
ite order AR model with a unit root. It 1is important to emphasize that

this is not the case when the ADF is used as a residual based test for

cointegration. Thus, we still need p =+ = even when the vector pro-

cess Et is driven by a finite order VAR. This is because the
residuals on which the ADF is based are (random) linear combinations of
These linear combinations no longer follow simple AR processes.

3

In general, they satisfy (conditional) ARMA models and we need p =~ =

-

in order to mimic their behavior.
We mention one special case where the requirement p + = 1is not need-
ed. This occurs when the elements of Et are driven by a diagonal AR

process of finite order viz



(d)
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biLi b, =1: e iid (0.3)

_ <P
b(L)g, = £, . b(L) = Z5_ . .

T 0

In this case

a - 1mpan’e.

2

0, = [fﬁflbcei“)[ dA]E

and we cbserve that O s a scalar multiple of 00 . The examples
chosen by Engle and Granger (1987) for their simulation experiments
(Tables II and III in their paper) both fall within this special case.
Note that the ADF test is basically a t-test in a long autoregression
involving the residuals ﬁt . In this sense, the ADF is a simple ex-
tension of the Dickey-Fuller t test. Note that no such extension of
the Dickey-Fuller a test is recomménded by Said and Dickey (1984)
since even as p -+ =« the coefficient estimate T&* has a limiting
distribution that is dependent on nuisance parameters (cf. Said and
Dickey (1984, p. 605)) in the scalar unit root case. 1In contrast, the
éa statistic is an asymptotically similar test. Thus, the nonparamet-
ric correction of the Za test successfully eliminates nuisance param-
eters asymptotically even in the case of cointegrating regressions.

This point will be of some importance later when we consider the power

of these various tests.
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5. TIEST CONSISTENCY

Our next concern is to consider the behavior of the tests based on

~ ~ -~

Za . Zt , ADF , Pu and gz under the alternative of cointegration. To
be specific we define z, to be cointegrated if there exists a vector h

on the unit sphere (h‘h = 1) for which 9. = h'zt is stationary with con-
tinuous spectral density qu(A) . This ensures that the action of the
cointegrating vector h reduces the integrated process z, toa stationary

time series with properties broadly in agreement with those of the innova-

tions £

. in {(1). The spectral density of h'(zt - zt-l) satisfies

A2
|

' . i
h ffs(A)h qu(x)[l e

from which we deduce that

2 2
h f,,.(Ah = 03 A . A= 0.
6() qu() + 0(27)

3

This implies that h'(th = 0 so that @ is singular.

EQR . If (zt}; is generated by (1) and ls a cointegrated system
with cointegrating vector h and 022 >0, |if q, = h z, and qu(O) >0
then

N

() Z, =0 (T
A 1/2

®) z, =0 (1%

(¢) ADF = OP(TI/Z)

so that each of these tests is consistent.
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REMARKS

(a)

(b}

()

(4}

We see from Theorem 5.1 that Za diverges faster as T - « under the

alternative of ceointegration than do either of the statistics Zt and

ADF. This suggests that éq is likely to have higher power than’ ét
and ADF in sawples of moderate size. It also suggests that the null

distribution of Ea in finite samples is likely tc be more sensitive
than it and ADF to changes in parameters which move the null closer
to the alternative (i.e. as Wig.p 0 or p2 - 1)),

As is clear from the proof of Theorem 5.1 the requirement that

qu(O) > {0 is needed for results (b) and {(¢). It is not needed feor

result (a). Moreover, whgn qu(O) = (0 we show in the proof thac

2t - Op(T) . In this case the cointegrating vector does more than

reduce z, to the stationary process q, ~ h'z It actually anni-

.
hilates all spectral power at the origin. When this happens, there

should be more evidence in the data for cointegration and, correspond-
ingly, the Z_ statistic diverges at the faster rate Op(T)

-

Note further that the Za statistic, which is based directly on the

coefficient estimate & in the residual based regression, does not

involve an estimate of the standard error of regression like 2t . Ircs
rate of convergence is Op(T) under the alternative irrespective of
the value of £ (0)

qq

The requirement that Q,, > 0 in Theorem 5.1 is not essential to the

22

validity of results (a)-{(c) provided Ve and x, are still cointe-

grated. However, when it is relaxed and we allow QO to be singular

22

then we need to asllow for cointegrated regressors X, in (10). In

such cases we have b = b + OP(T-1/2) in place of b = b + OP(T*l)
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(see Park and Phillips (1987, Section 5.2) for details) and the proofs

become more complicated.

In order to develop our next theorem let us continue to assume that

022 > 0 . Define an orthogonal matrix H = [Hl, h] and the process:

H!E w n
an w_ - e o le , say.
¢ h’z w 1
t 2t
This is zero mean, statiocnary with spectrum fww(l) ., say, under the al-

ternative of cointegration.

THEOREM 5.2: If {zg}; is generated by (l) and is a cointegrated system

with h >0, 022

(a) Pu - OP(T)

-~

>0 and if fww(o) >0 then as T =» « :

(b) Pz - OP(T)

so that each of these rests is consistent.

We observed earlier that the Z and P tests may be constructed using

first differences rather than residuals, Thus, we denoted by Za and 2c

-

the statistics which utilize the first differences Aﬁt' rather than kt in

2 2
the estimators sk and sTi .

statistics which utilize the first differences Azt - Et in place of the

residuals Et from the VAR (14). These modified tests have very different

Similarly, we denoted by ?u and Pz the

properties under the alternative as the following result shows.
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THEQOREM 5.3. If (1) is a ccinregrared system with cointegrating vector h

and 022 >0 thenas T-=

Za, Zt’ Pu, Pz - OP(l)

and each of these tests is inconsistent.

The use of residuals rather than first differences in the construction
of these tests has a big impact on their asymptotic behavior under the al-
ternative of cointegration. Clearly, the formulation in terms of residuals

~ ~ A ~

leading to Za . Zt . Pz is preferable. Phillips and Durlauf
(1986) reached a similar conclusion in a related context, dealing with mul-

tivariate unit root tests,

6. COMMON CONCE A FALLS

Since it is the hypothesis of cointegration that is of primary interest
rather than the hypothesis of no cointegration it is often argued that coin-
tegration would be the better choice of the null hypothesis. For example,
in a recent survey Engle (1987) concludes that a "null hypothesis of cointe-
gratioh would be far more useful in empirical research than the natural null
of non cointegration.” 1In spite of such commonly expressed views, no resid-
ual based statistical test of cointegration proceeds along these lines.

A major source of difficulty lies in the estimation of O under (the
null of) cointegration. In order to assess whether a multiple time series
is cointegrated residual based tests seek, in effect, to determine whether
there exists a linear combination of the series whose variance is an order

of magnitude (in T ) smaller than that of the individual series. Equiva-
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lently, one can worx directly with the covariance matrix O and seek to
determine whether its smallest latent root is zero and @ 1is singular.
lLet us assume that the supposed cointegrating limear combination h were

known. In such a case, we would seek to rest

H6 : h'Gh = 0

-~

In order to test H6 it would seem appropriate to estimate O by O wusing
the first differences {t - Azt of the data and base some test statistic on
0’ but not under the alterna-

tive (h'Gh > 0) , we might expect a suitably rescaled version of h'ah to

h'h . Since h'th —;» 0 under the null H

provide good discriminatory power. Of course, this approach relies on crit-

ical values for the statistic that is based on h'fth being worked out.

Likewise, if h were not known, we would seek to test

Ha : 1 singular .

If 022 > 0 then the obvious approach would be to base some test statistic

on the estimated conditional variance

- - A a"la
“11.2 T “11 T “21%22%1 -
Since 611.2 —S~ 0 wunder the null Ha similar considerations apply.
The following lemma indicates the pitfalls inherent in this approach.
It will be convenient for the proof to employ the smoothed periodogram esti-

mate of 0§

- 2x
(18) 8 - 5o Eﬁ__zlsf(sz/T)
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where Ixx(A) - wx(A)wx(A)* denotes the pericdogram and

_l/zzixtelAt the finite Fourier transform of a (multiple) time

series {xt} . In (18) the bandwidth parameter £ plays a similar role to

w (A) = (2aT)

that of the lag truncation parameter in the weighted covariance estimator

(14). We shall assume that £ = o(T*’%) . We have:

LEMMA 6.1
- - 2 1
(a) h'Gh = T 1(qT - a0 (T
,. . -1
(®) By, = h'Gh + 0 (17)
REMARKS

(a) We see from Lemma 6.1 that both Th'Gh and T& are Op(l) . In-

11.2
deed, both of these statistics are weakly convergent in a trivial way
viz

2

(19) Th'Oh, Toy,,, = (9, - qp)

vhere q_ 1is a random variable signifying the (weak) limit of the sta-
tionary sequence {qT} as T - o . Tests that are based on these
statistics therefore result in inconsistent tests. Note also that the

limiting distribution given by (19) is dependent on that of the (sta-

tionary) sequence 9, which in turn depends on that of the data
z, . Thus, no central limit theory is applicable in this context. And
any statistical tests that are based on h'GQh or 611_2 under the

null of cointegration would need critical values tailored to the dis-

tribution of the data. Such specificity is highly undesirable.
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{b> The above results suggest that classical procedures designed to test a
null eof cointegration can have serious defects. Statistics that are

A

based on 2 or &11.2 are not to be recommended. An alternative

approach that is inspired by principal components theory is not to test

Ha directly but to examine whether any of the latent roots of Q are
small enough to be deemed negligible. This approach proceeds under the
hypothesis that O > 0 (no cointegration) and is well established in

multivariate analysis (e.g. Anderson (1984)). It has been explored in

the present context by Phillips and Ouliaris (1988).

7. ADDITIONAL ISSUES

The results of this paper are all asymptotic. They are broadly consis-
tent with the simulation findings reported in Engle and Granger (1987) for
the ADF and in Phillips and Ouliaris (1988) for the Zu , ‘Zt and ADF
tests. However, it is certain that there are parameter sensitivities that
are likely to affect the finite sample properties of these tests in impor-
tant ways. This is because as we approach the alternative hypothesis of
cointegration, the model undergoes a fundamental degeneracy. This seems
destined to manifest itself in the finite sample behavior of the tests in
differing degrees, depending on their construction.

Some guidance on this issue is given by the performance of the Za ,

Zt and ADF tests in simple tests for the presence of a unit root in raw
time series (rather than regression residuals). Simulation findings in this
context have been reported by Schwert (1987) and Philiips and Perron (1988).

These studies indicate the power advantages of the Za test that we have

established by asymptotic arguments in this paper. But they also show thatr
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size distortions can be substantial for all of the tests in models with par-
ameters approaching the stability region. It seems likely that similar
conclusions will hold for residual based unit root tests. However, the

jssues deserve to be explored systematically in simulation experiments,



o1} a2 The

tion of a sequence {Yt]
which are representative

tion may be performed as

(1980, pp. 141-142). We
(Al) ft - Yt + Zt -
where is

{Yt - C(l)ct}

is strictly stationary.

Z_ 1s square integrable.

t

EQ a.Y

f: © je=]

and

~1/22

X%(r) = T

APPENDIX A

first part of the argument relies on the construc-

of stationary and ergodic martingale differences
of the sequence (et} . Under (C2) this construc-
in the proof of Theorem 5.5 of Hall and Heyde

then have

Zes1

the required martingale difference sequence and Zt

Note that with this construction E(Yon) = {3 and

Now
+ z-maj(zt-j - zt—j+1)
[Tr]o= -1/2_= _
el z—want-j + T E_waj(zl_j Z[Tr]-j+l)

As in Hall and Hyde (1980, p. 143) it follows that

(A2) sup 1xg(r) - 122l v — 0
O=r=l P
-]
*-
where Yt x—nant-j
The new sequence (Ytl is strictly stationary, ergodic and square

integrable with spectral

YHY*

Erare ) = (172072 e hac s

density matrix

elidy* o [=° a e132

. | a.
J —j



It follows that
-1 T T , 2
T E{(ElYt)(ElYg) ] = foY*Y*(O) = a{l) Qo

(see Ibragimov and Linnik (1971, Theorem 18.2.1)). Under (4) we may now

obtain a martingale representation of Yt analogous to (Al) for Et viz

D vpeQoezp- Ty,

where Qt - a(l)Yt is a stationary ergodic sequence of martingale differ-

ences with covariance matrix a(1)20 . We deduce from (A3) that

~1/2.[Tr] ~1/2_[Tr] -1/2
TIETYE ST R QAT TR - 2y

and as before

-1/2_[Tr]
(A4) sup |T z (Y* - Q)| — 0 .
O<r=l 1 L
Similarly,
' =1/2.[Tr]
{AS) sup |T z (¢_-Y )| — 0.
Osrsll 1 t 2 P

Noting that XT(r) - T-1/22£Tr]$t , we now obtain from (A2), (A4) and (AS5)

sup |X¥(r) - a(L)X ()| - 0

O<r=<l

as required for (6). (7) follows direectly.
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Proof of Llemma 2.2. Part (a) is immediate from (8). Teo prove (b) note that
£ £
Ln - 11 - il -7 x
Sowpun) L ow 1
SR 11U gw¥) vy

glving the results required. Next

(A6) n'B(r) = g'L'W(r) = £ x"W(r) = 4,,Q(r)

and (c¢)-(e) follow directly.

Proof of Theorem 4,1. We first observe that

A~ ~ A

(A7) b =295, where b’ « (1, ~ 8")
(Phillips (1986)) and then

"2 TAZ 2 T N
(AB) T 21“:—1 b (T Z 1%¢-12 t 1)b 2> n'An = 41,9 -

To prove (a) we write

: -2.T.2
z, - T(a-1) - (1/2)(511 k)/(T El o1’

-1.T. A 2 2 -2.TA2
- (T Slut_lﬁut - (1/2)(ST1 - sk)}/(T 21“:-1)

Now

(1/2)(spy - ) -1 Zem1Ys i tms+15tKe-s

A A

and k =4 - ad__, = Al - (n~1)ut_1 - b'lEt - (a—l)zt_l}

so thac



(A9) z_ - T e gt T

17 e- 1€t - Es lwsfzt—s+l[£t -5 + (1-a)z

t—s--lJ

A ‘ —2aTa2
(§, + A&z 1] 1b/(T 0
Since Et i1s strietly stationary with continuous spectral dénsity matrix

(1) we have

EE
-1.2 T
T s=1"52 t-s+16t-s t p nl
provided £ - x as T -+ o with £ = o(T) . Moreover, as in the proof of

Theorem 2.6 of Phillips (1988), we find

1 T -1 T £ = IIBdB'

T l t- 16 s=1"s2 t—s+lft -5t 0

Finally, since 11— = OP(T-l) we deduce from (AB) and (A9) that

~

s elae, 1
2, = ' gBdBin/ay, o = JoRR

with the final equivalence following from parts (d) and (e) of Lemma 2.2.

Note that the distribution of

1/2
R = Q/([320)

depends only on n , the number of regressors in (10). The proof of part

{b) follows in the same manner. To prove {(c) and (d) we observe that

A

-1
ft - Et + Op(T ) from (14) and hence
00— Q0
P

as T =« provided £ - = and 2 = o(T) . We deduce that
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and using (A8) and Lemma 2.2(e) we obtain

A

1.2
Pu * l/IOQ
as requiied for (c¢). Part (d) follows by noting that

P = cr(a(fgpe) "t} = ST T i T Kl

- er(fgmny™t
as required,

Proof of Theorem 4.2. The ADF test statistic is the usual t-ratio for

in the regression

Ao A A P A .
(Al10) Aut a U 1 + zi-lwiaut-i + th .

In conventional regression notation this statistic takes the form

, 1/24
ADF = (u_lepu_l) a*/sv

where Xp is the matrix of observations on the p regressors

(Aﬁt_l. cees Aﬁt_p) vouy is the vector of observations of ﬁt—l ,
’ -1 ’ 2 -1 TAZ
pr - T -~ XP(XPXP) Xp and sv - T zlvtp . Now
=-1/2
' 1/2" -2 P -1 A A
(All) (u_lepu_l) a, = (T u-qupu-l) (T u_lepAU)

and

2>

A=5



-2,
u, =T Tulu,+ Op(l)

T—zul -1

1%
P

1., 1.2
(al2) = W'IGBB n= “’11.2.[-0(2 .

Moreover under (Cl) we have

~

b =n (R-mixing)

so that the limit variate n 1is asymptotically independent of each event
L -]

E€F= UF, where F, = o(é,, j <1i) . This independence makes it

possible to condition on # without affecting the probability of events

E e F . Note that

(Al3) Aut - b'&t = n'Et - say.

T ]

Since Et is a stationary (vector) ARMA process by assumption, it is clear

that the new scalar process {_ = q'Et , given n , 1is also a stationary

t
ARMA process (see, for instance, Lutkepohl (1984)). We write its AR repre-
sentation as

-}

(Al4) v, = Ej_odjft_j « d(L)g,

where L is the backshift operator. Note that the sequence ldj} is

majorized by geometrically declining weights and is therefore absolutely

summable. Moreover, given n , v is an orthogonal (0O, az(q)) sequence
with

' 2 2
(Al5) ¢ (n) =d(l) " n'Gn .

We now note that the ADF procedure requires the lag order p in the auto-



regression (Al0) to be large enough to capture the correlation structure of
the errors. Even if Et is itself driven by a finite order wvector AR
model, the scalar process ;t will follow an ARMA model with a non zerc Ma
component. It is therefore always necessary to let p -+ = in (AlD) in
order to capture the time series behavior of {e - The only exception
occurs when ft is itself an orthogonal sequence. Formally, in the context
of unit root tests, Said and Dickey (1984) require p to increase with T
/3y

in such a way that p = o(T1 When this happens, noting that

&* - OP(T-I) , we see that (Al0) converges to (Al4), conditional on g .

In particular, we have

—1 ¢ A _l *
T u_le AU =T ul,v + op(l)
P
N e=leT
=-b'T 21zt_1vt + op(l)
S
(Al6) -p'T let_lvt + op(l)
Now write
v, = d(L)g, = d(L)éin
and note that by Lemma 2.1
-1/2_.[Tr] - -1/2_.(Tr].,
(Al7) T 21 v d(1)(T 21 Et)q + op(l)

uniformly in r (from (6)). Also
(A18) T'lfzz{'rrlst = B(r)

and we obtain from (Al6)-(Al8)
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re ll [
(A19) n'T Eyz v = d(l)m JoBdB'n .

We deduce from (All), (Al2), (Al5) and (Al9) that

d(l)q'féBdB'q q’ngdB'n

' feem oy (o fgparm 2 (a2

ADF =

1
JoQdQ
T T 2.1/2 2
S 2wt
1
- jonds
as required.
cof eorem 5.1. First observe that since the system is cointegrated
we have:
- 1 1
b= A _— =b , say
-8 | P | -8
where

b=ch, c= (bb)’?

so that h and b are collinear. We have

- - -1
b=Db+ 0 (T
p( )

from Phillips and Durlauf (1986, Theorem 4.1) and thus

A - - he -1/2 -1/2
ut b zt b zt + Op(T ) = cqt + DP(T y .



In the residual based regression

~

we now obtain

& —a =7 (1)/1,00) . 7 (X - E(a,q, )

with Ja] <1, and

A

ke = o(a, - aq_y) + 0 (T %) kv o (17

2
& )

, say

where kt is stationary with continuous spectral density

2
2 ix
£qc (2 = ¢7[1 = ae™| £oq™

It follows that

2 2 2
(AZO? Sty —E* 2wfkk(0) = 2xc” (1-ax) qu(O) >0
and
sZ —— var(k.) = c2((1 + a®)7_(0) — 2ay (1))
k p t q q
2 2 2
- 0)" - 1 0
< (Yq( ) 7q( ) )1q( )
Now
—1 TA2 2 -'1 Tn LY 2
(A21) T Elut—l —Eﬂ ' 7q(0) s, T zlutut—l o c 7q(1)

and then
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-l T.« ~ "l 'I'A2 2 2
T Elutut_1 - T Zlut—l -~ (1/2)(ST£ - sk)
(A22) _— c2[1 (1Y = (1/2)y (O) - w(lqa)zf (0) = (1/2)~ (1)2/7 o
P q q qq q q
It follows that
- -l TA A - TA2 2 2 —l TA2
2 = TTER6, - TT00 - (1/2) (s, = sph/(TTT 8 )
= 0 (T
p( )
as required for part (a). Similarly, we find that
~ "'1
~1.T. - _ msTal 2 2 1/2 -1_T.2 1/2
Z, =TT 208 ) = TE0 - (1/2)(sp, - sINUT Tsg (T T8 )70
1/2
-0 (T
P( 3

in view of (A20)-(A22). Note, however, that if qu(O) = 0 (so that 9.
has ant MA unit root) we have, as in Lemma 6.1,

2
TSTE - Op(l)

and in this case
Zt - Op(T)

as for Za . This proves part (b). To prove (c) we observe that when

qu(O) >0, q, has an AR representation,

(A23) e, , a =1

[ -]
Fjm0%j%e-3 7S¢

where {et} is an orthogonal (O, oi) . We take {ajl to be absolutely
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summable and then, following Fuller (1976, p. 374) we write (A23) in alter-

nate form as:

- <]
(424) 8g. = (6 = )9 * 1889 * o

® ; "
wvhere gi - zj-iaj (i=2,3, ...) and 51 - —zj-laj

stationary we know that 51 » 1 . In the ADF regression (Al0) (as p = =« )

Since is
qt

we find that

2 2

g§ =— 0

v p e
a, —;’ (91 -1) =0

-1, 0 2,2
T u_lepu_l -—--'P {1 + (Zlaj) )ae

and hence

ADF = op(rlfz)

as required for (ec).

Y

oof of Theorem 5,2. Note that both Pu and Pz tely on the covariance

matrix estimate 0 pgiven by (13). This estimate relies on the residuals

~

st from the VAR (14) i.e.

s

zt - Hzt_l + ft .

As T - o we have (Park and Phillips (1988))
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where
2
g = By )/EGG) -
Ve may write

= -1/2
Et + (I—II)zt_1 + OP(T )

0 0 . ' -
- HH'E + u{[ S 1] - [ 0: g ]}H'Zc-1 + 0 (T /2,

" 0
-l 1. - gv +0_(171/?
hee v 2t-1 P
t 2t-1
w
‘ it -1/2
W
2t

- ) . -1/2
H{I [0 : g]}wt + OP(T )

m >
t
1

- Et + OP(T-I/z) say.

Now £ is zero mean, stationary with spectral density matrix

t

1 iy *
fE E(A) = H(I - {0,gle’ VL, OOIT - [O,g]e1 ) H’

Observe that

(A25) 8 = £z 2(0) = H(I - [0,g])£_(0)(I - (0,g])'H

is positive definite, since fww(o) >0 and 1 - By ™ 0 where

2
Bp = BlWye¥or ) WEGW,)

We now obtain
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(A26) 0 _5* >0

as T -« ., It follows that

L)
A — -

(A27)  Bpq.9 = @pp T 9109991 T “11.2 T 911 T “21%0%91

where we partition & conformably with 0 . Hence, using (A21) and (A27)

we find that

A

Pu r Op(T)

as required for part (a).

To prove part (b) we first note that by Proposition 5.4 of Park and

Phillips (1987)

1 venn myhn -1
(A28) sz « h(h szh) 1h + Op(T )

-1
= hh' + 0 (T
/mqq p( )

where
-1.T 2 -1.T 2
mqq =T lezt =T Elqt .
It follows that
~ A _1
A29 P = T{h'Gh + 0 (T
(A29) 2 { /mqq p( )}

- 0
p(T)

as required for (b).



Proof of Theorem 5.3. The Za and Zt tests use

k. =4_=-~1a -b'§ =b'g + op(r'l)

- e(q - Ggp) + 0, (T

We therefore have

2
Srp -;* 0

and, as in Lemma 6.1,

T52

~1
0
+P(T)

1.T

T2 " Op(l)
Now
T56 (6, - & ) + (1/2)s2
t-1'"t t-1 k
2 -1 2, ~-1.T 2
= ¢ T Zq _q{q. = q,_4) + (L/2)c'T "Z,(q, = q._4)
-1
=0 (T
p( )
so that
-1 TA A A 2 2 - A
Za - T{T Ezut_l(ut - ut-l) - (1/2)(ST£ - sk)}/(T 22u
-0 {1
p( )
as T+ = . The result for Zc follows in the same way.

In the case of P it is easy to see from (A27) and (A28) that

" -1
P_ = T{(h'Gh + 0 (T
. /m) * O, (T )

2
t_

1

)

A-14
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A~

where 3 1is constructed using the first differences Azt - £ However,

t .
A

since the system is cointegrated the limit matrix € of 0 4is singular.

Indeed h'Gh = 0 and, further, since h'ft =g we find

£~ Y1

{A30) Th'ah - Op(l)

Ve deduce that
Pz - Op(l)

and the test is inconsistent, as stated. 1In the case of Pu we observe

that
817409 = det Q/det 022
= det(H'QH)/det 022
‘ 'A ,A , —l ’A 'A ~
(A31) = {h'Gh -~ h nHl(HlnHl) Hlﬂh}det(Hlﬂﬂl)/det 022 |

-1
0 (T
p( )
in view of (A30) and the fact that
- -1/2
h nHl op(T )

(see Lemma 6.1). We deduce that

Pu - Op(l)

as stated.
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Ll
Proof of Lemma 6.1. £ is a consistent estimator of  based on §t .

-~

h'’fth is & consistent estimator of h'Ch = 0 based on

r = h'é

c Consider the following smoothed periodogram

g 9 T ey

estimates

- pX S |
0 = goar T, ple (2rs/T)

h‘ah - E%Ei Z:__zIrr(sz/T)
Note that for s = ~£, —=2+1, ..., £ we have
w (22s/T) = (22D /%5 (q - q,_pe' P
- (ZIT)-I/ZEeqeinst/T - (2IT)—1/2z{qt_1eiZws{(t—1)+1}/T
- (2wT)_1/2(qTei2”5 - qp) + op[%]
- 2T (e - qp) + op[é]
and, thus, for £ = o(T—l/z) we deduce that
@) arsm = a1 e - ag) + o (T
uniformly in s . Hence,

h'Oh = T'lch - qo)2 + op(T_l)

It follows that

Th'flh = 0 (1
p( )
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as required for part (a). The result continues to hold for other choices of

spectral estimator. To prove (b) note from (A3l) that

. ’A _ 'A 'A _1 'A A A~
®11.2 (b'Ch - b Qﬁl(HIQHI) Hlﬂh}det(ﬂiﬁﬂl)/(det 022) .

Now 022 —;» 022 >0, Hlnﬂl —;* Hlnﬂl >0 and

. 2 2
h QHl 5751 X 1 I(Zis/T) .

s=—f 1w
~1/2 s X
Now wr(Zﬁs/T) - OP(T y uniformly in s and

1.4
(24+1) Es__zwwl(ZRS/T) - Op(l)

st that

-~

, - -1/2
hra, = 0 (T %)

We deduce that

1

A

G1y.p =BG+ 0 (T7)

as required for part (b).



APPENDIX B

Tables 1-4 present estimates of the critical wvalues for the Za, Z

Pu, and Pz statistics. The tables allow for ceintegrating regressions

with up to five explanatory variables (n = 5). Critical wvalues are
provided for Models (10) and (l6) and for cointegrating regressions with a
constant term and trend.

tl

The critical values were pgenerated using the monte-carle method with
10000 iterations and 500 observations. All the computations were
performed on an IBM/AT wusing the GAUSS programming language. The random
innovations were drawn frem the standard normal random number generator in

GAUSS (i.e "RNDNS"). Thus O = I and p2 = O for the generated data,
thereby simplifying the computation of the statistics.

Approximate 95% confidence intervals for the critical wvalues were
computed using the method described in Rohatgi(1984, pp 496-500). 1In order
to provide some indication of the degree of precision in the estimates, we
present the approximate 95% confidence intervals for n = 1 (refer to the
rows labelled Al). Confidence intervals for n 2 2 are available from the

authors on request,

Usage:

For Tables 1 and 2 (Za and Zt):

Reject the null hypothesis of no cointegration if the computed value
of the statistic is smaller than the appropriate critical wvalue. For
example, for a regression with a constant term and one explanatory variable

(i.e. n= 1), we reject at the 5% level if the computed value of Za is

less than -20.4935 or the computed value of Zt is less than -3.3654.

For Tables 3 and 4 (Pu and Pz):

Reject the null hypothesis of no cointegration if the computed value
of the statistic is greater than the appropriate critical value. For
example, for a regression with two explanatory wvariables (i.e. n = 2) but

no constant term, We reject at the 5% level if the computed value of Pu
A

is greater than 32.9392 or the computed value of Pz is greater than
71.2751.
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Table

A

la

Critical Values for the Za statistic (standard)

Size
0.1500 0.1250 4.1600 0.0750 0.0500 ©.0250 0.0100
-106.7444 -11.5653 -12.5438 -13,8123 -15.6377 -18.8833 -22.8291
-16.0164 -17.0148 -18.1785 -19.6142 -21.4833 -25.2101 -29.2688
-21.5353 -22.6211 -23.9225 -25,5236 -27.8526 -31.5432 -36.1619%
-26.1698 -27.3952 -28.8540 -30,9288 -33.4784 -37.4769 -42.8724
-30.9022 -32.2654 -33.7984 -35.5142 -38.0934 -42.5473 -4B.5240
(-0.2009) (-0.1866) (-0.2210) (-0.2863) (-0.5282) (-0.5053) (-0.8794)
(+0.2283) (+0,2338) (+0.2941) (+0.3163) (40.3899) (+0.6036) (+0.6801)
Table 1b
Critical Values for the Za statistic (demeaned)
Size
0.1500 0.1250 0.1000 0.0750 0.0500 0.0250 0.0100
-14.9135 -15.929%2 -17.0390 -18.4B36 -20.4935 -23.8084 -28.3218
-19.9461 -21.0371 -22.1848 -23.8739 -26.0943 -29.73%4 -34.1686
-25.0537 -26.2262 -27.5846 -29.5083 -32.0615 -35.7116 -41.1348
-29.8763 31,1512 -32.7382 -34.7110 -37.1508 -41.6431 -47.5118
~34.1972 -35.4801 -37.0074 -39.1100 -41.9388 -46.5344 -52.1723
(-0.2646) (-0.2664) (-0.3035) (-0.2660) (-0.4174) (-0.6163) (-0.9824)
(+0.1834) (+0.3011) (+0.3329) (+0.3348) (+0.4319) (+0.4834) (+1.1440)
Table lc
Critical Values for the Z& statistic {demeaned and detrended)
Size
0.1500 0.1250 0.1000 0.0750 0.0500 0.0250 0.0100
-20.7931 -21.8068 -23.1915 -24.7530 -27.0866 -30.8451 -35.4185
-25.2884 -26.4865 -27.7803 -29.7331 -32.2231 -36.1121 -40.3427
-30.2547 +31.6712 -33.1637 -34.9951 -37.7304 -42.5998 -47.3590
-34.6336 -36.0288 -37.7368 -39.7286 -42.4593 -47.1068 -53.6142
-38.9959 -40.5939 -42.3231 -44.5074 -47.3830 -S2.4874 -58.1615
(-0.2514) (-0.3%46) (-0.3&665 {(-0.3908) (-0.5445) (-0.6850) (-0.923%5)
(+0.2771) (+0.3020) (+0.3044) (+0.4081) (+0.5049) (+0.6158) (+0.8219)

[t



B-3

Table 2a
Critical Values for the Zt and ADF statistics (standard)
Size
n 0.1500 0.1250 0.1000 0.0750 0.0500 0.0250 0,0100
1 -2.2584 -2.3533 -2.4505 -2.5822 -2.7619 -3.0547 -3.3865
2 -2.7936 -2.8797 -2.9873 -3.1105 -3.2667 -3.5484 - -3.B395
3 -3.2639 -3.3529 -3.4446 -3.5716 -3.7371 -3.98585 -4.3038
4 -3.6108 -3.7063 -3.8068 -3.9482 -4,1261 -4.3798 «4.6720
5 -3.9438 -4.,0352 -4,1416 -4,2521 -4.3999 -4.6676 -4.9897
A, (-0.0232) (-0.0247) (-0.0269) (-0.0328) (-0.0439) (-0.0382) (-0.0600)

1

(+0.0211) (+0.0228)

(+0.0218) (+0.0347) (+0.0318) (+0.0601) (+0.0755)

Table 2b
Critical Values for the 2t and ADF statistics (demeaned)
Size

n 0.1500 0.1250 0.1000 0.0750 0.0500 0.0250 0.0100
1 -2.8639 -2.9571 -3.08657 -3.1982 -3.3654 -3.6420 -31.9618
2 -31.2646 -3.3513 -3.4494 -31.5846 -3,.7675 -4.0217 -4.3078
3 -3.6464 -3.7306 -3.8329 -3.9560 -4.1121 -4.3747 -4 .7325
4 -3,9593 -4.0528 -4 .1565 -4.2883 -4.4542 -4 .7075 -5.0728
3 -4,2355 -4, 3288 -4 4309 -4.5553 -4.7101 -4,9809 -5.2812
Al (-0.0290) (-0.0261) (-0.0232) (-0.0296) (-0.0424) (-0.0389) (-0.0582)

(+0.0186) (+0.0263) (+0.0317) (+0.0380) (+0.0304) (+0.0413) (+0.0501)

Table 2c
Critical Values for the Zt and ADF statistics (demeaned and detrended)
Size

n 0.1500 0.1250 0.10600 ~ 0.0750 0.0500 0.0250 0.0100
1 -3.3283 -3.,4207 -3.5184 -3.6467 -3,8000 -4.0722 -4.3628
2 -3.6613 -3.7400 -3.8429 -3.9754 -4.1567 -4 .3854 -4.6451
3 -3.9976 -4.,0808 -4.1950 -4.3198 -4 . 4895 -4,7699 -5.0433
4 -4.2751 -4.3587 -4 .4625 -4 . 5837 -4, 7423 -5.0180 -5.3576
5 -4,56455 -4 6248 -4,7311 -4,.8695 -5.0282 -5.,3056 -5.5849
Al (-0.0259) (-0.0246) (-0.0244) (-0.0259) (-0.0350) (-0.0469) (-0.0629)

(+0.0246) (+0.0281) (+0.02053) (+0.0301) (+0.0288) (+0.0507) (+0.0722)
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Table 2a
Critical Values for the Pu statistic (standard)
Size
0.1500 0.1250 0.1000 0.0750 0.0500 0.0250 0.0100
17.2148 18.6785 20.3933 22,7588 25,9711 31.8337 38.3413
22.9102 24.6299 26.7022 29.4114 32.9392 39,2236 46,4097
28.9811 31.0664 33.5359 36.5407 40,1220 46,3395 55.7341
34.5226 36.4575 319.2826 41.896% 46,2691 53.3683 63,2149
39.7187 41.7669 44,3725 47,6970 51.8614 59,6040 69.4939
(-0.4356) (-0.3845) (-0.3833) (-0.5797) (-0.6274} (-1.3218) (-1.4320)
(+0.3777) (+0.3842) (+0.4706) (+0.5793) (+0.6159) (+0.8630) (+1.4875)
Table 3b
Critical Values for the Pu statistic {(demeaned)
Size
0.1500 0.1250 0.1000 0.0750 0.0500 0.0250 0.0100
24.1833 25.8456 27 .8536 30.3123 33.71390 39.9288 48,0021
29.3836 31.4238 33.6955 36.4757 40.5252 46,6707 53.8731
35.1077 37.4543 39.6949 42,8111 46,7281 53.9710 63.4128
40.5469 42 .56E3 45,3308 48 . 6675 53.2502 61.2555 71.5214
45,3177 47 .6684 50,3537 53.53654 57.7855 65.B230 76.7705
(-0.3913) (-0.4662% (-0.5310) (-0.5323) (-0.5064) (-1.0507) (-1.6209)
(+0.4424) (+0.5441) (+0.4507) (+0.7081) (+0.8326) (+1.3312) (+2.1805)
Table 3¢
Critical Values for the Pu statistic (demeaned and detrended)
Size
0.1500 0.1250 -0.1000 0.0750 0.0500 0.0250 0.0100
36.9055 38.8150 41,2488 44 2616 48 .B439 56.0886 65.1714
41.2115 43.4320 46,1061 49,3671 53,8300 60.8745 69,2629
46.9643 49.2906 52.00135 55.4625 60,2384 6£8.4051 78.3470
51.9689 54,3205 57.3667 60,8175 65.8706 74,4712 84,5480
56.0522 58.6310 61.6155 65.3514 70.7416 79.0043 91,0392
(-0.5294) (-0.5724) (-0.6764) (-0.7143) (-1.0116) (-1.2024) (-2.1849)
(+0.3171) (+0.5187) (+0.6762) (+0.7989) (+0.8773) (+1.2936) (+2.2679)

I~
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.1500

Critical Values

0

.1250

0.

Table

-~

for the

Size

1060 0.

P
z

4a

0750

.0500 0.

statistic (standard)

0250

.0100

30.
56.
92,
135,
186.

0137
7679
7621
2724
4277

31.
59.
95.

138,

190.

33.
62
99,
143
195

7517
1613
7974
9636
6337

L1436

.0775
.6202

9267  36.

€5.
‘103.
148,

201.

2664

6646
6162
8454
4109
9621

40.
71,
109,
155,
210.

8217
2751
7426
8019
2910

79

47,

2452

.5177
119,
166,
224,

3793
3516
0976

35.
89.
131.
180.
237.

1911
6679
5716
4845
7723

.1500

L4804) (-0,
.4633) (+0.

4493) (-0.
5042) (+0.

Critical Values

.1250 Q.

3646) (-0,
6770) (+0.

Table

~

for the

Size

1000 0.

P
z

7120)
9202)

4b

0750

.0500

LB406) (-1.
.7319) (+1.

1622)
5961)

statistic (demeaned)

.0250

.2202)
(+1.

7356)

.0100

42
4.
113.
160.
215,

.5452

44,
76.
116.
164.
219,

1493
5617
8156
2089

8266
8850
6933
7394
3757

47
g0,
120.
168.
225.

.5877

50.
84.
125,
174,
232

2034
3035
8572
2303

L4652

7511
4027
4579
2575

55
89
132,
182,
241,

.2202
.7619

2207
0749
3316

61.
97.
142,
194,
255,

4556
8734
5992
7555
5091

71,
109.
153.
209.
270.

9273
4525
4504
BO34
5018

Critical

0.

.4629)
.4873)

1500 0

.1250 0

.7383) (-0.
.7355) (+0.

Values for the

.1000

6744) (-0
5972) (+0.

Table

P stat
F4
Size

0

.6803)

.0750

6662)

be

istic

.0214)
L7440)

(demeaned

.0500

and

.7998)
.0530)

detrended)

.0250

0.

L8177
.4081)

0100

66,
106.
154,
210,
273,

2417
6198
8402
3150
3064

68
109,
158.
214
277

.8271

.3858
.9294

71.
113.
163.
219,
284,

9751
6619

9586
4929
1050
5098
0100

75.
118,
168
225
291.

.7736
.6645

7349
3710

81
124,
175.
234.

2705 301.

.3812

90
3933
9902
2865
0949

L2944
133,
188,
247,
315.

6963
1265
3640
7299

102.
145,
201.
264,
335.

0167
8644
0905
4988
9054

(-0.
(+0

3433) (-0.

.6819) (+0.

7346)
5862)

.8305)
.7373)

.6905)
.1280)

(+1.

.8651)

4149)

.6500)
(+1.

B572)

{(-2.
(+2.

3915)
1024)
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