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1 Introduction

1.1 Background

In mathematical physics, hyperbolic partial differential equations ard teselescribe evolutionary
processes with the property that information propagate with a finite speee.ofthe simplest and
therefore standard models is that of free wave equation

Uy — 2 Au =0, (2.1.2)

wherec denotes the speed of propagation @nd= >, 97 the usual Laplacian in Euclidean space.
This equation arises together with certain initial and boundary conditiongifrmdels the oscillatory
behaviour of vibrating strings, membranes or the propagation of souatetH= u(t, z) denotes a
displacement or a pressure and thus a time-dependent scalar fieldcthodf@amics the unknowns
are the electric and the magnetic field, which satisfy in vacuum a related eguglie investigation of
this problem is related to names like J.R. d’Alembert, who solved the probleneismace dimension,
or J. Fourier who developed the method of Fourier series, while studyittglsnds of problems. In
three space dimensions S.-D. Poisson understood the relation to geonwesglerical means and
gave a first explicit representation of solutions, later generalized bykaréhhoff.

In general, one can not expect that (1.1.1) models real-world probl€mssillations of vibrating
strings and membranes are described by quasi-linear equations duddtica teetween length/area
deformation and energy, the above given equation is the linearization alvi# solution v = 0.

A second idealisation is that in the above equation we excluded the influémeatier, the strings
oscillate in vacuum, the acoustics is considered inside an ideal gas and@yeetmics far away from
matter and charges.

The propagation of electro-magnetic waves inside matter but without ferges) as it takes place
inside conductors, is described by the so-calidegraph equation

Ett - CQAE + EE_:t = O, (112)
€

wherec?ie = 1 ando denotes the conductibility. Similar, for oscillations of membranes a dissipating
environment leads to the occurance of this kind of first order term.

For the study of wave and damped wave equations the introduction ofalledfzyperbolic energy
is an important step. Inspired by physics one defines

1
Bluit) = / (EIVal? + u?)da (1.1.3)
for a solutionu = (¢, =) of the wave equation (1.1.1) or tilkamped wave equation

g — A Au+bup =0 (12.1.4)

with positive coefficienb > 0. Then, if one integrates ov&” or assumes Dirichlet boundary con-
ditions u(t, z)|so = 0 on a domairf2 with sufficiently regular boundary, integration by parts yields
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immediately

d

&E(u; t) = / (C2Vu - Vug + ututt)dx = /utDcudx = b/ \ut|2dz <0 (1.1.5)

for real-valued solutions. In the case of complex solutions the calculatrensirailar. As usual we
denote by, = §? — c2A thed’Alembertian Later on we will set = 1 and omit the: in the notation.
Thus, for free waves the energy is preserved,

E(u;t) = E(u;0), (1.1.6)

while for damped waves it is monotonically decreasing. This simple calculatias gio information
whether it tends to zero or remains positive for all times. The question fqrréese decay rate and
the asymptotic description of the solutions may be an old question, but it is stillrgyand active
research area.

1.2 Objectives

The aim of this thesis is to give a contribution to this research field by studpiegja classes of time-
dependent dissipation terms and their influence on the asymptotic propdriesswlutions. To be
more concrete, we investigate the Cauchy problem

Ou + b(t)us = 0, u(0,-) = u1, Dyu(0,-) = us, (1.2.1)
whered = [; = 83 — A andD; = —i0; in the case of Schwartz or Sobolev data. Main tasks are

¢ to understand structural properties of the solution in terms of structuspepies of its repre-
sentation,

¢ the derivation of energy and more geneté&L? decay estimates for dual indicesndg,

e asymptotic descriptions of the solutions and, related to that, the sharpribesafiitained decay
estimates,

e ideas to classify dissipation terms related to their influence on the represestatio

Energy decay estimates for variable coefficient dissipation terms areldgdilam the literature un-
der several assumptions. We refer only to some of the most cited reésreghe concrete relation to
our results will be given later throughout the main part of the thesis. Basidts for the Cauchy
problem or initial boundary value problems on exterior domains are the wegiginergy inequalities
based on the paper of A. Matsumura, [Mat77], later reconsidered byeklaka in [Ues80] or F. Hi-
rosawa and H. Nakazawa, [HNO3]. Furthermore, K. Mochizuki gavioc77] and later together
with H. Nakazawa in [MN96] the answer to the question under which conditioe hyperbolic energy
tends to zero.

So the main objective of this thesis is the derivation of the more gehiérdl? estimates for solu-
tions. These estimates rely on more structural properties of represestatisoiutions than estimates
in the L?-scale and can not be deduced by the same methods as the above memtsotisd Our
approach is based on the one hand on explicit representations in a spseiand on the other hand
on asymptotic representations combined with an extensive phase plansignalger more general
assumptions, mostly adapted from the treatment of degenerate hyperbblierps. For completeness
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we mention the book of K. Yagdijian, [Yag97], and the consideration ofvemuations with increasing
speed of propagation by M. Reissig and K. Yagdjian, [RY00], for thalzioation with dissipation and

mass terms [Rei01] and [HR03]. The method we used is based on the Roamisfiorm and Fourier

multiplier representations (also called WKB representations) of solutionftine we consider only

purely time-dependent dissipation terms. The consideration of time and sfgdé&idencies in the co-
efficient in the language of pseudo-differential and Fourier integratators yields essential difficulties
in connection with the time asymptotics and is therefore not considered here.

The schedule is as follows. First, we give a short overview on knovehremv merely classical
results for LP—L? estimates in the case of free and damped wave equations. Furthermorel]l we w
sketch some of the main results of the thesis related to these classical rebidtaillTcomplete this
introductory chapter. Later on in Chapter 2 we study one of the most impaxamples for time-
dependent dissipation, the scale-invariant or the Euler-Poissoreatype equation. It turns out that
this example provides us with a lot of ideas and gives some feeling for thegaoezal results proven
later. Chapters 3 and 4 contain the main ideas and provide the solutionemtatems for the two
occurring cases of dissipative wave equations and their applicationsite dé—7.¢ decay estimates
together with their sharpness. Later on, in Chapter 5 we are conceiitteéstimates for solutions
and estimates for higher order energies. Furthermore, the so-calledilfor parabolic structure of
damped wave equations will be considered there.

1.3 Asymptotic properties for special model equations

1.3.1 The Cauchy problem for free waves

As mentioned before, for free waves the hyperbolic end?Qy; ¢) is a preserved quantity. In contrast
to this the solution spreads out with a constant speed of propagation. Taisnikthe data are given
within a ball of radiusR, after timet the solution lives in a ball of radiuB + ct. In odd-dimensional
space the Huygens’ principle is valid and free waves have also a betkveae front, and therefore,
the solution vanishes inside a ball of radids- R for ct > R.

The conservation of energy heuristically gives for this enlarging regidecay of the solutions in
L>(R™). The decay rate may be guessed from the spreading of this angular dothaime assumes
that the solution is bounded and distributes in a uniform way one may guess

11(0¢, V)u(t,)||%, meas (B(R + ct) \ B(ct)) ~ const (1.3.2)

n—1
— 5=

H(@t,V)u(t, )HOO ~ (1 +t) ’ n odd (132)
Of course, this reasoning is incomplete and can only be used to getphet of the statement.
A rigorous proof of the< estimate can be deduced from explicit representations of solutions like
the Kirchhoff formula and was given by W. von Wahl, [vW71]. Using negentations by Fourier
multipliers these estimates arise in papers of W. Littman, [Lit73], R.S. Strich&tz,J], P. Brenner,

[Bre75], and H. Pecher, [Pec76], to name just a few of the most cifedereces. The usual form of
theselP—-L4 estimatess obtained by interpolating the>°-estimate for the derivatives with the simple

1This intuitive motivation for thel.>°-decay of free waves is taken from a talk of O. Liess given at the WogkéPseudo-
differential Methods for Evolution Equations” at the Bimestre IntensiMictolocal Analysis and Related Subjects” at
the Université di Torino/Politecnico di Torino, May-June 2003.
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conservation property for the hyperbolic energy and reads as

1

_n=1(1_1
11(8, V)ult,)||pa < C(1+1) 2 (,, q){y\uly\wgﬁl +\|u2\|W;v,,} (1.3.3)

for p € [1,2], g the corresponding dual index, i.eqg = p + ¢, andN,, = {n (% - %ﬂ + 1. This
formulation of the estimate is taken from the book of R. Racke, [Rac92,t€hap
It may be extended to more genegaand ¢ forming a not necessarily dual pair, furthermore the

regularity may be improved fgr € (1, 2] using Besov spaces.

1.3.2 Damped wave equations

Now we turn to the consideration of solutions to (1.1.4), where the hyperbodicgy is monotonically
decreasing. The first one who proved sharp decay estimates for aslthithe Cauchy problem was
A. Matsumura, [Mat76]. He showed, that

N _p_lal
IDEDGu(t, Iz < COU+ )52 (||l gresiar + |uall prrsioi-1} (1.3.4)

and anL?—L® estimate of the form

n

_n_p_lof
IDFDGu(t, )pee < O+ )72 {[lurllgmmasial + w2l graexsiaia . (1.3.5)

Both estimates can be improved by assuming a furllfeproperty of the datay € [1,2]. For the
complete structure of these improved estimates we refer to the original padatsumura, [Mat76]
or the discussions later on in this thesis.

These decay estimates show a difference in the decay order for time atral dprivatives like for
parabolic equations. We remark, that estimates (1.3.4) and (1.3.5) coin¢idedecay order with the
corresponding estimates for the heat equation given e.g. in the papePohGe, [Pon85].

In particular the estimates imply a decay rate for the hyperbolic energy obthre f

E(u;t) = O(t™1), t — 00. (1.3.6)

The estimates of Matsumura hint to an underlying parabolic structure. THeswbYang H. and
A.J. Milani, [YMOO], K. Nishihara, [Nis97], [Nis03], [MNO3], and T. &razaki, [Nar04], make this
relation more precise. The observation is referred to aslifhigsion phenomenoand goes back to a
result of Hsiao L. and Liu T.-P., [HL92], for the compressible flow throggprous media.

If we consider the two Cauchy problems

Ou + ur = 0, and wy = Aw,
U(O, ) =ui, Dtu(o) ) = uz, w(O, ) = Wy = U1 —+ ’L"U,Q,

the solutions behave asymptotically equivalent in the sense that, [YMOOydine2.1],

™)

Hu(tv ) - w(tv ')HLC’O = O(tiﬁilx t — 00, (137)

or, in three space dimensions and withrelated to the solution of the free wave equation to data
ui,ug € LP(R™), p € [1,00], [NisO3, Theorem 1.1],

1

ult, ) —w(t, ) — e 5o(t, e < CA+ 020670 7 (uy, w1 (13.8)

10
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for p < ¢. This means, the norm of the differente — w) decays faster than the norm efand w
itself (where the decay rates obtained by A. Matsumura are sharp) efrudhe, if we exclude the case
p = ¢ = 2, the solutions of the free and also of the damped wave equations aredaks thanLq.
Thus at least some weak singularities cancel on the left hand side atttuardescribed by the free
wave equation and decay likes.

Recently, T. Narazaki, [Nar04], generalized this result of K. Nistdhararbitrary space dimensions
n > 2. He showed that the restriction of the solution to small frequencies carsbelold by the heat
equation, while large frequencies behave up to an exponential deztay like a modification of free
waves.

One consequence of these estimates is that for the semi-linear dampedjwatrere

Ou + ug = |ul?, (1.3.9)

the critical exponent for global existence of small data solutions is giyethé Fujita exponents
pe(n) = 1+ 2/n, [Fuj66], like for parabolic equations. This result is due to G. Todoawa B. Yor-
danov, [TYO01], and independently to [NisO3] far= 3.

1.3.3 Damped wave equations on domains

For completeness we will give two remarks on damped wave equations onrdorhat for thisQ) C
R™ be a domain with smooth boundary. Then for the initial boundary value problem

Ou+up =0, z e t>0,
u(0,-) = ur, Dyu(0,-) = ug, z e, (1.3.10)
U(t,$>:O, l’eaQ,tZO,

where for simplicity the compatibility conditions | ,,.,, u2|,,,, = 0 are assumédthe situation is quite
different and results depend on geometric properties of the domain.
If the domain(2 is bounded, the hyperbolic energy decays exponentially, i.e. there axistsstant
¢ such that
E(u;t) = O(e™ ), t — 00. (1.3.11)

This result is merely classical and proven for general dissipativeragsigth variable coefficients by
M.E. Taylor and J. Rauch, [RT74]. For the case of constant dissipiattan be obtained by the energy
method combined with Friedrichs inequality.

The situation appears to be quite different, if the domain is exterior. In thisthasnergy decay rate
is the same as for the Cauchy problem. Furthermore, following R. Ikehk¢®Z2], the diffusion phe-
nomenon is also valid in this case. He proved for the soluiiof(1.3.10) andv of the corresponding
parabolic problem

wy = Aw, reQ,t>0,
w(0,-) = wo = u1 + du, x €, (1.3.12)
w(t,x) =0, z €N t>0,
the L?-estimate
_1 _
ut,-) = w(t, 2 < O+ )3 log(e + D]~ {llurl 2 + uall } (1.3.13)

2as long as the data are regular enough to give these conditions a meaning

11



1 Introduction

while the solutions: andw are in general only bounded (and not decaying). In view of the estimates
by K. Nishihara, [Nis03], and in general T. Narazaki, [NarO4], Rehata conjectured that the sharp
rate for the exterior problem will also k& + ¢)~*.

1.4 Selected results

We will conclude this introductory chapter with several selected resultedhtsis. For simplicity, and
in order to make the situation not to complicate, we assume here that the coefficietionb = b(t)
is a positive, smooth and monotone functiort,ofvhich satisfies

i

ﬁb(t)lg(?kb(t)< : )k (1.4.1)

1+1¢
forall k € Ng.

The first result is mentioned for completeness. It states that integrabfeceoes are asymptotically
negligible.

Result 1. Assumefooo b(t)dt < oo. Then the solutions ofl.2.1)are asymptotically free[Theorem
3.1]

In fact, this result is a special case of the following one. We denote by

A(t) = exp {% /0 t b(T)dT} (1.4.2)

an auxiliary function.

Result 2. Assuméim sup,_, ., tb(t) < 1. Then the solutiom = (¢, x) of (1.2.1)satisfies the.P—L4
estimate

1 _n_l(;_;)
10, Vyult s < Oz (14077 W70 v + [zl } (1.4.3)

for p € (1,2], g the corresponding dual index and, > (% — %) [Theorem 3.24]

Furthermore \(t)u(t, =) is asymptotically freelTheorem 3.26]

We will refer to dissipation terms, which lead to this kind of estimatesnas-effective (weak)
dissipation Non-effectivity means that the asymptotic properties are still describedebfree wave
equation, at least after modifying it by the energy decay kate).

Related to this case is the coefficient function considered in Chapit@n 2= ;£;. Then the resulting
L1-L7 decay estimate depends on the size of the coeffigiemd the value op. For large values of.

there is some relation to the following case, referred teféective dissipation

Result 3. Assumeb(t) — oo ast — oo. Then the solutiom = (¢, z) of (1.2.1)satisfies the.P—L4
estimate

tar \"30G-3)3
@ Vyutt. s < € (14 [ 57) (el +lhellys ) 1.44)

o b(7)

for p € (1,2], g the corresponding dual index and, > n (;} - %) [Theorem 4.25]

12



1.4 Selected results

In this case the question of sharpness of the above estimate is closely telgtedliffusion phe-
nomenon. Note that for the corresponding parabolic surrogate,

1
b(t)

the above giverd P—L? estimate is sharp in the decay order. In order to state the sharpnessutif Res
3, we therefore show that the differeneg, =) = u(t, z) — w(t, x) decays faster than the above given
rate. Forp = 2 this is done in Theorem 5.22 and Corollary 5.23.

In the case that/b(t) becomes integrable, Result 3 gives no decay at all. This case will beafe
to as the case adver-dampingnd is characterised by the following remarkable property.

wy = Aw, (1.4.5)

Result 4. Assumef;™ ;% < oo. Then the solutiom = u(t,z) of (1.2.1)with data fromL*(R") x

H~1(R") converges as — oo to the asymptotic state
u(oo, ) = lim wu(t,x)

t—o0

in L2(R™). Furthermore, this limit is non-zero for non-zero initial daf@heorem 4.27]

13
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2 Scale-invariant weak dissipation

In this chapter we are concerned with the Cauchy problem

Ou + + =0, w(0,-) =u1, Dyu(0,-) = ug (2.0.1)

H u
1+t
with a special choice of a time-dependent dissipation term. The coeffigiéntnon-negative real
number. The main result is collected in Theorem 2.1 and allows us to conahgdgyeandLP—L4
decay estimates, Theorems 2.7 and 2.8, (published in [Wir04]) and &lsty? estimates for higher
order energies, Theorem 2.9.

This Cauchy problem is of particular interest for several reasondirgitthis equation has more
symmetries than other problems with variable coefficient dissipation. If wig apghyperbolic scaling,
i.e. if we substitute the variables according to

w(t,x) =u(o(t+1)—1,0x) (2.0.2)

with ¢ > 0, the functionu satisfies the same problem with related data. We say, equation (2.0.1)
is scale-invariant. As will be seen later, this implies that we can compute exgriésentations of
solutions in terms of knowspecial functions

Problem (2.0.1) is closely related to the Euler-Poisson-Darboux (ERI2tieq

Au = Ut + %U,t, (203)

studied by L. Euler, [Eul70, Sectio secunda, Caput 1V], and G. Datpfar89, Libre IV, Chapitre
1], and later L. Asgeirsson, [Asg36], in connection with the theorgpifierical means. For an detailed
exposition of classical results for the Euler-Poisson-Darboux equséerthe paper of A. Weinstein,
[Wei54], and the literature cited therein. More closely related to our appraathe treatment of
the Euler-Poisson-Darboux equation in the book of R.W. Carroll and $hBwalter, [CS76], where
convolution representations of solutions to the (singular) Cauchy prololethe EPD equation were
given.

The special Cauchy problem considered in this chapter turns out to basieexample for a wave
equation with time-dependent dissipation. On page 30 we give an interpnetditane of the main
results and relate it to the forthcoming considerations of this thesis.

2.1 Multiplier Representation

Reduction to Bessel's equation. At first we construct the fundamental solution of the corre-
sponding ordinary differential equation in the Fourier image. 4@t&) = F,_.¢[u] be the partial
Fourier transform,

a(t, &) = (2m)" 2 / e T Eu(t, z)da. (2.1.1)

n

15



2 Scale-invariant weak dissipation

Thenu satisfies the ordinary differential equation
ay + €20 + i = 0. (2.1.2)

Following K. Taniguchi and Y. Tozaki, [TT80], we use the relation of thifedential equation to
Bessel's equatiom order to construct a system of linearly independent solutions. Weitibs =
(1+1t)¢| and get

lrr + 20, + 0 = 0. (2.1.3)
If we make the ansatz = 7”w(7) this leads to

0=p(p— 1)Tp_2w + 2pT”_1w’ + TPw”

+ é(p Pl + Pw') 4+ TPw

+70 72 (TP + (n+ 20) 7w’ + (72 + p(p — 1+ p))w),

i.e. by the choice of. + 2p = 1,

1
p= —“T, (2.1.4)

and hence — 1 + u = —p, we get Bessel's differential equation

2w 4w’ + (12— pPw =0 (2.1.5)

of order+p. Note that our assumption gnimpliesp € (—oc, %]. A system of linearly independent

solutions of (2.1.5) is given by the pair of Hankel functidﬁiﬁ(r). For details on these functions we
refer to the treatment in the book of G.N. Watson, [Wat22], or the shorviewe on basic properties
contained in Appendix B.1.
Hence
wy (1) = TPH (7), w-(1) =7"H, (1), (2.1.6)

with p determined by (2.1.4) gives a pair of linearly independent solutions af3{2.1
Representation of the Fourier multiplier. We are interested in particular solutiofs(t, to, &)

and®s(t, to, &) of (2.1.2) subject to initial conditions

(I)l(t07t07€) = 17 Dt(I)l(t();t(hg) = 07 (2173.)
(I)Q(t07t07£) = 07 th)Q(tht(bg) = 17 (217b)

where the parametés > —1 describes the initial time level in order to obtain a representatiort) =
Dy (t,0,8)u1(8) + Po(t, 0,&)u(E). We collect thes@; in the fundamental matrix

. q)l(ta thg) (I)Q(tvt(hg)
209 = (il Debsirin b)) (218)

Forw4 (t,&) = wx((1 + t)[£]) we have the following initial values

wy (to,€) = (14 to)”[€]°H} (1 +to)[€]), (2.1.9a)
Bywy(to, &) = (1+to)? |17 ML (1 + 1) €]), (2.1.9b)
w-(to,€) = (1+ to)P[€]"H, ((1 + to)€]), (2.1.9¢)
Byw—(to, &) = (1+to)? €171 H,_ (1 + 1) €]), (2.1.9d)
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2.1 Multiplier Representation

which follow straightforward from the recurrence relations for Befigettions. For instance we have

d [(1+ t)P\£|pH;r((1 +)|€])] {tzto

dt
= (1 0P PR (1 + e, + (0PI (1 + DIEDIE,,
- ((1 o) €l (HLEY((L + to)lel) + o (1 + to>r£|>> (1 + to) !

= (L+t0)?lEP ) ((1+t0)I€]).

From these initial values we determine the constéhigto, &) in

Qi(tvtmg) = Ci+(t0>§)w+(t>§) +Ci—(t07£)w—(t7£)7 L= 1727 (2110)
such that (2.1.7) holds. This means, they have to satisfy
w4 (to, §) w—(to, &) Ci1(t0, &) Cay(to,§)) _
(th+(t075) th—(t07§)> <Cl—(t07§) 02—(750,5)) =1 (2.1.11)

Hence, we have

<01+<to,s> 02+<to,§>>_ i (th—@o@ —w—<t0’€>), (2.1.12)

Cl_(to,g) CQ_(tO,f) - det W(t()) _th+(t07§) w+(t07£)
where

- wi(to, &) w_(to,€)
det W (to) = det <8tJ+((l)fo,§) atw((;oaf))

, T
= (1+to)|¢[**1 det (gggg iZ;EB EZ? ((1 +to)|£)>

4
= P14+ to)% (2.1.13)
T

using formula (B.1.8). Thus, we obtain for the fundamental solution
1
D1t t0,€) = Il (L+t0)' 7

{(1 o)l (1 + to)l€]) (14 0PIElPH (1 + 1))

— (L4 to)? Il (1 + to)l€]) (L + )P lElPH, (1 + t)lf\)}

(L+t)”
(1 + t())p_l

—H:;_l((l+t0)\§|)7-[p_((1+t)|£|)} (2.1.14a)

=Tk [ (0 e (0 + )

and similarly

ot t0.6) =] et My (€A (1))

(4 ) )R (1 +t)|§])}. (2.1.14b)

We collect the results in the following theorem.
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2 Scale-invariant weak dissipation

Theorem 2.1. Assume that, = u(t, z) solves the Cauchy proble(@.0.1)for dataw;, uy € S'(R™).
Then the Fourier transform(t, £) can be represented as

a(t,&) = Y @;(t,0,€)a,(€),

j=1,2
where the multipliers; are given by
Cim (LH0P (M (1 to)le)) H‘((1+t)|£|)'
Dol t0.8) = TG00 [t (L t0)lél) 7 (1 + 1))
and
(L+)” |H, ((1+t)€])

(I>2<t7 to, 5) =

0 H,
(T4 to) L |[H (L +t0)lg]) M (A +)E])]

Time derivatives.  Next we need the time derivatives of these functions. Derivation withertsp
t leads to

om0 R (L)) o (1 DleD
Dia(t:to, ) =T 550 [ (1 + 10)€) Hﬁti((m)\a)‘

usingpH} (2) + 2(H})' (2) = zH;f_l(z) and similarly for the second multiplier.

Corollary 2.2. The time derivatives of the multiplieds; are given by

e (L8P TH (T to)lEl) M, (1 +0)E])
Pebutsto, ) = I 50T |h L (0 + 10)lé) Hii((lﬂm)‘
" ( ) ( )
L (Lt (L )lel) Mo (o]
Di2(tst0,€) = UG5 | (Lt w)lel) #E (0 +t>|«s\)“

It is possible to obtain a similar expression for higher order time derivabyeasduction.

Corollary 2.3. The higher order time derivatives of the multipligrs are given by

_im (L+0) |H  ((L+to)lEl) H, (1 +1)[E])
DF®,(t,tg, &) = 4Ck‘§|k+1(1+t0)p*1 H;r,i((1+to)|§|) HE_Z((HOIEI)‘
and
T (14+6)” |H, (A +t)lEl) H, (1 +1)[E])
D,’f@z(t,to,f) = —ZCk‘ﬂk(l T tg)P 1 H;,"((l +t0)’§‘) H%_:((1+t)\f|)|

with C = pk_I%(—i)k for p ¢ —Np (and the corresponding analytic continuation for the

negative integers).

1| . | stands for determinants ...
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2.2 Estimates

Representation by real-valued functions. If we use the definition 017-[;t by the real-valued
Bessel and Weber given in (B.1.6), we obtain an alternative charattenf® by these functions
By (t, 1o, €) = %lf!% gfp’—lg ﬁrig g )j};’EE g , (2.1.15a)
o= S8 B0 e
D (tt0.8) = —iZI6P G S L) Sata o) @189
e ot o N s
In the case of non-integralthe representation can be simplified to
B1(t 0, €) = Fese (el
S (O I 5 S
By (t, 10, &) = igcsc (m)%
AL B (O (21160
it (1,10, €) = i (pmlel
) e | (21169
Dita(t 0. €) = ~ gese (pmlel v
A0 G| e

In the first and in the last formula we used (pm — 7) = —csc (pm).

2.2 Estimates
We use the isomorphism (order reduction)
(D)”: Lps(R") — LP(R™),

where(D) is the Fourier multiplier with symbol¢) = /1 + |€|?, to characterise thBobolev spaces
of fractional orde? over LP(R"™), p € (1,00). Note, that(D)* defines for alls € R isomorphisms of
the Schwartz spac® (R").

2Bessel potential spaces were introduced by N. Aronszajn in the béislesfAS61] and [AMS63]. For functional analytic
properties and relations to other scales of spaces we refer to the bdoRwoifist and W. Sickel, [RS96].
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2 Scale-invariant weak dissipation

The representation of the fundamental matbig, 0, &) (as well as the knowledge about strictly
hyperbolic problems) imply a natural regularity difference for the datanef®obolev order. Therefore
we define the following two operators corresponding to the Cauchy prof2éd.1). On the one hand
we are interested in the solution itself. Let therefore

S(t, D)+ (u1, (D)~ u2) = u(t, ) (2.2.1)
be thesolution operatonVe used the order reductions in such a way that
S(t, D) : L*(R",R?) — L*(R™).
On the other hand, we are interested in energy estimates. We defiaeelgg operator
E(ta D) : (<D> u, UQ) = (|D‘U(t, ')7 atU(t, ))7 (222)
with E(¢,D) : L?(R",R?) — L?(R",R?). For both operators we will give norm estimates frém

scale toL? with dual indicesp andgq, i.e. p + ¢ = pq andp < ¢, and compare the obtained estimates
with the knownLP-L? estimates for wave and damped wave equations.

Properties of Bessel functions. To obtain norm estimates for the operator famifi¢s D) and
E(t,D), we have to review some of the main properties of Bessel functions for amllarge argu-
ments. For details we refer to [Wat22, 83.13 ,83.52, 810.6 and 8§7.2].

Proposition 2.4. 1. The function
Ay(T)=7""T(7)

is entire inv andr. Furthermore A, (0) = r(f—;) #0forv ¢ {—1,-2,-3,...}.
2. Weber’s functioy/,, () satisfies for integrah
V() = 2 logT + An(r),
wherer™A,,(7) is entire and non-zero for = 0.
3. The Hankel function&; (1) with > K can be written as
Hy (1) = e¥7a; (1),
wherea} € S*%(K7 o0) is a classical symbol of order1/2 on each interval K, oc), K > 0.

4. For small argumentd) < 7 < ¢ < 1, we have

7l v
}van<{ e

~ l-logT, v=0.
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2.2 Estimates

Zy

K §

Figure 2.1: Sketch of the used decomposition of the phase space.

2.2.1 Consideration for a model operator

The model operator.  Due to the special structure of the fundamental mabk(x ¢, &), and hence
of the multipliers corresponding &¢, D) andE(¢, D), we consider the time dependent model multi-
plier

Ui po(t,€) = [€1F (©)7F (2.2.3)

Hy(€) Hops((1+ D)
HE(ED M (1 0)le])

parameterised by, s, p,d € R. Again we can writely, , , 5(t, ¢|) in terms of the real-valued Bessel
functions of first and second kind. Similar to (2.1.15) and (2.1.16) we have

T(€) Trea((1+1)[€])

AT yp+5(<1+t>|§r)‘ (2.2.42)
j—p(|€’) jfpfé«l“‘t)‘f‘)
(12T, ([€l)  Tprs (L +1)]E])

\Pk,s,pﬁ(ta 5) = 2Z|§|k <£>S+1_k

= 2i csc (pm) |€]F (€)FT R : (2.2.4b)

the last line holds fop ¢ Z andp + 6 ¢ Z.
In order to understand the model multiplier we subdivide the phase $aseR"™ into three zones,

Zi=A{K <]}, Z={E<K<A+9ll}, Zs={0+Dll<K},  (225)
as sketched in Figure 2.2.1. This decomposition reflects algebraic prepefirtiee representation of

the multiplier (and therefore it is different from the decompositions useddater

L?—L? estimates for the model multiplier. By Plancherel’s theorerh?~L? estimates of the op-
erator¥,, ; , 5(t, D) correspond td.> estimates of the corresponding multipligg ; , 5(, £). Further-
more, Proposition B.1.1. implies that the operator norm coincides withth&orm of its multiplier.

Lemma 2.5. It holds Wy, , , 5(t,-) € L>(R") forall t > 0 if and only ifs < 0 andk > |§|. Further-
more the estimate

(1414)2, ol =k < =3,
[ Phsps(t, )] S § (L+0)PIF, p#0,lp| — k> -1
(1+t)*logle+1), p=0,k<3,

is valid.

21



2 Scale-invariant weak dissipation

Proof. We subdivide the proof into three parts corresponding to the three Z6nes and Zs.
We use Proposition 2.4.3 together with the definition of the zEng |¢| < (1 + ¢)|£|. Thus
the multiplier is bounded ity iff s < 0. It satisfies

ks pa(t,€)] S (1+8)77

under this assumption.
For p # 0 we can use Proposition 2.4.4 to conclude

»

Wy ps(t, )] S 111711 + 1) 72 1¢| 2

_1
<{<1+t> 5 ol —k< -4,
~ —k 1
(1+ o)k, ol =k > 1.

For p = 0 we have to modify this estimate by they; term

In this zone we use the representationiof, , 5(t, ) in terms of real-valued functions given
by (2.2.4). For non-integral andp + § we can use the representation by Bessel functions of first kind
to concludé

‘\Ilk,s,p,(s (ta 5) ‘

S‘Iflpj—p(lé\) (L4 DIED ™ Tpra (L4 DIE]) (1 + ) Jgf+

" ‘!é\‘pJpOé!) (14 01N T s((1 1 0)lel) (Lt 1) e

(1 +t>”““( Ao (€D A5 ((L+DIEN (L + 87771 + )]y )

(1D A s (1 + DIEN A+ 67777 (1 + D)) )
Stk

The conditionk > |J| is necessary and sufficient for the boundedness in
For integral values op or p + § we use Weber’s functions and Proposition 2.4.2. We sketch the
estimate if bottp andp + ¢ are integral. Then, we have

y
Uhpa = = — 161 () log(1 + 0T, (€N Tprs (1 +D)IE))

st1-k | Tp([€])  Tprs (L +1)[€])
Ap(lE)  Apss((M+1)IE])

3By estimating the difference structure of the multiplier by triangle inequality veat lose information. For non-integral
p the leading terms of the series expansions do not cancel.

+2i|¢]F (€)
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2.2 Estimates

and, hence,
|Whsp(t, )| S logle + 1) (1+8) P78 4 (14 )l
o J@plr p#0,
Tl () Flogle+1), p=0.
If only one of both indices is an integer we have to mix the representdtions. O
LP-L1 estimates for the model multiplier. Using the stationary phase method combined with a

decomposition of the phase space into zones, we obtain.&lsb? estimates. We consider the model
operator

Upsps(t: D) tu(@) = FH W 5(t, £)a(é)] () (2.2.6)

from L, ,(R™) to LY(R"™), (p, ¢q) a dual pair withp < ¢q. We choose- to be the smallest value, such
that the operator has this mapping property. For all fiked 0 the multiplier ¥y, , 5(¢,£) can be
decomposed into a sum of functions, which consist for lgrgéa phase*%/¢l and a further symbol
of order zero.

Theorem 2.6. Assume € (1, 2], ¢ such thapg = p+ q. Let furtherk > ||. Then the model operator
(2.2.6)satisfies the norm estimate

H\Ilk,S,p,é(ta D) | ’pﬂ“—“I
1+n~FGi)3 d> 1
1_1

SS i) p£0.d< ],
11 g
(1+t)_n<P 4)+9 k(log(e—i—t))l_o, p=0,d<3+ee>0,

-

ford = (1—1) - é) +k—|plandr =n (113 - %) + s. The interpolating constargtin the last case

H i 1 1 1
IS g|Ven bw — 2621%% <1_7 - E)

Proof. Again we decompos&; x R¢ into three zones. For this, we use a smooth cut-off function
€ C®°(R4) with ¢’ < 0,¢(r) = 1forr < 1/2andy(r) = 0 for r > 2. Using this function, we
define

¢1(t,€) = 1 —([¢]/K),
$a(t,§) = »(IE]/K) (1 = (1 +1)|¢]/K)),
3(t,€) = Y€/ K)p((1 + 1)[¢]/K),

such thatpy (t, &)+ ¢2(t, £) +¢3(t, §) = 1. Thus we can decompose the multiphigy  , 5 into the sum
> im123%i(t, &) Vs p6(t, §) and estimate each of the summands. We prove the estimaite=fo0,
i.e. we restrict the proof to the corresponding value

G
s=-n|—-—-].
P q

“For later reference we use only integral values.of
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2 Scale-invariant weak dissipation

The remaining cases reduce to this one in an obvious way.
Using Proposition 2.4 we decompose the representation of

¢1 (ta é)\Ijk,S,Pﬁ (t7 f)

as sum of two multipliers of the form

e Fla(eNb((1+1)l€])

with symbolsa € $°+2(K/2,00) andb € S~2(K/2,00) andsuppa,b € (K/2,00). We follow
P. Brenner, [Bre75], to estimate the corresponding Fourier integeabtgr. The key tool is a dyadic
decomposition together with Littman’s lemma, see Appendix B.2, Lemma B.3y leC§°(R.) be
non-negative with support contained[iry2, 2] and

[e.o]

> x@r)=1, forr#0. (2.2.7)

j=—o0

Such a function exists, a proof may be found in the paper of L. Hérmaftdéreé0, Lemma 2.3] on
Fourier multiplier. Let furthen;(¢) = x(279¢/K).

We obtain anL.P—L? estimate for this operator by interpolatifig—L> and L?~L? estimates with
Riesz-Thorin interpolation theorem. For this, we define

1; = |77 Pa@e aqenp( +nie] || (2.2.82)

and _ A
I; = |[s© e agehp( +ni)|| (2.2.8b)

and estimate these norms. They correspond to operator norms of the clyauionents of the operator.
For all j < 0 we havel; = I; = 0. ForI; we perform the substitutiof = 2/ K and obtain

I <Ccom

<01+ 2K 3 |ID%(2 Kn)b((1+ )27 Kn)x(n])lsc
la| <M

<CYM14+ 29K T

sup (27 K|n|)*+zlel2dlel (1 4 0)2 K |n)) =210 (1 4 £)27) 1!

la+B|<M 1/2<|n|<2

< 0V (1 4+ 2 Kt)

_n—1
2

|

(1+1¢)" 2,

where in the first step we used Lemma B.3. From(1 +¢) < (1 + 2/Kt) < C}27(1 + t) we get
finally _
I <CPF)(1 )72, (2.2.9)

For I; we obtain
L<C sup ¢i(2Kn)|2 Knl*2|(1+ )27 Kn| >
nESuUpp X
< CYS(1+1)7e. (2.2.10)
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2.2 Estimates

The estimates (2.2.9) and (2.2.10) corresponfiteL.> and L?>—L? estimates for the dyadic compo-
nent of the model operator (2.2.6). Interpolation leads to

[ F 7 [01(t, )X (©) Trs ps (E, ) a(€)]] |

q

< 2G04 7 G0 3y, @2.10)

forallp € (1,2], p+ ¢ = pq. Finally, we use Lemma B.4 to conclude fmr(% — %) +s < 0the
estimate

_n=1(1_1)_1
|77 (61t ) Wnspis (B, Oa(E)]||, < CO+1) 2 (=2) =% (2.2.12)
In this zone we subdivide each summand of the multiplier (2.2.3) intkdependent factors

E[1PFEHT (€] 21 (€), (2.2.13a)
(1 + L) rE (A + )1€]) daa(t, €), (2.2.13b)

and the remaining factdd + t)l?I=%+< where
$21(§) = Y([€I/K)  and 2L, &) =1 —v((1+1)[¢|/K), (2.2.14)

such thatps(t,£) = ¢21(§)d22(t, £). The constant will be chosen later. The first multiplier is time
independent and satisfies

€I HT (1€ g2 (€) == [P (1€]) 2 (€)

=(1 = i cot | p|m) [€PPII¢| 717 71 (1€]) b1 (€)

Ficse|plm €167 T 1 (1) pan (£), P17,
=[] 1E 1P 7 (1€ b1 (6)

+dl¢ PP Tog €] [€]71717],(1€])¢21(6)

+i|€[7[¢]P1 Ay (1€]) 21 (€), peL,

wherer¥P17, () andrlFl 4, () are entire. By~ we denote equality up to a multiplicative constant
here.

From the Marcinkiewicz multiplier theorem, see the book of E.M. Stein, [Ste@pter IV.3 Theo-
rem 3], it follows that

E[Fpa1(I€]) € MY Ve >0, (2.2.15a)
|€° log |¢] ¢o1(€]) € ME Ve >0 (2.2.15b)

forall p € (1,00). Thus, we conclude with the algebra property of multiplier spaces, se&QH06
Corollary 1.4], that the first multiplier belongs @} for p € (1,00) if € > 0 andp # 0 (or for p = 0
if € > 0).

For the second multiplier we prove @&fi—L? estimate. For this we use again a dyadic decomposition.
Let x be like in the discussion df; and

Xi(t,€) = x(277 (1 + 1) [¢]/K), (2.2.16a)
Xo(t, &) =1=Y  x;(t,€). (2.2.16b)
7>0
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2 Scale-invariant weak dissipation

We estimate
Ij= Hf_l [Xj(tf)((l +t>|£|)’“_'p'_£H;i5((1 +t)|£|)¢22(t,£)} HOO (2.2.17)

and
[ ij(t,g)((l el e +t)|§|)¢22(t,§)Hoo. (2.2.18)

Forj > 0 we havepa(t, &) = 1 onsupp x;. Hence, using the substitutid + ¢)¢ = 27 K, we get
the estimate

I; = H]:_l [ei(1+t)‘5la((1 +t)£)¢j(t,§)}

<CYM(14+t)"

HOO

e K102 K)o ()|
<CPM14+4) (1 + P K) "7 (P K) 2 thlele
1

< 0("F Fh=lel=e=3) (1 4. ¢),

wherea € S~z +5-lel=¢ For I, we obtain a similar estimate in the same way. Fowe have
I; <C sup (2an)k_|p|_€_%
nEsupp ¢
< 02i(k=lpl==3), (2.2.19)
Interpolation leads to
— k—|p|— ~
|7 [t o) (4 01D, (1 + Dl omte. o) ||
< (3 (Gi)Hl===3) 4 = (5-3) | |u)),, (2.2.20)

n+1/1 1 1
€2 ———) =z +k—|pl
2 P q 2

which gives for

the LP—L? estimate

7 [+ 01e) T (4 Dl ot Do) |

q
<o+ 0G|, @221

The ‘regularity’e is determined from both multipliers, hence the optimal choice is

5:max{0,”7+1<%—%> —l+k—ypy}. (2.2.22)

under the assumptign= 0. Forp = 0 the choices = 0 is not possible. Therefore, we have to exclude
k< % We postpone this exceptional case.

Multiplication of the multipliers corresponds to a concatenation of the cornepg operators.
Hence, we have

‘ ‘fil [¢2(t7 §)\I/k,s,p,5(t7 g)ﬁ(f)] | ‘

q

< o1 4o (G5 (G0 ARy (2.2.23)
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2.2 Estimates

forp#0o0rp=0andk > 1/2.
‘ Zyforp=0andk <1/2 ‘ In this exceptional case we get an estimate for all gumhdg by inter-
polation. From3 + k > 0 we can follow the previously used reasoning to conclude an estimate for

dualp, ¢ with
n+1l /1 1 1
-——=)=—=+4+k>0.
2 <p Q) 2"
If we interpolate the corresponding result with the previously prdveestimate in this zone, we obtain

1_1

|[F 7 [d2(t, €)W 06(t, E)a(€)]]], < C(1+ t)_n(E_E)JrGE_k(log(e )l (2.2.24)

for ntl

. (l - 1) — 1 + k = e. The interpolating constafitis given by

P
- n+1 1 1
2 +1-2k\p q)°

We use the estimate

(1 +t)lel=F p#0,

|03, €)W sp6(t )| S {(1 +t)Flogle+1t) ,p=0

together with the definition of the zorg to conclude the estimate

||~;E[¢3(tvg)\yk,s,pﬁ(taé)ﬂ(f)nh
< H¢3(t7 ')‘I’k,s,p,(?(t’ )ﬂ(f)Hp
< !\(ﬁs(ta')\ll/(%,%)HﬁHqH‘Ifk,s,p,zs(t,')\loo
—n(1-1) (1 +t)lel=F p#0,
S Iuellp(1+1) (14t)"Flog(e +t) ,p=0.

Under our assumptions grandq this estimate is weaker than the estimates in the zgdpesdZ,. [

2.2.2 Estimates for the solution

If we compare (2.1.14) with (2.2.3), we obtain the representation

T

1(t,0,) = (L + ) ¥10,1a(t), (2.2.25a)
By(t,0,6) = 2(1 + )P 1 ,0(t,€), (2.2.25b)
D;®1(t,0,6) = %(1 )P, 1 0(t€), (2.2.25¢)
D, ®s(t,0,¢) = %(1 F1)PT 0,1 (L, €) (2.2.25d)

of the entries of the fundamental matrix in terms of our model multiplier. Thus weapaly the
estimates of Lemma 2.5 to get a priori estimates for the solutienu(¢, z) of (2.0.1). This gives

(1+1)%*, pe(03),
ult, )2 S [luill2 + [luzllp—  log(e +1), p =0, (2.2.26)
1, p <0.
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2 Scale-invariant weak dissipation

Together with Theorem 2.6 we conclude the following statement. For comesige give thd.>—L>
estimate separately.

Theorem 2.7. 1. The solution operatd$(t, D) satisfies the.>~L? estimate

(L4t e (0,1),
[[S(t,D)[|l2—2 < { log(e +t), p=1,
1, w> 1.

2. The solution operatdd(t, D) satisfies thd.’—L? estimate

IS, D)llp,r—q
1+ t)ma"{*"T’l(%*%)*%v n(G=3) o ue (0,1),
- (14_75)7”771(%*%)7%, u:1,5>%
- (1+ t)fn(%fé)we(log(e + )17, p=10<3+ee>0
1+ t)max{’%<%*§)*%’ ’”(% %)ﬁ w> 1,

i — —ntl (1 _ 1 — 1_1
forp e (1,2],qwithpg=p+¢q,0 ="3 (p q)andr—n(p q).

The interpolating constargtin the third case is given by = 231-

The L?-L? estimate stated in this theorem is better than corresponding results obtainegybyed
energy inequalities. The naive way to obtain estimates for solutions by ititegestimates for the
time derivative would imply only the rate

IS(#,D)||2—2 S (1 + )12, (2.2.27)

for < 2, cf. formula (2.2.33).
The dependence of the decay rate from the paramed@d the index is sketched in Figure 2.2 in
order to illustrate the different cases from Theorem 2.7.

Equations with increasing speed of propagation. The obtained estimates imply an excep-
tional behaviour of the case = 1. This case is related to the consideration of A. Galstian given
in [Gal03] for wave equations with exponentially increasing speed ofggation. For the sake of
completeness we will give this relation.

If one considers the Cauchy problem

v — A2 (t)Av = 0, v(0,) =v1, Dw(0,-) = v (2.2.28)

with positive coefficient\ = A(¢), one can apply a change of variables, which reduces it to a problem
with constant speed of propagation and a dissipative term. We introduoewthéme variable

V= A(l) = /t As)ds,  A(t) = () >0, (2.2.29)
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2.2 Estimates

furtherlog-term

p=1 p=2

Figure 2.2: Relation between the decay-rates and the parameird indexp for the estimate of
S(t,D). At the common boundary of | and Il tHeg-term occurs.

such that, = \(t)0y andd? = A\*(t)d% + N (t)0y. Thus the problem rewrites in the new variables

A2(t) [D’v + ;;((?) at/u] =0, (2.2.30)

equivalent to an equation with dissipative term

_ @A)
S OR(ATN()
Following M. Reissig and K. Yagdjian, [RY0O], it is natural to assume forittoeeasing behaviour of
A(t)

b(t') (2.2.31)

N A . . 1

—~— in our notation  b(t) ~ ——.

A1+ A ®) 1+t
So the case of scale invariant weak dissipation is naturally related to waséats with increasing in
time speed of propagation.

This gives (for the right choice af) the correspondence

(2.2.32)

/¢
At)= 1+, >0, = b(t) T M €+16w,%
1
_t _ _
A(t) =€, = b(t)_—1+t’ w=1,

the first line corresponds to the approach of M. Reissig, [Rei97], ttanskone to the paper of A. Gal-
stian, [Gal03].
2.2.3 Estimates for the energy
For the first derivatives we obtain
[Jue(t, )2 < C1(1+ )P~ 2 [ug|| g1+ Co(L + £) 0= 37 [uy |, (2.2.33)
1Vt )2 < CLl+ 62 furll s + CoL+ ™72 W ugll2,  (2.2.34)
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2 Scale-invariant weak dissipation

which reestablish already known results on the energy decay for this rmpomdem, see the papers
of A. Matsumura, [Mat77], H. Uesaka, [Ues80] and the recent cenafibns of F. Hirosawa and
H. Nakazawa [HNO1, Example 2.1].

We collect the energy estimates in the following theorem.

Theorem 2.8. 1. The energy operatdi(t, D) satisfies the.>~L? estimate

14+1)"% 0,2
1+t~ u>2

2. The energy operatdi(¢, D) satisfies thd.’—L? estimate

n—1(1 1 1 1
E( D) |rg S (145" (73) =5 -n(G-5) -1

forp € (1,2], qwithpg =p+qgandr =n (% - %)
Remark2.1 It should be remarked that it is essential to useAHenorm on the right-hand side of the
energy estimate (or the normalisation @Yl in the definition ofE(¢, D)). Otherwise we get for the

usual energy from Lemma 2.5 only the trivial (and in view of this Lemma alsgpghaorm estimate
E(u;t) S E(u;0).

This implies that information about the size of the daturis necessaryor precise a priori estimates
of the energy.

Remark2.2 If we fix a pair of initial data, then one can even obtain
lim (1 +t)2E(u;t) = 0
t—oo

for u > 2. This result follows from the considerations in the paper of F. Hirosawda-h Nakazawa,
[HNO3, Theorem 1.2].

Remark2.3. The estimates of Theorem 2.8 coincide for= 0 (i.e. p = 1/2) with the well-known
LP-L1 estimates for the wave equation, recalled in Section 1.3.1.
Foru = 2 (i.e. p = —1/2) we can reduce the Cauchy problem (2.0.1) to the Cauchy problem for the
wave equation setting
v(t,z) = (1 +t)u(t,x), (2.2.35)

such that'lv = 0. Thus, the solutions behave for= 2 like free waves multiplied by the energy
decay ratg1 + t)~!. Together with the a priori estimate (¢, -)||2 < (1 + t), the decay rate for the
energy in this case follows immediately from the conservation of energyderwaves. The above
transformation goes back to S.-D. Poisson and was a basic step in higingato deduce explicit

representations for solutions in three dimensional space.

Interpretation.  What conclusions can we draw from the statement of Theorem 2.8? Iawtensth

the L2—L? estimate we see that two different cases occur. On the one hand, forverues ofpu
the dissipation term has a direct influence on the decay rate for the loyiperbergy, while for large
values ofy the decay rate is independent of the size of the coefficient. The setairthent makes
this difference more precise. For small valueg.@he L.P—1.¢9 decay rate corresponds to the hyperbolic
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2.2 Estimates

decay rate with expone@t;—1 (]l) — %) known from the free wave equation, which is altered by some
additional decay coming from the influence of the dissipative term.

For large values of: the decay exponent has a completely different structure. No relation to the
free wave equation becomes apparent, and, till now, we have no etiptafar this factor, except the
calculations done so far. One of the aims of the next two chapters is tostadiethis paradigm shift
from small to large size of the dissipation term.

The example considered in this chapter will turn out to be the basic exampleniedependent
dissipation terms. In Chapter 3 dissipation terms will be considered, whichltdezgtimates, related
to the above given ones, for small values gfthis case will be referred to ason-effective weak
dissipation Also the close relation to the free wave equation will be made more precige ther

In Chapter 4 the opposite case is treated. We will classify dissipation ternsh lelad to similar
estimates like in this chapter for large valuesuofin these cases the dissipation term will be called
effective because it alters the asymptotic properties of the solutions in a significgnt wa

In the next section we will obtain a related statement to Theorem 2.8 for estiofdtigher order; it
can be seen that the same change in the behaviour occurs.

2.2.4 Energy estimates of higher order

The proven estimates for the model multiplier (2.2.3) enable us to concluderasgyeestimates of
higher order. By this, we mean estimatesgiD|*~‘« depending on Sobolev norms of the data.
We consider the operator family

EF(¢,D) : (DY up, (DY uy)T — DYDFfu, (2.2.36)

with ¢ < k, normalised in the such a way, tHEf(t,D) : L? — L?. Using Corollary 2.3 we can
represent the corresponding Fourier multiplier as a matrix with entries givenultiples of

(L + ) Wpt10,p-1,1-0(t,€), (1 + 1)U 0, —0(,§). (2.2.37)

Theorem 2.6 gives now immediately the corresponding norm estimates. \el@xbe casé = 0
corresponding to the exceptional estimate§gr, D).

Theorem 2.9. Assumé, / € N, 1 < ¢ < k.

1. The operatof£}(t) satisfies the.>~L? estimate

X 1+
ES(E, D)la—e < 4 071
(1+8)7" n=>2k

2. The operatoiE} (¢, D) satisfies the.P—L4 estimate

_n—1(1_ 1\_p _ 1_1)\_
EE (D) g < (1 4+ 0™ ()5 (500

forp € (1,2],qwithpq:p—l—qandr:n(%—%).

Fork = 1 and? € {0,1} the estimates correspond to the energy estimate. We see that for large
values ofu taking higher order derivatives improves the decay rate a finite numistep$. Like for
the free wave equation, for smallsuch an improvement does not take place.

In the case of constant dissipation this improvement for higher orderatiggs was observed by
A. Matsumura, [Mat76]. There all derivatives influence the decay rate
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2 Scale-invariant weak dissipation

2.3 Conclusions

We want to draw some conclusions from the derivation of estimates in th@tasale-invariant weak
dissipation. The first observation is that the difference in the decayofalesmall and for large values
of 1 originates in different areas of the phase space.

One may conclude that for small values of the paramgtiarge frequencies give the important
contribution to the asymptotic behaviour, while for sufficiently laygthe interior zoneg|{| < K}
become of greater importance. This is sketched in Figure 2.3.

t t A
te
te
§ €l
Figure 2.3: Part of the phase space responsible for the energy, dadag left for small:, on the right
for largep.

The critical valuey* for this change depends on the estimate under consideration. In Tablés2.1 th
dependence is given for the caseldt-L? estimates. In general, we have to distinguish between sub-
and supercritical cases for the energy estimates. In the sub-crities wesclaim that the decay rates
are determined by the behaviour for large frequencies while for sugpeat cases small frequencies
play the essential role.

Estimate uw Reference decay rate
for u < p* | for p > p*

solution p =1 | Theorem2.7.1 t\—+ 1

energy p* =2 | Theorem 2.8.1 ¢t +/2 ¢t

higher order energy p* = 2k | Theorem 2.9.1] t—#/2 t=k

Table 2.1: Critical valueg* in dependence on the estimate, casé6fL? estimates.

For the more generdl’—L4? estimates, the critical values pfare sketched in Figure 2.4. For higher
order energy estimate the picture is essentially the same lik&(foD), except that the critical line
moves upwards.

We want to fix the main strategies for the following chapters. We will consideemeneral variable
coefficient dissipation terms, but we wantremain in one of the casgse. we do not want to touch

the above given critical values. The two starting questions are:
Task 1. Which estimates are valid for the solutions of the Cauchy problem (1.2.1), ciob#icient is
given byb(t) = ’ijz with

p(t) — 0, t — oo.

In this case, we expect that large frequencies determine the asymptadidagtof solutions and we
will refer to it asnon-effective (weak) dissipation
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2.4 Application to the Euler-Poisson-Darboux equation

A S(t,D) ) E(t,D) uh E¥ (¢, D)
21 k+ 1+
1+
p=1 p=2 p=1 p=2 p=1 p=2

Figure 2.4: Critical valueg™* in dependence on the estimate, casé®fL? estimates for dugl andg.
In the shaded region the estimate is determined by the hyperbolic zone. Siteddae in
the left picture corresponds to the occurance of logarithmic terms.

Non-effective dissipation terms will be considered in Chapter 3. Theg@getssumptions on the
coefficient function are also given there. Basic examples under arasioh will be

Example2.4.

b(t) = ~ with x > 1,

Example2.5.

b(t) = s
(1+t)log(e+t)---logM(elm + )

7 = 7 andlog™ ™!+ = loglog!™  and corresponding iterated expo-

with iterated logarithmsog!”

nentials.

Task 2. What kind of asymptotic properties possess solutions to the Cauchy pr@bl2m), if the
coefficient is given by(t) = ’1% with

wu(t) — oo, t — oo.
In this case we expect that the main influence arises from smaller fragagetiuis the dissipation term

influences the asymptotic properties much stronger than in the previousiskeawill refer to this
case as the case effective dissipation

Effective dissipation is the content of Chapter 4. Basic example is
Example2.6.

b(t) = ——  with k< 1.

2.4 Application to the Euler-Poisson-Darboux equation
We want to give some comments to the related singular problenk utee-Poisson-Darboux equation
v+ 5 =0 (2.4.1)

with parametep: € R. We restrict the consideration to results related to Fourier representafions
solutions, classical counterparts are given in the paper of A. Weinféab4].
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2 Scale-invariant weak dissipation

We assume = v(t,z) € C(Ry, S’(R™)). Similar to the reasoning in Section 2.1 we obtain for the
partial Fourier transforna(t, £) with ¢ > 0 the representaticn

. _ -1
(t1E])P0(t, €) = C ()M, (tlg]) + C-(E)H,, (tl€]), p= MT (24.2)
with suitableCy (¢) € S'(R™). For non-integrap we can replace this representation by a correspond-
ing one using Bessel functions of first kind,

(gD 0(t, &) = CL&) T, (tlE]) + Ca(§) T-p(tIE]), (2.4.3)
while for integralp
(tleD) (2, ) = C1(&) T (tlE]) + Co()Vp(tlE])- (2.4.4)
We want to sketch how to draw conclusions for the asymptotic behaviduras-0 in dependence
on in the spaces(** = N*_, C9(RL, H*~I(R™)):

- Foru < 1we havep < 0and for non-integrap, i.e. © no odd (negative) number, the powes)”
cancels the singularity of the Bessel functions and so the funétisrcontinuous up té = 0.
Furthermore (t[£|) 7P J—,(t|¢]) is —p times continuously differentiable, while the — 1)’th
derivative remains only bounded.

- For the exceptional integeys = 1, -1, -3, —5, ... the functions7, and J7_, are linearly de-
pendent and we have to take a further logarithmic term into account. In gestiee(1 — 1)’th
derivative tends to infinity likéog t ast — +0. Especially foru = 1 we have the same logarith-
mic behaviour of the solution (near= 0 and fort — oo as observed in thé?—L? estimate of
Theorem 2.7).

- If 4 > 1 the power(t|{|)~* does not cancel the singularities any more. So in this case the
solutions are continuous upte= 0 only under the assumptidarh(¢) = 0, and then the solutions
are smooth up té = 0.

Thus we obtain the following dependence between the regularity of soluisthghe value of the
parametey..

Theorem 2.10.Assume» = v(t, x) € C((0,00), H*(R™)) is a solution of the Euler-Poisson-Darboux
equation to the parameter € R. Then the following statements are valid.

1. Ifp € (—o00,1)\ (2Z + 1), thenv € X fork = [1 — p].
2. If p =1 — 2k with k € Ny, thenv € X*2*~1 and
1077 0(t, | gge—2n S —logt
fort < 1.

3. If u > 1, thenw(¢, x) extends by continuity up to= 0 if and only if it has the formi(¢, &) =
C(&)(t|&])~PT,(tl¢]); and then itis smooth in, i.e.v € X*°°.

The logarithmic singularity occurring for the exceptional odd integess 1 — 2k, k € Ny, cancels
if we assumaeu(t, -) to be polyharmonic of ordet, i.e.

Afu(t,-) =0

for all t. In this case the solutions are even smooth. This follows from [CS76, RelaB].

SWe used—p in Section 2.1, but this should not cause any confusion.
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3 Non-effective weak dissipation

We will employ the translation invariance of the Cauchy problem. This impliesatipattial Fourier
transform with respect to the spatial variables may be used to reducertia¢ ¢iferential equation in
u(t, x),

Ou + b(t)us = 0, (3.0.1)

to an ordinary differential equation fai(¢, £) parameterised by the frequency paraméter
Gy + b(t)ay + |€]*0 = 0.
Its solution can be represented in the form
a(t, &) = P1(t, &)t + Po(t, §) 2

in terms of the Cauchy data andus with suitable functions (Fourier multiplier$); and®,. Our aim
is to derive structural properties of the functichsand®- in order to decide asymptotic properties of
the solutions.

In general estimates fdr are complicated to obtain directly from the equation; so the natural starting
point is to rewrite the second order equation as system for the microyefiér@, D;4)” or a modified
one and to use a diagonalization technique to simplify the structure and to estimfaredasnental
solution.

The main results of this chapter are the solution representation of Theot&maogether with its
consequences for the?—L4 decay, Theorem 3.24. Furthermore the sharpness of these resulissfollo
from a modified scattering theory given by Theorem 3.26.

The chapter starts with scattering results for integrable coeffickétits L'(R. ) in order to show,
how the constructive approach may be used to represent the Mglleropavator. The main result is
Theorem 3.1.

3.1 Scattering theorems
We start by characterising these coefficient functiorsb(t), which lead to free solutions, this means,
the solutionu = u(t, x) of
Ou + b(t)us = 0, u(0, ) = uq, Dsu(0, ) = us (3.1.1)

behaves in certain function spacesdirfor t — oo like the solution of the corresponding
free problem

Oa=0, a0,-)=a;,  Dy(0,-) =ty (3.1.2)

to (in some sense related) d&ta, ).
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3 Non-effective weak dissipation

The operator relatin@u;, u2) to (i1, 42) will be denoted ad#aller wave operatdollowing the conven-
tions from the scattering theory for wave and Schrédinger equationg.ge¢he book of R.B. Melrose,
[Mel95, Chapter 3.3] or the basic works of P.D. Lax and R.S. Phillips, f]Pah dissipative systems.

Scattering results for damped wave equations are special non-decegotoesults for the energy
and go back to considerations of K. Mochizuki, [Moc77], [MN96], fedependent dissipation terms.
Recently, H. Nakazawa, [Nak], gave the sharp result for isotropgiition terms. Their results are
based on the scattering theory of T. Kato, [Kat66]. Independentlyg #vasts an abstract approach to
scattering theories for contraction semigroups by H. Neidhardt, [Nei&b[dei89].

3.1.1 Resultsin L2-scale

The main result is contained in the following theorem, its proof follows the gépdilosophy of our
approach to construct the main term(s) of the solution representation explglgenote by='(R") =
H'(R™) x L?(R") the energy spacand use the order reducing isomorphigm, us) € E(R™) if and
only if (|D]uy,uz) € L2(R™).

Theorem 3.1. Assume the coefficiebt= b(t) satisfiesh € L (R ).

Then there exists an isomorphidii, : £ — F of the energy space, such that for the solution
u = u(t, z) of (3.1.1)to data(u, us) € E and the solutionii = a(t, ) of (3.1.2)to data(iy, 42)” =
W, (u1,u2)? the asymptotic equivalence

|(u, Dyu) — (@, Dytr)|| g — O ast — oo (3.1.3)
holds.

Proof. We subdivide the proof into several steps and construct the opé#ataxplicitly in terms of
the solution representation. We restrict ourselves to theicase, for n = 1 the same arguments are
valid if we replacgé| by & or —¢.

For this, letU = (|¢|a, Dya)T. ThenU satisfies

0= (g o ()

We consider the first matrix as principal part and the second one as damaline remainder is due to
our assumption integrable.
Step 1. We diagonalize the main part. Therefore we use the diagonalizer

(1 -1 L1 (1 1
A1_<1 1) M _5(_11> (3.1.4)
and considet/(©) = M~1U. We get

mmsz”<K m)Mmm+M4< ‘

Zb(t)> MU© = D({)U(O) + R(t)U(O), (3.1.5)

where

mazoﬂ_%o (3.1.6)

See the discussion on page 40 of this section.

36



3.1 Scattering theorems

is diagonal and the remainder satisfieg) € L; (R, C?*?).
Step 2.We start with the fundamental solution to the diagonal mainPart D(¢). Itis given by

i(t=s)[¢]
Eo(t —s,&) =exp{i(t—s)D(&)} = <€ e—i(t—s)ﬂ) . (3.12.7)

The matrixM &y(t, s, )M~ is the multiplier corresponding to the unitary operator
So(t — 5,D) « (IDla(s), Dyii(s))” ~ (|Dla(t), Dyii(t))” (3.1.8)

for free wavedJu = 0.
Step 3.Now we construct the fundamental solutionp— D (&) — R(t). Let therefore,

R(t7 S, ‘f) = 50(3 - tv ’S)R(t)g()(t - S, é)
Using Theorem B.5, it follows that

00 t t1 te—1
O(t,s, &) =1+ sz/ R(t1, 5,8 | Rt s,6)... Rty, s,&)dty ... dt
k}:l S S S

solves the Cauchy problem
DtQ(t,S,f) _R(t757£)Q(t757§) = O? Q(S,S,E) =1

With Q(t, s, £) we can express the fundamental solution to the system (3.1.5). Let tresfféfps, £) =
&o(t,s,£)Q(t, s,£). Then we obtain

Di(E0Q) = (Di&n)Q + E0(Di Q) = D(£)EQ + EoR (1, 5,£)Q
=D(€)&EQ + R(1)EQ

andé&y(s, s,£)Q(s,s,&) = 1. Thus,E(t, s, &) is the desired fundamental solution. Hence, the matrix-
valued functionM £ (¢, s, €)M~ is the multiplier of the operator

S(t,s,D) : (IDJu(s), Deu(s))" = (IDlu(t), Deu(t))"

for solutionsu to Ou + b(t)u; = 0.
Step 4 We estimate this fundamental solution. We do this step by step. At first we have

€0 (t, 5, )]] = 1.

We can estimate uniformly i and therefore in the multiplier spadd2 (R") = L>°(R"). The next
estimate is
IR(t, 5, )l < [|R()I] € L (R4),

which will be used to estimat@(t, s, £). We apply (B.3.4). Combined with the series representation
of Q we get

Q) =l = g% (/:IIRdeT)k

—en{ [ R - 151
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3 Non-effective weak dissipation

Figure 3.1: Sketch of operators related the definition of the Mgller waveatpéV . (D).

and therefore
Hg(t? S5, )”oo S; L.

Step 5.We are interested in the Mgller wave operatr (D). Therefore, we consider data;, us)
from the energy space and apply the solution oper&taro, D). Then we go back to the initial line us-
ing the solution operator of the homogeneous prob$gfr-¢, D). This gives data to the homogeneous
wave equation which produce a solution coinciding witat the time levet. Now we lett — oo and
define

tlir?o So(—t,D)S(t,0,D) = W, (D), (3.1.9)

compare also Figure 3.1. If this limit exists in the strong sense, it is called thevwliee operator,
[Mel95, Chapter 3.3].
It holds on the operator level

So(—t,D)S(t,0,D) = M&(0,t,D)E(t,0,D)M " = MQ(t,0,D)M !
and thus, it is equivalent to decide whether the limit
Jim Q(t,0,¢)

exists in an appropriate sense. We prove the existenbéoi(ng) = M2, that means we prove norm-
convergence on the operator-level. Therefore, we consider thegatiffe

Q(tv 07 f) - Q(37 07 g)

o t t1 te—1
— zk[/ R(t1,0,€) | R(t2,0,¢)... R(tk,0,&)dty ... dt
=1 0 0 0
s t1 ti—1
—/ R(t1,0,&) R(t2,0,€). .. R(tx,0,&)dty ... dt;
0 0 0
00 t t1 te—1
:Zﬁ/ R(t1,0,€) R(t2,0,€). .. R(tr,0,&)dty, ... dty.
k=1 s 0 0
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3.1 Scattering theorems

If we apply|| - ||s. On both sides and use (B.3.4) to estimate the integrals we get

1 th k—1
10(1,0,1) — (5,0, )l < 3 el ([ ireer)a

|
= Js —1)!

<[ HR(tl)rg%(/ohrm(r)udf)kdtl
= [ { [ Irmiarfan o

ast, s — oo from the integrability ofR(¢). Thus, it is a Cauchy sequence and therefore the limit exists
in the Banach spack™ (R™). We define

Wy () = lim MQ(t,0,6)M ' € L>(R").
Step 6.The operato#;. has the desired property: On the Fourier level we have

(€12, D) — (€], Deit)" = MEQM ™ ([€]an, @) — MEM (€t i2)"
= M&EM™ [MOM™" — W, ] (|€|ay, )"

and the term in brackets tendstt@st — oo. Thus, (3.1.3) follows.
Step 7.The transpose of the inverse @ft, s, £) satisfies the related equation

D, Q T(t,5,&) + R (t,5,6)Q T(t,5,6) =0, QT(ss&=1I.
Thus we can estimat@~" in a similar style a®, especially we can prove that
Jim Q(t,s,€)
exists. Furthermoréim; .., Q7 1(t,s,£) = limy_[Q(t,5,€)]7t. Thus, the matrixv, (&) is in-
vertible in L>(R™) or equivalently on the operator levBl, = W, (D) is invertible in L?(R") —
L2(R™). O
Corollary 3.2. Under the assumptions of Theorem 3.1 it holds

[[(w, Dyu) = (@, Dytr)| |5 S 1] (u, uz)l| 2 /too b(r)dr (3.1.10)

and the occurring constant depends only| ;.

Proof. The statement follows directly from

0 o) t1 th_1
,0,6) — O(t,0,¢) = % R(t1,0, R(t2,0,€). .. R(tg, 0,6)dts . ..d
0(00,0,€) — O(t,0,€) kZ/ (1:0.9) [ R(12.0.) /0 (1,0, €)dty ...y
and

100,09 = Q1,01 < [ [IR(ex)exp { / ’ |rR<T>|dr} an s [ b

whereQ(oo, s, &) = limy . Q(t, s, £). O
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3 Non-effective weak dissipation

Example3.1 If we consider the special casg) = (1+t) ™" with x > 1, the assumptions of Theorem
3.1 are satisfied. The convergence rate from Corollary 3.2 for thesepgs isO (1 ~*).

Example3.2 We can come sharper to the borderline case using the coefficient function

1
b(t) = ,
" (el + 1) log(el™] + 1) - - -Tog™~ M(elm] + ) (log™ (el™) + 1))

v>1

with el0 = 1, elb+1] = €™ 16600 (7) = 7 andlogl* ! () = log(log!*! (7)) for sufficiently larger. In
this case it holds -
/ b(t)dr = ;(log[m](e[m} + t))l_v,
t 1—v
thus the convergence rate can be of arbitrarily small logarithmic order.ekample is essentially the
same as the comparison function of K. Mochizuki and H. Nakazawa, [BIN9

Comparison of results. If we compare our result, Theorem 3.1, with the results K. Mochizuki
and H. Nakazawa contained in [Moc77], [MN96], [Nak], we see twseasial differences. On the
one hand, the results in the cited papers are for dissipation dependéegtialy) on ther-variable,
while our result is fort-depending coefficients. Besides this difference, the conditions impostte
coefficient function are closely related:

e we useb(t) € L'(Ry),

e in [Nak] the condition iglb(x)| < a(]x]) with a € L'(R,) and sufficiently smallL*-norm is
used.

On the other hand, the results differ in the strength of the convergence teatre operator. In the
cited papers the limit exists as strong limit, while our assumption enables us toqomxergence in the
operator norm. The reason for this difference is not only related to fp@agph, if the influence comes
from the x-variable one can not expect the result to be uniform in the data in deriris follows
from the finite speed of propagation, if the dissipation is concentrated iregien of the space and we
consider data supported in a different part the time when the dissipatioarinéla the solution depends
on the spatial distance of these regions.

Most of the results presented in this section can be generalized to coefficie= b(¢,z) with
b c L'L>®(R, x R™). The calculations are closely related and contained in the preprint [Wi@2]
the other hand, the results of K. Mochizuki and H. Nakazawa are valide ibssume the estimates
uniform int¢.

3.1.2 Resultsin L4-scale, ¢ > 2

We proved that the energy density|u, D;u) behaves asymptotically ih?(R") like the energy den-
sity of a solution to the free wave equation. It is natural to ask for an egteias this result to other
Li-spaces. At least fog > 2 this is possible, as the following theorem implies. The argument is
heavily based on the-independence of the coefficient and the translation invariance of thgoso
operator.

Theorem 3.3. Let £ = (|D|~'H*) x H*. Then the previously defined Mgller wave operator acts
W, : E® — E* forall s € R and for the solution: = u(t, x) of (3.1.1)to data(u;, u2) € E* and the
corresponding free solutiod(t, ) of (3.1.2)to dataW. (uq, ug) it holds

(o.¢]
[|(u, Dew) — (@, Dyt)|| s S ||(U1,U2)||Es/ b(r)dr.
t
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3.2 Objectives and strategies

Proof. We just have to replace Step 6 of the proof of Theorem 3.1. We have talathe multiplier
(¢)” defining the Sobolev norm. This gives on the Fourier level

(€)° (|0, Dy) — (|€|u, Dytr)) = (€)° MEM ™t [MOM ™ — W] (|¢]ay, )
=MEM ™ [MOM™ — W] (&) (|¢]tn, )

by the commutation property of Fourier multipliers. Now the assumptions imply thedaoiness of
| (€)° (|€]a1, T12) ]2 and like in the previous prodfM QM ! — W, ||, — 0 satisfies the above given
estimate. O

Corollary 3.4. Under the assumptions of Theorem 3.3 with n (% — l) for g € [2,00) ands > 2

q
for ¢ = oo it holds
|[(ID[u, Dew) — (IDla, Dya)llq S H(m,Uz)HEs/t b(r)dr.

The assumed regularity for the data is natural in view offtheL? estimates for the wave equation
given by S. Klainerman, [Kla85]. Similarly, fat>—~L> estimates a Sobolev regularity of at lea5{
is required. So the use of Sobolev embedding does not destroy the quidhty estimate. What we
cannot conclude by this method is whether the wave operators are libondé itself.

3.2 Objectives and strategies

There remains a gap between the case of integrable coefficients anclégesariant case discussed
in Chapter 2. As examples one may take the following coefficient functiagmating from the paper
of K. Mochizuki and H. Nakazawa, [MN96], see also Examples 3.2 abd 2

Example3.3. Letp > 0 andm > 1. Then we consider

b(t) = a
(14t)log(e +t)---logl™(elml +¢)

and ask for (sharp) energy adl—L? decay estimates for the solutions of (3.0.1).

To answer this question we follow partly the consideration in Section 3.1 gig apiagonalization
procedure to derive expressions of the leading terms of the représerifisolutions. In opposite to
these considerations we cannot stop after diagonalizing the princigalspane of the lower order
remainder terms influence the asymptotic properties.

The diagonalization procedure is essentially based on the approadhn agetht paper of M. Reissig
and K. Yagdjian, [RY00], for wave equations with variable speed opagation or by K. Yagdjian in
[Yag97], [[ru89], for the case of weakly hyperbolic problems. Basic idea is the catisruof a
WKB representation of the solutions to the Fourier transformed equatioknésn from the theory
of ordinary differential equations, see e.g. the book of M. Fedorjr8d93], we need assumptions for
derivatives of the coefficient function to construct these represensa

Assumptions.  We make the following assumptions on the coefficient functienb(t):
(A1) positivity b(t) > 0,

(A2) monotonicityt'(t) < 0,
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3 Non-effective weak dissipation

(A3) b*(t) < —/(1),

which allow us to conclude energy estimates. Assumption (A3) implies a minimay dataof the
coefficient. Integrating both sides of the inequality yields

v 1 1
t S /0 =) dt = FORO) (3.2.1)

and thugb(t) remains bounded.

Basig ideas, zones.  Similar to the proof of Theorem 3.1 we can consider the vector-valued func
tion U = (|¢|a, Dyar)”, such that
: 3 ) :
DU = . U. 3.2.2
0= (1 iy (822

Contrary to the consideration in Section 3.1, we cannot say,|{ha the dominating entry in the
coefficient matrix. We have to relate the sizeh(f) to the size of¢|. This leads to a decomposition of
the phase space. In Figure 3.2 this idea is sketched.

Zhyp
(|€| dominates(t))

Zdiss

(b(t) dominategé|)

€]
Figure 3.2: Idea behind the definition of zones for the hyperbolic case.

It is possible to replace Assumptions (A2) and (A3) by Assumption

dk 1 1+k
< < - .
‘dtkb(t)‘ < Ch (1 +t>

This allows us to use coefficients which are not monotonous. For theatlerivof LP—L4 estimates
Assumption (A4) is necessary for sufficiently many time derivatives, while for the conataer
in L?-scale Assumptions (A2) and (A3) seem to be more appropriate. The mo(a#)., will be
shortened to (A4).

For later reference, we distinguish between a

(A4), for all numbersk < /it holds
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3.2 Objectives and strategies

e low regularity theory
we assumeé € C'! with (A1) to (A3) and a

e high regularity theory
with b € C* for sufficiently largef and (A1) together with (A4)

Definition 3.1. We call the dissipation terrix(¢)u; in equation(3.0.1) non-effective if b(t) satisfies
Assumptions (A1) — (A3) or (A1) and (A49gether with the asymptotic boutich sup tb(t) < 1.
t—o0
The last condition is related to the exceptional behaviour of the lgage= (1 + ¢)~! observed in
Chapter 2, Theorem 2.7, and allows us to exclude the critical cases arisese considerations.

Low regularity theory. We subdivide the phase space into zones corresponding to dominating
entries of the coefficient matrix. For this we use the monotonicity of the funétierh(¢) and define
implicitly ¢¢ by

Nb(te) = [¢] (3.2.3)
for small|£| and with a suitably chosen constayit Furthermore,
Zhyp(N) = { (t,&) |t >t }, Zgiss(N) :=={(£,£) |0 <t < te }. (3.2.4)

In the hyperbolic zon&Zy,,,,(N) the entries of first ordef¢|, dominate the dissipatiom(t), and we
will use a diagonalization technique to construct an equivalent systemgtras the main diagonal
part, some lower order terms arising from the dissipation and an integrabteanecessarily diagonal
remainder. The essential point of the low regularity theory is the integrabflitybg¢) and, therefore,
also ofb?(t).

In the dissipative zon&’,;ss(N) the main contribution comes froi(t) and we will use a reformu-
lation as an integral equation to conclude estimates there.

The precise choice of the zone constadhtlepends on the number of diagonalization steps. In the
low regularity theory the restrictioV > % follows from the precise structure of the coefficient matrices
in formula (3.3.12).

High regularity theory. If we forget about the monotonicity @f¢) we have to change the decom-
position of the phase space. Instead of (3.2.3) we will use

(1+t)l¢| =N (3.2.5)

with suitable constand for the definition of the zones. This is related to the estimate of Assumption
(A4) and the introduction of symbol classes 4, (N) (similar symbol classes were used e.g. in
[RYOO] or [Yag97]). Again the precise choice of the zone constanivesrglater. The existence of suit-
able constants is guaranteed by Lemma 3.12 and itincreases with the numpplied diagonalization
steps.

Definition 3.2. The time-dependent Fourier multiplie(t, £) belongs to thehyperbolic symbol class
Sﬁ}’b{ml, ma} with restricted smoothnesgs, ¢, if it satisfies the symbol estimates

mao—+k
DFDZa(t, €)| < Chal|™ 1 LA™ (3.2.6)
t¢ ) = Yk 1+¢

forall (t,&) € Zn,,(IV) and all natural numberg < ¢; and multi-indicega| < /.
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3 Non-effective weak dissipation

We fix the notationSx {m1, ms} for the classSy,">*{m1, ms}. Obviously, it holds

Sn{mi, ma} — Sﬁ}’&{ml,mQ} — Sf\/}’%{ml,mz} VO <ty by < L.
Using (3.2.5), the embedding rule
Sy my —kymg + 0 = Sy {mima} Yz k>0 (3.2.7)

follows, which will be essentially used in the diagonalization scheme.
Definition 3.2 extends immediately to matrix-valued Fourier multipliers. The ruleseo$ymbolic
calculus are obvious and collected in the following proposition.

Proposition 3.5. 1. Sﬁ}’gz{ml, ma} iS a vector space,
2. glute R D P gluta / /
SN ma,ma} - Sy {mi, myp — Sy {ma + mi, ma + ma
3. DIDESH* {my,ma} — ST my — |al,ma + K},
0,0 corl
4. Sy{-1,2} — Lg Ly (Zhyp)-

The symbol estimates with restricted smoothness are sufficient to deducéenghappperties in
L space$ We give one auxiliary result following directly from Marcinkiewicz multiplieretirem,
[Ste70, Chapter IV.3, Theorem 3].

Proposition 3.6. Eacha € S]%(%W{O,m} with suppa C Zp,,(IV) gives rise to an operatoi(t, D) :
LP — LPforall p € (1, 00) with norm estimate

1 m
Dl 5 (155

Formulation in system form. Like in the considerations of Chapter 2 the two components of the
energy behave differently in the dissipative zone. This can be seenr@asan to consider not the vector
U defined as above, but theicro-energy

U = (h(t,&)a, D) (3.2.8)

with
h(t, &) = Nb(t)paiss, N (t, ) + |E|Onypn (£, €) (3.2.9)

in the low regularity approach arigt) replaced byllq in the high regularity one. Here and thereatfter,
we denote bypgiss v (1, €) the characteristic function of the dissipative zone andhy, v (t, &) the
characteristic function of the hyperbolic zone, or a smooth surragaien (t,£) = x((1 +)|¢|/N)
with x € C§°(R™), supp x = Bz andy = 1 on B% together Withpg;ss v + dnyp, v = 1. Remark that
Ghyp,N € Shyp,n{0, 0} by this definition andupp(0;, V) dnyp N € Zhyp(N/2) N Zgiss(2N).

Our aim is to prove estimates and structural properties for the fundamehttibe £(¢, s, £) to the
corresponding system,.U = A(t, &)U.

2\We are speaking about Fourier multiplier only, so no essential difficuléiesacise by this lack of smoothness.
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3.3 Representation of solutions

3.3 Representation of solutions

3.3.1 The dissipative zone

In the dissipative zone we use the positivity of the coefficient fundiieh The essential idea is to
write the problem as awolterra integral equation The approach works in the low regularity theory
and in the high regularity theory as well. Remark that in the first ¢ag¢ remains bounded and
therefore the dissipative zone can only be 'smaller’.

In the dissipative zone the micro-energy (3.2.8) reduces to

N 1
— 5 D -
U= (1 tu, tu)

and thus we have to solve the system

i N
Dtg(ta S, 5) = A(t7 §)€(t7 S, f) = ((1+1:5t5|2 ’L;)J(rtt)> g(t> S, )7 5(37 S, 5) =1 (331)
TN
in order to getU (¢,&) = £(t, s,£)U(s,§).
We will use the auxiliary function
t
A(t) = exp {% /0 b(T)dT} , (3.3.2)

related to the entryb(¢) of the coefficient matrix. It plays an essential role in the description of the
energy decay as will be seen later.
In order to understand the influence of the different entries, we neeldtion betweer(t) andt.
We distinguish the following two cases. Recall that the first one is part adéfiaition of the notion
of non-effective dissipation.

(C1) It holdslimsup,_, ., tb(t) < 1.

(C2) It holdslim inf,_. th(t) > 1.

The remaining gap corresponds to the exceptional t@ge= #t from Chapter 2. In this case we
have to modify the estimates for the fundamental solution and logarithmic termsdhageur. In the

calculation we use the following two consequences of Assumptions (C2), (C
Proposition 3.7. 1. Assumptions (A1), (C1) imply for the auxiliary functigft) defined by3.3.2)

todr t

_— e~ —

o A(T)  AN()

and AQL(t) is monotonous increasing for largeand tends to infinity.

2. Assumption (C2) implies™2(t) € L'(R,) with

/Oo dr < 14+¢
¢ A1) TON(E)
t

FurthermoreAQ—(t) is monotonous decreasing for large
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3 Non-effective weak dissipation

Proof. Conditions like (C1) and (C2) imply polynomial bounds fait). It holds

i;(t’; — exp {/Ot (b(f) - i T)dT} ,

and the integrand is strictly negative for largaunder (C1) or positive under (C2) and behaves like

14% ¢ L*(R,). Thus, in the first case the expression tends to zero, while in the senertd mfinity.

Hence, under Condition (C1) we hawé(t) < 1 + t, while (C2) impliesl + ¢ < A2(t).
Part 1. Integration by parts yields

/t dr ¢ +/t Tb(T)dT

o A7) A2(t) o A7)

On the one hand, the right-hand side is larger thar? (¢) by Assumption (A1). On the other hand we
conclude fromb(t) < ¢ < 1fort > ¢, that

t 7b(T) /to 7b(T) tdr todr
dr < dr + c/ , < C+ c/
Ava o () TS () o N2(7)
and the statement follows from
todr 1 t t
< < .
AA%»—Lw<C+vw>~vw

For smallt the statement can be concluded frafft) ~ 1.
Monotonicity is a consequence of

d t  1—1tb(t)
dEX2(t) — A2(1)

andtb(t) < 1fort > 1.
Part 2. Fromlim inf; ., tb(t) > 1 4 ¢ we conclude

t
N (t) = exp{/ b(T)dT} > 1+ttt
0
which implies integrability of\=2(¢). Furthermore, it follows fot >> 1 with tb(t) > 1 + €

«© dr Crb(r) -1,
Etvmgl N e

and the statement is proven. O

Lemma 3.8. Assume (Al) and (C1). Then

X2(s)
()’

1E(t, 5,9 < te>t>s. (3.3.3)
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3.3 Representation of solutions

Proof. If we denote byv(t, s,&) andw(t, s, &) the entries of a column of(¢, s, &), then equation
(3.3.1) implies

(t, s, &) = iim . iljit tw(T,s,ﬁ)dT, (3.3.4a)
2 2 t
w(t, s,§) = A ((t))m - ZNEL(t) / (1 + 7)N2(1)v(r, s, €)dT, (3.3.4b)

wheren = (n1,72) = (1,0)7 for the first and; = (0, 1) for the second column. If we multiply it by
the weight facto&%, we obtain

A2 (t) X)) 14s  NX2() [T1 [N2(7)
/\2(8)11(2?,5,5) =229 1—+t771 —i /S () <)\2(S)w(7,5,§)> dr,

)\2 2 )\27'
gt =m =il [0 (s o) ar

The aim is now, to prove well-posedness of this system of \olterra integpations inL>°{t >
s, (t,6),(s,&) € Zgiss } and, therefore, a uniform bound on its solution. This follows by Thedsedn
applied to the equation

2 2 2. ¢ T 2
22—810@’8’5)_772 l%/s (1+S)§\2ES;771dT+|§|2/S )\2(7)/8 /\%w) <;\\229§ 0,s 5)) dédr,

obtained by plugging the first equation into the second one. Propositioni@ygliés the condition on
the right-hand side and on the integral kernel

t 2 t T )2
€ [ a —i—S)j\\in;dT SIERA+H2 S, [ i\\QEgngdG <1

on Zyss(N) and uniform ins < t. Furthermore, the first integral equation implies the desired bound
onv(t,s,§). O

Lemma 3.9. Assume (Al) and (C2). Then

1+s
14t

EACERINPS te >t >s. (3.3.5)

Proof. We estimate the columns separately. Again they satisfy the integral equatidr@y.(3
We start by estimating the first one. If we plug the second integral equatiorhia first one, we

obtain
Ht (ts§_1—yg\2// (6) 1+9(08§)d9d7’

7_

and Theorem B.9 together with the definition of the zone yields well-possedifethis equation in
L>(Zgiss N {t > s}). Now, the second integral equation may be used to deduce the same bound f

w(t7 87 é.)
1+t 1+t

t
(s S IR [ Ry S
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3 Non-effective weak dissipation

For the second column we obtain similarly

1+t )\2() 1+9
? (7 75) 1_|_ . ’6‘2/ / 7 7§)d9d7—

and again Theorem B.9 is applicable, because the first summand is unifayomgédd by Proposition
3.7.2. Forw(t, s, &) we use the second integral equation to conclude the desired bound st hold

‘6’2 /t 2 2 2
1 < 1 < 1.
v | YOO +0dr SEP+0* S
O
Further results for the high regularity case. In order to perform a perfect diagonalization in

the hyperbolic zone, it is essential to find symbol estimates fay, 0, &) for [£| < N.

Lemma 3.10. Assume that (A1), (Adand (C1) hold. Then foi¢| < N the symbol-like estimate

IDEE(te, 0,8)]| < C. g1~

L
SN2 (te)
is valid for all |o| < £+ 1.

Proof. It holdsD;£ = A€ with
N 1
At = (s a7). 14015 o

Thus for|a| = 1 we get
D;DZE = DE(AE) = (DgA)E + A(DEE)

or using Duhamel’s formula together with the initial conditib@é’(o, 0,§)=0

Dg‘E(t,O,g):/O E(t,7,6)(DEA(T,§))E(T,0,8)dr

Now the known estimates fd(t, s, {), equation (3.3.3), imply together withDg A(Z, £)|| < 1 the
desired statemenfDg £(t,0,)|| St < [€]7 for (t,€) € Zaiss(N) -

For|a| = ¢ > 1 we use Leibniz rule to get similar representations containing all derivasivesler
less tharja| under the integral and use induction o¢eFrom the estimates

1

1-|ai|—|az|

(Dg*A)(Dg2€) S
for |a1] + |ae| < ¢, formula (3.3.3) and from the first statement we conclude

€|l

IDEE(#,0,6)]] 5/0 Aztﬂ S AQ()

by the aid of Proposition 3.7.1. Application of the equation itself and using,(#gstimate

1 k+1
kAo S () o kst
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3.3 Representation of solutions

implies
IDED2E( 0.0 € <o () e
EEETA IS~ 2 () \1 +¢ '
Finally, with the estimate for the zone boundagy
IDgte| SlEI7, g < N, (3.3.6)
the statement follows. O

This result can be reformulated in the following form. The multiphéft, )€ (t¢, 0, €) is an element
of the homogeneous symbol class

Sty ={m e C®R"\{0}) | Vo] <L—1 : [Dgm()] < Calé|1} (3.3.7)

of restricted smoothneds— 1. Thus as consequence of the Marcinkiewicz multiplier theorem the
Fourier multiplier with symbol?(t¢)& (t¢, 0, &) mapsL? into L for all p € (1,00), if £ > [2] — 1.

3.3.2 The hyperbolic zone: low regularity theory
We assume (A1) — (A3) and restrict our considerations to the hyperhmie z

Znyp(N) ={ (t,€) | 1§ = Nb(t) }
with suitably chosen zone constant In this zone the micro-energy (3.2.8) coincides with the usual
hyperbolic energy. Thus, we consider
U = (¢la, Dea)”
with

DU = A(t,&)U = .‘§’>U.
=000 = (g s

We apply two transformations to this system. In a first step we diagonalize thedemeous princi-
pal part. After that, we perform one further diagonalization step to makesthainder integrable over

the hyperbolic zone.

Step 1. We denote by\/ the matrix

1 -1
M = <1 1 > (3.3.8)
consisting of eigenvectors of the homogeneous principal pat{of¢) with inverse
o 1/1 1
M~ = sl 1) (3.3.9)
Then forU(®) = M~1U we get the system (cf. page 36, where we did exactly the same)
DU = (D(¢) + R(t))U© (3.3.10)
0 € bt
¢ ib(t) (1 1
D(&) = = —= . 311
o-( ) ro-"2(1 ) @3.11)

If b(t) is integrable, we are done. #ft) is not integrable we perform one further diagonalization
step in the hyperbolic zone.
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3 Non-effective weak dissipation

Step 2. Following K. Yagdjian, [Yag97], and M. Reissig / K. Yagdjian, [RY0O]evdenotef, =

diag R and
. Ri2 if(t)
N( ) — ( Ror 7'1—72) — (_ib(t) 5|> ,
T2—T1 41¢|

v (1) _0()
BY =D,NY — (R - Fy))NW = ( b 4EI> _ ( 8l¢] b2(t)> ’

G
b(1)
16[¢[>

Ny =I+NW, det Ny =1 —

Especiallydet N1 # 0in Zy,,(N) for zone constant > 1. Furthermore, the norm satisfigs/; || =

1+ % < 1in Zpyp(N). ThusN; is invertible with uniformly bounded inverse matrix @, (V).

Thus, If we define
Ri(t,6) = =Ny 'BU (¢, 9),

a simple calculation shows the (oper&ddentity
(D¢ = D(€) = R(E) N1(£,€) = Ni(£,€) (D — D(€) — Fyo(t) — Ru(t,€)). (3.3.12)
Indeed, we have by the construction given above, that
[D(&), N (t.€)] = Fo(t) - R(1),
and hence,

(Dy—D—R)N; = D,NY + NiD, —DNY —D—-RNW — R = —N| Ry + N\D; — N\D — N Fy.

Step 3. In athird step, we estimate the fundamental solution of the transformed system
(D¢ = D(€) — Fot) — Ra(t,))E1(t,5,€) =0,  Ei(s,s,) =1€ CP2 (3.3.13)

From (A2) and (A3) we conclude that(¢) is dominated by-b'(¢), and therefore,

> > V() bte) 1
R dr < dr = = —.
/t5 H 1(77€)H TN/tg |£| T ’£| N

Furthermore[Fj is diagonal. Thus, Theorem B.10 implies the estimate

(t

Using that the matrices/ and.N; are uniformly bounded with uniformly bounded inverses on the
hyperbolic zoneZ,,,,,(N) for sufficiently large zone constan, this estimate transfers to the funda-
mental solutior€ (¢, s, ) and thus together with the results from the dissipative zone we can conclude
the following theorem.

>

[ISTGERINBS

L t> s>t (3.3.14)

>
~—

3Thus we understand it as a usual identity after multiplying witii'avector function from the right-hand side.
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3.3 Representation of solutions

Theorem 3.11. Assume (A1) — (A3) together with (C1). Then the fundamental solfition, &) satis-
fies for allt > s > 0 and uniform in¢ the estimate

A(s)
HE(E, s, O < YOR

Assumption (C1) is only used for the estimate in the dissipative zone. If (¥lgleted the estimate
iN Zgiss(IN) may dominate the estimate iff,,,(/V) and the result of Theorem 3.11 is only valid
uniform in& with (s, &) € Zpyp(N).

3.3.3 The hyperbolic zone: high regularity theory

Now we replace Assumptions (A2) and (A3) by Assumption (A4) and censite smaller hyperbolic
zone

Zhyp(N) ={ (£,6) [ 1+ )|¢] = N }

with suitably chosen zone consta¥it The aim of this section is to prove a stronger variant of Theorem
3.11, which allows the application of stationary phase method to dedte? estimates.

Diagonalization.  The difference to Section 3.3.2 is that we perform more diagonalization $tps
use the special symbol classes defined by Definition 3.2. Remark that & |6phd,, v € Sn{1,0}

and by Assumption (A4)alsob(t)¢n,,n € Sy {0,1}. For the further calculations we omit the
cut-off functiongy,, v

Step 1. Again, we considet/(®) = M/ ~1U and get the system
DU = (D(¢) + R(t))U©

with coefficient matrice® € Sy{1,0} andR € S5>{0, 1} given by (3.3.11).

Step k£ + 1.  We construct recursively the diagonaliZ€x(t, £) of orderk. Let

k k
Ne(t,&) = NU(t6),  Fu(t, =) FU¢),
§=0

Jj=0

whereN(©) = 1, BO) = R(#) and F(©) = diag B(O) = Fy(t).
The construction goes along the following scheme. Note,fhad a multiple ofl/. Then we set

FU) = diag BY),

NG+ — ( )
BY) /2/¢|

BU+L — (Dt =D — R)Nj41 — Nj11(Dy — D — Fj).

)

-BY) /2|§r>

Now we prove by induction tha¥?) € 5577 {—j j} andBW e 85 7°{—j, j + 1}.
Forj = 0 we know

FO e s%>00,1}, N est>{-1,1}, BW e h>{-1,2},
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3 Non-effective weak dissipation

which follows directly from the representation in Step 2 of the previous sectio

Forj > 1 we apply an inductive argument. Assume, we knb#) € S5 7*°{—j,j + 1}. Then,
by definition of N(+1), we have from¢| ! € Sy{—1,0}, thatNU+D) e §5°{—j — 1 j+ 1} and
FU) e §57°°{—j,j + 1}. Moreover,

jt+1 Jj+1 J
BU+Y — (Dy — D — R)(Z N(V)) _ (Z N(”))(Dt _D_ ZF(J'))
v=0 v=0 v=0
= BY 4 [NUH) D] — FU) 4 D,NUFD 4 RNUHD)
J J+1
+ NU+D) ZF(V) _ (Z NWHYFO),
v=0 v=1

Now B + [NUFD, D] — W) = 0 for all j. The sum of the remaining terms belongs to the symbol
classSy 71 °{—j —1,j + 2}. HenceBU+Y e §77 1204 i1 j 42},
Now the definition ofB(¥) implies the operator identity

(Dy — D(€) — R(t)) Ni(t, €) = Ni(t,€)(Dy — D(€) — Fi_1(t,€)) mod S5 " {—k, k + 1}.
(3.3.15)
Thus, we have constructed the desired diagonalizer, if we can shothéhagtrix/Vy (¢, €) is invert-
ible on Zy,,,, () with uniformly bounded inverse. But this follows frof, — I Sf\fk“’oo{—l, 1}
by the choice of a sufficiently large zone constantindeed, we have

1 1 c’
N, —1I|| <Cb(t) <O < —
W= g = Sy < N

Thus, with the notatiodRy (t,£) = — N, (¢, £)B®) (¢, £) we have proven the following lemma.

— 0 asN — co.

Lemma 3.12. Assume (A1) and (A4)
For eachl < k < /¢ there exists a zone constaNtand matrix valued symbols

o Ni(t,€) € S5 F1°°{0,0} invertible for all (¢, £) € Zp,,(N)andwithN_ (¢, €) € S5 "1>°{0,0}

o Fi 1(t,€) € S5 1°40, 1} diagonal withFy,  (,&) — U1 e g4 hoof 1 9}
o Ri(t,€) € S5~k k+1},
such that the (operator) identity
(Dt = D(€) — R(t)) Ni(t,€) = Nig(t, ) (De — D(€) — Fi—1(t,€) — Ri(t,€)) (3.3.16)

holds for all(t,£) € Zpy,(N).

Remarks on perfect diagonalization. Lemma 3.12 can be understood as perfect diagonalization
of the original system. If we definB(t, £) asasymptotic sunof the F(¥) (¢, &),

F(t,&) ~ iF(’“) (t,€), (3.3.17)

k=0
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3.3 Representation of solutions

this means, we requirB(t, &) — Fi(t,€) € Sn{—k — 1,k + 2} for all k£ € N, and similarly
N(t,&) ~> N®(e), (3.3.18)
k=0

which can be chosen to be invertible, equation (3.3.15) implies

(Dr = D(§) — R(t))N(t,§) — N(t,€)(Dy — D(€) — F(t,€)) € [ Sn{—k,k+1}.  (3.3.19)
keN
Thus if we define theesidual symbol classes
H{m}:= (] Sw{mi,ma}, (3.3.20)

mi1+meo=m

we can findP (¢, £) € H{1} such that

(Dt - D(f) - R(t))N(ta 5) = N(t7 5) (Dt - D(f) - F(ta E) - Poo(tv f)) (3321)

The classe®{{m} are invariant under multiplication byp(=+it|¢|). This explains why we perform
more than one diagonalization step. Multiplication &€ is not a well defined operation on the
symbol classe$y{m1, ma}, it destroys the symbol estimates according to the following proposition.
Itis closely related to the geometry of the hyperbolic zone.

Proposition 3.13.
1. SR ) my} o S8 {my 4 0,my — £} with £ = £ + 05,
2. eFHUEH{mY — H{m}.

Proof. It suffices to prove the first statement. It holds do€ Sy {mi, ma}

DfD%‘eitlﬂa(tag) = Z Z Ck1,k:2,oz1,a2|£’k1taleit|£‘Df2D\C?|a(ta5)
k1+ko=k a1+az=a

N 1 ma+ka—a
/ _
< YD Chibanmlé™ <1—+t>

k1+ko=k a1t+az=a

—l+k
< iepres (1)

1+t
for k < /1, a < 5 using Leibniz rule and the definition of the hyperbolic zone. O
Fundamental solution of the diagonalized system. After performing several diagonalization

steps, we want to construct the fundamental solution of the transforrseshsy
(Dt = D(€) = Fi—1(t,€) — Re(t,€))Ex(t, 5,€) =0,  Ex(s.5,6) =1 € C¥? (3.3.22)
and to obtain structural properties of it. The construction goes along ltberiiog steps:
¢ the fundamental solutio&(t, s, &) to Dy — D(§),

o influence of the main tern (%) (¢, &) of F,_,(t, &),
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3 Non-effective weak dissipation

e influence ofFy(t, &) — FO(t, &) and Ry (¢, €).

The fundamental solutioé(t, s, ) describes @hase functiorof a Fourier integral operator, i.e. the
oscillatory behaviour of the solution multiplier. The main tefff?) (¢, ¢) describes the energy decay.
Together with the other terms it constitutes a Fourier multiplier which behavgsdmbwith restricted
smoothness. The numbkiof diagonalization steps is directly connected to the smoothness properties
of this symbol.

Step1l. Let
i(t—s)[¢]
Eo(t,s,&) =exp{i(t —s)D(§)} = <€ e—z’(t—s)|£> 7 (3.3.23)

iﬁi? &o(t, s, &) the equation

such that foi€y (¢, s, &) =

Di&o(t,5,€) = (D(E) + FO(t,€))&(t, 5, €) (3.3.24)

is satisfied. Thug, describes the influence of the main diagonal terms.

Step 2. By the aid of&y(t, s, £) we define
Ri(t,5,€) = Eo(s,t, ) (Fe-1(t,€) + Ri(t,€) — FO(t,€)) ot 5,€),
= Fr1(t,€) + Eo(s,t, &) R(t, &) Eo(t, 5,€) — FO(8,¢), (3.3.25)
such that, by the aid of the soluti@y (¢, s, £) to
D Qk(t,5,€) = Ry(t,s,6) Okt 5,8),  Qi(s,s,&) =1¢eCP? (3.3.26)
the matrix& (¢, s, &) can be represented as

Enlt,5.€) = Eolt, 5, ) Qult, 5,€) = %50(@ 5 O)Qult, 5,6). (33.27)

The solution to (3.3.26) is given by the Peano-Baker formula, TheorenaB.5
ti—1

e t t1
Qk(t,s,ﬁ) —I—I—Zig/ Rk(tl,s,é) Rk(tQ,S,f)... Rk(tg,s,f)dtg...dtl. (3328)
=1 s

S S

Step 3. The series representation (3.3.28) @y(¢, s, ) can be used to deduce estimates. From the
unitarity of £y(¢, s, £) it follows that

1

IRt . = 1RO S e

and thus, using

/°° dr B 1 1
e A+ A+t)lEl N
together with Corollary B.7, it follows that
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3.3 Representation of solutions

This gives the counterpart of Theorem 3.11 for the high regularity yhesod works for alk > 1. Ina
second step we want to estimgtelerivatives ofQy (¢, s, £). Proposition 3.13 yields fronky (¢, &) €
S5 " {—k, k + 1} under the Assumption (A4)nd with

k—1<l—Fk (3.3.29)

thatRy(t,s, &) € S]’ﬁ,_l’k_l{—l, 2} uniform in the variables and derivations with respect tobehave
like multiplications by|¢|. Therefore, we set= 2k — 1 from now on.

Proposition 3.14. Assume: € Sﬁ;k{—l, 2}. Then
© st t1 tj—1
b(t,S,f): 1+Z/ a(tl,ﬁ)/ a(tg,f).../ a(tj,f)dtj...dtl
j=17% s s
defines a symbol fromiy;" {0,0} uniform ins > .

Proof. We use Proposition B.6 to estimate this series. This yields in a first step (wittking eriva-
tives)

> t 1 t1 1 ti—1 1
'b(t’s’g)’SH;/s |a|<1+t1>2/s \§|<1+t2>2”'/3 G

t dr
< <
N‘”‘p{/tg 5|<1+T>2} ~

and takinga: derivatives with respect t¢ yields in each summand further factdE$—‘0‘| according
to Leibniz rule. Furthermore, time-derivatives can be estimated #gitt, s,£) = a(¢,&)b(t, s, §)
together witha € SH*{—1,2} C S%*{0,1}. O

An almost immediate consequence of this proposition is the following structpetsentation of
the fundamental solution.

Theorem 3.15. Assume (Al) and (A4)_1, £ > 1. Then the fundamental solutid (t, s, &) of the
transformed systel{8.3.22)can be represented in the hyperbolic zone as

Er(t,s,€) = i\\((j))go(t,s,f)Qk(t,s,é) t,s > t¢

with a symbolQy (¢, s, £) of restricted smoothness subject to the symbol estimates
¢ 1\
[DfDEDE Okt 5,6)|| < ol (m) t> s>t
for all multi-indices|a| < k —1,all {; <k —1andallly € Ny.

Of special interest i8},(t, t¢, £). The estimate of the previous lemma together with the properties of
the derivatives of; from equation (3.3.6) imply

Corollary 3.16. Assume (Al) and (Ad)_1, k > 1. Then
Qi(t 1, €) € Sy 70,0}
fort > teand|¢| < N.
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3 Non-effective weak dissipation

Similar to the consideration in Section 3.1, the matdx(¢, s, ) converges fot — oo to a well-
defined limit. This limit will be used in Section 3.5 to conclude the sharpness atsults.

Theorem 3.17.Assume (Al) and (A4)_1, £ > 1. The limit
Qk(00,5,) = lim Qx(t,5,£)
exists uniform irg for |¢| > . Furthermore,
|IDg Qu(o0, te, €)I| < Calé] ™!
for all multi-indices|a| < k — 1 and all§ # 0.

Proof. We fix the starting valug and consider only¢| > &, (i.e. s > t¢). Taking the difference
Or(t, s,€) — Qui(t, 5, ) in the series representation (3.3.28) yields
te—1

0 t t1
Qk(t&é) - Qk(ﬂ&é_) :Zx Rk(ths?g) Rk(t2>57£)"' Rk(téasvé)dtf-“dtla
1/t

S S

such that with Proposition B.6

t 00
19u(t,5.6) = QulE Ol e < | HR(za,s)Hexp{ / \1R<T,§>\|df}dt1

8¢
— 0, t,t — oo.

Similarly one obtains fofa| < k — 1

— 0, t,t — 00

- t d
D 0u(t.5,6) ~ DEQu(E 5, S 16 [ s

uniformin |£| > &. Now the second statement follows from the estimateg,dbrmula (3.3.6). O
We have proved even more. The limit exists in the homogeneous symbol??k@q§ of restricted

smoothness. Proposition B.6 may also be used to estimate the formal refiesait@;. (oo, s, £) as
symbol in(s, &).

Corollary 3.18. The series representation

te—1

0 ) 00 t1
Qk(OO7S,€) :I+ E ZJ/ Rk(tl)suf) Rk(tQasvg)"' Rk(t@,é’,é)dt(...dtl
i=1 .

S S

gives an asymptotic expansion®f (oo, s, £) in S%* {0, 0}, i.e. thej-th term belongs t&%* " {7, 5}

Step 4. Asinthe proof of Theorem 3.1, Step 7, the transpose of the invergg sétisfies the related
equation

D,Q; T (t,5,6) + RE(t,5,6) Q5 (t,5,6) =0, Q3 (s,5,6) =1 € C>2 (3.3.30)

The matrixR{(t, s, &) satisfies the same estimates liRg(¢, s, £) and therefore the reasoning of the
previous step holds in the same way @ZT(t, s,€). In particular the matrdQ (¢, s, €) is invertible
in the hyperbolic zone an@,;l(oo, s, &) exists.

Corollary 3.19. Assume (A1) and (A4)_1, £ > 1. Then the limit
Q1! (00,5,€) = lim Q'(t,5,€)

exists uniform irg for |£| > &.
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3.4 Estimates

Transforming back to the original problem. After constructing the fundamental solutig(¢, s, £),
we transform back to the original problem and get in the hyperbolic zanestiresentation

g(ta 875) = MNk’(tag)gk(ta 376)Nk_1($a£)M—1 (3331)

with uniformly bounded coefficient matrice$,, N, ' € S%>°{0,0}. We combine this representation
with the representation obtained in the dissipative zone. This yieldsfos < ¢, < ¢ the expression

g(tv 875) = ﬁMNk(tag)gO(tatévg)Q(t7tfvf)Nk_l(t57g)M_l)‘(tf)g(t&Sag)' (3332)

Together with the definition of the micro-energy(t, ) from (3.2.8) this formula may be used to
express also the previously introduced multipli®igt, s, {) and®s(t, s, &).

3.4 Estimates

The representations of solutions obtained so far allow us to conclude e&tifoatdhe asymptotic
behaviour. This section is devoted to the study of estimates, which are direletigd to our micro-
energy (3.2.8), i.e. estimates for the fundamental solufigns, D) or to the closely related energy
operatorE(t, D).

Estimates for the solution itself are postponed to Chapter 5.

3.4.1 L*-L? estimates

The aim of this section is to give energy estimates following from the low reityithieory. The first
result is an immediate consequence of Theorem 3.11.

Theorem 3.20. Assume (A1) — (A3) and (C1). Then th&-L? estimate

Als)
Hg(tv S, D)H2H2 S W

holds.

Using the definition of the micro-energy (3.2.8) we can reformulate this estima&rns of the
energy operatoE (¢, D). For convenience we recall the relation between the multigliers, £) and
E(t,&). They are a direct consequence of the definition of our micro-en&r8ysj).

Proposition 3.21. 1. ItholdsE(t,&) = £(t, s,§)E(s, &) for s > t.

2. The multiplier of the energy operator is related to the fundamental solétiors, &) by

h(0.€) _lel
E(t,g)( ) 1) — (h(t,a 1) E(t,0,€).

3. The multiplier|¢|/h(t, &) induces a uniformly bounded family of operators B p € (1, 00)
converging strongly to the identity for— oo.

Corollary 3.22. Assumptions (Al) — (A3), (C1) imply

1
<
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3 Non-effective weak dissipation

We conclude this section with examples.
Example3.4. Let

I

Then the Assumptions (A1) — (A3) and (C1) are satisfied and the aboslery gives again the known
estimatd |E(t, D)|3_, < (1 +¢)~# from Chapter 2.

For u € (1,2) Assumption (C2) is satisfied and can be used to deduce the same decajhize.
except for the valug = 1 we can reproduce the result of Theorem 2.8 for all sub-critical valtigs

Example3.5. Let . > 0 andm > 1. Then we consider

b(t) = . .
(el 4 1) log(elm] 4 1) - - - logl™ (elm] 4 1)

Again the assumptions are satisfied and we obtain

(SIS

A(t) = (log[m](e[m} +1))2,

and the energy decay rate

[E(#,D)|la— S (log!"! (el + )2
may become arbitrary small in the scale of iterated logarithms. This example igreddtee paper of
K. Mochizuki and H. Nakazawa, [MN96].

Example3.6. If we considen(t) = £ with 1 > 2, the decay rate in the dissipative zone dominates the
one from the hyperbolic zone and, analogously to the above statedrithewesobtain |E(¢, D)||2—2 <

(1 +t)~L. This coincides with the estimate of Theorem 2.8.

3.4.2 [P-L1? estimates

This section is devoted to the results of the high regularity theory. The bstiicate is given in the
following theorem, it restates estimate (1.3.3) in the language of our operaithsugh the proof is
contained in the proof of Theorem 2.6 for= % andp = —%, respectively, we give it for convenience
of the reader in a simplified form.

Theorem 3.23. 1t holds

_n—1(1_1
10(£,0,D)lprg < Cpa(l 1)~ 7 (573)

for dual indicesp andq, p € (1,2] and with regularityr = n (% — %)

Proof. The matrix&y(t,0, &) has entries, which are linear combinations of the teeii§¢l. There-
fore, it suffices to consider only these terms. We use a full dyadic dewsitign of the phase space,
$;(t,€) = x(279t|¢]) for j € Z, > ¢;(t,€) = 1 for & # 0 to split the operator into components.
Following the paper of P. Brenner, [Bre75], and the proof of Then2e5 we obtain

= e =2l

< (142775 3 (DX ()] e < C2(1 4 £,
o <M
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3.4 Estimates

substituting2—/¢|¢| = n and using Lemma B.3, and

I = Hqu(t,g)eiitlf\Hoo ~1.

Interpolation yields for the dyadic components

: n(1_1 _n=1(1 1
1 oyt O el < 02" G @4 7T 675 g,
which implies for the corresponding operators the mapping property
e*Pl B;’Q — L1

with regularityr = n (% — %) Finally, the embedding relatiér.,,, — B}, = B}, N LP for r > 0

andp € (1, o0) yields the desired result. O

By the aid of this estimate we deduce from our representation a corrésgoestimate for the
dissipative Cauchy problem (3.0.1).

Theorem 3.24. Assume (Al), (A4) and (C1). Then the operdtér, s, D) satisfies for dual indices
andg, p € (1,2], pg = p + ¢, the norm estimate

1 n—1(1_1
60Dl S 5551+ (:-3)

with regularityr = n (% — %)

Proof. We decompose the proof in two parts. First, we cons&ler0, D)¢g;ss n(t, D). Using the

estimate|E(¢, 0, &) paiss, N (£, 6)|| S AZL(t) together with the definition of the zone we get

L)
< — (1+t¢ P g
‘nq ~ )\2(t)( + ) ’
which is a stronger decay rate than the one given in the theorem.
In a second step we consider the hyperbolic part. For small frequemeiase the representation

g(t> O> g)thyp,N(ta 5) =

1
0] M Ny (t,€) Eo(t — te, &) Qn(t, te, &) Ny (te, )M A(te)E(te, 0, &) dhyp,n (L, )
q—q pﬂ:q b,r—p,r p,r—p,"

together with the mapping properties of the multipliers marked with a brace. Tbey direct con-

sequence of the estimates of Lemma 3.10, Lemma 3.12 and Theorem 3.15 ictmnméth the

Marcinkiewicz multiplier theorem, Theorem B.2, and Theorem 3.23. It isesdethatk — 1 > [ ].

The operato€y(t — t¢, &) brings the hyperbolic decay rate, the others are uniformly bounded.
For large frequencies the representation simplifies to

|€(t,0,D)dgiss, N (t, D)

1 _ _
g(t707€)¢hyp,]\f(t7§) = MNk(tvf) 80(t,€) Qk(taoug) Nk 1(07§)M ! ¢hyp,N(t7€))
)\(t) N e N’
q9—q p,r—q p,r—=p,r p,r—p,T
the argumentation remains the same. O

“For details on Besov spaces we refer to the treatment in the book of Tist Rad W. Sickel, [RS96]. The above used
embedding relation follows from Proposition 3, Section 2.6.2, together thvéhrknown relations fod.” spaces. The
conclusion of the mapping property itself is analogous to the case of injmeous spaces and uses the argument of
P. Brenner, [Bre75, Lemma 2].
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3 Non-effective weak dissipation

Example3.7. If we useb(t) = {5 with u € (0, 1), we obtain the samé’—L? decay estimate as in

Chapter 2, Theorem 2.8. In particular, we understand the structure afstimate; it splits into the

n—1¢1_1

factor(1+¢) 2 '» a) coming from the free wave equation and!(t) = (14 t)~z coming from
the dissipation itself.

Example3.8. If b(t) € L' (R, ), the obtained estimate coincides with the estimate for free waves. This
is also natural in view of Section 3.1 and especially f#eresult of Corollary 3.4.

Example3.9. We have not assumed monotonicity of the coefficteat b(¢) and therefore we will give
one non-monotonous example. Let

2+ cos(alog(l +1t))

o) 4+ 4t

Then Assumptions (A1), (A4) and Condition (C1) are satisfied. Furthesrfay o sufficiently large
the function is not monotonous. It holds

1 1 .
/b(t)dt =3 log(e +t) + 1o sin(alog(1 + 1)),

and thus\(¢) ~ (1 + t)i. Application of Theorem 3.24 yields the’—L? estimate

_n—1(1_1)_1
Hg(tvoaD)Hp,THqS(l—i-t) 2 (P q) 47

which is independent ofso far the choice @fand gives the same decay order as the monotonous

coefficienth(t) = & with pu = .

Minimal regularity for the LP—LY estimate. With the notation

n n+1, n even
by=2|=|4+1=
[2—‘ {n+2, n odd

we can prove the above giveiP—L? decay estimate under the weaker Assumption (A4n the
coefficient function. If we use this regularity of the coefficient andqren & = [%] diagonalization
steps, we obtainVi(¢,&) € S?\;OO{O,O} and Qx(t,s,§) is uniformly int > s > t. a symbol of
smoothnes$2]. Thus, Nydhy,, Ny, ' dnyp and Qp¢yy, define operatord? (R") — LP(R™) for all

p € (1, 00) with uniformly bounded operator norm #n> s.

3.5 Sharpness

Finally, we want to prove the sharpness of the above given energy @stimates. Our constructive
approach enables us to formulate the question of sharpnessiagified scattering resuliThe basic
idea is as follows:

e we relate the energy operatBif¢, D) to the corresponding unitary operafg(¢, D) for free
waves, defined b (¢, D) = M&y(t,0,D)M 1, and multiplied by the decay rate,

e this relation defines a Mgller wave operaidt, (D) defining appropriate data to the free wave
equation with the same asymptotic properties (up to the fagtoy,
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3.5 Sharpness

¢ furthermore, we need to know the mapping properties of the Mgller wavaigpe
¢ and the convergence defining the wave operator has to be understood.

A first observation follows immediately from Liouville theorem, Theorem B.& giwes an expression
for the determinant oE(t, &).

Lemma 3.25. It holdsdet E(t, £) = o (€] with [¢] = .

After these introductory remarks we can state the first theorem. It holds

Theorem 3.26. Assume (Al), (A4with ¢ > 1 and (C1). Then the limit

W (D) = s-lim \(t)(Eo (¢, D)) 'E(t, D)

t—o00

exists as strong limit i.?(R") — L?(R") and defines the modified Mgller wave operalir . It
satisfies

Wi (&) = (Eo(te, &))" M Qr(00, te, )N, (te, )M ' A(te)E(te, )
forall 1 <k </,

Note, thatt; depends on the zone constant and this constant is chosen after diEiggriasteps.
Thus,

Q. (00, te, )Ny H(te, )

is independent of < k < £ for a sufficiently large zone constait depending od. Note, further, that
in order to define the matrigy (¢, s, £) and without estimating derivatives with respecttae only

need Assumption (A4) The regularity (A4);_, was necessary to estimaf®. (¢, s, ) as symbol, cf.
the consideration on page 55 leading to formula (3.3.29).

Proof. The proof consists of three steps.
Step 1.With the notation

V. = {U e L*(R")|dist(0,supp U) > ¢},

we can construct the dense subspate= | J ., V. of L?(R"). Now Theorem 3.17 together with the
representatioiiL(t, £) = £(t, te, {)E(te, £) implies the existence of the limit

lim A\(t)Eo(t, D) 'E(t,D)

t—o00

as limit in the operator norm i, — V. for all ¢ > 0 as the following calculation shows. It holds

A(t)EO(t? f)_lE(tv €) = )‘(t>E0(t§7 5)_1M50(t£ -1, g)Nk(tv 5)%80@ - tf? f)

Qk(ta tf)&)Nkjl(tbg)M—lE(tf’g)
= Eo(tg, f)ilMgo(tg — 1, f)Nk(t, f)go(t — tg, 6)
Qu(t,te, §) Ny (te, )M~ A(te)E(te, €),

whereQy,(t,t¢, &) — Qi(o0, te, &) uniformly on|{| > ¢ by Theorem 3.17 and

Eolte — 6, E)Ni(t,§)E0(t — te, &) = T + Eolte — t,&) (Np(t, &) — I)Eo(t — te, &)
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3 Non-effective weak dissipation

and the second summand tends to zero (ike- t)~! uniformly on [¢| > c. Thus, the limit exists
pointwise onM .
Step 2.The energy estimate, Corollary 3.22, implies thét)Eq (¢, D) "' E(¢, D) is uniformly bounded
in L2(R™) — L?(R™). Thus, the theorem of Banach-Steinhaus implies the existence of the ktniing
and definedV’ ..
Step 3.The previously defined operatd¥, is given on each subspaégé as Fourier multiplier with
symbol

WJr(g) = (EO(tf> g))_lgk(ooa le, g)Nl;l(tfv f)M_l)\(tg)E(tg, g)a

which is independent aof. Thus, the representation holds dhiand using the boundednessigf. on
the whole space. O

Note, that there holds a corresponding result in the low regularity thewtgruAssumptions (Al) —
(A3), (C1).

Corollary 3.27. It holds under (A1), (A4)and (C1) that

det W (¢) = lim N (HE(t, €) = [¢]

o0
and thereford{er W, (D) = {0}.
The representation d¥ . (¢) allows us to conclude also estimates for derivatives with respéct to

Corollary 3.28. Under Assumptions (Al), (A4)-1, k > 1, and (C1) it holds

W (€) € SG_yy-

The proof of Theorem 3.26 gives no information about the convemehthe¢-derivatives. The
problematic term i€y (te — t,&) Ny (t,£)E0(t — te, £), where thet-derivatives offy (¢ — ¢, &) behave
as multiplications with¢| and do not fit into the symbol estimates.

Interpretation of the result. What have we obtained so far? Theorem 3.26 may be used to con-
struct for any daté(D) u1, us) € L?(R™) to Cauchy problem (3.0.1) corresponding d@id) iy, io)” =

W, (D)((D)u1,us2)T to the free wave equationlz = 0, such that the solutions are asymptotically
equivalent up to the decay factar!(¢), i.e. it holds

||Eo(t, D)((D) @1, ti2)" — A()E(t,D)((D) ug,u2)"||, =0  ast — occ. (3.5.1)

This is a direct consequence of the propertyEgft, £) to be unitary. It implies that the above given
L?-L? estimates are indeed sharp and describe for all nonzero initial data tttedexay rate.

Remark concerning the supercritical case. A review of the proof of Theorem 3.26 implies the
following observation. Condition (C1) is used only to give the uniform lbuthe Banach-Steinhaus
argument. Thus, Step 1 of the previous proof is valid under more geasssamptions.

Corollary 3.29. Assume (Al), (A4) OnV,. — V. the limits
1
W (D) = lim A(t)Eo(—t, D)E(t, D), WD) = Jim wE_l(t, D)Eq(t, D),

exist as limits in the operator norm.
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&(t, D)

Figure 3.3: Modified scattering theory.

Example3.10Q If we restrict ourself to the example from Chapteb@,) = 1L+t then for ally > 0 and
data0 # (uq, ug) With 0 ¢ supp(i4, G2) the energy decays like

E(u;t) ~ ~(141t)7H.

(1)

For . > 2 the decay rate is not uniform in the norm of the data, the occurring caastapend on the
distance of) from the support ofa;, u2).

3.6 Summary

We will draw several conclusions from the considerations in this chagiee main points can be
summarised to be

¢ the hyperbolic zone determines the decay rate (under condition (Clf@ndcessary regularity
of the data, cf. Figure 3.4,

e the dissipative zone is subordinate to the hyperbolic one,
e the dissipative term(t)u; yields an energy decay of '(¢) in both components,
¢ solutions behave like free waves multiplied by the decay function.

In Table 3.1 we give an overview on the used assumptions related to the. Zbmerns out, that the
positivity of the coefficient function is used only in the dissipative zone.

Large frequencies.  If we restrict considerations to the hyperbolic zone, which can be asthiey
taking initial data with) ¢ supp(u4, 42), we can drop Assumption (A1) and Condition (C1) and derive
estimates for the solutions under Assumption (Aedpne. We give only one example.
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3 Non-effective weak dissipation

€]
Figure 3.4: The hyperbolic zone determines the decay rate under Cor(ditipn

Example3.11 Let

coslog(1 +t)

b t =
®) 1+t

and assume ¢ supp(u1, t2). Then the solution(t, z) to (3.0.1) satisfies
E(u;t) ~ Ep(u;t) = E(u;0)

(with constants depending on the distance) # the support of 4, u2)). This estimate follows by
application of Theorem 3.15 and

1
A(t) = exp {5 sin log(1 + t)} ~ 1,

together with Corollary 3.29.

Example3.12 If we considerb(t) = Sinl(}:t), the above given conclusion cannot be drawn. In this

case, Assumption (A4)is not valid, therefore the diagonalization scheme brings no improvement
for the remainders. It is an open question, whether for this coefficierdtion and under the above
condition on the datd) ¢ supp(u4, i2), the energy decays to zero, remains bounded or even tends to
infinity. The auxiliary function\(¢) behaves as a constantt) ~ 1, in this case.
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3.6 Summary

Zone Assumptions o (t)

dissipative zone

e we used only (Al), i.eb(t) > 0, together with the techt
nical conditiontb(t) # 1 for larget

e Assumption (C1) guarantees that the hyperbolic zone de-
termines the final decay rate

e smoothness properties &), (A4),, are used to estimate
N (te)E(te, 0, &) as symbol irg

hyperbolic zone,
low regularity theory

e Assumptions (Al), (A2) are used to define the zone

e Assumption (A3) allows estimates after diagonalizing
one step

o we need differentiability properties &ft) in order to di-
agonalize

hyperbolic zone,
high regularity theory

e Assumption (A4) allows as many diagonalization steps
as we want

e smoothness di(t) transfers to smoothness properties| of
the symbolQ;, in the covariable

e the sign of the coefficient function= b(¢) does not mat-
ter in this part of the phase space

Table 3.1: Assumptions used in the zones.
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4 Effective dissipation

In the previous chapter our main concern was to understand the infloéso®all dissipation terms.
We observed a close relation of the solutions to free waves and the mairbabatrs come from
the behaviour of large frequencies. The non-effective dissipatiomiteru, was asymptotically sub-
ordinate to the principal part.

This chapter is devoted to the study of dissipation terms whictiaage; thus the approach of the
previous chapter has to be modified and the dissipation term should be ithahutie symbolic calculus
(and therefore included in the ‘phase function’ for the WKB-represtén of the solutions).

Main results are the representations of Theorems 4.6 and 4.11 and thimgest—L? and LP—L?
estimates of Theorems 4.21 and 4.25.

Finally, in Theorem 4.27 we explain what happens, if the dissipation bectorsteong. This we
call the case of over-damping.

4.1 Strategies

4.1.1 Transformation of the problem

Our main strategy is to apply a transformation of the Cauchy problem. Followingaidsumura,
[Mat76], and for variable coefficient dissipation M. Reissig, [Rei0Olg tkansform the dissipative
equation to a wave equation with time-dependent potential or, as we will caKlgia-Gordon type
equation. Therefore, we consider the new function

v(t,x) = A(t)u(t, z), (4.1.1)

where\(t) = exp {% fot b(T)dT} is the auxiliary function arising in the calculations of Chapter 3, such
that

v = N (t)u+ 2N (D)g + A(Euse — A(£)Au = Gb?(t) + %b’(t)) v,

Thus, after applying the partial Fourier transform, we have to solve ttaarper-dependent differential
equation
O +m(t, )0 =0 (4.1.2)

with coefficient (micro-local mass term)
2 1 2 1 /
m(t,§) = |7 = 70°(t) — SV (D). (4.1.3)

For the behaviour of the solutions to this ordinary differential equationitreds the coefficienin =

m(t, £) is important. While obviously¢| > 0 andb?(t) > 0, the derivative (t) may be negative.
Under the Assumptions (Al) — (A3) aion-effective dissipatigref. Definition 3.1, the coefficient

b = b(t) is decaying and-¥'(t) dominatesh?(t). Under the further assumptidi(t) = o(—b'(t))
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4 Effective dissipation

ast — oo we have obviouslyn(t,&) > 0 for all ¢ andt > t;. Because we are interested in the
time-asymptotics we may assumie= 0. The positivity of the coefficient enables us to consider the
micro-energy

V = (Vm(t,€)0, Do)

and write the equation as system,
Dey/m(t,£)
D= [ Vg V™ED )y
m(t,§)

Now we see, that the coefficient matrix consists of the self-adjoint antodalgpart and the skew
diagonal entry. Thus, we obtain for ti&-norm of V/

AHIV|2 = —2Tm (V, AV) = / 2O/m(t, €))v/mlt, E)5de < 2

it ) H Vi3
V9 ||,

and, therefore,
i <1

in the case thatd;/m(t,€))/y/m(t,€) € LPL{(Ry x R™). A simple calculation shows that this
is the case under the assumption inf; .. b”/(—bb’) > 0.1 This calculation gives the same energy
decay rate like in Chapter 3, but under the more restrictive assumgtien€'?, > = o(—t') and
liminf; .o b”/(=bV') > 0. But, nevertheless, it gives an alternative interpretation of Assumption
(A3).

It is also interesting to considen(t, &) in the case ofcale-invariant weak dissipatiotmeated in
Chapter 2.

Example4.1 Letb = b(t) = 45. Then it holds

2, M2—p)

m@é%fml+4u+w2 (4.1.4)
and, therefore, we get for € (0, 2) the positivitym(¢, &) > 0 for all (¢, &), while for u = 2 we get
in correspondence to the free wave equatiofi, &) = |£]? > 0if ¢ # 0, and finally fory, > 2 there
exists a part of the phase space with negatie, ¢). This partis given by1 + ¢)|¢| < $1/u(2 — p)
and corresponds in the consideration of Chapter 2 to the ZgneThe occurrence of this negative
coefficient coincides with the ‘take-over’ of the zofg in the estimate for the hyperbolic energy, cf.
Theorem 2.8.

Inspired by this example and the previous motivation we state that the caffedfve dissipation
will be characterised by the occurrence of a region of the extendexd @pacd®; x R, wherem(t, &)
becomes negative. This leads naturally to the definition of a so-cadlpdrating curvE, which dis-
sects the phase space into the part corresponding to a positive mickoriasa term and the part
corresponding to a negative micro-local mass term, cf. Figure 4.1.

To achieve this decomposition of the extended phase space we make théaipkesumptions:

Yindeed, we have
8t \/m(t, .f)
m(t, &)

and the denominator is a primitive of the numerator. So the assumptioargeeas that the integrand does not change its
sign for larget.

—1(b +b") < 1%(bb’+b’/)
€2 — ibz _ %b’ =9 %62 + %b’

_1
T2
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t A

m(t,&) >0

m(t, §) <0

Figure 4.1: Definition of the separating curbe

(B1) positivity b(t) > 0,

(B2) monotonicity, i.e.b’(t) does not change its sign,

(B3) [b/(t)| = o(b*(t)) ast — oc.

Later on we will include further symbol-like estimates for derivatives ef b(¢).

Definition 4.1. We call the dissipation terrb(t)u; in equation(1.2.1) effective if b(t) satisfies As-
sumptions (B1) — (B3).

Assumption (B3) allows us to understabid) as negligible term and to define the separating curve
I" in terms of the monotonous coefficient functibe- b(t),

e = %b(t). (4.1.5)

By Assumption (B2) all vertical lineg| = const cross the separating curve at most once.

Remark4.2 The separating curve has to be distinguished from the zone bouyd#sgd in Chapter 3
or used later on in this chapter. A zone boundary can be moved in the filargefining zone constant
N can be chosen almost freely (with some technical restrictions, if we reiquéegibility of symbols).
The separating curve is fixed, at least from its asymptotic behaviourcfidiee of the constar@ in
the above formula is directly related to the micro-local mass telh &).

Assumptions (B1) — (B3) imply that the coefficielt= b(¢) can not tend to zero to fast. The
monotonicity oft/(¢) implies from (B3) for decaying = b(¢) that
v (T) 11

dr = — —

b%(7) b(t)  b(0)

. t
_% =o(1),  andtherefore o(t) —/
0

and hence

(B3)' tb(t) — oo ast — oo

69



4 Effective dissipation

€l €] iy

Figure 4.2: Effective weak and effective strong dissipation.

in contrast to (3.2.1) in the non-effective case.

For effective dissipation we introduce in Definition 4.5 the separating diivean abstract way. It
is used to describe the behaviour of the functioft, &). It distinguishes for fixed time-levelbetween
small and large frequencies. We will fix a notation.

Definition 4.2. The two parts of the phase space separatell hye calledhyperbolic partcontaining
large frequencies, andlliptic part containing the small frequencies.

The aim of this chapter is to achieve bounds on the solution in these two pénts piiase space in
order to obtain decay estimates after transforming back to the original problem.

4.1.2 Effective weak and strong dissipation

If we apply the idea of the previous section, we have to distinguish betwees ffopologically) dif-
ferent cases. On the one handy(if) tends to zero asgoes to infinity, the separating curve approaches
thet-axis and the hyperbolic part lies on top of the elliptic part.

Definition 4.3. An effective dissipation terir{t)u, is called aeffective weak dissipatiqrif the corre-
sponding separating curde approaches theé-axis ast tends to infinity.

The situation changes #ftends to a finite limit. In this case we can use= {|{| = const} and the
elliptic and the hyperbolic part are independent of each other. This igttiaign in [Rei01]. The third
case arises for unboundé¢t). Under this assumption the elliptic part lies on top of the hyperbolic
part.

Definition 4.4. An effective dissipation ter\(t)u; is called astrong dissipationif there exists a
frequency, # 0 such that the lind¢ = &y} belongs to the elliptic part for alt > 1.

We will see that these three cases do not differ in the approach. Thevedhrepresentations of
solutions coincide in their structure. Basic example for a strong dissipatiomdathped wave equation
Ou+u, = 0 with separating curvé|¢| = 3} or, more generally, wave equations with dissipation terms
bounded from below.

In Figure 4.2 the different cases are sketched.
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4.1.3 Notation and basic tools

The separating curve, parts and zones. We formulate the previously discussed strategy in an
abstract way starting from the separating curve and defining appt@ggsienbol classes related to it.
Later on, these symbol classes explain what kind of assumptions we heakeofor the coefficient
function; this difference is essential in order to understand also nomtmioous coefficients.

Definition 4.5. We call the functiony : Ry — R admissibleif it satisfies the following assumptions:
(I'1) v € C*0,00), ¥(t) > 0, monotonous,
(T'2) ty(t) — oo ast — co.
Furthermore, for an admissible functior{t) we define the correspondirsgparating curve
I'={[¢g] =~(1)},

together with the auxiliary symbol

€)= V1€ =22 (4.1.6)

This symbol measures tltistanceof a point in the extended phase plane from the separating curve
and will be used in the definition of symbol classes. It replagefsom the approach of Chapter 3. The
parts are denoted as

pyp = {[€] > ~v(t)} for the hyperbolic parand
ey = {|¢] <~(t)} for the elliptic part.

Inside these parts the auxiliary symhi@}v(t) is differentiable and satisfies the following proposition.

Proposition 4.1. It holds

()Y (t) iq
8 E = iia 8 € =+ )
AOA0 (€)~) EASED €0
where the upper sign is taken in the elliptic part.
Both parts of the phase space will be decomposed into zones,
Zhyp(N) = {{€) ey = N(8)} N pyp hyperbolic zone,
Zpa(N, €) = {ev(t) < (§)yp) < Nv(1)} N1lnyp pseudo-differential zone,
Zaiss(co) = {(1+1)|¢] < o} dissipative zone (4.1.7)

Zeu(co, €) = {(1+)[¢] = co} N{{&) 4y = ev(O)} N1ews elliptic zone,

Zred(€) = {(£>,y(t) <ey(t)} reduced zone.

In the elliptic and in the hyperbolic zone we define symbol classes andrpelfter on a diago-
nalization procedure to extract the leading terms. In the remaining smalles #omeolutions can be
estimated directly4,..4(¢)) or known estimates will be used §;.s(co), estimate of Lemma 3.9). The
dissipative zone can be skipped under the further assumption
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Z hyp

Zel I Zen T

€ €

Figure 4.3: Zones used in the approach.

(I3) ~parpe € L' (Ry)

on the admissible functiom = ~(¢), i.e. if we are far away from the critical case of Chapter 2I'B)
is valid, we defineZ.;;(¢) := Z; (0, €).

The constantsand NV are determined later. The choiceMdfis related to the number of diagonaliza-
tion steps and the existence of a suitable one is guaranteed by Lemma 4.B8s bbdtirthat in case of
effective dissipation the first diagonalization step is sufficient to condluelelesired decay estimates
and we may use the estimate of Lemma 4.4 together with an arbitrary small pdéitivhe constant
e is chosen later, all obtained estimates are independerfoolufficiently small value.

Symbols in 1I,,. The hyperbolic symbol classes are directly related to the ones of Defini?on 3
except that we introduce one further weigtit). Remark, that it holds

(€ ~ 1€l uniformly on Zj,,,,(N). (4.1.8)

Definition 4.6. The time-dependent Fourier multiplie(t, £) belongs to thehyperbolic symbol class

Spi2 {my, ma, m3} with restricted smoothness, (s, if it satisfies the estimate

mg-i-k‘
DEDga(t ©)] < Cua €170 (117 ) @19

forall (t,&) € Znyp(IN)and allk < 44, |af < £lo.

00,00

Furthermore, we fix the notatiofy,,, y{m1, m2, m3} for ShypN{ml, mg, ms3}. The rules for the
symbolic calculus follow Proposition 3.5. It holds

. 01,0 .
Proposition 4.2. 1. Sh;pr{ml,mQ, ms} IS a vector space,

01,0 01,0 £1,€
2. Sth?]v{ml —k,ma,m3 + £} — Sh;p?N{m17m2 —k,m3 +{} — Sh;p?N{ml,m% m3}
fore >k >0,
3. ghte . ghte "ol o) s §hnte ! ! /
. hyp’N{mlamQam?;} hyp7N{m1am27m3} hprV{ml + my, mo +m2,m3+m3},

01,6 01—kl —
4. DfD?Shly’pr{mhmg,mg} = Spp N I my — ||, ma, ms + kY,

0,0
5. Sppn1—1,0,2} = LELi(Znyp)-
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Proof. Statements 1 and 4 follow immediately from the definition. Statement 3 is a dire&oqoarsce
of Leibniz rule. For statement 2 we use the definition of the z@fjex (¢).,;) £ 7(¢), together with
Assumption ['2). Statement 5 follows from

/tl L e 1 B 1
o KA+ 0 +t0)  [E(T+t)’

which is uniformly bounded on the hyperbolic zone by}. O

Symbols in II.;. The elliptic symbols are constructed in a similar manner. The main difference is
that in the elliptic zone the auxiliary symb¢), can be estimated

(£>,y(t) ~ (t) uniformly onZ.;; (co, €). (4.1.10)
Now the definition of the symbol class reads as follows.

Definition 4.7. The time-dependent Fourier multiplies(t, £) belongs to theelliptic symbol class
Sfl’b{ml, ma, mg} Of restricted smoothness, (-, if it satisfies the estimate

ell,e

A — 1 m3+k
’Dt Dga(t,f)\ < Cralyp  1E™ (1—+t> (4.1.11)

forall (¢,€) € Zey(co,e) and allk < ¢4, |a] < £s.

Again we fix the notatiorb,;; {m1, ma, ms} for S5°°°{my, ms, ms}. The rules for the symbolic

ell,e

calculus are similar to that from the hyperbolic part.

Proposition 4.3. 1. Sﬁl’gz{ml, ma, mg} iS a vector space,

elle

2. S {my — k,ma,mg + €} — S22 {my, mg, ma} for £ > k > 0,

ell,e ell,e

Sfl L2

!/ !/ !/
ell ¢ {m1 +m!, mg + mh, ms + mi},

41,62 biday 1 1 /
3. Saile {mi,ma2,ms} - Selle {m}, my, ms} —

0,0 O —k o —
4. DngSelll:eQ{m17m2’m3} — Selll,e : la‘{ml - |a|’m27m3 + k}1

5. 5%

ell,e

{~1,0,2} = LEL{(Zenr).-

Proof. Again we prove only the integrability statement. Under Assumptit8) the statement follows
immediately. Assume now tha{t) is monotonically decreasing and the dissipative zone is introduced.
Then it holds

/t§2 dr < 1 /t52 dr < 1 1
te, VTA+7) 7 (te,) Jiy, (14727 Ate)A+te)

wheret,, andt., denotes the lower and the upper boundary of the elliptic zone, respgchuether-
more the definition of the elliptic zone implies that the quotient is constafit in O
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4.2 Representation of solutions

We start with the case, where the dissipative té(m satisfies the assumptions (B1) — (B3). Thus

~(t) = 3b(t) is admissible in the sense of Definition 4.5. If we assume further the symbolslikeate

(B4),
< LY
' tkb(t)’ Crb(t) <1 t) or 1,2,...,¢,

we obtain
b(t) € 8, \{0,1,0} N 857{0,1,0}.

ell,e

Thus, for this definition of the separating curve we obtain

(€) ) € Spos \{1,0,03 N S5{1,0,0},

ell,e

and by the aid of (B1) — (B3)

()70 € Spoe y{=1,0,0} N S5{~1,0,0}.

elle

Similar to the notation in Chapter 3 we denote (B4hortly by (B4).
In Sections 4.2.1 to 4.2.3 we construct the main terms of the representatidotadrsofor equation

(4.1.2) under Assumptions (B1) to (B3) and (B4sing~(t) = %b(t). Later on in Section 4.2.4 we

will discuss the more general case of non-monotonous coefficientsdétategiven separating curve
I.

4.2.1 The hyperbolic part

Consideration in the hyperbolic zone. We consider the micro-energy

V = ()40 0, Ds0)"" (4.2.1)

Dt<f> (t)
< <§>'y(t)) + (§>E,(:t) 0
b (t
(€ M. O

The entries of the second matrix are uniformly integrable over the hyperbotie. The function
9 (€).,() does not change its sign and, therefore,(tor¢), (t2, &) € Znyy(N)
7]
o | 4

/ ! - / 4y
t | (s n )y

and(g)v(t) ~ |¢| uniformly in the hyperbolic zone. Furthermore,

Then it holds

D,V = V. (4.2.2)

<§>7(t2)
(e

= |log

/t2 b,(t) - ) db(t) = |arcsin b(tQ) — arcsinM
A K( 0 V€2 —02(t)/4 2[¢] 2/¢]

and|¢| > b(t)/2 in the hyperbolic zone.
Therefore, the following lemma holds for the fundamental solufipy, s, £) to (4.2.2).
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Lemma 4.4. Assume (B1), (B2) and (B3)'. Then in the hyperbolic zBpg, (V) the estimate

IEv(t, s, 9l S 1
is valid.
Because this lemma is true for @l > 0 we may setNV = ¢ and the pseudo-differential zone

introduced by (4.1.7) reduces to the empty set.

Diagonalization. ~ To prove the previous lemma we used the special structure of the lowar orde
terms. It is also possible to use the previously introduced symbol classesftorp several steps of
perfect diagonalization to conclude more structural properti€s 6f, s, £).

We use the matrice/ and M ! from Section 3.3.2 and conside¥?) = M 1V such that

DrV© = [D(t,€) + Ri(t,€)]V®

with D(t,&) = diag({€).,«)» — (€)) and Ri(t,€) € Sf;’;;N{O,O, 1} under Assumption (B4) .
By the above argument we see that the entrieBdt, £) are uniformly integrable over the hyperbolic
zone.

Using (5);(1) € Sfb’;;N{—l,O,O} we can perform several steps of diagonalization and prove the
following lemma. Note that we need one derivative more than in Chapter 3daletinition ofR; (¢, £).

Lemma 4.5. Assume = b(t) satisfies (B1), (B2), (B3)’ and (B4),. Then for allk < ¢ there exists a
zone constanV and matrix-valued symbols

o Ni(t,€) € 8, M11°{0,0,0},
invertible for all (£, ) € Zy,, (V) with N=1(t,€) € S, *11°{0,0,0},

o I 1(t,¢) € Sﬁ;}i}l’w{—l, 0,2} diagonal and uniformly integrable ovefy,, (),
o Ry(t,€) € S, M {—k,0,k+1},
such that the operator identity
(D¢ = D(t,€) — R(t)) Nig(t, ) = Ni(t,§) (Dt = D(€) — Fy—1(t,€) — R(t,€))
holds.

To construct a representation for the fundamental sol#ion(t, s, £) to the transformed system

(Dt - D(&) — Fp1(t, ) — Rk(tv f))&/,k(@ S, 5) =0, gV,k(Sa 3, g) =TleC?? (4.2.3)

we can follow the lines of Section 3.3.3. In particular, Proposition 3.13 aoddBition 3.14 have a
counterpart within our new hyperbolic symbol classes. Again we Aee@k — 1 to obtain estimates
for ¢-derivatives up to ordek — 1.

Theorem 4.6. Assume (B1), (B2) and (B4) Then the fundamental solutidy (¢, s, &) of (4.2.3)
can be represented as

SV,k(tasag) = g(t757§)ghyp,k(t757£)a (424)
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where .
E(t,s, &) = exp {Z/ D(r, f)dr} = diag (ei fst@v(ﬂdT, et -];-t<5>w<r>d7> (4.2.5)
and the symboQy,, (¢, s, §) satisfies
el /1"
HD51D€2D?thp,k(t7 SJ&)H S Cf,a <£>i2(t)| I <1—H> 9 (t7£)7 (375) c Zhyp(N)y t Z S
for all multi-indices|a| <k —1,¢; <k —1and/ly < 2k + 1.

In the case of effective weak dissipation or more generally(if remains bounded, i.e. if there
exists an interva(y(co), co) such that for alk, with |£y| € (y(c0), 00) the line{¢ = &} ends up in
the hyperbolic part, cf. Figure 4.2, we may ask the question whether the limits . Oy 1 (t, 5, &)
exist or not. Like in Chapter 3 this is the case, the reasoning is exactly the Sameestriction on the
number ofs-derivatives comes from the new phase function given in (4.2.5).

Corollary 4.7. In the case that/(t) is bounded the limit
tlilgo thp,k(tv S, 5) = thp,k(oov S, 5)
exists uniform irg for |{| > ¢ > v(o0)v N? + 1 and satisfies fofo| < k — 1and?¢ < 2k + 1

|IDEDE Qnyp i (00, 5, )| < Tl

Similar to Chapter 3 the inverse of the mat@y,,, » (¢, s, ) exists and satisfies the same statement,
it is uniformly bounded and converges fior~ oo to Q]:ylpjk(oo, s, &).

These further diagonalization steps bring no further improvements ol detimates as we will see
later (due to the fact that the further decay factor)~! occurs), but they may be used to deduce sharp
results for the regularity of solutions and data.

Remarks on the pseudo-differential zone. If we diagonalize the terms of lower order in the
hyperbolic zone we chos# sufficiently large and the pseudo-differential zone may be non-empty.
Inside the pseudo-differential zone it is sufficient to use the estimate

||5V(t75>£)|| 5 1

from Lemma 4.4.

4.2.2 The elliptic part
In this part of the phase space we consider again the micro-energy
V= (&0 8,Dy0)", (4.2.6)

which leads to the system

Dt<£>'y(t) O
DV — o) [ @ V. (4.2.7)
250

The main difference to the consideration in the hyperbolic zone is, that gienfatrix is not self-
adjoint any more. Thus, it does not lead to a unitary fundamental solutianaly two steps of
diagonalization inside the elliptic zone.
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4.2 Representation of solutions

Step 1. In afirst step we use the diagonalizer of the first matrix, which has to berstwbd as the

principal part in this zone,
(i =i g L(=i1
M_<1 1), M _2<i 1> (4.2.8)

such that fo/ () = M~V the equation

D,V = [D(t,€) + R(t, )] VO (4.2.9)
holds with coefficient matrices
Dt &)= " 0 . e 5511,0,0}, (4.2.10)
) ’
De(€) 1) v _ Dl Ty b (t)
_ 2(8) 4(6) 2(¢) 4(¢) £,00
R(t,6) = (Dt@ﬁlt) Ve Do b/d“’) € 557{0,0,1} (4.2.11)
20w Ty Xy | Mg

under Assumption (B4),. The matrixFy(t,&) = diag R(t, ) is no multiple of the identity. In the
diagonalization scheme from in Sections 3.3.3 or 4.2.1 we used essentialfy that) commutes with
all occurring matrices. This property is not valid any more and thus we wilid®cthe entries ofj in
the diagonalization scheme for the next diagonalization step(s).

Step 2. The difference of the entries @ (¢, &) + Fy(t, &) satisfies
b'(t)
2{E))

for ¢ sufficiently large by Assumption (B3). The derivativesidt, ¢) satisfy similar estimates, such
that the following lemma holds.

i6(t,8) = 2(&) ) + ~ (&)1 (4.2.12)

Lemma 4.8. Under Assumptions (B1) — (B3) and (B4) it holds
07 (t,€) € Sie{~1,0,0}.

e

Now we can follow the usual procedure to diagonalize further steps. Let

NO(E,¢) = <R21/5 _R12/5> € Siire{=1,0,1},
B(l) (t7§) = DtN(l) (tvé) - (R(tag) - FO(taf))N(l)(taé) € Sﬁﬁi’oo{_LO’ 2}7
Ni(t,€) =T+ NW(1,€) € 57{0,0,0}.

elle

For sufficiently large time > ¢, the matrix N1 (¢, &) is invertible with uniformly bounded inverse
N, €). Now with Ry (t,€) = —N; L(t,£) BU(¢, €) the operator identity

(Dt - D(taf) - R(tag))Nl(tag) = N1<t7§) (Dt - D(t,f) - Fo(t,f) - Rl(t,f)) (4.2.13)

holds. Furthermore, symbols froff;’ {—1,0,2} are integrable over the elliptic zone by Proposition
4.3. This diagonalization step will be sufficient to obtain structural propedied estimates of the
solution representation.

77



4 Effective dissipation

Lemma 4.9. Assume (B1) — (B3) and (B4)Then there exists a starting timgsuch that inZ,;;(co, €)N
{t > to} there exist symbols

o Ni(t,€) € $5°°40,0,0}, invertible withN; (¢, €) € $5°°{0,0,0},

ell,e ell,e

o Del@yy . (@) Dellyw | . b(@) 1,00
o Fo(t,§) = diag ( 0 O 2 “4@7@)) € S.ire10,0,1},

o Ri(t,€) € S%°{-1,0,2},

ell,e

which satisfy the operator identity

(Dt - D(t7§> - R(tag))Nl(taf) = Nl(t>£) (Dt - D(taf) - FO(tag) - Rl(tvf))'

It is possible to apply diagonalization steps under Assumption (B4)

Step 3. Construction of the fundamental solution. We can not follow the consideration from
the theory of the hyperbolic zone (cf. Section 3.3.3 and 4.2.1), the mainrdihgntries are not real.
The idea is to transform the diagonalized system to an integral equation wgttmdiedominated kernel
and application of Theorem B.10.

The definition of the auxiliary symbcﬁbw) implies the following estimate:

Proposition 4.10. It holds

\/<§>v(t)7(t) * <§>’2Y(t) @) (€)t)
Vi1 +©2 7 ©he

uniformly in Z; (co, €) N {t > to}. Furthermore, ify(co) # 0 the quotient of two of the terms tends to
a nonzero and continuous limit @s— oo and for || < vy(oc0).

This estimate is useful to understand and prove the following theorem, wiaitets she main result
within the elliptic zone.

Theorem 4.11. Assume (B1) — (B3), (B4) Then the fundamental solutidfy; (¢, s, §) of the trans-
formed systerd, — D(¢,&) — Fo(t,&) — Ri(t, &) can be represented as

t
Evalt,s,€) = 52(”) exp { / () dT} Quit(t, 5,€)
(s s

for (t,€), (s,€) € Zeu(co,€) N {t > to}, t > s, and with a uniformly bounded matri@.; 1 (t, s, &).
In the case that/(t) 4 0 ast — oo and without introducing a dissipative zone the limit

tli{cr)lo Qell,l(tysag) = Qell,l(oovsag)

exists uniformly on compact sets|§j € [0, v(co)) and defines a continuous functi@h;; 1 (oo, s, ).

Proof. We transform the system fak; (¢, s, £) to an integral equation fo@.; 1 (¢, s, §). If we differ-
entiate

o {i [[1060.9)+ R glar 61159
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4.2 Representation of solutions

with respect ta the diagonal structure @ + F, implies
D; [exp {z /:(D(T, &) + Fo(r, f))dT} Evalt, s, f)]
= (0t.8) + Fult. ) exp {i [ (D(r.€) + Fulr))dr | valt .8
rexp{i [ (D€) + Fulr)dr | (D6.6) + Folt. ©) + Ralt. ) Eva1:5.8)

= exp {z /:(D(T,{) + Fo(r, §))d7’} Ri(t,&)Eval(t, s, &),

such that by integration over the interyal¢] we obtain

Evaty .€) = oxp {—z' [ @+ Rt s>>dT} Eva(s.5,€)

t t
-l-i/ exp{—i/e (D(T,g)+FO(T,g))dT}Rl(e,g)gm(e,s,g)de. (4.2.14)

The exponential is not bounded. In order to compensate this bad behawointroduce a weight
factor. Let therefore,

t
Qen,1(t,5,6) :exp{—/ w(r,f)dT}Eul(t,s,ﬁ)

with an appropriate weight (¢, £). Then we obtain the integral equation

Qen1(t,5,6) = exp {/:(m(r,g) +iFo(1, &) — w(T, f)I)dT}

t t
+/ exp {/9 (i1D(1,§) + i Fp(T,&) —w(T, f)I)dT} R1(0,6)Qen.1(0,s,£)dd. (4.2.15)

We made essential use of the fact that the weight factor commutes with all reatiites integral
equation is well-posed ifi>°({(t, s,&) | (t,€), (s,€) € Zey, t > s}) for suitable weightw(t, §). By
Proposition 4.3 the matri®; is uniformly integrable over the elliptic zone. It remains to see that the
exponential function remains bounded and this is guaranteed by a siditicomn the exponent.

The entries 0fD(t, &) + iFy(t, &) are given by

Oy <§>7(t) n Y (t)

2 <£>'y(t) 2 <§>’y(t) ,
8t <f ~(t) VI(t)

1) = - - '

(IT) (o + 3 0 20

Now it follows that the first one is dominating. Inequality) < (I) is equivalent to

(1) =€) +

V() = [€P ++'(t) <0,

which is true inZ.;(co, €) for t > to from |b/'(t)| = o(b?(t)), Assumption (B3). Thus choosing
w(t, &) = (I) gives the optimal weight function and Theorem B.9 implies the well-posedndss.
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4 Effective dissipation

Now from

Oy A (1) 1 iy 1, 70+
/ [2 O 2 <€>w>] T3, T2 e
_ 1, () Y() + ()3
= —log 3

207 {85 V(8) + (E)5s)

and Proposition 4.10 the representationdor (¢, s, §) follows. Furthermore,

(5.9 = e { [ Dr. &)+ iFu(r€) ~ w(t. 91ir
— diag <1, %@X:em {—2 /: (€)m) d7}> = ((1) 8)
fort — oo.

It remains to show the existence of the limit. Choosiggufficiently large the integral kernel (i.e.
essentiallyR; (0, £)) can be estimated uniformly on compact subse{ of(oc)) by anL!-function in
¢ and therefore the representation@f; 1 (¢, s, {) by a Neumann series
0 t t1
Qell,l(t7 S, f) = H(t’ S, f) + Z Zk / H(t’ t1, £>R1(t17 g) H(tlﬂ ta, g)Rl(t% g) e
k=1 S S

te—1

S

converges. The existence of the limit follows by the same way as in the garoffieorems 3.17 or
3.1. Furthermore the uniform convergence on compact subsets impliesustyntin O

Corollary 4.12. Assumqm € L'(R;), such that'3) is satisfied. The@.;; 1 (o0, s,0) # 0.

Proof. We solve the ordinary differential equatiag. + b(t¢)u, arising for{ = 0 directly. It holds

a(t,o)z/o AS—(Tﬂﬁt(o,o)+a(o,o)

and from Assumption (B3) integrability df/ \? follows

B(t,0) ~ A(t) [a(o,o)+at(o,o) OOO dr ]

A2(T)
We can also represefitby the fundamental solutiofy,, which simplifies in this case to
Ev(t,s,0) = =S A(E)N1(t,0)Qenna (£, 5,0) Ny ' (s,0),
where the matricesV; and Nl‘1 are uniformly bounded and tend to the identity for~ oco. If we

compare the results, we see that the first row@gj ; (oo, s,0) can never be zero. O
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4.2 Representation of solutions

In the case thay(t) /4 0 we see that.; (o0, s, §) is different from zero in a neighbourhood of
the frequency = 0. We can even see more, both rows of the ma@ix 1 (¢, s, &) behave differently.
While the first one tends to a non-zero limit the second one satisfies a dstimgate.

Corollary 4.13. Assume thai(t) /4 0. Then the limit
t1i>120 H(S7 ta 5) Qell,l(t7 S, 5)

exists uniformly on compact subsetdfy(co)).
Proof. In the series representation (4.2.16) we can factorbit s, £) and get

t1

00 t
H(87t7£)Qell,l(t787§) _[+sz/ H(t1787§)R1(t17§) H(tlatQag)Rl(t27§)"'
k=1

S S

tp—1
H (1, te, )Ry (ty, E)dty . . . dtadty

S

which remains bounded and takes limits by the same argumentation as above. O

Corollary 4.14. The second row of the matri.;; (¢, s, £) satisfies in the elliptic zone the estimate

HeQTQeu,l(t,s,f)H < %exp {_2/3 <§)7(7) dr} < % (4.2.17)

The different behaviour of the two rows of the mat@;; ; (¢, s, £) transfers by diagonalization to
Qeuo(t,s,€) = Ni1(t,€) Qeui (¢, 5, )Ny (s, €) (4.2.18)
using that the principal part of; is the identity matrix, that means (¢,¢) — I € S5°{—1,0,1}.

ell,e
Thus after applying the diagonalizer matrices the first row will remain badinolet the second one
decays at least like symbols froff;’ {—1,0,1}. Thus the second estimate of Corollary 4.14 is also

true for Q.1 0(t, s,€).

The dissipative zone.  In case thatI(3) does not hold, i.e. if in our cagét) is ‘close to’ ﬁ we

introduced the dissipative zone to ensure integrabilityeogcfﬁ{—l, 0,2} overZy;(co, €). Inthese cases
we apply Lemma 3.9 to estimate the fundamental solutidn te (-4, D,4) and relate this estimate

T+
to the corresponding one fof = ((¢)., ) 0, D)7,

4.2.3 The reduced zone

In the reduced zone we replag®., ;) by ey(t). Thus, we consider

V = (ey(t)0, D)7, (4.2.19)
such that "
Dyvy(t
ev(t)
D,V = (s?ibggiggb'<t> ) V. (4.2.20)
ey(t)

The lower left corner entry can be estimatedyyt) — S;(Ttt% and by Assumption (B3) the second termis

dominated by the first one for all (fixed) Thus, we can estimate the norm of the coefficient matrix by
2e7y(t) for sufficiently larget. Application of Corollary B.7 implies an estimate for the corresponding
fundamental solutiody (¢, s, £) within the reduced zone. It holds
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4 Effective dissipation

N €)n) /

ey(t)

B

el
Figure 4.4: On the definition df in the reduced zone. Note, that the defined energy is continuous and
‘cuts out’ the zero 0(@7(@ on the separating cunie

Lemma 4.15. Under Assumptions (B1)—(B3) the fundamental soluéip(t, s, ) to (4.2.20)can be
estimated by

t
[IEv(t,s,€)|] < exp{e/ b(T)dT}
fort > s > t( with sufficiently largey and (¢, €), (s,€) € Zycal(e).

This estimate seems to be very rough. But we can make the reduced zonallaasswe want and
therefore we can control the constantThis (in general) exponential estimate is then dominated by
A(t) and gives no contribution to the final energy aifd-L? estimates. This idea for the choiceedf
used e.g. in the proof of Theorem 4.21, where i will be necessary.

4.2.4 Treatment of non-monotonous coefficients

The considerations done so far can be generalized to non-monotarefiisients. Let therefore(t)
be an admissible function in the sense of Definition 4.5 and let the coefficieritt) satisfy Assump-
tion (B1) and (B4) together with the relation

(B9) [b(t) — 21(1)] < (1) (4 )-

This implies for the micro-local mass term(t, £) defined by equation (4.1.3) the following estimates.
Remark that including’(¢) in this term implies the loss of one further derivative compared to Sections
4.2.1-4.23.

Proposition 4.16. 1. m(t,¢) € S, 137{2,0,0}. N 87, 0{2,0,0},

ell,e
2. There exist a starting timg and a zone constar¥ such that
Im(t, )| 2 7*(t)  In Zpyp(N) U (Zeu(co,€) N{t > to}).
Furthermore,
(1, -1,
VIim(t, §)| € Shypj\’,o{l, 0,0} NSy *{1,0,0}
and

€ Span{=1,0,04 N S5, 1>{~1,0,0}.

ell,e

-
m(t, )|
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4.2 Representation of solutions

We explain only the first estimate of the second statement in the elliptic zone, treestimates are
straightforward. It holds

—m(t,) = [P0 + 5H(0) — [P = 12(0)+ (1) — (1 - )72(0)

> 0720 (1) - 00 (157 ) + 20

using|¢|? < (1 — €)y2(t) together with (B/) and after this{2) to absorb the second term in the last
one for sufficiently largey.
These estimates allow us to consider the micro-energy

V = (\/|m(t, )|, D) (4.2.21)

iN Zpyp(N)U(Zeu(co, €) N {t > to}) and a suitable continuous extension inside the remaining Zones.
Proposition 4.16 allows us to diagonalize inside the elliptic and inside the hyljgerooe. We will
sketch this approach and the corresponding results. The systénréads as

\/\mts
DtV( VIm@o)l VI tg) (4.2.22)

Im(t,€)] 0
leading after two steps of diagonalization to
DV = (D(t, &) + Fo(t, &) + Ra(t,) VI, (4.2.23)
where inside the hyperbolic zone
D(t,€) = diag (\/ —/|m(t.6) ) (4.2.24)
Dy \/\m(t,f)l
t,& 71, (4.2.25)
folt 9 = 2/[m(t, €)|
Ri(t,€) € S), 2% {~1,0,2}; (4.2.26)
while inside the elliptic zone we get
D(t,€) = diag (—iv/Im(t, Ol iv/Im(t,€)]) . (4227)
Di/Im(t,§)|
Fy(t, &) = 71 4.2.28
0(t,€) (0| ( )
Ri(t,€) esfll§°O{ 1,0,2}. (4.2.29)

Now the construction of the fundamental solution follows the lines of the pusvéections. In the
hyperbolic zoneD(t, §) is self-adjoint, thus the fundamental solution is unitary. FurthermBieis
integrable and the integral over the diagonal term is uniformly boundeas, e get

1Ev(t,s,8)]| S 1 (4.2.30)

like in Lemma 4.4. Inside the elliptic zong/|m(¢, )| occurs in the exponential and the coefficient
in front changes slightly. The result is closely related to the represergagiven by M.V. Fedoryuk,
[®en85,naBa 7, §2].

There the precise structure of the micro-energy is not essential. Bfiicant replacing,/|m(t, £)| in the reduced zone
should be small.
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4 Effective dissipation

Theorem 4.17. Assume (B1), (B4)and (By). Then the fundamental solutiély; (¢, s, ) to the trans-
formed systerd, — D(¢,&) — Fo(t,&) — Ri(t, &) can be represented inside the elliptic zone as

m(t,

Evalt,s,§) = (m(872> i exp {/St \/de} Qeua(t, s, §)

for ¢ > s and with a uniformly bounded matri@.;; 1 (¢, s, £) tending to a continuous limit as— oo
in the case that/(t) /4 0.

The treatment of the dissipative zone and the reduced zone remains th@sdonenonotonous
coefficients. Inside the pseudo-differential zone we stop after thelfagonalization step and use the
at m(T’ 6) d

rough estimate
t t
/ ;< / dr <1 1+1¢
s m(7—> g) s

~ 1+7" %87 +s’
which leads to some polynomial loss of decay which can be compensatedédxpihreential estimates
in the elliptic zone.

Example4.3 To give one example of a coefficient function, which can be handledibyafiproach,
we consider

V() = (1 +8)"
with k € (—1,1) and define

b(t) = 2(1 + t)" + sin (alog(1 + 1)) (1 + )"

with o € R. This coefficient satisfies (B1) and (B4) and obviously als9)(BAt least for sufficiently
large« this coefficient violates (B2).

4.3 Estimates

4.3.1 Relation to the energy operator and auxiliary estimat ~ es

We want to obtain estimates for the solution representation and for the eopegatorE(¢,D) to
our original Cauchy problem. The representatior€pft, s, £) in the different zones constructed in
Section 4.2 may be used to conclude a representation for the fundamentarséli, s, £) to the
micro-energy (3.2.8) used in Chapter 3 and corresponding estimatesfopénators (¢, s, D) and
E(t,D). We restrict ourselves to the case of monotonous coefficient funatiens(t) satisfying (B1)
to (B3) and (B4) with the notatior2(¢) = b(t).

Outside the reduced zone it holds

E(t,5,€) =T(t,)Ev(t, 5,E)T(s,8), (4.3.1)

where we used the matrix-valued functidi, &),

. Mt .
<h(t, g)u> _ [ (<5>w> “) (4.3.2)
D, [ N e[ () B U 0 -
tt X050 AND Dio

~~

T(t,€)
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4.3 Estimates

with inverse

TNt &) = h(t,€) . 4.3.3

This relation follows directly from the definition af(¢, z) in (4.1.1). Recall that inside the dissipative
zoneh(t,§) = 174, while outside it is equal t].
Inside the reduced zone, we have repla@®d,,, by e¥(¢) and, therefore, we replace in the definition

of the matrixT" the corresponding terms. This yields

e>\h(§ft)’§2t) 0 -1
T(t,8) = [ <0 'k T (&, &) ~ A7 (1) (4.3.4)

am  A®

forall (¢,€) € Zyea(e).

Auxiliary estimates. ~ We continue this section with some auxiliary estimates, which are essentially
used to obtain energy add—L¢ estimates later on.

Lemma 4.18. Assume (B1) — (B3) and &4 (t) = b(t) and A(t) = exp {% st b(T)dT}. Then it holds:

1. The definition of¢). ) implies ()., — 7(t) < _%_
2. It holds . \
A d
%GXP{/ <§>7(T)d7} §GXP{—|§|2/ Wi)}
3. With(L + t¢)[¢] ~ 1 it holds

oo{oat [ 5}
b2 (t) /Ot % — 00.

(e f ) v

is monotonously increasing for large

4. It holds

5. For all @ € R the function

Proof. The first statement is an elementary inequality and implies the second stateraetly diom
the definition ofA(¢).
The third statement follows for decreasit@) from

tq t
/—Tg—smt)z,
0

using the monotonicity of /b(t) together withtb(t) — oo from Assumption (B3).
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4 Effective dissipation

The next one follows from the calculation

2 tdi 201y _ 1/ tdi 27tbl(7')7_w270 NS
b*(t) <1+/0 b(7)>zb(t) b'(t) ; b(T)Zb(t) ; b(T)d b (t) — log b(t)

in caseb(t) — 0. Otherwise the estimate is obvious by the monotonicity. of
The last statement can be obtained by differentiating the expressiordst ho

Oy <1+/0t%>a/\(t)—a<1+/ot %)a_lﬁwwb(w <1+/0t%>aw)
= % <1+/Ot %)al A(t) <a+b2(t)+b2(t) /Ot%>

and from statement 4 we find a sufficiently large titpedepending o, such that the expression is
positive for allt > t,. O

Representation of £(¢,s,£) in the elliptic zone. Because of its technicality, we separate the
estimate o€ (¢, s, &) inside the elliptic zone from the proofs of the main results of this section. We will
see that we have to combine the estimates of Section 4.2 with a new idea to ged desirts.

Inside the elliptic zone, i.e. fqit, &), (s,£) € Zey(co, €), it holds

EV(t7 S, 5) ~ % exp {/ <£>7(7—) dT} Qell,O(ta S, 5)7

where the matrixd,;; o defined in (4.2.18) is uniformly bounded fer< ¢. This yields in combination
with (4.3.1) for the energy multiplief (¢, s, ) the estimate

t L
01 Sew{ [ (@ —2Dar b () 10malt.s. ) ('i L)

€l b(s)
tdr 1 %
,SGXP{—’H?/ m} <b(t) B )

1l b(s)

o

where we used Lemma 4.18.1 . The estimate for the first row seems to be optiralthetestimate
obtained for the second row is not optimal in this form, because at leastdiasing coefficient
functionsb = b(t) it is increasing irt like b(t) for fixed frequency, which contradicts to our a priori
knowledge that the energy itself decays.

As we will see later the reason for this behaviour is that during the transttn back to the energy
E(t, s, &) further terms cancel inside the differens&)D;u = ~(t)0 — Do, which we estimated by
the bounds for the two summands.

Our basic idea is to relate the entries of the above given estimate to the multipliers, £) and use
Duhamel’s formula to improve the estimates for the second row using estimateshiedirst one. A
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4.3 Estimates

comparison yields so far

D1 (¢, 5, &) Sexp{ ISP/ bc(l:)}, (4.3.5)
1 tdr
’@2(t,8,§)‘ @ { ’é‘QL b(T)}7 (436)

it )] S b {-1el [ 115}
ittt )| € ok exp { i [

The muItipIiers<I> solve the second order equati®p-+ |¢|2®; + b(t)®; = 0 and, therefore, we obtain
for W;(t,s, &) = 0,P;(t, s, &) the first order equation

8t\11i + b(t)\llz = —‘§| @i(t,s,f), \I!i(s,s,f) = i5i2, (437)

where the source term on the right hand side can be estimated with the ahowtsb Duhamel’s
formula yields now

A2( )
A%(t)

i(t5.0) 5 A5 [ o e {—ie? [T bar
2 T t
S [ {6 [ )
it [0 (i i ) o {168 s f o
Sanee {6 i} st vy

)AZ(t) and|€]?/b?(t) < 1/2 from the definition of the elliptic part together with
om Assumptlon (B3). The second summand is subordinate to the firsewaefe

Ui(t,s,8) =—I¢]* | S5 ®i(r,s,8)dr

usmgatAQ( ) =
b'(t)/b%(t) = o(1

>0, ifr>tp

bt
) fr

fort > s > ty with tg sufficiently large.
Similarly, one obtains fo, the representation

2 2
alt5.8) = i) — 16 [ S )

t
2 t
[Wa(t,s,8)| < Ag((t)) + (|§)’ bs )/8 )\(T)eXp{ !§2/ b(?z)}dT
N2(s) P dr
=% ane) { ’§2/ b<T>}'

Thus, we have proven the following lemma.
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4 Effective dissipation

Lemma 4.19. Assumet, £), (s, &) € Za(co, €) Witht > s. Then the multiplie€(¢, s, £) satisfies the
pointwise estimate

tdr 1 o A2(s) [0 0
<expld -6 | — it — = . 3.
|g(t7 Sa§)| ~ €Xp { |€| /5 b(T) } <b|(§t) b(él}i)) + )\2(t) <O 1) (4 3 9)

There exist at least two important special cases. If we set, to be the lower bound of the elliptic
zone (for increasing = b(t)) ort = t¢ the upper bound of the elliptic zone (for decreasing coefficients
b = b(t)), then some of thé's cancel with|¢| and the estimate simplifies. We will employ Lemma 4.19
to prove the main results of this section.

Remark4.4. The estimate of Lemma 4.19 for the second row is better than the estimate obtained
directly by application of Theorem 4.11. This is related to the fact that wencamuse the better
behaviour of the second row @ o (¢, s, £) during the transformation t8(, s, {) and to the fact that
there arises some cancellation in the differenggo(t) — D.o(¢).

Remark4.5. For small¢ and withs = ¢t fixed, the second summand in (4.3.9) is dominated by the
first one. In case of strong dissipation and witk: ¢¢, the lower boundary of the elliptic zone for large
frequencies, we can uggl ~ b(t¢) to deduce from (4.3.8) the following estimate.

Corollary 4.20. It holds in the notation of Remark 4.5 that

tqd 1 1
‘g(t,tg,f)’ Sexp{_‘§|2/0 TZ_-)} (% b|(£_t)> .

4.3.2 [*-[? estimates

We start with the formulation of the estimateid-scale or equivalently with the estimate of the mul-
tiplier £(t, s,€) in L>-norm. It holds

Theorem 4.21. Assume (B1)—(B3) and (B4)Then theL?-L? estimate

tdr 3
< —_
let.0.0)lle < (14 [ 575)

is valid.

Proof. It suffices to consider the zones separately. In the dissipative zomstiheate follows directly
from Lemma 3.9 together wittb(t) — oo as consequence of (B3).

Similarly, for the part of the hyperbolic zone containedgh> ¢ we obtain a decay of~!(¢) from
the transformation back to our original problem, cf. formulae (4.3.1) — (#.3.3

It remains to understand the influence of the elliptic zone, of the reducedlamad the influence of
hyperbolic zone for small frequencies.
The elliptic zone for small frequencie#/e denote by, the upper boundary of the dissipative zéne
Then the multiplier€(t,0,£) can be represented &$t,t¢,£)E(t¢, 0,£), where the first one satisfies

3If ¢ = 0 we sette = 0.
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4.3 Estimates

the estimate of Lemma 4.19 and the second one can be estimated by Lemma 3.9. [@&ifoyiall
(t,€) € Zen(co,€) N{l¢] < co}

E(5,0,6)] S [E(E te, )] [E(te, 0, )]

tar | (1 W 1
< exp —\fl2/ —}<s g " E—
{ te b(r) LB b‘i') (1+t5)b(t§) L4te

sen{-le? [ (7)}@) g)

where we used (B3)’ to concludé + t¢)b(t¢) 2 1 and Lemma 4.18.3 to extend the above integral.
Now we distinguish between estimates for the first row and estimates for tbedsene. For the

first row we obtain )
toar tdr\ 2

£l exp —52/— 5<1+/—>

< { ) o B()

and therefore the desired estimate. For the second row we obtain

T p{“f'Q/tl b0<h>} S5 (”A%)

which decays faster by Lemma 4.18.4. The maximum of the dominating functidaleme along the

lines
dr
|§|2/ —— ~ const
b(r)

and using again Lemma 4.18.4 we see that these lines belong (at least éowddugs oft) to the
interior of Z;; (co, €) N {|¢] < ¢o}. It remains to show, that the remaining parts of the phase space have
a better behaviour. We distinguish between different cases related tellagibur of the separating
curve.
Case 1. Weak dissipation,(t) — 0. In this case, for small frequencies the reduced zone and the
hyperbolic zone lie on top of the elliptic one.

In the reduced zone we obtained the estimate of Lemma 4.15, which togethed\8i#h) @nd the
above estimates yields f¢t, ) inside this zone

t T t
£.0.0)1 5 |s|exp{|ar2 L i e %W‘”} (1)
te

wheret, denotes the upper boundary of the elliptic zone. Thus, using

N,_H-

€ < ( —)b*(t)

for e sufficiently small, we claim, that inside the reduced zone the multiplier satisfieanheeastimates
like in the elliptic zone. It remains to consider the hyperbolic zone, but therendximum of the

dominating function
te dr l/t
2
exp 4§ — — — — [ b(r)dr
p{ |§|/0 TEREN A }
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4 Effective dissipation

is taken at a poin§ independent o > t, and, thus, it decays Iike—l(t), which is faster than the
estimate from inside the elliptic zone.

Case 2. Strong dissipation(t) — oo. In this case, the elliptic part lies on top of the hyperbolic one. It
remains to consider large frequencjéls Inside the hyperbolic zong(t, 0, &) behaves IikeA(l—t), while

in the reduced zone we have

IE(.0,6)]1 S exp { | e=gnmar— [ %bmdr},
tey

which is also decaying in, but decaying less than in the hyperbolic part. Heredenotes the lower
boundary of the reduced zone. Thus the essential supremum oftonatesof||£(¢, 0, £)|| has to be
taken inside the elliptic zone.

There it holds for large frequencies

’g(tv()vf)‘ S ‘g(tvt&?g)‘ ’5(t§2a07‘£>‘

todr 1 1 1 te 11
<expd e [T R b(r)d ( )
S e p{ \§| /% b“)}(l;lg) b|(£t)> )\(t&)e p{e/t61 (T) 7'} 11

todr 1 tey 1 [ta 1 1
<expl —|¢)? [ — — = b(r)dr — = b(r)d
Nep{ 3 /% CRAG 2)/% (r)dr 2/0 (r) } (b% J%)

with t¢, the upper boundary of the reduced zone. Thus, using

oo {16 [ 5 i [ 3 [ wner) <o {6 [ )

for cp < @b(o) ande sufficiently small we see that the maximum of the first row is taken for large
inside|¢| < co.

Casey(t) tends to a finite limitIn this case essentially the same kinds of estimates are used to conclude
that the essential supremum of the multiplier is taken inside the elliptic zone aedaitesthe resulting
estimate follows. O

By the aid of Proposition 3.21 we conclude

Corollary 4.22. Assumptions (B1) — (B3) and (B4inply

(L, D)2 € (1+/%)

Examples. We continue this section with examples for special coefficient functions.

Exampled.6. Let
b(t) = u(1+t)~, p>0,ke(—1,1).

For x = 0 the energy estimates are given by A. Matsumura, [Mat76]. We obtain feral{—1, 1)
k—1
[E@®, D)l[2—2 S (1 +1) 2.

This estimate is slightly better than the estimate given by H. Uesaka, [Ues80].
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4.3 Estimates

Exampled.7. If we setb(t) = 4 with > 2 we have from the consideration of Chapter 2

IE(#,D)[l2—2 < (1 +1)7"

which coincides formally with the estimate from Example 4.6.

Exampled.8. Let
[m] (elm]
bty = B 1)
1+¢

Then Assumptions (B1) — (B4) are satisfied and Corollary 4.22 implies from

/t dr (1+1)?

m > 1.

)

ast — oo the estimate
I[E(t, D)2z S (1 + )~ (logt™) (el + £)) 2,

which comes close to the one of Example 4.7.
Example4.9. Letb(t) = ut. Then Corollary 4.22 implies

Jun

[[E(t,D)||2—2 < (log(e+1)) 2.
Example4.1Q The previous example can be improved in the following way. For
b(t) = ,U(e[m] + t) 10g<€[m} 4 t) o log[m_l](e[m] + t)

it holds

_1
2

This can be understood as counterpart to the Example 3.5. Again they etemrgy rate becomes
arbitrary small (within the scale of iterated logarithms).

If we make the further assumption,

(BS) f W) =

the estimate of Corollary 4.22 implies the decay of the energy to zero.

Corollary 4.23. Assume (B1) — (B3), (B4and (B5). Then
lim E(#,D) =0

in L2(R") — L%(R").

Example4.11 Assumeb(t) € L'(R,). Then Corollary 4.22 gives only the obvious estimate
[E(, D)l[2—2 S 1,

following from (B1) alone. We will investigate this case in Section 4.4 and sthavthis estimate is
sharp. This situation will be calledver-damping
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4 Effective dissipation

4.3.3 LP-[1 estimates

We start with an auxiliary lemma.

Lemma 4.24. Under Assumption (B1) it holds

et e [l = [i0)

Proof. The proof follows by direct calculation. Then it holds

|t e {5 | = L7 (stresn { ik [ 55} ) e taie
= [T e {pi [ 5 e

by settingy = |¢|? [ dT) with dn = 2/¢] [ ; T)d|£\ O

Contrary to the non-effective case, we did not perform more diag@tmliz steps to obtaif’—L4¢
decay estimates. This is related to the fact that the asymptotic properties ahg deaicribed by the
elliptic partIIL.; while the hyperbolic partl;,, brings in the facton—!(¢). Instead we estimate the
L'-norm of the Fourier multiplier to deduce tiié—L> estimate and interpolation with the previously
provenL?-L? results yields the following statement.

Theorem 4.25. Assume (B1) — (B3) and (B4)Then for dual indiceg € [1,2], pg = p + ¢ and with
regularity r > n (% — %) the estimate

t
E,0,D)||proqg S 1+/—
I€0.0) o 5 (14 [ 3
holds.

Proof. It suffices to prove the corresponding statementigfoe= 1 andg = oo. Then the general
statement follows by the Riesz-Thorin interpolation theoremidispaces, [SW71], together with
Theorem 4.21. Let therefore > n. Then an estimate of thé'-L> decay rate is given by the
L'-norm of the multiplier, i.e. by the function

(€)™ E(t, 0,1

We will estimate thisL.'-norm in the different zones separately. Inside the dissipative zongi¢this
the ratg(1+¢)~1 =", which is much stronger than the desired result. It remains to considentianiag
part of the phase space.

PartII.; N {|¢] < co}. In this part we havé¢) ~ 1 and all components d&(¢,0, ) can be estimated

by
e { - [ 5.
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4.3 Estimates

such that the desireB'-norm can be estimated by Lemma 4.24 as

NI

tdr \ 2
Hg(taOyf)HLl(Hezzﬂﬂf\SCO}) ’g <1 +/0 @) '

which is the desired estimate.
Part I1p,,, N {|{| < co}. If v(t) — 0 ast — oo the hyperbolic part lies on top of the elliptic one. There,
we obtain with¢; the inverse function of;

' d_T} Alte)

|5(@07€)||L1(th,,m{|g|gco})5/& |,5nexp{—!§|2/0 b(r) de

€0 te dr \ 2 te dr
< 2 o _1¢]2 _
[0 i) e e )
te dr — A(te) te dr 3
(4 5m) Wd@g' ( m))
tdar —t
< el
<+ [i5)
using the monotonicity of the function

¢ d _ntl
T 2
1+/ —> A(t
1+ i) 2o
following from Lemma 4.18.5.

Large frequenciesFor I1,,, N {|¢| > ¢} we have the uniform decay rafe ! (¢) of the multiplier

E(t,0,€), while for I.; N {|¢| > ¢} the multiplier decays at least likexp{—c3 fti b‘%—:)}. Together

with || (¢)"" ||1 < 1 this gives a much stronger decay rate then obtained in the elliptic part for small

frequencies. U
Remark4.12 Further diagonalization steps in the hyperbolic zone can only be used tovintire
estimate in the used regularity fpre (1,2] fromr > n (% —3)tor=mn (% — %) Note that for

p = 1 the given regularity is sharp within the scale of Bessel potential spaces.

Corollary 4.26. Under the same assumptions as in Theorem 4.25 it holds

E(t.D < (1 ¢ ar \HE60)
IE(:, >|\p,raqw( - W) |

Examples. We review the examples of Section 4.3.2 and give the correspotding? estimates.
Except for the case of constant dissipation, where estimates are giverMatsumura, [Mat76], these
estimates are new.
Example4.13 Let

b(t) = p(1+t)"~, p > 0.
Then we obtain for alk € (—1,1)

~Y )

(141 D(EG-7)+)

under the conditions op, ¢ andr from Theorem 4.25.

E(, D)llp,r—q <
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4 Effective dissipation

Example4.14 If we setb(t) = 745 with u > n + 3 we have from the consideration of Chapter 2

(i _1)_
E( D) g < (14 0) "5 75) 1,

which coincides formally with the estimate from Example 4.13.

Example4.15 Let
B log™ (el™! 4 1)

o®) 1+t

, m > 1.

Then we get

1B D)l < (141" 75) 7 (toghl (e 1) 5(3) 3
Example4.16 Letb(t) = ut. Then it holds

(D)l S (log(e + 1)~ £G3) 7%,
Example4.17. The previous example can be improved in the following way. For
b(t) = u(e™ + t)log(el™ + 1) .. .logm—1(elm 4 1)

it holds
n 1 1 1
IE(, D)[lpr—q S (logm™l(el™ +t))_5(rz>—§.
Example4.18 Assumeﬁ € L'(R,). Then we get

‘|E(t7 D) ’ ‘pﬂ"-’q 5 17

that means, we obtaineu decayto zero at all. In Section 4.4 we will show that this estimate is sharp.

4.4 How to interpret over-damping?

We conclude this chapter on effective dissipation with further results inpgtheal case of an increasing
dissipation term. If we assume that (B5) is violated, i.e. if

(OD) the inverse of the coefficient becomes integrable,

/OO dr <
— < oo,
o O(7)
the decay estimates proven in Section 4.3 trivialise in the sense, that we ab&iangy and né.’—L?
decay to zero any more. We want to make this result more precise. Thadirstesult is the following

consequence of the representation of solutions within the elliptic part. Reha&OD) together with
the other assumptions implies (B3).

Theorem 4.27.Assume (B1), (B2), (B4and (OD). Then fofuy, us) € L2(R™) x H~(R") the limit

u(oo, ) = tlg]& u(t, x)

exists inLQ(R”) and is different from zero for non-zero data. Furthermore, if the datadesemnegular,
(u1,u2) € H*(R™) x HY(R™), then it holds

[|u(t,-) — u(o0,-)|l2 = O(t/b(t)).
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4.4 How to interpret over-damping?

The proof of this statement is based on the representation of solutiorengro8ection 4.2 together
with the following estimate. We denote bythe lower boundary of the elliptic zone.

Proposition 4.28. Assume thay~1(¢) € L. Then
“lelte < [ [y — (0N < 0.
3

Proof. It holds

20— 8 < e < - LD

(t) - ()
for all [£| < ~(t) and, therefore, the desired statement follows from

car e, o
f wﬂ‘vw+l A0 50

with 7/(¢) > 0 in the over-damping case. O

Using this statement, we can prove that in the elliptic zone the (weighted) limit ofollnéon
representatiorfy (¢, s, &) for t — oo exists. We set! = (1,0) and extracti(t, &) from V =

({€), M®)a, Dy(A(B)@) "

Lemma 4.29. Assume (B1),(B2),(B4and (OD). Then the limit

_ T 1
5(37 5) - 61 tli)r& )\(t) <§>V(t) 5v(t, S, f)

exists uniformly on compact setsgrand is different from zero.

Proof. The over-damping condition implies thaft) — oo and therefore it suffices to consider the
elliptic partIl,; of the phase space and to use the representation of Theorem 4.11 tegtthiee fact
that the diagonalizeN (¢,£) — I ast — oo. This yields

1 1 t
Wé’v(f,&ﬁ) ~ mﬂp {/s (&) — 7(7’)]d7} Qeo(t, s,€)-

Now the exponential converges by Proposition 4.28. Furthermore]l&yrd.13 implies the conver-
genceQ.;o(t, s,&) — Qe o(00, s,&) and this matrix is non-zero in the first row:

The representation a.; o(c0, s,£) by a Neumann series far> ¢, following from (4.2.16) con-
verges fors — oo to the matrixdiag(1, 0) and, therefore, the upper left corner entry@y; o (oo, s, £)
is different from zero for large. Thus, at least the first element of the réi\gs, ) is nonzero for large
s. Now the obvious relatio (s, &) = S(s1,£)Ev (s1, s, &) implies from the invertibility of€y (s1, s, &)
thatS(s, &) can never be zero for any choiceso&nd¢. O

Of special interest is the case= 0. The multiplier S(0, £) takes the Cauchy data in the form

V(0,8) = ({€)(0) U, 2 — i2b(0)@1)” and maps it to the asymptotic statéo, £). This will be used
in the following proof.

95



4 Effective dissipation

Proof. (Theorem 4.27) The first part of Theorem 4.27 follows from the olzam that
(00, &) = S(0,6)V(0,8). (4.4.1)

The convergence follows at least for data having compact suppainiedrourier level, thus on a dense
subset ofL.>-space. Together with an a priori bound of the solution we conclude thdinfit exists

for all data fromL?(R") x H~!(R™). This a priori bound follows the same way we have proven the
L?-L? estimate.

It is possible to obtain a better description of this limit. From the solution reptatsem we know
that||u.(t, -)||2 = O(1/b(t)), similarly we can obtain|i (¢, -)||2 = O(1/tb(t)). The proofs of these
estimates of higher order are postponed to Chapter 5. We want to drawr@tyonsequence from the
latter one. Using the differential equation

Ty + €20 + b(t) iy = 0 (4.4.2)

for all ¢ together with the existence of the limit for the second summand, we getdgom- 0 in
L?(R™) under regularity assumptions on the ddta,, us) € H?(R") x H'(R"), that

tlirglo b(t)u(t, z) = Au(oo, ) (4.4.3)

converges in.2(R"). Furthermore,

* dr

b O (t/0(t)) ,

(4.4.4)

[lu(o0, ) —uf(t, )2 < /too [lue(7, )l2d7 < C(JJua | = + ||u2||H1)/t

and the second statement of Theorem 4.27 follows. O

Remark4.19 Using the commutation properties of Fourier multipliers, we see that regularttyeof
initial data transfers directly to convergence in Sobolov spaces. SodbégqfrTheorem 4.27 implies
directly a corresponding result for deftey , u2) € H*(R") x H*~1(R"). In this caseu(t, -) — u(co, -)
in H5(R™).

Interpretation. At least for sufficiently high regularity of the data we have seen, that the|té? .+
b(t)u; overrules the influence of the second time-derivatiyein the equation. Thus, it seems to be
natural to consider the parabolic problem

1
b(t)

as related differential equation describing the asymptotic behaviour.lligosois given by

Aw,  w(0,-) =wy € L*(R"), (4.4.5)

Wt =

B(t,€) = exp {—15\2 / t %} (0,€). (4.4.6)

Fort — oo it takes inL?(R™) the limit
w(oo, z) = e?Pw(z) (4.4.7)

with 8 = ||1/b(-)||1. The operatoe’2 is smoothing, it maps the spacebi-functions intoF>°(R™).
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no decay,
limits exist

decay

€]

Figure 4.5: Time-asymptotic properties of the multipigt, s, £) in the case of over-damping.

Regularity of the asymptotic profile. Lemma 4.29 states that the solution operator, mapping the
Cauchy data to the solution at the time letelends strongly to an operator associating an asymptotic
profile u(co, ). This operator is represented by a Fourier multiplier and, therefore, itusatdo ask

for estimates of this Fourier multiplier with respect to the frequency varigblie turns out that the
operator is smoothing in the following sense.

Theorem 4.30. Assume (B1), (B2), (B4and (OD). Then the multiplief (s, £) satisfies the estimate

1S(s, )1 S (€)~" e, el = &
uniformins, &.

Proof. The representation used in the proof of Lemma 4.29 implies together with Riopds28, that

1
Alte) (€)

and, together with the estimates coming from the hyperbolic zone, Lemma 4.thearetiuced zone,
Lemma 4.15,

15(te, Ol <

||€V(tf> S, §)|| /S eXp{€|£‘t§}7

we can use the representatidiiis, {) = S(t¢, §)Ev (te, s, €) to conclude the desired estimate. To
estimate\(t¢), we use, that by/(t) > 0 and Assumption (B4)

b(t) < b(t) +tb'(t) < eb(t)
and, therefore, after integration
/O Cbr)dr ~ th(t)
holds. O
An almost immediate consequence of this estimate for the multigliers) is, that the asymptotic

stateu(oo, -) = S(0,D)V; for Cauchy data;; € H'(R") andu? € L*(R"), and thusVy € L?(R"),
is a very smooth function.
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Theorem 4.31. Assume (B1), (B2), (B4and (OD). Then for data; € H'(R") andu? € L*(R")
the asymptotic state(oco, ) defined by Theorem 4.27 belongs to the spgegR") and satisfies the
estimates

ID%u(00, *)||os < C1CI (4.4.8)

for all multi-indicesa € Njj and with constants independentcaf

Proof. It suffices to prove the following statement: Let L?(R"?) andf(g) = e~lElteg(&). Thenf
satisfies (4.4.8).

Using the boundedness of the Fourier transform as hlap: L this statement follows from

||£af(§)||1 _ Hgae—df\ ec\§|(1—t5) ec\§|tgg(§) Hl < CIC‘QCX|O£!

eree MisC@ <0
by using

sup
3

gae—dél‘ < ¢l sup(clg))leleelél < cmlel|gllelelol < ¢lalg,
iy

because the maximum efe=* for z > 0 is taken at the point = z for eachs > 0 and by Stirling’s
formula|a/l®! < alel®l, O

Corollary 4.32. ItholdsS(¢,D) : L?(R") — A(R"), the asymptotic profile is a real-analytic function.

4.5 Summary

In the case of effective dissipation, we have used a reduction to a Kigide@ type equation with a
negative mass term to deduce the representation of solutions. We hawsgpeeially, that

¢ the asymptotic behaviour is described by the elliptic zone, i.e. by small fregasen

e related to this fact, the solutions satisfy asymptotic estimates of a type knowrafabgdic
problems,

¢ the oscillatory behaviour of the multiplier inside the hyperbolic zone has nceeimfkion decay
estimates.

This relation to parabolic problems is known for wave equations with constssipdtion as pointed
out in Section 1.3.2. There arises the question, whether it is possible to sbtalar results at least
in the case ofy(t) 4 0 fort — co. Section 5.4 is devoted to the study of this question based on the
representation of solutions from Section 4.2. In Table 4.1 we sketch th®neteetween the zones and
the used assumptions on the coefficient function.

Under the weaker assumptions (B1), (Bdhd (By) related to a given admissible functign= ~(¢)
subject to ['1) and ("2) we sketched in Section 4.2.4 an approach to diagonalize and to deduce main
terms of the representation of solutions.
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4.5 Summary

Zones Assumptions orb(t)
dissipative zone

e we used (B1), i.eb(t) > 0, together with (B3)'tb(t) —
oo, which implies condition (C2)

e smoothness df = b(¢) plays no role

elliptic and hyperbolic zone
e Assumption (B2) is used to define the separating cury

e Assumptions (B1), (B3) are used to replaegt, &) by
(€)%, inside these zones

D

e Assumption (B4) allows as many diagonalization steps
as we want

1%

¢ the sign of the coefficiert = b(t) is essential inside the
elliptic zone

reduced zone
e (B1) and (B2) are used to define this zone

e (B3) is used to make the mass-term small in this zone

Table 4.1: Assumptions used in the different zones/parts.

Modified scattering for (effective) weak dissipation. We want to conclude this chapter with
some remarks concerning the asymptotic properties of the solution in theblojipezone for weak
dissipation.

If the dissipation term is non-effective we have seen from Theoremahdlin consequence from
the modified scattering theory of Section 3.5 that inside the hyperbolic Zgpg/V') and fort — oo
the fundamental solutiofi(¢, s, £) behaves like

M) (s M with  Eoft.s.€) = ding (<0 CDE) . (@5.0)
A(t)
&o(t, s, &) coming from the propagation of free waves. Now in the case of effeatdak dissipation,
Corollary 4.7 in combination with (4.3.2) yields féi(¢, s, &) the related behaviour like
M)+ g -1
—M M 4.5.2
where the unitary matri€ (¢, s, ¢) is given by (4.2.5). This modified hyperbolic behaviour is related
to the representation for large frequencies given by T. NarazakianJd for damped wave equations
and also by K. Nishihara in [Nis03] in the special case of three-dimernisspaae.

If we restrict our considerations targe frequenciesi.e. if we consider dat&éu;, uz) with 0 ¢

supp(i1, t2) we obtain for the hyperbolic energy the two-sided estimate
1
E(ujt) ~ —— 4.5.3
which is much stronger than the decay rate obtained for arbitrary datenkra, this modified scat-
tering behaviour is overruled by the influence of the elliptic part.
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4 Effective dissipation

t A t

4 H

Figure 4.6: Modified scattering theory for non-effective dissipatiort)(kefid a related description for
effective weak dissipation (right).

Example4.2Q If we considerb(t) = p(1 +t)~" with k € (0,1) andp > 0, this yields for data
up € H' anduy € L? with 0 ¢ supp(i1, 4i2) the estimate for the hyperbolic energy

E(u;t) ~ exp <1 a t1”> ,

— K

which is closely related to Example 3.10.
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5 Further results

5.1 New directions

For non-effective weak dissipation the modified scattering theory of rEne8.26 implies, that for all
non-zero data the energy decay rate is given by the auxiliary funation

E(u;t) ~

A3 (t)

In the case of effective dissipation such a result is not valid. Therésexieelation between further
conditions on the data and corresponding improved energy decay Tdtesim of this section is to
give an outline of several results in this direction related to our repragamgaf Chapter 4. We restrict
ourselves to the estimates ii? scale, the proofs can be generalized to the dagséR™) — L4(R™),
where we neeg < oo for the improved results in the strong topology.

5.1.1 Norm estimates versus estimates in the strong topolog y

The estimates proven so far are estimates for the norm of the so-calleyy eperator. As already

pointed out in Remark 2.2 of the second chapter F. Hirosawa and H. Alakaecently obtained a faster
decay of the energy. In order to understand this estimate better we réipéaestimate in the norm-

topology by a convergence in the strong operator topology. Similar to tteé pf@heorem 3.26, the

key tool to understand such estimates is the theorem of Banach-Steiltndition (B5) is essential

for this result.

Theorem 5.1. Assume (B1) — (B3), (B4and (B5). Then the strong limit

t
s-lim 4T gDy =0
t—o0 o b(7)

is taken inL?(R") — L?(R").

Proof. We employ the Banach-Steinhaus argument for the dense subspace ., V. of L2(R™),
where
V. = {U e L*(R"™)| dist(0,supp U) > c}.

The energy estimate implies the uniform bound

tdr
/0 TT) E(t,D) < 1.

On the other hand, for data;, us)? € V. the representation d@(t, £) obtained in Chapter 4 shows
that
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Case 1:if b(t) — 0 ast — oo or supp(u1, ug) contains only frequencies ending up in the hyperbolic
part forb(t) < ¢, the energy satisfies the estimate (cf. formula (4.5.3))

1
E(t,D < —
[E(t, D) (u1, u2)||2 < O
tending to zero faster than the above given estimate, and
Case 2:if b(t) 4 0 andsupp(uq, i) contains frequencies which ‘end up’ in the elliptic part, we use
that the dominating function (cf. Corollary4.20)

|§|exp{—|£r2/0tlj;}
exp {—c2 /Ot %}

onV,. This estimate again decays faster.
Thus, in both cases the theorem of Banach-Steinhaus implies the desii#d re O

can be estimated by

Example5.1 We sketch one application of Theorem 5.1. For the special coefficientifun b(¢) =
(1 4 t)" with exponent € (—1,1) andu > 0 we obtain by Corollary 4.22

Buit) = O, t— o,

while now we have
E(u;t) = o(t™1), t — o0.

The main difference is, that the last estimate is not uniform in the data.

Remark5.2 The theorem of Banach-Steinhaus implies also, that both estimates, the stomate
and this estimate in the strong operator topology, are sharp at the same time.

Remark5.3. In [HNO3] F. Hirosawa and H. Nakazawa obtained this result for theiapeaseh(t) =
(1 + ¢)* with g > 2 for the ranges € [—1, —1). The above theorem extends this resultto- 0 for
k€ (—1,1].

5.1.2 Exceptional behaviour of the frequency ¢=0

The reason for the improvement of the decay rate in Theorem 5.1 is thptiexad behaviour of the
frequency¢é = 0. Under Assumption (B5) thé>°-norm of the multiplier€(t, 0, £) is determined by
the neighbourhood of the line

2 t d7- . 3}
[3 /0 m_conbt. (5.1.1)

This curve approaches theaxis ast — oo if (B5) holds. If we assume, that the data can be estimated
in their Fourier image for small frequencies f§y* with somey, > 0, this implies a further decay along
this line and therefore improves the estimates.
Our strategy is as follows. We do not consider the energy opeF4toD) as operator.?(R") —
L?(R™) but as operator from smaller space with stronger topologry L2(R™). For x> 0 this space
is given by
DJFLA(R™) = { u € L2(R") | [§] "0 € LA(R") } (5.1.2)
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with [¢] = [£]/ (£) and endowed with the induced norm

ullipyerz = [I[E]"all2. (5.1.3)
Note, that by Plancherel's theordin]®L?(R") = L?(R™).
Theorem 5.2. Assume (B1) — (B3), (B4jogether with (B5). Then

tdr HTH
-1 1 — E(t.D) = 0.
~§?< +/0 b<r>> tD)

holds as strong limit ifD]*L?(R"™) — L?(R"), furthermore,

tdr -
E(E D)oz zs (1 i /O m) -

Proof. (Sketch) The proof follows essentially the proof of thé-estimate, Theorem 4.21, and the
improvement from Theorem 5.1, taking into account, that we can use &fdaittor|S|* in the multi-
plier. O

This estimate is the basic tool for several improvement results. The conitiohi € L?(R")
does not mean a zero behaviour in the usual sense, it can be undeastagegularity statement of
uin & = 0. This is related to the following version of Sobolev-Hardy inequality, whichyistself a
consequence of a result of R.S. Strichartz, [Str67, Theorem 3.6].

Lemma 5.3. Assumé) < s < g. Then

[ fll2 < Cl[f] s
forall f € H5(R™).

Applying this lemma in the Fourier image yields a continuous embedding of the weifjhtspace
(2)"¥ L2(R") = L2(R", (x)* dz), whose Fourier image i&*(R"), into [D]L%(R"). Indeed we
have with a smooth cut-off functiogn € C§°, x(£) = 1 in a neighbourhood of = 0,

£ lgez = HEP Fll2 ~ 1EFX(©) Fllz + 111 = x(€))Fll2
SAX@fMes + [ fll2 < (1l = f1] gy =52
Thus, Theorem 5.2 implies

Corollary 5.4. Assume (B1) — (B3), (B4and (B5).
Then for data((D) uy, uz) € (z)~° L?(R™), 0 < s < %, it follows

1+s

Edr \ 2
E® D)l gy p2p2 S <1 +/0 ﬁ)

and, furthermore, the improved estimate

1+s
tdr 2
Jim (1 ST ) " E#.D)=0
~<>“3< v b(T)) (t.D)

is taken in(x) ~® L2(R") — L%(R").
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Example5.4. Setb(t) = (1 +t)*, k € (—1,1). Then for data(D) uy, us) from (z)* L2(R") with
0<s<gzwe have
E(u;t) = o(t 1+, t — oo.

This result is closely related to a result of R. Ikehata and A. Saeki, [St@€orem 1.3]. They proved
for b(t) = 1 ands = 1 the energy estimate

B(u;t) < C/(1+t)*

with a constantC' depending on|u1 ||y, ||uz||2 and|| (x) (u1 + u2)||2 and for space dimension >
2. Forn = 2, which is also critical in our approach, they used the weighted space log(1 +
(x))~1L?(R?) to recover the same estimate. The log-term occurs from a correspondangttonic
Sobolev-Hardy inequality valid in this case, see e.g. W. Dan and Y. Sh[D&a5].

Remarks.5. Corollary 5.4 shows, that weight conditions on the data may be used to impdecay
rate for the hyperbolic energy. The possible improvement is limited by thesfiaension. This can
be understood by the relation to Theorem 5.2 and the application of Sobalely-khequality in the
Fourier image. If we assume more decay for the data, we have continuity Fotireer image and
we need further moment conditions on the data to ensure a zero behavioarfiaghency = 0 of
sufficiently high order.

Remark5.6. In the case of the damped wave equation R. lkehata obtained in [IkeO8d]ka®3c]
for data fromL?(R™) N (z)* L' (R™) with large ;. improved decay rates assuming further moment
conditions.

5.1.3 Datafrom H*NL*, p € [1,2).

Like in the classical paper of A. Matsumura, [Mat76], the assumption oftadul?-regularity,p €
[1,2), for the data allows an improvement of the energy decay rate. Lemma 4.2 eemed to obtain
corresponding estimates within the elliptic part. It follows

Theorem 5.5. Assume (B1) — (B3), (B4pnd (B5). Then for dat&(D) uy, uz) € LP(R™) N L?(R™),
p € [1,2], it follows

N

tdr )Z(;é)

I D)oo 5 (14 [ 375

Furthermore, forp € (1, 2] the decay rate can be improved to

1, n(1 1
. tgr \3+30-3)
v (1+ ) 3t5) e

in L2(R") N LP(R") — L2(R™).

Remark5.7. Forp = 1 the subspacé/ = |J.., V. is not dense inL! (R™) N L?(R™). This is the
reason to exclude this case in the second statement. In this case, the improsgdate follows for
the closed subspace of data with vanishing mean, which is the clostemf ! (R") N L?(R").

Remark5.8. Under certain geometric conditions this vanishing mean condition follows immediately
If we consider the initial boundary value problem on the half-space witicidét boundary conditions
and data fronZ.! (R )N L?(R"} ), the usual odd continuation to a Cauchy problem satisfies this moment
condition. In the casi(t) = 1 this was used by R. Ikehata in [Ike03a], [Ike03b] and [Ike04].
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Examples.9. If we seth(t) = 1 andp = 1 we get for datd (D) uy, us) € L2(R™) N L' (R") the energy
decay rate
E(u;t) = O(t™2 ), t — oo,

like in [Mat76].
Example5.10 More generally, forb(t) = (1 + t)® with k € (—1,1) we get for((D) u;, uz) €
L?*(R™) N L'(R™) the energy decay rate

E(u;t) = 0@~ 179%7), t — oco.

Example5.11 Forb(t) = 1 4 t we get under the same assumptions on the data

E(u;t) = O((log(e + ) "2"), t — oco.

5.2 Estimates for the solution itself

The estimates for the solution follow basically from the proven estimates for the‘anergyU (¢, ) =
(h(t,&)u, Dya). In both cases, for weak dissipation in Chapter 3 and for effectivépdissn in Chap-
ter 4 we have constructed explicit Fourier multiplier representations. Using

1
h(t,€)

one can recover estimates fofrom energy estimates, one can even obtain better estimates if one uses
the representation of the solutions in the different zones.
Similar to the treatment in Chapter 2 we considergbkition operator

<1+4t,

S(t,D) : (u, (D)™ ug) = ult, ),

normalised in such a way, th&tt, D) : L2(R") — L?(R"), and formulate estimates for its asymptotic
behaviour.

5.2.1 Remarks on free waves

For the sake of completeness we start with the case of free waues, 0. It is well-known that in this
case the solution to the Cauchy problem can be represented as

a(t, &) = cos(t|€|)u1 + it sinc(t|€]) e,

wheresinc z = sinz/z. Using the boundedness gfic x one obtains an increasing behaviour of the
solution. It can also be seen, that the two multipliers constit@ings) behave differently.

Lemma 5.6. For the case of free waves the limit

s-lim(1 +)7'S(¢t,D) =0

t—o00

exists as strong limit itk ?(R™) — L?(R™).
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Proof. The uniform bound|S(¢,D)||2—2 < 1+ t can be seen immediately from the representation of
u. TO obtain the existence of the limit we again employ the Banach-Steinhausemgfor the dense
subsetM = J..o Ve, Ve = {dist(0,suppU) > c}. For each of the subspac®s we obtain for the
second multiplier

sinc(t[¢]) < (tl¢)) ™ t — o0

uniform on|¢| > c. O

Remark5.12 On the smaller spaci. we have even more. If ¢ supp(iq, 42), we get boundedness
of the solution, i.e.
[t )2 S 1,

where occurring constants depend on the norm of the data and the disfdnio the Fourier support
of them.

5.2.2 Non-effective weak dissipation

The representation of Chapter 3, Lemma 3.8 and Theorem 3.15, implies immedhetdbllowing
theorem.

Theorem 5.7. Assume (A1), (A4)and (C1). Then the solution operator satisfies fite.L.? estimate

1 +t

S(t,D)|]o—
18t D)ll2-2 S 3577
Proof. In the hyperbolic zone and fd¢| > ¢ we estimated¢|a by A~1(¢) and we can just divide by

|€| to get an estimate far by
1 1+t
< .
At) ™ A%(1)
For small|¢| we have to take into account that dividing bf¢, &) brings a further factofl +¢). Thus
we obtain inside the dissipative zofie+ ¢)/A?(t) and in the hyperbolic zone for small frequencies

1 o Ldte 14t
EIABA(e)  AB)A(Le) ~ A3(2)

using the monotonicity of/\(¢) for larget following from condition (C1). O

This result coincides for the casé¢t) = #t i < 1, with the estimate from Theorem 2.7. The
following observation is important to understand the essential differegtweslen the solution estimate
and the estimate for the energy.

In the non-effective dissipative case the estimate for the solution op&@tdd) comes
from properties of the dissipative zone.

This coincides with the.?>—L? estimate of Theorem 2.7.1 and the case of effective dissipation. Note,
that energy estimates depend on large frequencies.

We can improve the decay rate of the above theorem|gfor ¢ we end up in the hyperbolic zone
and, thus, we can estimate the multiplier uniformlygh> c by

A (t) A(t) 1
T3¢ S¢ )HNlthN/\()_)

using Proposition 3.7 fak(t) — oo. Otherwise, ifA(¢) remains bounded\(¢)(1 +¢)~! — 0.
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Corollary 5.8. In L?(R") — L?(R"™) it holds

2
s-lim A(H)
t—oo 1+t

S(t,D) = 0.
Example5.13 If b(t) € L'(R. ) this corollary implies

st—lim(l +t)71S(t,D) = 0,
like in the case of free waves.
Exampleb.14. If we set

b(t) = H
(elm] 4 1) log(elml 4 1) - - - logl™ (elm] +¢)

like in Example 3.5, we get
%—lim(l + t)fl(log[m](e[m] +1))"S(t,D) = 0.

Example5.15 Forb(t) = £ and withy € (0, 1) we obtain

st—lim(l + t)*7IS(¢, D) = 0,

related to the statement of Theorem 2.7.1.

A review of the proof of Theorem 3.24 together with the structure of the multiflie &) in the
zones yieldLP—LY decay estimates for the solution operator. Note that, similar to the treatment of
Chapter 2, fop andq near to2 the dissipative zone determines the decay rate.

Theorem 5.9. Assume (A1), (A4) together with (C1). Then the solution opeftoiD) satisfies the
LP—L17 estimate

1_1

1 1771( ) %
1+¢ poa/, >pr,
IS(, D)y < 4 FOHD) p=p

e 26, e

~
N

for dual indicesp € (1,2], pg = p + ¢ and with regularityr = n (% — l). The critical valuep* is

q
chosen in such a way that
1—n$l (%—1)
(141t 2 \r 2 A(t).
Remark5.16 Forb(t) = 5 with 11 € [0, 1), this estimate coincides with the corresponding one from
Theorem 2.7.

Remark5.17. In case thatb(t) — 0, the critical valuep* is given byp* = 222,

5.2.3 Effective dissipation

Also in the case of effective dissipation the representation of solutions @apter 4, Theorems 4.6,
4.11 and 4.15, together with the definition of the micro-energy, implies estimattgefsolution itself.
Without taking time or spatial derivatives, we have nothing to cancel thedecay of the factor

ol [ i)

arising from the representation of Lemma 4.11. On the other hand, this émtays for non-integrable
b=L(t) uniformly on|¢| > ¢ > 0. Thus, together with Theorem 4.27 one obtains the following state-
ment.
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Theorem 5.10. Assume (B1) — (B3), (B4) Then the estimate
IS, D)[l2—2 S 1
holds uniformly int. Furthermore,

st—lim S(t,D) = S(o0, D)

exists onL?(R") — L?(R") andS(co, D) = 0 iff (B5) holds.

Furthermore, a review of the proof of Theorem 4.25 yields{@r D) a correspondind.’—L¢ result.

Theorem 5.11. Assume (B1) — (B3), (B4)Then theLP—L? estimate

(6, D) |pr—q < (1 v t bc(i_))(>

holds for dual indice® < [1,2], pg = p + ¢ and with regularityr > n (% — %)

Example5.18 If we consider the special casg) = (1+t)" with x € (—1, 1), we get for the solution
u = u(t, x) to (1.2.1) the decay estimate

1

—(1—g)r(i_1
lu(t, D)l < €A+ 6" EG) (|, + sl )

Example5.19 If we setb(t) = 1 + t, we obtain the estimate

1

_n(1_ 1
lu(t, )]l < € (logle + ) 2675 (lunll,, + lusllz,,,)-

Example5.20 Forb(t) = IL—H with sufficiently largen, we get from the consideration of Chapter 2

the corresponding decay results. Furthermore, the stronger decay (nelated to estimates in the
subspacé’.) implies, that for all > 1 the statement

s-limS(¢,D) =0
t—o00
is also valid. Fory = 1 the logarithmic term in the estimate of Theorem 2.7.1. comes from the
treatment of the zones, and 75 and, therefore, we obtain
s-limlog(e +t) S(t,D) =0
t—o0

in this case.

Like the corresponding estimate for the energy this result may be improwst turther assump-
tions on the data. We restrict our consideration to a zero-behaviogrfo10 in L?(R™) and obtain
(similar to Theorem 5.2) the following result. Note, that Assumption (B5) quass, that the maxi-
mum of the multiplier is taken on a line approachig- 0.

Theorem 5.12. Assume (B1) — (B3), (B4and (B5). Then fop, > 0 the strong limit

) t dr K
i—_)horgl <1 +/() %> S(t,D) =0
is taken in[D]?*L%(R") — L%(R").
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Now the argument of Section 5.1.2 transfers this result to weighted initial ddtaata satisfying
further moment conditions.

Examples.21 Forb(t) = (1 + ¢)* with k € (—1,1) we obtained

11—k
[IS(, D)ppep2—re S (L)

Examples.22 Forb(t) = 1 + t the corresponding estimate reads as
122
2

HS(tv D)H[D}“LQ—>L2 rg (log(e + t))i .

Example5.23 Forb(t) = (1 + ¢)* with > 1 no improvement is possible by choosing data from
[D]*L?(R™). This is a direct consequence of Lemma 4.29.

5.3 Energy estimates of higher order

Higher order energy estimates are a natural tool to investigate parabafieprs, while for the wave
equation they bring no profit. This is different for damped wave equatidhe estimates of A. Mat-
sumura, [Mat76], yield the same (parabolic) improvement by taking higldar aterivatives like for
the heat equation.

We recall theL>-L? estimates from that paper. It holds for a solutig(t, ) of the damped wave
equationJu + u; = 0 to Cauchy data; andus (cf. the overview given in Section 1.3.2)

al

N _¢_lal
ID{DSu(t, g2 < C(L+ )2 {[Jun]|gesiar + Juzl| gesiai} (5.3.1)

similar to the estimates for the heat equation= Aw with Cauchy dataw,

ol
ID{Dgw(t, )|z < C(L+ )7 [Jwo| oo (5.3.2)

The aim of this section is to underline, that corresponding results are aligdar time-dependent
dissipation terms. In detail, we show that

e in case ofnon-effective dissipatigrhigher order energies satisfy the same decay estimates like
the usual hyperbolic (first order) energy,

¢ in case ofeffective dissipatiomand under Assumption (B5), derivatives improve the decay rates
and the improvement differs between time and spatial derivatives and

e in case ofover-dampingonly time derivatives give improvements.

In order to make this more precise we define in analogy to the energy opE(at®) energy oper-
ators of higher ordefThey are given by

EF(t,D) : ((D)* u1, (D) ' ug) > [DF*Dfu(t,-) (5.3.3)

for ¢ < k and withk > 1 and describe the behaviour/of- ¢ spatial and time derivatives. The number
k gives the total number of derivatives and stands for the order of #rgenThe energy operator itself
is given byE(t,D) = (E}(t,D),Ei(¢,D))T. We exclude the case = 0 because of its exceptional
behaviour. It was considered in Section 5.2.

The main task is to provide estimates for time derivatives. The spatial deesatan be considered
later on using the following relation.

Proposition 5.13. It holdsEf (, ¢) = [¢JF*Ef(¢, €).
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5.3.1 Non-effective weak dissipation

In the case of non-effective dissipation, we simply apply the differentjahon in system form to the
known estimatésfor the micro-energy/ = (h(t, £)a, Dy2)”, which yields by Leibniz rule

/-1
DU = A(t, ), DU =% <€ ;j) (D" A(t, €))DL . (5.3.4)

Now we can prove by induction ovéthe following statement for the fundamental soluté&in, 0, &),
which brings no improvement by taking higher order derivatives in

Lemma 5.14. Assume (A1), (A4together with (C1). Then the estimate
‘

IDE(E0.911 S 555 2 (h(t.€) + b (#)£m<i<s>f
N0 1+1¢ ~

m=0 )\(t)
holds.
We obtain even more. Applying (5.3.4) recursively, we get
-1
pie(r0.6) = 3 (1) OPAC oD 0.9 = - = B(r.OE0.6)
m=0

whereB(t,£) = F(A,D;A, - -- ,D{A) defines a symbol of ordéruniform in the variable. Thus, we
obtain not only the resulting>~L? estimate foD{£(t, 0, ¢), but also an.P—L? estimate.

Theorem 5.15. Assume (A1), (A4together with (C1). Then thEP—L? estimate

‘ < 1 _nT—l(;_;)
”Dtg(t’OaD)Hp,(r-l—f)—»q = m(l =+ t) P q

holds for dual indicepq = p + ¢, p € (1,2] and with regularityr = n (% — %)

Using, that the main contribution d#(t, £) comes fromA(t, £)¢,

-1 1+m
B(t,€) = (At ( <1+t> |£|“‘m>, (1+1)lg] — oo,

M7 'B(t, )M = M~? (’ﬂ > M+0(¢ a4+,

(=1 lel’
and, therefore, the modified scattering results of Theorem 3.26 imply tinergss of the above given

estimate. Using the previously introduced notation for the higher ordergenpagatorsEs (¢, D), we
obtained the following (sharp) estimate, which is independerit and/.

Corollary 5.16. For all k,¢ € Ny, k& > max{¢, 1} it holds

”Eﬁ (t, D)llpyr—q S )\(1)(1 +t)_%(%_%>

for dual indicespqg = p + ¢, p € (1, 2] and with regularityr = n (% — %)

"We usepaiss anden,, as smooth functions in order to differentiate the coefficient matrix, cfdéfmition of the micro-
energy and the introduction of these functions on page 44.
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Thus, as already mentioned, for the case of non-effective weak disighigher order derivatives
have the same time-asymptotic behaviour as the energy. This is closely relgttecagymptotic rela-
tion to free waves and the modified scattering theory introduced in Section 3.5.

5.3.2 Effective dissipation

In the case of effective dissipation, we can use essentially the same atgumithin the hyperbolic
part for large frequencies],,, N {|£| > c}, like in the case of non-effective weak dissipation. The
crucial point is to estimate the small frequenciedliyy, N {|¢| < ¢}. For this, we follow the idea of
Lemma 4.19 and recall, that the entriesEff(, ¢) are multiples ofd; ®;(¢,0,&). Let t¢ denote the
lower boundary of the elliptic zone, i.&(ts) ~ |¢| for large¢ in the case of strong dissipation.

Lemma 5.17. Assume (B1) — (B3) and (B4). Then for all(¢,&) € Z.i(co,e) N {t > to} the
pointwise estimate

ppeieals X (B (1) e {—15\2/; %}

ptv=~L
u>1

holds.

Proof. The proof goes by induction ovér For/ = 1 the statement is contained in Corollary 4.20. For
£ > 1 we assume the induction hypothesis

0 it te, )1 S Y (%)M (%)Ve)cp{—kff /t:%}

ptv=e'
p>1

for all ¢ < ¢. Differentiating the equation
CI)z + ‘5’2@1' + b(t)q)z =0
¢ times with respect to yields
¢
l _
2 <5f+1<1’i> + (1) <8f+1‘1’z‘> = —[¢Pofd — ) <k> (8fb(t)> <8f kﬂ‘bi) =0y
k=1

with new right-hand sida&,(t, t¢, £). Its solution is given by

N (te) pov1g, t\2(r)
A2(t) 3# (I)z(tﬁatg,f)‘F/t& 2 (0) \I’z(T,tg,f)dT, (5.3.5)

O ®(t,te, &) =

which can be estimated by the induction hypothesis together with the estimate afidieatues
0F @ilte, te, )| S (), dk) N,

following directly by applying the equation to the initial valueg(t¢, t¢, £) ando; ®;(te, te, ) givenin
(2.1.7). Now the integral equation (5.3.5) together with these initial valuetheridduction hypothesis
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gives
8f+1<13i(t7t5’5)) §);\22((tf)) ()50
2 = ﬁ#Luex _ZTﬁ T
+ [¢] /tg A2(t) %:Ie(b(f)) <1+ > p{ I3 /E b(e)}d

> 2 () () e e i
g O+ ¥ <‘§|:> () = { ’5'2/5 J?%}-

;H—l/ £+1

Furthermore, the first summand is subordinate to the second one. It holds

A2(te) bte)\ ! tdr
e 10 < (1650 exp{m? / W}

from

t et T) — v(r) o — 0 T
15exp{/t§( €55 +07) = (4 D0+ (4 D logl¢ 5<k>1g<s>)d}

Sew] / i (PO — 16 — €+ 0 + iy osle] Jar |

>1v2(7)>0, T>to
for large|¢|, while for small|¢| the estimate is obvious. O

In order to apply the previous lemma, we remark that each term of the form
LY o { e / ar
b(t) b(r)
1 ) N /t d_T K
br(t) o b(T))

To understand the influence of the different summands, we distinguisiebetilie case of effective
weak and the case of strong dissipation.

brings a decay rate of order

Proposition 5.18. Assume (B1) — (B3). Then it holds
tdr
b(t / — <it,
W J, 5

112



5.3 Energy estimates of higher order

if b/(t) <0, and
b(t) /t d_T >t
o b(r) ™ 7
if b/(t) > 0.

Proof. Integration by parts implies

tdr B trb (1)
o | m_t+b(7s)/0 o

and the statement follows immediately. O

Example5.24 With b(t) = (1 + )" with k € (—1, 1), we can calculate the expression explicitly and
get

b(t)/o % = ﬁ(l + )R~ t

The estimates of Proposition 5.18 are both valid(#j = 1+ ¢, thus if we takex = 1, only the second
estimate

todr
141 =1+t)log(l+t) =21+t
(140 [ =0+ nlosi+0 21+
holds.
The first theorem corresponds mainly to the case of effective weakaliss.

Theorem 5.19. Assume (B1) — (B3), (BA); together withy'(t) < 0. Then thel.>~L? estimate

k+£

1 tdr\ %
Ef(t,D)|a—e S - (1 —
” f(? )H2 2Nbg(t)( +/0 b(T))

holds for allk > ¢. Furthermore, the strong limit
t d %
Y T k _
i;horélb (t) (1 —i—/o _b(T)> E;(t,D) =0

is taken inL2 — L2,

For strong dissipation terms we use the second inequality of Proposition 5¢E8 the following
theorem. We distinguish between estimates containing time derivatives andstinhtes containing
only spatial derivatives. The latter ones are special cases of the sobstilmate of Theorem 5.12.

Theorem 5.20. Assume (B1) — (B3), (B4), together withb/(¢) > 0.
1. For/ = 0 the L>~L? estimate

[ES (£, D)2 S <1 * /Ot %y

holds for allk € Ny. Furthermore, if (B5) is satisfied, the strong limit

k
, bdr \?_,

k
2

is taken inL2 — L2,
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2. For/¢ > 1the L?—L? estimate

holds for allk > ¢ > 1. Furthermore, if (B5) is satisfied, the strong limit

: -1 tdr BB e
%;h;lolb(t)(l +t) B (1+/0 m) Eg(t,D) =0

is taken inL2 — L2

We proceed with some examples.

Example5.25 For damped waves, i.6(¢) = 1, we obtain the estimate

AR
EEED) e < (=) .
~\N1+t

In view of the definition of the higher order energy operator (5.3.3) warobk — ¢ spatial and’ time
derivatives and therefore the estimate coincides with the estimates giverMgtsumura, cf. formula
(5.3.1) with|a| = k — ¢.

Example5.26 Forb(t) = T% with sufficiently largey related estimates for higher order derivatives
were proven in Theorem 2.9. These estimates fit to the estimates of the abmvéhgorems. In this

case, the improvement by spatial and time derivatives is the same.
Example5.27. Forb(t) = (1 + ¢)" with k € (—1, 1) we obtain

kt+ly 1—k
5 =5k

IEG (£, D)]|2—2 S (1+ 1)~
The improvement rates for time and spatial derivatives are differerdlifar > —1. Time derivatives
bring more improvements on the decay order than spatial derivatives.

Example5.28 Forb(t) = (1 + t) time derivatives improve the decay rate by one order, while spatial
derivatives give logarithmic orders. It holds fér> 1

k—¢ 1

IEF (£, D)] |22 S (1+ )" (log(e +1))~ >,
while for ¢ =0 X
IS (£, D)[2—2 < (log(e+ 1)) 2.
Example5.29 If we setb(t) = (1 +t)log(1 +1t) - - - logl™(el™l + ¢) spatial derivatives give improve-
ments by the ratélog™ ! (em*1)) "', It holds

IEF (£, D)|]a—2 < (log(1 +1) - - - logl™! (el™ + t))‘1(1 + 1)~ (logMm U (elm+1 4 t))_¥_1

for ¢ > 0 and

k
2

|’E§(t7D)H2—>2 ,S (log[m+1](€[m+1] + t))
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5.4 The diffusion phenomenon for effective dissipation

Example5.3Q In case, that the over-damping condition (OD) is satisfied, i.e. if (B5) is td@dlahe
solution tends to a non-zero limit and, therefore, spatial derivativesrgivimprovement of the decay
at all. In this case we obtain

1
Ek D _ <_~ 1N 14

forallk > ¢> 1.

Similar to the case of non-effective dissipation the expressions obtainéide(t, t¢, ) in combi-
nation with the estimates for derivatives&ift, 0, &) in I1j,,,

1
OE,0,6)]| S — (6)°
allow us to conclude alsbP—-LY estimates for higher order energies. In the case of effective dissipation
these estimates are determined by the behaviour of small frequencies iresedigptiic part.
The following theorem is a consequence of Lemma 4.24 together with the idiwee q@froof of
Theorem 4.25.

Theorem 5.21. Assume (B1) — (B3) and (B4). Then forp € [1,2] and withg the corresponding
dual index theL.P—LY decay estimate

_ktl n(1_ 1
bel(t) <1+f(fb((1:)> ’ 2(p q)v v'(t) <0,
_k_n(1_1
B D)l 5§ (14 ft ) 52078, B(t) >0, £=0,

/—1 _k—t q_nf(1_1
%(ﬁ) <1+f0t%> 3 2(p q)) V() >0, 0> 1,

holds forr > n (% — %)

Remarks.31 While for¢ = 0 and¢ = 1 the constructed representations may be used to claim optimal-
ity for the estimates as norm-estimates, fas 1 we can not ensure the existence of a corresponding
term in the representation and, therefore, the optimality is not guaranteed.

Furthermore, fop € (1, 2] more diagonalization steps in the hyperbolic part together with a higher

regularity of the coefficient function may be used to obtain the sharp nityula= n (;} — %) For
p = 1 the above used regularity is sharp within the scale of Bessel potentiasspac

5.4 The diffusion phenomenon for effective dissipation

The estimates of higher order energies hint to an underlying parabolatwstewof damped waves and
wave equations with effective dissipation. As already pointed out in thedintton, Section 1.3.2, this
underlying parabolic structure can be expressed in terms of the so-d#fiesion phenomenon and the
asymptotics of the solutions to the damped wave equation are related to codgpsolutions of the
heat equation.

The aim of this section is to extend this result to the case of time-dependdiitieats. We relate
the solutions to our Cauchy problem

{utt — Au + b(t)ut = 0, (5 4 1)

u(0,) =uy, Dwu(0,-) = ug,
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5 Further results

to corresponding solutions of the parabolic problem

_ 1
we = g A (5.4.2)
w(0,-) = wy,

with related datavy. There arise two main difficulties in this section. On the one hand we have to find
an expression for the related daturg. In the case of the damped wave equation= wuq + ius is
used. On the other hand, we have to give a precise meaning to the asyngititanrbetween these
two Cauchy problems.

We will distinguish between two cases. A review of the estimates related to thesidiif phe-
nomenon for damped waves given by T. Narazaki in [NarO4] showas tiie relation to the heat equa-
tion holds in the neighbourhood of the exceptional frequehey 0, [Nar04, Theorem 1.1], while for
datau; andug with 0 ¢ supp(use, t2) exponential decay rates occur and the behaviour is a modified
hyperbolic one, [Nar04, Theorem 1.2]. In the latter case, the detaysratronger than the decay for
the parabolic problem. In our discussion of the diffusion phenomenonilwepeak of (frequency-)
local diffusion if this relation to one exceptional frequency occurs. Contrary to this @ti®@e4.4 we
observed that in case of an over-damping both, the solution of the digsipaive equation and the
solution of the corresponding parabolic equation tend to a (in generabnmnlimit ast — oo. We
will speak ofglobal diffusion if a relation to the corresponding parabolic problem takes place for all
frequencies.

5.4.1 The local diffusion phenomenon

The treatment of this section follows in some ideas the paper of T. Narakizki4]. Assumptions on
the coefficient are (B1) — (B3) together with (B4nd

* dr

‘LD’/O B -

to characterise the local diffusion phenomenon.
Under these assumptions, Theorem 4.11 implies with formula (4.2.18) @he- %b(t) the repre-
sentation

t
gV(ta th g) = <<§.>>’Y((:)) exp {[ <£>ry(7-) dT} Qell,o(ta tO? g) (543)
¥(to 0

for the fundamental solutioéy (¢, to, &) corresponding to the micro-enerdy. Furthermore, we have
Qei10(t, t0,&) — Qeuo(00, to, &) uniformly on compact subsets §f¢| < c} in the case of strong
dissipation.

The transformation back w@(t, &) yields (assuming that the choiég= 0 is possible)

S(t,&) = exp {/0 () — ’Y(T))dT} et Qer0(t,0,€)

for |¢| < c and the proof to Corollary 4.12 implies f6(oc, 0) = e Q. 0(c0, 0,0) the representation

6?@61170(00,0,()) = (172/0' )\;1—(:_)> .

Compared to the representation of solutions to the corresponding parnatwdilem,
t
dr

B(1,€) = Sp(t, € (€) = exp {—5|2 / ﬁ} (), (5.4.4)
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5.4 The diffusion phenomenon for effective dissipation

and thereforeo(t, 0) = w(0), this can be used as choice for the initial datum We set

w=m+m0“§%=Wmmmmwwﬂ (5.4.5)

and thusiV’ (¢) = (1,4 J5° 5355 (€)).

Example5.32 For the special cadét) = 1 this giveswy = u; + iug like it is used by T. Narazaki in
[Nar04] or K. Nishihara in [NisO3]. For the general constant dissipel{®) = by the representation
would bewy = u1 + = us.

Main result of this section is the following comparison of damped waves ahdi®ts of the
parabolic problem. Note, thitSp(t, D)||2_o = 1.

Theorem 5.22. Assume (B1) — (B3), (B#and (LD). Then in the case of strong dissipation
- tdr \ 7
S(t,D) — Sp(t, D)W (D)||2— 5(14—/ —> )
IS(t, D) — Sp(t, D)W (D)||2-2 e

while in the case of effective weak dissipation and under the further assm%ﬁf@wg € LYRy)

- 1+t tdr\
186.D) = Sp(. DI D)2 % 1o (1+ [ 5

Remark5.33 If the data satisfie® ¢ supp(i1,d2) (and equivalently0 ¢ supp o) both terms,
S(t, D) (u1, (D) "' up)” and Sp(t, D)W (u1, (D)~ ' uy)” tend to zero under Assumption (B5) (which
follows from (LD)). The statement is only of interest for neighbourhoofithe exceptional frequency

E=0.
Proof. Letc > 0. In view of Remark 5.33, it suffices to consider

We distinguish between the two cases of effective weak and strong dissipa
Case 1: Strong dissipatiomn the first case we assume tihét) > 2¢ > 0. Under this assumption only
the elliptic zone is of interest and we may use the representation {\ith= %b(t))

S(tv 5) = eXp {/0 ( <£>«/(7) - ’7(7-))d7-} G{Qell,O(t 07 g)v

where the matrix functiominem(t, 0,¢) tends uniformly to a non-zero limit @s— oo. This is a
direct consequence of Theorem 4.11 in connection with Corollary 4.12.
Furthermore, we know from Corollary 4.12, that

© dr
1Qe ,0,0—<1,'/ —)
e1 Qeir,0(00 ) { . ()

In order to understand the behavioura%?Qell’o(oo, 0,¢) in a neighbourhood of = 0, we differen-
tiate the integral equation (4.2.15) with respecttorhis yields fongQe”,l(t, s,&) with |a| = 1 a
corresponding integral equation with the same kernel and a furthezestarm

/St exp {/;(m(r, &) +iFy(T, &) — w(r, ,5)1)(17} R1(0,€) Q1 (0, 5,€)d6,
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R € Seug{ 1,0,2} + Seluoj{ 2,0,2} C SellE{ 1,0,2} (y(t) is bounded from below!) related
to the derlvatlve of?; and the derivative of the exponent, which itself is a symbol of ofde6,0}.
Thus, the boundedness @f; 1 (¢, s, £) together with the reasoning used for the proof of Theorem 4.11
implies continuity of the derivative and its uniform convergence. Togetli&rthe smoothness of the
diagonalizerVy (¢, £) and its inverse we obtain smoothnessp.; o(00, 0,¢) for small£. Higher
derivatives can be handled exactly the same way. Thus, together witkepeadence 0D, o on |¢|

by rotational symmetry of the problem, we obtain

€1 Qeit0(00,0,€) — €] Qe 0(00,0,0) = O(I¢]?), §— 0.

Furthermoree! Qg 0(00,0,&) — ef Quyo(t,0,€) = (ﬁ) ast — oo uniformly on compact
sets in¢ from the representation (4.2.16) anhd(¢,&) — I € 5100{ 1,0,1}.

ell,e

The main tool to get the desired estimate is the comparison of the leading termsayfrigentations.

It holds
o<en{-le [ 7 —en{ [ (€1 -r)er)

e ) el (e )

t gt g et
~Jo 3<T PEIO)

4 A . .
for small t|§‘t , while for large ones the second exponential becomes small. Thus ornesoltaer
this smallness assumption

srlette {—le [ 5 Q

t todr -2 1
SR <1+/0 27(7)) SRTOlEE)

by Proposition 5.18. The maximum of expression (*) is taken on a line mi‘hfot Qd(TT) ~ 1 and
again by Proposition 5.18 the above used smallness assumption followssihili@ess assumption is

violated the estimate follows directly

o {1 [ 3 SeXp{—C SIOP0 /0%} < exp {~C'VADT D)

using Proposition 5.18.
Combining all the estimates yields

A

-2

HS(tv é)_SP(t7 f)W(é) | ’L°°{|§\§c}

t
< \Sé?grl exp{/o ({E)riry — dT} et Qeuo(t,0,€)
9 todr
—exp{ €] 2900 }61 Qell,O(OO»OaO)H
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5.4 The diffusion phenomenon for effective dissipation

and

dr

exp {/Ot (&) — 7(7))(17} e1 Qeno(t,0,€) — exp {—|f|2 /Ot m} e1 Qeir0(00,0,0)

= <exp {/Ot ()yem — W))df} — exp {—|§|2 /Ot 23(77) }) ei Qeno(t;0,€)

<1

[\

—[¢]

td
+ exp /0' : } (e{Qell,O(t 0, 6) - e{Qell,O(ooz 0, 6))

t
—+ exp {_|§|2 /0' 27(7_) } (e{QeILO(ooa 07 6) - e{QeZLO(ooa 07 0))

'

SIER

1 tdar \ 7t tgr \ 7t
s (o [ (e [
(L4 )(t) o V(T) o V(T)
The estimate is determined by the behaviou@pf; (o0, 0, ) nearé = 0.
Case 2: Effective weak dissipatioti.b(t) — 0 ast — oo, we can not take the limit 0@, o(¢, 0, &)
fort — oo. Nevertheless, the leading terms of the representation cancel. Udhg/é can sety = 0

in the definition of the elliptic zone. Lei(t, {) be the characteristic function of the elliptic zone. Then,
similar to the treatment in the first case, we obtefiQ.;0(t,0,¢) — el W (0) = O(7t-7) for

(1+)v(t)
(t,€) € Zeu(0, €). Furthermore, the difference of the exponentials satisfies

o<en{-le? [ St e { [ (€, —merf s S (14 [ %)

similar to the treatment in the first case. Using Proposition 5.18 it follows

1 14t todr \ 2
T+ 070 ~ 23(0) (1 + W)

and, therefore,

= 1+t tdr \ 2
1(566.6) = Sp. WOt Ol £ g (14 [ 375)

which is determined by the difference of the exponentials in this case. Natahthline|¢|? fg % ~
1, where the maximum of the difference of the exponentials is taken, lies insiddlifitec zone for
larget.

It remains to show, that the difference decays faster outside the elliptic Fom|&| > ~(¢) we get

1Sp(t,)]| < exp {—b?(t) / %} < exp{—Ch(1)1),

ISl < exp{—cbug)tg}% < exp{—C'b(0)1},

and, thus, for both terms the bouexb{—Ct~(t)} follows, which decays faster. O

119



5 Further results

Remark5.34 Assumption (LD) was necessary to get controk|{f|* is not dominated by(¢). So
Condition (LD) guarantees, that the diffusion phenomenon of this forestalace only in neighbour-
hoods of the exceptional frequengy= 0. At least for effective weak dissipation we know, that for
|€] > ¢ > 0 the hyperbolic zone is essential and yields a close relation to a modified lojiperb
representation, cf. Figure 4.6.

Theorem 5.22 states an asymptotic equivalence for solutions of the digsipave equation and
the corresponding parabolic problem. A similar equivalence can be statspldtial derivatives, where
we use in the proof a further fact@® for small |£|.

Corollary 5.23. Under the assumptions of Theorem 5.22 and strong dissipation it holds
~ tgr\ 2
I8(.D) = Set DO 5 (14 [ 375)
0o b(7)
while in the case of effective weak dissipation

—_

+t tar\ e
180.0) = Sr(t. DIl < oy (14 [ 55)

5.4.2 The global diffusion phenomenon

The treatment of this section is closely related to the discussion of the caseredamping. If we
replace Assumption (LD) by

© dr

the exponentials

exp {/: (4€)1r) — %b(f))df} and  exp {—€|2 /: b(z—:)}

behave inside the elliptic part asymptotically equivalenttfes co. This is a direct consequence of

2 4
(€3 — 50(7) + % ~ bf(’T). (5.4.6)

We can formulate this equivalence in form of the existence of a corréegppiimit.
Theorem 5.24. Assume (B1), (B2), (B4Jogether with (SD). Then the limit

W) = lim Sp(t,6)7'S(t,6)
—00
exists locally uniform irg. Furthermore,W (&) # 0.
Proof. For S, (t,£)~!S(¢, ) we obtain the representation

Sp(t,€)I8(1,€) —exp { / (<5>7(T> — () + |§P%(T))d7} T Qunot 16, €)
te

o { [ (16505~ Jar} 0.9

and, due to the Assumption (SD), the exponential converges for oo to a non-zero limit, while,
due to Theorem 4.11, the limit @ff Q. o(,t¢, &) ast — oo exists. Furthermore, this limit is also
non-zero. ]
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5.4 The diffusion phenomenon for effective dissipation

Thus, if we take datdu,, us) with compact Fourier support, by the aid of Theorem 5.24 we can
construct datavy = W (D)(u1, (D) ug)T to the corresponding parabolic problem, such that the
solutions coincide asymptotically.

It turns out, that the functioV () increases exponentially i&. Therefore,IW (D) induces an
operator mappind.?-functions to Gevrey distributions. The importance of Theorem 5.24 lies in the
asymptotic equivalence of the multipliers localized to the elliptic part.
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6 Further developments and open problems

In this short concluding chapter we give an overview on related quastinosing in connection with
the considerations of this thesis. The list is not complete in any sense, itsimdy give some hints of
possible generalisations, applications and also parallel developments.

Influence of oscillations. In the language of the results of M. Reissig and co-authors, [RY00],
[Rei01], [RSO03], the coefficient functialh= b(¢) in our approach is allowed to have certain very slow
oscillations. For a variable speed of propagation the influence of oscilasamell understood and, if
we allow weaker assumptions on the derivatives, i.e. if we allow slow or fastroscillations, there
occurs a loss of decay for the energy. By means of an approachdredaiéoquet theory it can even be
shown that for arbitrary oscillations in the propagation speedfd.? decay occurs. In the case of a
periodic coefficient this is treated by K. Yagdjian in [Yag00].

In case of oscillations which do not influence the principal part direcHgillations may also have
deteriorating influences on the resulting estimates. Till now there exists ndptas of their precise
influence, even if we remain in the cases introduced in this thesis. For feceeffunctionb = b(¢)
oscillating around the critical ca®ét) = %H the influence of the decay estimate for the solution may
even be worse.

Domains. Throughoutthe thesis treated the Cauchy problem for a wave equatiotimétidependent
dissipation. It seems to be natural to ask for results on more general dorffaine treats the Dirichlet
problem on a domain with sufficiently smooth boundary representations ebthon and the energy
operator can be obtained in terms of a spectral calculus of the Dirichletstaieof the Laplacian. This
leads to representations in the Hilbert spaé&?) and can be used to deduce estimate&Zscale.

The representations obtained in this thesis can be used. With the ndiatien/—A the energy
operator is given ak&(¢, D) and the solution operator &, D) as analytic functions of the Dirichlet
Laplacian.

It turns out that one has to distinguish different cases,

e bounded domains (whereA has a pure point spectrum),
e unbounded domains without Poincaré inequality (). o(—A)),
¢ unbounded domains with Poincaré inequality (&\ is strictly positive).

In the first case only estimates irf-scale are of interest and one has only to distinguish between weak
and strong dissipation. For the latter cases alsel? estimates are worth to consider and at least for
exterior domains the behaviour may be guessed to be closely related to tthaiGduchy problem.

M. Yamaguchi treated in [Yam80] semi-linear perturbations of the dampeéd equation and the
Euler-Poisson-Darboux equation on bounded domains.

Exterior domains are considered in the papers of A. Matsumura, [Mdtlf Qesaka, [Ues80] and
F. Hirosawa and H. Nakazawa, [HNO3] to deduce energy estimatethefmore, in [Ike02] R. Ikehata
has proven the diffusive structure of damped waves in exterior domains.
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6 Further developments and open problems

Results for domains which are neither interior nor exterior are ratherrseidohe literature. Re-
cently P. Lesky and R. Racke, [LRO3], obtaing&-L¢ decay estimates for the wave and the Klein-
Gordon equation in so-called wave guides. These are domains of theisQc< R™ with a bounded
domain(2 with smooth boundary, such that Poincaré inequality is valid in them.

Abstract problems  of the form
uy + Au + b(t)ut =0

for a functionu(t) taking values in a Hilbert spacH and with a positive closed operatdr: H D
D(A) — H can be treated by the same arguments in terms of a spectral calculus foeth®ogp.

For the corresponding damped problem with) = 1 R. lkehata and K. Nishihara investigated in
[INO3] a corresponding diffusion phenomenon towards an absteaabplic problem.

A scattering theory for abstract Cauchy problems with time-dependerdtopd (¢) was developed
by A. Arosio in [Aro84]. The treatment is closely related to our approdc®eation 3.1.

Coefficients depending on both variables seem to be a closely related problem. Nevertheless,
there arise essential problems in dealing with

upy — Au+ b(t, x)up = 0, u(0,-) = u1, Du(0,-) = us..

The main point is that one has to control all frequencies in order to desharp operator estimates.
By means of the pseudo-differential calculus and a diagonalization/gieguprocedure J. Rauch
and M. Taylor obtained in [RT75] estimates of the solution and the energy ilCéhdn algebra
L(L?)/ (1) of bounded modulo compact operators.

The obtained pseudo-differential representations are closely relatad t@sults restricted to the
hyperbolic part. In case of non-effective dissipation their resultsfieats estimates in the operator al-
gebra. Our considerations show that for effective dissipation ternesigsisproperties of the solutions
are lost in this way.

A different approach to handle coefficients depending andx are so-called weighted energy in-
equalities. By means of this technique the cited results of A. Matsumura, [M&t7@esaka, [Ues80],
K. Mochizuki, [Moc77], [MN96] and F. Hirosawa / H. Nakazawa, [I@8], are obtained. All these
results are estimates ii?-scale and provide no further structural information on the represemiatio
solutions.

For coefficients depending anonly and under the strong effectivity assumption

b(x) > ¢o >0 forlarge values ofz|,

M. Nakao, [Nak01], has proveh”—L? estimates related to damped waves. His approach works on
general exterior domains with further effectivity assumptions near patteedoundary and is based
on L?-estimates for the local energy.

It is an interesting question to weaken the above effectivity assumptionrfg taand to consider
coefficients estimated from below like

b(x) > co (x)™

—1—e

for somea € (0,1). For the upper estimaté(z)| < (x) it is known from the scattering results
of K. Mochizuki, [Moc77], that the solutions are asymptotically free. Ong @@njecture that in this
case the samgP—L? estimates like for the free wave equation are valid.
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Recently T. Matsuyama, [Mat], considered coefficients dependingamdx, but supported only in
asetof the forn{(¢, z) | |z| < C(1+¢)*} with o € (0, 3). Under this assumption the dissipation term
is not effective and he obtaindd—L? estimates related to free waves and also a scattering result, both
based on local energy estimates.
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A Notation — Guide to the reader

A.1 Preliminaries

We useslantedext style for notions, we define or introduce in the text, wh#écsis used to emphasise
words and phrases and to underline links to other fields of researdhall@rts are completely split
into theorems and their proofs, at several passages a step by stgiderf results is preferred and
theorems are formulated as conclusions of these calculations.

In formulas, the brackefs (, { are used without special meaning in order to underline several levels.
Furthermore{-} is also used to denote sets. Bracket symbols with special meaning are

() which stands fofz) = /1 + |z|?,
|| denotes the absolute value of a scalar expression and for a matrix the
matrix of the absolute values of its entries,

€] with definition[¢] = [¢]/ (),

[] denotes the smallest integer larger then a given number,
[] = min{m € Z | z < m},

[ corresponds tdx | = max{m € Z | x > m},

-1 for a vector or a matrix denotes a sub-multiplicative matrix norm. We
use the row sum norm in applications.

The matrix norm has to be distinguished from norms in certain function spacgerator norms. The
corresponding space is used as index of this norm. Exceptions arethefitly used Lebesgue and
Bessel potential spaces, where we set

- 1lp =11+ Iz and - Alpr = 11 1lzy, -
Operator norms and operator spaces are denoted by an intuitive atation, e.g.

LP — L4 for £L(LP, L?), endowed with the norm topology, and
|- lp,r—q for the operator norm i, , — L9.

Furthermore, the asymptotic relations

f<g if there exists a constardt > 0, such that for all argumentg < Cg
holds,

fzg ifg < f,

f~g if fSgandg S f

for nonnegative functiong andg are used frequently. We uge~ g, if we need a stronger equivalence
of functions, the notion may vary from occurrence to occurrence alhtéhevexplained there. In these
cases the quotierft/g is more regular than just bounded from below and from above.
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A.2 Frequently used function spaces

We collect some of the function spaces occurring in this thesis together witbriedefinition:

LP(R™)
LPLT(R™ x R™)
Ly a(rmy
Lpa(R™)
H*(R"), H*(R™)

Hioo (Rn)
CH(R™)
C=(R")
Bk (R™)
B>(R")
S(R™)
S'(R™)
So(R™)
Sp(R™)
B; ,(R™)
F3 (R™)
B3 (R™), F3 (R™)

A(R™)

Lebesgue spaces,< p < o,

mixed spacel”L" (R" x R™) = LP(R", L" (R™)),

Bessel potential spaces, (R™) = (D)™ LP(R™),

Riesz potential spaces,, ,(R") = |D|~*LP(R") C Sp(R™),
special case fop = 2:

H*(R™) = Ly «(R™) and H*(R") = Ly 4(R™),

projective and inductive limit,

H*R") =N, H*(R") andH~>°(R") = |J, H*(R") = (HOO)’,
space ofc-times continuously differentiable functions,

inductive limit C>(R") = N, C*(R"),

BYR"™) = {f € CK(R")|D¢f € L™ V|a| < k},

inductive limit B=(R") = (), B*(R"),

Schwartz space of rapidly decaying functions,

S(R™) = {f € C=(R")|2°D{ f(x) € L™ Ya, 3},

space of tempered distributions,

space of Schwartz functions satisfying moment conditions of all orders,
So(R™) = {f € S(R™)Dgf(0) =0, Va},

(sometimes also denoted d$R"), cf. [RS96, 2.6]),

dual space ob,(R™), tempered distributions modulo polynomials,
Besov spac®; ,(R") = {f € S'(R")[2%7¢;(D) f € ¢1(LE)},
where{¢;(£)}jen, is dyadic partition of unity, [RS96],
Lizorkin-Triebel space, defined as

FpoR™) ={f € S'(R")|2%¢;(D)f € Li(¢5)},

corresponding homogeneous spaces (i.e. using a full dyadic decompo-
sition {¢;(£) }jez and replacings’ by S7,),

space of real analytic functions,

Besov and Lizorkin-Triebel spaces are independent of the chogaicddecomposition and the
resulting norms are equivalent. Due to its importance for the subject of this tinee mention also the
following multiplier spaces:

My (R™)

Sk

k
(0 S

space of multipliers inducing bounded translation invariant operators
LP — L9, [Hor60],

set of multipliers with symbol-like estimates of ordewith restricted
smoothness,

Sk = {m(&) € CYR™) | [Dgm(&)| < Ca ()", Ja] < £},

endowed with the induced locally-convex topology, = Séfoo),
corresponding spaces with homogeneous estimates,

Sty = {m(&) € C'R"\ {0}) | [Dgm(&)| < CalélF1o, Jaf < £},

ok _ Ok
Sh=gk .

129



A Notation — Guide to the reader

A.3 Symbols used throughout the thesis

Some of the symbols are used in all chapters of the thesis and for corsemtthe reader we will
collectthem here. The following list can also be seen as a list of definitiwiisdse auxiliary functions.
If the symbols are related to a particular chapter, we give also the conéisyy reference.

Our aim is the investigation of the Cauchy problem

Ou + b(t)us = 0, u(0,-) =u1, Diu(0,-) = ug (A.3.1)
with time-dependent dissipation tefrft)u,. Related to it we use

E(u;t) hyperbolic energyE (u; t) = 3 [(|Vul® + |u?)dz,
Q;(t,€),j=1,2 Fourier multlpller of the solution representation, i.es(t,§) =
> j=1.2P;(t,€)a;(8); itis a fundamental system of solutions to the or-

dinary differential equation; + || + b(t)d: = 0,

h(t,€) h(t,€) = 15 diss,n (£, €) +1€] Ghyp,n (¢, €) With the characteristic func-
tions ¢giss, v and oy, v Of the zones used in the case of non-effective
dissipation,

U(t,§) micro-energyl/ = (h(t,&)a, Dya)?, satisfiesD,U = A(t, &)U

E(t,s,§) fundamental solution t®; — A(¢,€), i.e. the matrix-valued solution to
D€ = A(t,€)E, E(s,5,&) =T € C**2,

50(t> 5, 5) gO(t’ 5, 5) = diag (exp((t - S)‘va exp((s - t)|§|))=

Er(t,s,8) fundamental solution of the system aftersteps of diagonalization,
k> 1,usedin Chapter 3,

A(t) A(t) = exp { fO }

Wi (€) multlpller corresponding to the Mgller wave operator (Section 3.1) or
the modified wave operator (Section 3.5),

E(t, &) multiplier corresponding to the energy operator

E(t,D) : ((D)u1,u2)” +— (|D|u,Dsu), it consists of the columns
Ej(t,¢) andEj (¢, ),

E’g(t, €) multiplier corresponding to the operator
((DY* uy, (DY ug)T — |DI*~!Dfu, Section 5.3,
S(t, &) multiplier corresponding to the solution operator
S(t,D) : (u1, (DY ug)T +— u, Section 5.2,
v(t, x) v(t,x) = A(t)u(t, z), used in Chapter 4,
~v(t),T admissible functiony(t), used in Chapter 4 to define the separating

curvel’ = {(t) = !5\}
(€)r) (€)1 = \/|I€]* = +2(t)| (Chapter 4),

V(ta 5) mlcrO energyV(t 5) (<§>'y(t) @7 Dtﬁ)T’
Ev(t,s,§) fundamental solution of the system fgi(¢, &),
Evi(t, s, &) fundamental solution after steps of diagonalization in the hyperbolic

and in the elliptic zone, Section 4.2.
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The purpose of this appendix is, to collect several basic tools, whicksaential for the results of this
thesis. They are well-known and, only if necessary and possible, etelsthe main ideas of the proof.

B.1 Bessel’s differential equation and Bessel functions

In Chapter 2 we used a reduction of our partial differential equation ss@&is equation in order to
represent solutions explicitly. Following the treatise of G.N. Watson, [Wat&&]collect some of the
most important formulae used throughout the calculations of Chapter 2.

There are several ways to define the Bessel functions. We will usetier geries expansion
o0 52k

Ay(2) =27"Tu(2) = ;(—1)k2u+2kp(k Tk +v+1)

(B.1.1)

to define theBessel function of first kind and orderc R, 7,(z). These functions satisfy the ordinary
differential equation

20" + 2w + (22 — vP)w = 0. (B.1.2)

For non-integral values ofthe functions?7, (z) and7_, (z) are linearly independent and therefore they
form a fundamental system of solutions. For integral valuesaie has to find a suitable replacement.
Due to H.M. Weber (and in this form L. Schlafli) one defines

Ju(z) cosvm — J_(2)

sin vm

Vo(z) = (B.1.3)

analytically continued te € C, and calls), (z) the Bessel function of second kind and ordeor,
shortly, Weber functiorof this order. To understand their properties for small arguments, oneiggay

the relation
(v — (v—r—1) 1)! v—=2r
=)

.- )

+Z(_1)r¢(r+y+1 _¢(T+1>+27 (§>V+
r=0

1/—1

2 (7 +10g2) Tu(2) — 7Vl

ﬁM

rl(v+r)! (B.14)

for integral values of.. In this formulay stands for the Euler-Mascheroni constant- —I''(1), and
1 denotes the Gaussianrfunction

I'(z2) =1
_ _ - B.1.
the last expression for = 1,2,.... The treatment of large real arguments is simpler, if one uses the
Bessel functions of third kind ddankel functionsThey are defined due to N. Nielsen as
HE(2) = To(2) £ iV (2) (B.1.6)
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and, contrary to the functions of first and second kind, they are convalered for real arguments. All
three kinds of Bessel functions satisfy the same kind of recurrenderedaWe will write down them
only for the Hankel functions. It holds, [Wat22, §3.61],

oy (2) + Mo (2) = —Hi (2), (8.1.72)
Hya(2) = i (2) = 2(H) (2), (8.1.7b)
VHE(2) 4+ 2(HE) (2) = 2HE [ (2), (B.1.7c)
vHE(2) — 2(HEY (2) = zHlij(z) (B.1.7d)

To understand these fundamental systems of solutions, it is of aid to knowatssWan. Following
the treatment of G.N. Watson, [Wat22, §3.63], it holds

W), 0(2) = — (8.18)
and, therefore, also
W(H; (2), H, (2)) = =20W(T0(2), Vo (2)) = —g. (B.1.9)
B.2 Fourier multiplier and multiplier spaces
By the aid of theFourier transform
f©) = Faelfl =m)F [ e pa)as ®.21)

with inverse]—"g_{x = F,_¢ extendible to isomorphisms, F~1:8(R") — S'(R"), we can use the

xTr—

description of translation invariant operators by so-caftedrier multipliers In our notation we write

m(D)f := FL [m(€) Fomelf]] (B.2.2)

for a suitably regular function or distribution(&), themultiplier. For details on operators of this kind
we refer to the treatment in the paper of L. Hormander, [H6r60].
Basic facts follow directly from the mapping properties of the Fourier tiansf

F: L*(R") — L*(R"™), unitary, (B.2.3)
F: L'(R") — Co(R™) € L™(R™), Coo(R™) = {f € C(R") | ‘xlliinoof(:r) =0}, (B.2.4)

together with Holder’s inequality. We denote foK ¢
M{(R") := {m(€) | m(D) : LP(R") — LI(R"™)}, (B.2.5)

the so-callednultiplier spacé. It is a Banach space endowed with the corresponding operator rorm. |
holds

Proposition B.1. 1. MZ(R") = L>(R"),

Forp > ¢ there exist no bounded translation invariant operators except thé tméa
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B.2 Fourier multiplier and multiplier spaces

2. MJ(R™) € M2(R™) forall p € [1, ],
3. MJ(R™) = M (R") for dualp andgq,
4. LY(R"™) C M (R"),
the same for the space of bounded complex measMigR") C M (R"),
5. M(R™) N MZ(R™) C M (R™) for arbitrary dual p andg.

Under regularity assumptions, the concatenation of such operatoespgonds to the multiplication
of the multipliers. This may be used to deduce mapping properties of given muliplieonnection
with the following characterisation.

Theorem B.2 (Marcinkiewicz multiplier theorem). Assumen(¢) € C*(R™\ {0}) for k = [2] and
IDgm(€)] < Calel™

for all |a| < k.2 Thenm € M} (R™) forall p € (1, c0).

A proof can be found in the book of E.M. Stein on singular integrals, [St€R@pter IV.3].

ExampleB.1. The multiplier R;(§) = &;/|¢| satisfies the assumptions of Theorem B.2 and defines,
therefore, a bounded linear operator

R;(D) : LP(R"™) — LP(R")

forall p € (1, 00), the so-called-th Riesz transformTogether with the formal unitarity
> Ri(D)R;(D) = I,
i=1

the operatol? = (Ry,...,R,)" forms an isomorphisnL?(R") — LP(R™,R"). Furthermore, to-
gether with
R(D)[D|f =V,
we deduce, that for afi € (1, co) the normg| |D|f||, and||V f||, are equivalent.
The casep = 1 andp = oo are exceptional.

To deducelM-properties, the oscillatory behaviour of the multiplier may be of importance. In
Chapter 2 we use a dyadic decomposition and mapping properties in Besmsgmmbined with the
stationary phase method. Basic tool is the following version of Littman’s lemma fadn the paper
of P. Brenner, [Bre75, Lemma 4].

Lemma B.3. Let P be a real and smooth function in the neighbourhooewfp ¢, ¢ € C5°. Assume
further, that the rank of the Hessidilip(¢) = (82P/8§i85j) is at leastp onsupp ¢. Then, there exists
an integerM, depending on the space dimension, and a constant 0, depending on bounds of
derivatives ofP onsupp ¢, such that

1F e POp@)lloe < C (72 Y- (DI

lal<M

holds.

2Thus, with the notation introduced on page 49 we need S2.
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For completeness, we give also a lemma which explains how to sample the estinatesdyadic
components. It is a combination of [Bre75, Lemma 1] and [Bre75, Lemma &, therefore (&)
be a dyadic decomposition satisfying (2.2.7). Basic idea of the proof aredfiriy relations between
Lebesgue and Besov spaces.

Lemma B.4. Leta € L*>(R") and assume that

17 a(©)x;(€)alllg < Cllvlly

holds uniform for all; and a dual pairp € (1, 2], pg = p + ¢. Then for a constantl independent of
it follows
17~ Ha(€)a]lly < AC 0]l

B.3 The Peano-Baker formula

First order systems of ordinary differential equations

%u = A(t)u, u(0) =ug € C" (B.3.1)
are solved in terms of the fundamental solutéti, s) asu(t) = £(¢, 0)ug. The matrix functior€ (¢, s)

is the solution to q
aé’(t, s) = A(t)E(L, s), E(s,s) =1e€C™™™. (B.3.2)

It is well known, that for a constant matrix this fundamental solution canxpeessed in terms of the
matrix exponential,

E(t,s) =exp((t —s)A), exp(A) =1 + Z — Ak, (B.3.3)
For variable coefficients this representation is not valid any more. Foratee completeness, we

give the representation used several times throughout our calculations.

Theorem B.5. Let A € L], (R, C"*™). Then the fundamental solutiéift, s) to 9, — A(t) is given by
the Peano-Baker formula

- t t1 tk—1
E(t,s) :I+Z/ A(tl)/ A(tQ)-“/ A(ty)dty, - - - dtodty.
k=1 S S S

The proof follows by differentiating the series term by term. To prove tmy@gence of the series
and its formal derivative one uses the domination by the exponential §glt@ging from Proposition
B.6.

Proposition B.6. Assume: € L}, (R). Then

/s () / ). / S )t diy

1/ [t k
< ol (/S \T(T)|d7') (B.3.4)

forall kK € N.
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B.4 Remarks on \olterra integral equations

The proof follows by induction ovet.
Corollary B.7. LetA € L} (R,C™™). Then the fundamental matré(t, s) satisfies

loc
el <en{ [ t lAlar .

In several applications we need not only the estimates for the fundamehittbs, but also state-
ments about its asymptotic behaviour and invertibility. It is convenient to useitderem of Liouville
in the following form, a proof may be found in standard text-books on difigal equations like the
one of V.I. Arnold, [Arn01], or M.V. Fedoryuk,Pen85].

Theorem B.8. Let A € L} (R,C™*"). Then the fundamental solutigiit, s) satisfies

¢
det E(t,s) = exp/ tr A(T)dr.

B.4 Remarks on Volterra integral equations

The estimate of Corollary B.7 is in general not sharp, to obtain better estimaese interested in
solutions to the Volterra equation

t
f(t,p) +/0 k(t,7,p)f(r,p)dT = (L, p) (B.4.1)
with kernelk = k(¢, 7, p) and right-hand sidé (¢, p) , both depending on some parameter P C R”.
Theorem B.9. Assume) € L>(Ry x P), k € L>°(R% x P) and
t
U p)lldr € (R x P).
0

Then, there exists a (unique) solutid(, p) of (B.4.1)in L>° (R, x P),

esssup |f(t,p)| < 0.

Sketch of the proofUniqueness of the solution follows for smalby the contraction mapping princi-
ple. It remains to show the global bound on the solution.
We may represent the solutions to this integral equation by the Neumann series

tp) = bt)+ S0 [ ttrn) [ kG )

k=1
th—1
. / E(ti—1,tr, p)p(ty, p)dty - - - dtadty
0

and use Proposition B.6 to conclude

1£2)lo < 19 1+fj/t||k<t e [ K12l -
yP)lloo > [e'e) k:10 alvpooo y 12, D)oo 1

< el { [ Ikl
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For results under weaker assumptions on the integral kernel we refer teeatment of G. Gripen-
berg, S.-O. Londen and O. Staffans, [GLS90].

For the applications we may take also domains for the parampetepending on both variables
andr. In this case one can trivially extent the kernel functign, 7, p) by zero to a larger common
parameter domain without changing the solution. This will be the case in most apglications.

Due to its importance for the understanding of the results in Chapter 4 wegésauxiliary appli-
cation of this theorem.

Theorem B.10. Assume

A(t,p) € L®(P, L}, (Ry,C™™)), diagonal, Re A(t,p) < a(t,p)I
B(t,p) € L>®(P, L' (R, ,C™™)).

Then the fundamental solutigh(¢, s, p) to 9, — A(t,p) — B(t, p) satisfies
t
letts.pll S exp [ atripiar}.

Sketch of proofln order to prove this, we consider the fundamental solufigi, s, p) to the system
0¢ — A(t,p) and conclude from

t
E(t,5,p) = exp { / A(T,p)df} | OuEs (1, 5.p) = —E5 (b 5, D) A(t.p),

that
O(Ey (8, p)E(t, 5,p)) = & ' (t,5,p)B(t,p)E(t, s,p).

Thus, we obtain the integral equation

t
(t.sp) = T+ Enlt,sp) [ &5 (s, p)Brp)E(r, 5. )
t
. / Eo(t,7,p)B(r,p)E(7, 5, p)dr,
which can be transformed to
t t
exp{—/ a(T,p)dT}g(t,s,p):exp{—/ G(T,p)dT}

° t ’ t

+ [ ew { [ 140 = atrp)riar b B e s,

Now the exponential term is bounded bynd the assumptions dB(t, p) an be used to conclude the
boundedness afp{— [ a(r, p)dT}E(t, 5, p) by Theorem B.9. O

RemarkB.2. If the parameter domaif® is compact and3(t, p) € C (P, L*(R,,C"*")), the second
condition onB is vacuous and follows from the!-property.
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B.5 Potential spaces

Under the notiomotential space ovek?, we understand a (in most cases dense) subspdde which
is representable as image of a Fourier multiplier and endowed with the indoomad mhus, for given
#(€) € MJ(R™), we consider

¢(D)LP(R") ={ ¢(D)f | f € L"(R") }
and define the norm in this space by

gllomo)ze g:gbf))f!\fllm
Using the reflexivity ofLP(R"), p € (1, c0), one obtains, that the infimum is really taken. The vector
spacep(D) LP(R™) with the norm|| - |[,p)z» forms a Banach space.

Special examples of such potential spaces are the well-known Bedsatipbspaced., ,(R") =
(D)™" LP(R™) used in this thesis as representations of fractional order SobolevsspeeR™ or the
sets[D]* LP(R™) of functions having a zero in the frequengy= 0 of orderk.3

Note, that for the definition of potential spaces only the residue clagsnebdulo invertible ele-
ments inM} (R™) is of interest. Translation invariant operators between such potentizésgan be
characterised using the classeg(R"). It holds (if the symbols are sufficiently regular functions such
that the multiplication is well defined in the multiplier space, [H6r60])

m(D) : o1 (D)LP(R") — ¢2(D)LI(R")  iff 63" (E)m(€)1(8) € M (R™).

For us the situatiop = ¢ = 2 is of special interest, wher®/2 (R") = L>(R"™).

3There exists a relation to decay assumptions, cf. Lemma 5.3 and thesi@tin Section 5.1.
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