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Introduction

In this paper we consider the two-dimensional differential system with
deviating argument

x'(8) = p(OHy(®)
(A)

y'(®) = f@, x(g(1)

which, in the particular case where p(f)>0, is equivalent to the second order
scalar differential equation

l ? ! —
® (5t ¥®) =1 @)
The conditions we always assume for p, g, f are as follows:

(a) p(?) is continuous and nonnegative on [a, ); p(f)#0 on any infinite
subinterval of [a, ).

(b) g(¢) is continuous on [a, o) and lilg g (H=o0.

(c) f(t, x) is continuous on [a, oo)xt (— 0, ) and |f(¢t, x)|Sw(t, |x]) for
(t, x)ela, o) x(—o0, ) where w(t, r) is continuous on [a, 00)Xx
[0, o) and nondecreasing in r.

We note that g(¢) is a general deviating argument, that is, it is allowed to be
retarded (g(t)<t) or advanced (g(t)=t) or otherwise. System (A) is called
superlinear or sublinear according to whether (¢, r)/r is nondecreasing or
nonincreasing in r for r>0.

The purpose of this paper is to study the asymptotic behavior of solutions
of system (A) which is either superlinear or sublinear. We are particularly
interested in obtaining information about the growth or decay of oscillatory
solutions as well as of nonoscillatory solutions. Hereafter the term “‘solution”
will be understood to mean a solution {x(¢), y(#)} of (A) which exists on some
half-line [, o), T>a, and satisfies

sup {|x(O)] + [y®Dl:t =7} >0 forany v =t
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Such a solution is said to be oscillatory [resp. weakly oscillatory] if each of its
components [resp. at least one component] has arbitrarily large zeros. A solution
is said to be nonoscillatory [resp. weakly nonoscillatory] if each of its components
[resp. at least one component] is eventually of constant sign.

We distinguish the two cases

S” p(i)dt = oo, S:op(t)dt <

and examine them separately in §1 and §2. The theorems in §1 and §2 are
formulated in terms of P(t)=S‘ p(s)ds and n(t)=S°°p(s)ds, respectively, and
a t

exhibit a kind of duality. Our results include as special cases some of the main
results of the papers [1], [2], [6], [7], [8] and [9]. For other related problems
regarding systems of the form (A) we refer to [3], [4] and [10].

1. The case wheregoo pt)dt=o0

We begin by considering system (A) in which p(¢) satisfies the condition
Sw p(ydt=oco. The results are formulated in terms of the function P(f)= Sr p(s)ds.
The following notation will be used throughout the paper:

g*(?) = max {g(t)’ t, g*(t) = min {9(0), t} s

h*(®) = sup g*(s), hy(t) = inf g,(s).
assst st

A) We first prove a theorem which enables us to classify all the solutions
of (A) according to the behavior as t— co.

TaroREM 1.1. Assume that either (A) is superlinear and
o) Sw!}%w(g cPEO)dt <o forall ¢>0
or (A) is sublinear and

@) ng(g*(t))w(t, Odt <o forall ¢>0.

If {x(®), y(8)} is a solution of (A), then exactly one of the following cases holds:

(1) limsup IJIC-"((I;‘))I =, limsup|y(t)]=co.

(11) There exists a nonzero constant o such that



Differential Systems with Deviating Argument 307

x(t)
lim 5%

=a, limy()=a.
=0

(III) There exists a constant B such that
limx(t) = B, lim P()y(f) =0
- 00 1=
Proor. Let {x(¢), y(£)} be a solution of (A) defined on [r, c0) and let
T =1 be such that h(T)=t.

First we assume that (A) is superlinear and (1) holds. We note that (1)
implies that the functions

a(t, cP(9(®)), [P())/P(g()]w(t, cP(g(1)), P(a(t, c)

are integrable at oo for all ¢>0. Suppose limsup [x(f)|/P(f)=oc0. Then it holds
t—>0

necessarily that lim sup [y(¢)] = oo, since otherwise from the relation
=00

3) X(#) = X(T) + S pEYs)ds, t2 T,

we would have hm 1Sup |x(£)]/P(t) < 0, a contradiction. Suppose hm sup [x(®1/P(t)

<00, that is, x(t) O(P(t)) as t—»o0. Then it is clear that f(z, x(g(t))) € L[ T, o),
and so from the equation

) y® = 1) + [ 76 xgonas, 27T,
we obtain

® v == " 16 xgds, 12T,
where

@ = WT) + |G, x(g)ds

As a result we have limy(f)=«. Using this fact in (3) we easily see that
t—0
limx(#)/P()=a. Thus Case (II) holds if a#0. Supposing that a=0, we show
t—>0
that Case (III) occurs. Choose a T; = T such that
To=h(T) 2T, [x(g())] = P(g(®) for t = T},

and

[ ot Pgmds s 5. |7 EE - als, Pl(sds < 5

Wl
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Combining (3) and (5) (with a=0) yields

X0 < (] + [} P, Ixta@)Dds
© ]
+ PO ol 1xg@)Dds, 12T,

whence it follows that

| x(®)] k 1 t
0L < e+ By b, PO, (gD

) o
+ {7 ots, 1xtgemdas, 12T,

where k is a positive constant. We now define

u(t) = ssuzg—l;% , t=T,.

Observing that the right-hand side of (7) is decreasing in ¢ and using the inequality
(8) of(s, mn) S mow(s,n), 0<m<l, n>0,

which is a consequence of the superlinearity of (A), we can derive the following
inequality from (7):

POU) S k + | ug)PO0s, Pl(s)ds
)] .
+ PO[” ugols, PaG6ds, 2T,
For each t= T, we let I,, J, denote the sets
(10) Iy ={se[T,, ©0): g(s) =1}, J,={se[Ty, 0): g(s) > t}.
We then have
P(g($)u(s(s)) S, sup_[P(e)u(@)] for sel,
u(g(s)) < u(t) for sel,.

In view of this fact, the right-hand side of (9) is bounded from above by

. P(s)
ot s DPOUOT], Gy ol PO@Nds

+u®f PO, PO)s

JeN[Ty
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+ P@) sup [P()u(s)]- | w(s, P(g(s)ds

1
101,y P(g(s))

+ P(u(t) S w)w(s, P(g(s))ds

JeN[e,

<k+ sup [P(S)u(S)]-Sw P(s) _ (s, P(g(s)))ds
TosSsSt

T, P(g(s))
+ P(:)u(t)g': oo(s, P(g(s)))ds

<k + %sz?s [P(s)u(s)] + + P@u()

for t= T, where k,=k+ 1 sup [P(s)u(s)]. Tt follows that
3 TozszTy
P(u() < 3k + 4 sup [P(uE], t2 T,
2 2 TiSsst
which implies
11 Ix(®| = _sup [P(s)u(s)] < 3ky, t2 T
TiSsst

From (5) (with a=0) and (11) we obtain

(12) 7 solo1ds < {7 Pjats, ks
and
(13) POLO! < | P6)als, 3k,)ds.

Since p()y(t) e L'[T, o) by (12), rewriting (3) as
x(t) = x(T) + {7 pyds - {7 poyo)as,
we see that
limx() = f = x(T) + | p©)»(s)ds.
That lim P()y(1)=0 follows from (13).

Next we assume that (A) is sublinear and (2) holds. It is clear that (2)
implies the integrability at oo of the functions
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P(o(t, ¢), P(g()a(t, c), o(t, cP(g())

for all ¢>0. Of course, Case (I) may occur. Let x(#)=0(P(t)) as t—-o0. Then,
f(, x(g(®)) e L[ T, ©), so that (5) holds. If «##0, then we have Case (II). It
remains to examine the case where «=0. We show that x(#) is bounded on
[T, o) in this case. Suppose the contrary. We are able to choose T,, T, and
T, so that

T<Ti<T,<T, To=h(T)2T [XTp)l 21,
sup [x(s)l = sup |x(s)| for 12 Ty,
TosSsst TaSs5t
S“’ P(s)os, 1)ds < S P(g(s))ao(s, 1)ds < +
T
and
(T + 7 P6)ats, Ina6)Dds S & 1K)

Let us define
) = sup [x(s)l, t= To.
ToSsst

Noting the increasing nature of the right-hand side of (6) and using the inequality
(14) o(s, mn) £ mw(s,n), mz21, n>0,

which follows from the sublinearity of (A), we have from (6) that
o) S (D + " Pes, |s(a(6))ds
+ {7 P, 1xg@Dds + PO | ols, Ix(as)Dds

= 500+ [ ogeIPOts, Dds + P gt vas,

and consequently

) 228 s et Dds + | og)als, Das

for t=T,. Since

u(g(s)) = () for sel,

0(g() - . 9(0)
Plg(s)) = S8 P(o) [ $€Jo
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where I, and J, are defined in (10), the right-hand side of (15) is bounded from
above by

v(t) S
P(t) \Jrorrs,n

P(s)a(s, 1)ds + P(f) SI s, 1)ds>

el e,

+ sup v(s) ( L P(g(s))P(s)a(s, 1)ds

szt P(s) "\ P() Smm.z)

P(g(s))o(s, 1)ds)
)

S.Ign[t,oo

<20 (" P, Dds + sup 2L - Plgats, s

1/ v(® v(s)
s +(3% +sup P(s))’ tz T

Therefore we obtain

1 v <_I v(s) v(s) < 1
7Pty = % B sy > 2nd s0 0<sup s S 5 sup i

This contradiction shows that x(¢) is bounded on [T, c0). We now proceed
exactly as in the superlinear case to conclude that {x(¢), y(t)} is subject to Case
(IIT). Thus the proof of Theorem 1.1 is complete.

B) On the basis of Theorem 1.1 we wish to determine the growth or decay
of all nonoscillatory solutions of (A) for which the following sign assumption is
made:

(16) xf(t, x) 20 for (¢, x)e[a, ©) x ( — 00, 0).
In addition it is assumed that

17) suglf(t, x)] >0 forany T= a and x # 0.
>

We remark that under assumption (16) a solution of (A) is oscillatory [resp.
nonoscillatory] if and only if it is weakly oscillatory [resp. weakly nonoscillatory].

THEOREM 1.2, Assume that (16), (17) and the hypotheses of Theorem 1.1
are satisfied. If {x(f), y(£)} is a nonoscillatory solution of (A), then either

i 30 = im0 =

for some constant «#0, or else
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(19) limx(t) = B, lLmP@y() =0
t—=>c0 t—>0
for some constant 0.

ProoF. Let {x(?), y(f)} be a solution of (A) such that x(t)#0 and y(f)#0
on [1, cv). Take a T=7 such that h(T)=1. Suppose x(£)>0 for t=1. The
second equation of (A) then implies that y(f) is decreasing on [T, c0). If y(t,)
<0 for some t3>T, then y(t)<y(t,) for t=t,. Taking this into account and
integrating the first equation of (A), we obtain

X0 S 0+ 300 | po)ds, 1210

which implies x(f)— — o0 as t—o0, a contradiction. Therefore, we must have
y(@®)>0for t=T.

Now, from the first equation of (A) we see that x(¢) is increasing, and so
x(f) is bounded away from below by a positive constant on [T, c0). Again
integrating the first equation of (A) and using the decreasing nature of y(f), we
have

X = XD + yDf po)ds, 12T,

This shows that x(£)/P(¢) is bounded from above by a positive constant on [T, co0).
A similar argument holds if we assume that x(f)<0 on [T, o). It follows that

[x(@®)]
i20) < o0,

liminf|x(f)] >0 and limsup
=0 t—+00

and hence Case (I) and Case (III) (with f=0) are excluded from the possibilities
listed in Theorem 1.1. This completes the proof.

RemARK 1.1. When specialized to the scalar equation (B), Theorem 1.2
extends previous results of Belohorec [1, Theorem 3], Moore and Nehari [7,
Theorem IV] and Odarié¢ and Sevelo [8, Theorem 3].

RemaRrk 1.2. Under the hypotheses of Theorem 1.2 system (A) actually
possesses nonoscillatory solutions of the type (18) for all 0 as well as those
of the type (19) for all #0. This follows from the existence theory developed
by the present authors in [3] and [4].

ExAMPLE 1.1. Consider the sublinear system

1+ cos(t + n/4)e2'y(t)

x'(t) = :
2 —sint
(20) vz
Y = — 2[1 4+ cos (¢ + n/4)] e~2x113(3f)

(/2 + cos 3t)1/3
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Here we can take P(t)=e?, g(t)=g*(f)=3t, and

2[1 + cos (2 + 7/D)] 21,13
(/2 + cos 3t)1/3

As easily verified, condition (2) is violated and system (20) has a nonoscillatory
solution

ol r)=

x(f) = e'(J2 + cost), y(t) = /2e (2 ~ sint)

which has the properties:

coox() : -
Impa =0 lmy® =0

limx(f) = oo, limP(£)y(t) = co.
1=+ 00 t=-»a0

This example shows that violation of the integral condition of Theorem 1.2 may
give rise to nonoscillatory solutions with asymptotic nature different from (18)
and (19). For a related result concerning (B) we refer to the paper [5].

C) We now turn to investigating the behavior of oscillatory solutions of
system (A). No sign condition is placed on f(t, x) but the following conditions
on g(t) are needed.

Condition (G*): There exists a sequence {t,}2-, such that ¢,— o0

as n—> oo and h*(,) =1, for n=1,2,...
Condition (G,): There exists a sequence {t,}2, such that ¢,—c0

as n—oo and h,(t,) =1t, for n=1,2,....

We observe that condition (G*) [resp. (G,)] is satisfied if g(¢) <t [resp. g() =t].
As an example of functions satisfying both (G*) and (G,) [resp. neither (G¥*) nor
(G,)] we give

g(t) = t[l + - sin (log t)J [resp. g(t) = ¢ + 2msin f].

THEOREM 1.3. (i) Assume that (A) is superlinear and condition (G,) is
satisfied. If (1) holds, then every oscillatory solution {x(t), y(t)} of (A) has the
property

: Ix( _ : -
2n llﬂiup 2O 00, llﬂiup 1y(®)] = c0.

(ii) Assume that (A) is sublinear and condition (G*) is satisfied. If (2)
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holds, then every oscillatory solution {x(t), y(f)} of (A) has the property
(22) limx(¥) =0, lim P()y(®) = 0.
t~»00

t—00

Proor. Let {x(f), y(t)} be an oscillatory solution of (A) defined on [z, 0).
Choose a T =7 such that h,(T)=1. Since the solution is oscillatory by hypothesis,
Case (II) and Case (III) (with f#0) of Theorem 1.1 can never occur, so that it
must satisfy either (21) or (22).

(i) Consider the case where (A) is superlinear and (G4) holds. Suppose
(22) is true. From the proof of Theorem 1.1 we then have

x) = = (" poweds, 0 = = {7 £ xtgas,
and combining these we get
(23) xol = (PG, I@)Dds, 12T

Let us put u(t)—-sup |x(s)] and choose T, and T, such that T<T; < T,, [x(1)|<1
for t= T, and h*(T2)> T,. With the aid of (8) we derive from (23)

W) < S P(s)u(g(s)a(s, Dds < u(h*(t))g P(s)a(s, 1)ds
for t= T,, which implies

(24) u_(”ﬁ%ﬁ < X, P(s)o(s, s, t2 T,
But this is a contradiction, because the right-hand side of (24) tends to zero as
t— o0, while the left-hand side equals 1 along a sequence diverging to infinity by
condition (G,). It follows that (21) is the only possibility.

(ii) Consider the case where (A) is sublinear and (G*) holds. Let (21) hold.
We can select T;, T, and Tj in the following manner:

T<T\<T,<T5 Tho=h(T) 2 T, |XTp)| 2 P(Tp),

[x(s)] _ [ x(s)] >
180, PG) Tf;‘s%t Ps) or 12T

[ s, Pamas < 5

L+ e + S (s, Ix(g(s)Dds < + 1T

We define
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- [x(s)]
U(t)_rosgs%z P(s) -~

Using o(¢) and (14) in the inequality

x|  1x(T)] s
2Ol < L+ iyt + s, 1xgo)ds

+ [ o, IxtgoIds, 12 T,

which follows from (3) and (4), we find

o) S 5 o) + o) || ols, Plg)ds, 12 T,
and hence

1
2

v(?)
v(h*(2))

IA

for t =z T;.

Because of (G*) this is a contradiction, and so the solution {x(f), y(¥)} has to
satisfy (22). This completes the proof of Theorem 1.3.

ReMARK 1.3. The second part of Theorem 1.3 includes recent results of
[2, Theorem 2] for the retarded sublinear system (A) and of [6, First half of
Theorem 5] for the retarded sublinear equation (B).

ExaMPLE 1.2. Consider the superlinear system

%) = exp( - )
25)
Y@ = = zexp (73 = 3300) 60

where g(f)=arccos (sin /3f) with branches taken as follows:

r

2§t<n1t+l,n=0,1,2,....

m+Dr2g@) <@+ Dmif nw — >

Since g(f) > t, condition (G,,) is satisfied and clearly the integral condition (1) holds.

By the first part of Theorem 1.3 every oscillatory solution of (25) enjoys the
property (21). One such solution is

x(t) = exp (\/§ f)cost, y(f) = 2exp (%.) cos (t + %) .

As a corollary of Theorem 1.3 we have the following nonoscillation result
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for almost linear systems of the form (A).
THEOREM 1.4. Assume that
(26) |f(t x| £ q()Ix| for (1, x)e[a, ) x (— o, ),

where q(t) is continuous and nonnegative on [a, o). Assume moreover that
conditions (G*) and (G,) hold. If

@ [“Parorair < ,

then all solutions of (4) are weakly nonoscillatory.

Proor. Suppose to the contrary that there exists an oscillatory solution
{x(®), y(©} of (A). Since by (26) system (A) is both superlinear and sublinear,
and since (27) is equivalent to (1) or (2), we can apply Theorem 1.3 to conclude
that {x(2), y(t)} satisfies both (21) and (22). But this is impossible, and so (A)
has no oscillatory solutions.

REMARK 1.4. Let {x(?), y(t)} be a solution of (A). If x(¢) has arbitrarily
large zeros, then so does y(t), since otherwise the first equation of (A) would
imply that x(?) is a monotone function, a contradiction. It follows that the first
component of a weakly nonoscillatory solution is always eventually positive or
negative.

ExampLE 1.3. Consider the linear system of ordinary differential equations

x’=e'[1 + sin(t + %):l[l — e“(\/2—+ cost)]%y

(28) _
. _ _ 2J2e7(1 + e'sing)

x
[l — e (2 +cost)]*
Since the hypotheses of Theorem 1.4 are satisfied, every nontrivial solution of (28)

is weakly nonoscillatory (in fact, it is nonoscillatory). This can be seen directly,
as the general solution of (28) is given explicitly by

x(2) = [e1e'(\/2 +sint) + ¢][1 — e (/2 + cos #)]

= V2 [e; — J2cie cos (¢ + n/4) + ce?*]
Y= [1 —e*(y2 + cos2)]?

where ¢, and ¢, are arbitrary constants.
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2, The case where Sm p@®di<o

Let us now consider the system (A) in which p(f) is subject to the condition

Sw p(Hdt<oo. We are able to obtain results which are parallel to the theorems

proved in §1. Use is made of the function zn(f)= Sw p(s)ds.
t

A) A classification of solutions according to the behavior as t—o0 is de-
scribed in the following theorem.

THEOREM 2.1. Assume that either (A) is superlinear and
(29) Sw n(g+()w(t, c)dt < 0 forallec >0
or (A) is sublinear and

(30) Sw%wa, cn(g(®))dt < oo for all ¢ > 0.

If {x(®), y(O)} is a solution of (4), then exactly one of the following cases holds:

(1) limsup [x(f)|=00, limsup |y(?)|=oc0.
t— 0 t—w

(I1) There exists a nonzero constant o such that
lim x(f)=a, limz()y()=0.
t—o =0

(II1) There exists a constant B such that

lm S = im 0=,

Proor. Let {x(#), y(t)} be a solution of (A) defined on [r, o) and let
T =7 be such that h(T)=x.
Suppose (A) is superlinear and (29) holds. Because of (29)
nHa(t, ), (g, o), olt, cn(g(®))
are integrable at co for all ¢>0. If lim sup |x(f)]=oc0, then lim sup [y(¢)]= oo,
t—o00 1=
since otherwise a contradiction follows from (3). Let limsup |x(f)]<oo. Then
{=>00
p(O)y(t) € LI[T, o), because from (3) and (4) we have

[ p01y©1as < amiyl + {7 nts)ats, 1xta(sHDds
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and (3) can be written as
(3D x(t) = @ — | " p(o)yds
for t= T, where

@ =) + | pr(s)ds.

Consequently, lim x(f)=a. On the other hand, we have
=0
t
(| y(®)| £ n(OI(T)| + ﬂ(t)ST (s, k)ds

< (DI + n(t)g (s, k)ds +S w(s)as, K)ds,

where k is a constant such that [x(¢)] £k for t=7. From this we see that n(¢)[y(?)|

can be made arbitrarily small by taking T, sufficiently large and then letting ¢

increase without bound. Thus, lim n(f)y(¥)=0, and we arrive at Case (II) if
=0

a#0. Now we suppose that a=0. Let T, =T be such that

=h(T) 2T, [x(g() =1 fort=T,
[ n0is, Das < L. {7 ate@)ots, Das < 5
From (4) and (31) (with «=0) we get

%01 < 2O + 20 ofs, xeEDds
(32
+ [Tats, IXgEIDds, 12T

Putting u(t)=sup |x(s)| and using the decreasing nature of the right-hand side of
st
(32), we obtain

RS Ko+ {0t uaoas

(33)
mg 7t(S)CO(S, u(g(s)))ds, t> T,

where k, is a positive constant. Since

u(g(s)) u(o)
9()) = sup . 7o) for sel,,
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u(g(s)) < u(®) for seJ,

where I, and J, are as in (10), taking (8) into account, we find

u(t) <ko+ sup u(s)

n(z) Tossst T(S8) gl.ﬂ[r.,r) n(g(s)es, 1ds

1
L) S,‘n[w)n(g(S))n(s)w(s, 1)ds>

4+ u(?) n(t)S

() w(s, Dds + S

i ,w)n(.s')a)(s, l)ds)

Jgn[Tht) JeNle

Sko+ sup zg; -S:n(g(s))a)(s, 1)ds + ;gg S:ln(s)w(s, 1)ds

1 u(s) 1 u(@)
< = = >
kot 3. 50, 2 T3 2T

and consequently

u(t) - 1 u(s) >
a@y =Kt 7 SR ey 2T

where k, is a positive constant. It follows that

|x(®)] < u(s) < >
70 =50, w(sy S for 2 T,

that is, x(£)=0(n(?)) as t-c0. Now, this fact implies that f(¢, x(g(£))) € L[ T, o0),
and so from (4) we have

(349 90 = = = {16, xg6)ds
for t= T, where
B = — wT) - {7565, x(g(o)ds.

Therefore, lim y(f)=—p. Coupling (31) (with «=0) and (34) yields
=0

x(®) = pa(®) + |7 [30) = 791G, @), 12 T,

from which we easily see that lim x(f)/n(f)=pf. Thus we are led to Case (III)
100

when a=0.

Next suppose (A) is sublinear and (30) holds. Notice that
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[()/r(g(]o(t, cn(g(®)), o, cn(g(®), n(Hw(t, c)

are integrable at co for all ¢>0. It suffices to discuss the case where lim sup |x(¢)|
0
<oo and (31) holds with «=0. We shall show that lim sup |x(?)|/=(f) <oc0.
t— 0
Suppose the contrary. Then it is possible to select T;, T, and T; in such a way
that

T<T,<T,<T;, To=h(T)2T, [x(To)| 2 n(To),

Tossst 7(S)  T,ssse 7(s

EC)] R lx(sgl for 12T,

8:2 7:2158)) (s, n(g(s)))ds £ —1 S: (s, n(g(s)))ds < —Z

and

1Tl + S: (s, [x(g()ds < i Ax ;gsil ,

We rewrite (32) as follows:

l;cr((tt)) L < 1y + g;zw(s, Ix(g(s))Dds + X;z (s, |x(g(s))))ds
(35)

+ b | ns)ats, Ix(@@6)Dds, t 2 T,

Define

v(f) = sup _I_x%_ for t = T,.

Tosss: T7($)

Noting that the right-hand side of (35) is an increasing function of ¢ and using
the sublinearity (14), we obtain

o) < 5 o0 + | og@ats, (ae)ds

EGTS o(g(s))n(s)oo(s, n(g(s)))ds
or

3000 < 70) { g6t n(g@M)ds
(36)
+ {7 wg@mst, we6)ds
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for t=T,. Using the inequalities
u(g(s)) < o(p) for sel,

(g(s)(g(s)) = sup [n(o)x(0)] for seJ,
we see from (36) that for t=T;

G0 < a0 (§, | ats, mlg@)ds

IN[T2,¢

1
M EI0) Sltn[,,w) n(s)eo(s, ﬂ(g(s)))ds>

+ sup [T (n(t) g w(s, n(g(s))ds

1
Jengra,e ®(g(s))

n(s)
* Shn[r,w) n(g(s)) s, 7‘(9(5)))dS>

< n(Ho(t) g: w(s, 7(g(s)))ds

+ sup [ | —FE s, alg()ds

< - 7o) + :lri‘g [r(s)o(s)].
Thus we arrive at
0 < sup [2()(s)] < - su > [n(u9], 2 T,

a contradiction. Therefore we must have lim sup |[x(#)|/n(f) < o0, and arguing as
t=—>00

in the superlinear case, we are led to the relation (34).
This completes the proof.

B) The following theorem describes the asymptotic behavior of nonoscil-
latory solutions of (A).

THEOREM 2.2. Suppose that the conditions (16), (17) and the hypotheses
of Theorem 2.1 are satisfied. If {x(?), y(t)} is a nonoscillatory solution of (A),
then either

(37 tlim x() =a, lima()y(t) =0

Jor some constant a#0, or else
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(38) lim X = p, limy() = - B

for some constant §#0.

Proor. Let {x(f), y(t)} be a nonoscillatory solution of (A) defined on
[t, o). Suppose x()>0 for t=1. Let T=t be such that h(T)=7. By the
second equation of (A), y(¢) is decreasing for t=T. If y(#)>0 for =T, then the
first equation of (A) implies that x(f) is increasing, and so from (3) we get

x(T) 2 x(1) £ x(T) + e(T)y(T) for t = T.
If y(f)<O0 for t=T' (>T), then again from (3)
= {0 poy©ds = 1) - 3y s X(T), 12T

which shows that p(f)y(t)e L*[T’, o0). Taking this fact into account and noting
that x(¢) is decreasing, we have

X(T) 2 %) = X(T) + | p)y(s)ds = [ po)yds

2 :(T") + | s + mOWT)] 2 =OT)

fort=T’'. A parallel argument applies if we assume that x(f) <0 for t=1. There-
fore we conclude that
lim sup [x(t)] < oo and liminf 1XO1 5 o,
t—0 t—ro0 ﬂ(t)

The conclusion of the theorem now follows from Theorem 2.1. This finishes
the proof.

ReEMARK 2.1. From the existence theorems established in [3] and [4] it
readily follows that under the hypotheses of Theorem 2.1 system (A) actually
possesses nonoscillatory solutions of the type (37) for all a#0 as well as those of
the type (38) for all §#0.

ExamPLE 2.1. Consider the superlinear system

2[1 +sin(z + #/4)} o
[/2 + cos (¢/3)]3 eHx()3) -

(39)

Y= -
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As easily checked, the integral condition (29) is not satisfied and system (39) has
a nonoscillatory solution

X(f) = e (2 +cosf), y(t) = —JZe( 2 + sint)
whose asymptotic property is different from (37) and (38).

C) Finally we establish oscillation and nonoscillation theorems correspond-
ing to Theorems 1.3 and 1.4.

TuaroreM 2.3. (i) Suppose that (A4) is superlinear and condition (G,) is
satisfied. If (29) holds, then every oscillatory solution {x(t), y(t)} of (4) has
the property:

(40) lim sup {x()] = o0, limsup |y(¥)] = oo.
£—00 t— o0

(ii) Suppose that (A) is sublinear and condition (G*) is satisfied. If (30)
holds, then every oscillatory solution {x(t), y()} of (4) has the property:

i 200, im0 =0

Proor. Let {x(?), y(f)} be an oscillatory solution of (A) defined on [, c0).
Take T=7 so that h,(T)=t. From the possibilities listed in Theorem 2.1
Case (II) and Case (IIT) (with f#0) are excluded, and hence {x(f), y(f)} satisfies
either (40) or (41).

(i) Let (A) be superlinear and (G,) hold. Suppose to the contrary that
(41) holds true. Then, proceeding as in the proof of the first part of Theorem
1.3, we have

X0l < 70 |” s, Ixg(DDds, 2T,
from which using the function

u(f) = sup I;g;' .

st

we can derive

u(t) < Sm
w7 s, mlg(e)ds
for all sufficiently large t. But because of (G,) this is impossible.

(i) Let (A) be sublivear and (G*) hold. Suppose we have (40). Then
there are Ty, T, and T; such that
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T<Ti<T,<T To=h(T)2T, IXTp)l 21,

sup [x(s)| = sup [x(s)| for t 2 T,
ToSsst T2SsSt
gw n(Hw(s, Nds £ =
T 4

X + =(DIAD] + [ s, I@()Dds < 5 =TI

Now defining v(f) = sup lx(s)] and arguing as in the second part of Theorem
To

1.3, we are able to derlve a contradiction that

_u@) 1
oy =2 12T

from the inequality
Ix(0] S 1D + DD + [ 2(s)als, Ix(gs)Dds

which is a consequence of (3) and (4). It follows that {x(f), ()} must satisfy
(41). Thus the proof is complete.

REMARK 2.2, The second part of Theorem 2.3 extends and improves
recent results obtained in [2, Theorem 1], [6, Second half of Theorem 5] and
[9, Theorems 2 and 3].

ExampLE 2.2. Consider the sublinear system

%'(8) = exp( - —%)y(t)
“2)
Y@ = = Jre(LOF L))

where g(t)==arccos (—sin®?). The branches of g(?) is taken as follows:

(n—2)7r§g(t)<(n—1)nifmr——§—§t<nn+—72L,n=1,2,3,....

Since g(¢)<t, condition (G*) is satisfied. It is easy to verify that (30) is valid.
According to (ii) of Theorem 2.3 every oscillatory solution of (42) vanishes
asymptotically in the sense (41). In fact,

x(t) = exp( — /3Hcost, yf)= —2exp(—— )sm(t+1;~>
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is an oscillatory solution of (42) having this property.

THBEOREM 2.4. Suppose that (26), (G¥*) and (G,) hold. If

43) [ wtguraat < o,

then all solutions of (A) are weakly nonoscillatory.
This is an immediate consequence of Theorem 2.3.

ExampLE 2.3. Consider the linear system

x@) = exp( = 75 )y
(44

, _ 8 t \/gn t T

Let g(H)= t[l + % sin (log t)]. All the conditions of Theorem 2.4 are satisfied,

so that system (44) has no oscillatory solutions.

Let g(t)= % + -Z— . Although (43) holds, condition (G,) is violated. Asa

result (44) possesses an oscillatory solution

x(f) = exp ( — /3)sint, y(f) = 2exp<— %) cos <t + —7;—)
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