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1 Introduction

1.1 Background

In mathematical physics, hyperbolic partial differential equations are used to describe evolutionary
processes with the property that information propagate with a finite speed. One of the simplest and
therefore standard models is that of thefree wave equation

utt − c2∆u = 0, (1.1.1)

wherec denotes the speed of propagation and∆ =
∑n

i=1 ∂2
i the usual Laplacian in Euclidean space.

This equation arises together with certain initial and boundary conditions if one models the oscillatory
behaviour of vibrating strings, membranes or the propagation of sound. Hereu = u(t, x) denotes a
displacement or a pressure and thus a time-dependent scalar field. In electrodynamics the unknowns
are the electric and the magnetic field, which satisfy in vacuum a related equation. The investigation of
this problem is related to names like J.R. d’Alembert, who solved the problem in one space dimension,
or J. Fourier who developed the method of Fourier series, while studying such kinds of problems. In
three space dimensions S.-D. Poisson understood the relation to geometry and spherical means and
gave a first explicit representation of solutions, later generalized by G.R.Kirchhoff.

In general, one can not expect that (1.1.1) models real-world problems.Oscillations of vibrating
strings and membranes are described by quasi-linear equations due to a relation between length/area
deformation and energy, the above given equation is the linearization at its trivial solution u ≡ 0.
A second idealisation is that in the above equation we excluded the influence of matter, the strings
oscillate in vacuum, the acoustics is considered inside an ideal gas and electrodynamics far away from
matter and charges.

The propagation of electro-magnetic waves inside matter but without free charges, as it takes place
inside conductors, is described by the so-calledtelegraph equation

~Ett − c2∆ ~E +
σ

ε
~Et = 0, (1.1.2)

wherec2µε = 1 andσ denotes the conductibility. Similar, for oscillations of membranes a dissipating
environment leads to the occurance of this kind of first order term.

For the study of wave and damped wave equations the introduction of a so-calledhyperbolic energy
is an important step. Inspired by physics one defines

E(u; t) =
1

2

∫ (
c2|∇u|2 + |ut|2

)
dx (1.1.3)

for a solutionu = u(t, x) of the wave equation (1.1.1) or thedamped wave equation

utt − c2∆u + but = 0 (1.1.4)

with positive coefficientb > 0. Then, if one integrates overRn or assumes Dirichlet boundary con-
ditions u(t, x)|∂Ω = 0 on a domainΩ with sufficiently regular boundary, integration by parts yields

7



1 Introduction

immediately

d

dt
E(u; t) =

∫ (
c2∇u · ∇ut + ututt

)
dx =

∫
ut¤cudx = −b

∫
|ut|2dx ≤ 0 (1.1.5)

for real-valued solutions. In the case of complex solutions the calculations are similar. As usual we
denote by¤c = ∂2

t − c2∆ thed’Alembertian. Later on we will setc = 1 and omit thec in the notation.
Thus, for free waves the energy is preserved,

E(u; t) = E(u; 0), (1.1.6)

while for damped waves it is monotonically decreasing. This simple calculation gives no information
whether it tends to zero or remains positive for all times. The question for theprecise decay rate and
the asymptotic description of the solutions may be an old question, but it is still a young and active
research area.

1.2 Objectives

The aim of this thesis is to give a contribution to this research field by studying special classes of time-
dependent dissipation terms and their influence on the asymptotic properties of the solutions. To be
more concrete, we investigate the Cauchy problem

¤u + b(t)ut = 0, u(0, ·) = u1, Dtu(0, ·) = u2, (1.2.1)

where¤ = ¤1 = ∂2
t − ∆ andDt = −i∂t in the case of Schwartz or Sobolev data. Main tasks are

• to understand structural properties of the solution in terms of structural properties of its repre-
sentation,

• the derivation of energy and more generalLp–Lq decay estimates for dual indicesp andq,

• asymptotic descriptions of the solutions and, related to that, the sharpness ofthe obtained decay
estimates,

• ideas to classify dissipation terms related to their influence on the representations.

Energy decay estimates for variable coefficient dissipation terms are available from the literature un-
der several assumptions. We refer only to some of the most cited references, the concrete relation to
our results will be given later throughout the main part of the thesis. Basic results for the Cauchy
problem or initial boundary value problems on exterior domains are the weighted energy inequalities
based on the paper of A. Matsumura, [Mat77], later reconsidered by H.Uesaka in [Ues80] or F. Hi-
rosawa and H. Nakazawa, [HN03]. Furthermore, K. Mochizuki gavein [Moc77] and later together
with H. Nakazawa in [MN96] the answer to the question under which conditions the hyperbolic energy
tends to zero.

So the main objective of this thesis is the derivation of the more generalLp–Lq estimates for solu-
tions. These estimates rely on more structural properties of representations of solutions than estimates
in the L2-scale and can not be deduced by the same methods as the above mentioned results. Our
approach is based on the one hand on explicit representations in a special case and on the other hand
on asymptotic representations combined with an extensive phase plane analysis under more general
assumptions, mostly adapted from the treatment of degenerate hyperbolic problems. For completeness
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we mention the book of K. Yagdjian, [Yag97], and the consideration of wave equations with increasing
speed of propagation by M. Reissig and K. Yagdjian, [RY00], for the combination with dissipation and
mass terms [Rei01] and [HR03]. The method we used is based on the Fouriertransform and Fourier
multiplier representations (also called WKB representations) of solutions, therefore we consider only
purely time-dependent dissipation terms. The consideration of time and spatialdependencies in the co-
efficient in the language of pseudo-differential and Fourier integral operators yields essential difficulties
in connection with the time asymptotics and is therefore not considered here.

The schedule is as follows. First, we give a short overview on known and now merely classical
results forLp–Lq estimates in the case of free and damped wave equations. Furthermore, we will
sketch some of the main results of the thesis related to these classical results. This will complete this
introductory chapter. Later on in Chapter 2 we study one of the most important examples for time-
dependent dissipation, the scale-invariant or the Euler-Poisson-Darboux type equation. It turns out that
this example provides us with a lot of ideas and gives some feeling for the moregeneral results proven
later. Chapters 3 and 4 contain the main ideas and provide the solution representations for the two
occurring cases of dissipative wave equations and their applications to derive Lp–Lq decay estimates
together with their sharpness. Later on, in Chapter 5 we are concerned with estimates for solutions
and estimates for higher order energies. Furthermore, the so-called diffusive or parabolic structure of
damped wave equations will be considered there.

1.3 Asymptotic properties for special model equations

1.3.1 The Cauchy problem for free waves

As mentioned before, for free waves the hyperbolic energyE(u; t) is a preserved quantity. In contrast
to this the solution spreads out with a constant speed of propagation. This means, if the data are given
within a ball of radiusR, after timet the solution lives in a ball of radiusR + ct. In odd-dimensional
space the Huygens’ principle is valid and free waves have also a backward wave front, and therefore,
the solution vanishes inside a ball of radiusct − R for ct ≥ R.

The conservation of energy heuristically gives for this enlarging regiona decay of the solutions in
L∞(Rn). The decay rate may be guessed from the spreading of this angular domain.1 If one assumes
that the solution is bounded and distributes in a uniform way one may guess

||(∂t,∇)u(t, ·)||2∞ meas
(
B(R + ct) \ B(ct)

)
∼ const (1.3.1)

and therefore

||(∂t,∇)u(t, ·)||∞ ∼ (1 + t)−
n−1

2 , n odd. (1.3.2)

Of course, this reasoning is incomplete and can only be used to get the& part of the statement.
A rigorous proof of the. estimate can be deduced from explicit representations of solutions like

the Kirchhoff formula and was given by W. von Wahl, [vW71]. Using representations by Fourier
multipliers these estimates arise in papers of W. Littman, [Lit73], R.S. Strichartz, [Str70], P. Brenner,
[Bre75], and H. Pecher, [Pec76], to name just a few of the most cited references. The usual form of
theseLp–Lq estimatesis obtained by interpolating theL∞-estimate for the derivatives with the simple

1This intuitive motivation for theL∞-decay of free waves is taken from a talk of O. Liess given at the Workshop “Pseudo-
differential Methods for Evolution Equations” at the Bimestre Intensivo “Microlocal Analysis and Related Subjects” at
the Universitá di Torino/Politecnico di Torino, May-June 2003.
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1 Introduction

conservation property for the hyperbolic energy and reads as

||(∂t,∇)u(t, ·)||Lq ≤ C(1 + t)
−n−1

2

(
1
p
− 1

q

){
||u1||W Np+1

p
+ ||u2||W Np

p

}
(1.3.3)

for p ∈ [1, 2], q the corresponding dual index, i.e.pq = p + q, andNp =
⌈
n

(
1
p − 1

q

)⌉
+ 1. This

formulation of the estimate is taken from the book of R. Racke, [Rac92, Chapter 2].
It may be extended to more generalp andq forming a not necessarily dual pair, furthermore the

regularity may be improved forp ∈ (1, 2] using Besov spaces.

1.3.2 Damped wave equations

Now we turn to the consideration of solutions to (1.1.4), where the hyperbolicenergy is monotonically
decreasing. The first one who proved sharp decay estimates for solutions to the Cauchy problem was
A. Matsumura, [Mat76]. He showed, that

||Dk
t D

α
xu(t, ·)||L2 ≤ C(1 + t)−k− |α|

2 {||u1||Hk+|α| + ||u2||Hk+|α|−1} (1.3.4)

and anL2–L∞ estimate of the form

||Dk
t D

α
xu(t, ·)||L∞ ≤ C(1 + t)−

n
4
−k− |α|

2 {||u1||Hdn/2e+k+|α| + ||u2||Hdn/2e+k+|α|−1} . (1.3.5)

Both estimates can be improved by assuming a furtherLp-property of the data,p ∈ [1, 2]. For the
complete structure of these improved estimates we refer to the original paper of Matsumura, [Mat76]
or the discussions later on in this thesis.

These decay estimates show a difference in the decay order for time and spatial derivatives like for
parabolic equations. We remark, that estimates (1.3.4) and (1.3.5) coincide inthe decay order with the
corresponding estimates for the heat equation given e.g. in the paper of G. Ponce, [Pon85].

In particular the estimates imply a decay rate for the hyperbolic energy of the form

E(u; t) = O(t−1), t → ∞. (1.3.6)

The estimates of Matsumura hint to an underlying parabolic structure. The works of Yang H. and
A.J. Milani, [YM00], K. Nishihara, [Nis97], [Nis03], [MN03], and T. Narazaki, [Nar04], make this
relation more precise. The observation is referred to as thediffusion phenomenonand goes back to a
result of Hsiao L. and Liu T.-P., [HL92], for the compressible flow through porous media.

If we consider the two Cauchy problems
{

¤u + ut = 0,

u(0, ·) = u1, Dtu(0, ·) = u2,
and

{
wt = ∆w,

w(0, ·) = w0 = u1 + iu2,

the solutions behave asymptotically equivalent in the sense that, [YM00, Theorem 2.1],

||u(t, ·) − w(t, ·)||L∞ = O(t−
n
2
−1), t → ∞, (1.3.7)

or, in three space dimensions and withv related to the solution of the free wave equation to data
u1, u2 ∈ Lp(Rn), p ∈ [1,∞], [Nis03, Theorem 1.1],

||u(t, ·) − w(t, ·) − e−
t
2 v(t, ·)||Lq ≤ C(1 + t)

− 3
2

(
1
p
− 1

q

)
−1||(u1, u2)||Lp (1.3.8)

10



1.3 Asymptotic properties for special model equations

for p ≤ q. This means, the norm of the difference(u − w) decays faster than the norm ofu andw
itself (where the decay rates obtained by A. Matsumura are sharp). Furthermore, if we exclude the case
p = q = 2, the solutions of the free and also of the damped wave equations are less regular thanLq.
Thus at least some weak singularities cancel on the left hand side and arethus described by the free
wave equation and decay likee−

t
2 .

Recently, T. Narazaki, [Nar04], generalized this result of K. Nishihara to arbitrary space dimensions
n ≥ 2. He showed that the restriction of the solution to small frequencies can be described by the heat
equation, while large frequencies behave up to an exponential decay factor like a modification of free
waves.

One consequence of these estimates is that for the semi-linear damped wave equation

¤u + ut = |u|p, (1.3.9)

the critical exponent for global existence of small data solutions is given by the Fujita exponents
pc(n) = 1 + 2/n, [Fuj66], like for parabolic equations. This result is due to G. Todorovaand B. Yor-
danov, [TY01], and independently to [Nis03] forn = 3.

1.3.3 Damped wave equations on domains

For completeness we will give two remarks on damped wave equations on domains. Let for thisΩ ⊆
R

n be a domain with smooth boundary. Then for the initial boundary value problem




¤u + ut = 0, x ∈ Ω, t ≥ 0,

u(0, ·) = u1, Dtu(0, ·) = u2, x ∈ Ω,

u(t, x) = 0, x ∈ ∂Ω, t ≥ 0,

(1.3.10)

where for simplicity the compatibility conditionsu1

∣∣
∂Ω

, u2

∣∣
∂Ω

= 0 are assumed2, the situation is quite
different and results depend on geometric properties of the domain.

If the domainΩ is bounded, the hyperbolic energy decays exponentially, i.e. there existsa constant
c such that

E(u; t) = O(e−ct), t → ∞. (1.3.11)

This result is merely classical and proven for general dissipative systems with variable coefficients by
M.E. Taylor and J. Rauch, [RT74]. For the case of constant dissipationit can be obtained by the energy
method combined with Friedrichs inequality.

The situation appears to be quite different, if the domain is exterior. In this case the energy decay rate
is the same as for the Cauchy problem. Furthermore, following R. Ikehata, [Ike02], the diffusion phe-
nomenon is also valid in this case. He proved for the solutionu of (1.3.10) andw of the corresponding
parabolic problem





wt = ∆w, x ∈ Ω, t ≥ 0,

w(0, ·) = w0 = u1 + iu2, x ∈ Ω,

w(t, x) = 0, x ∈ ∂Ω, t ≥ 0,

(1.3.12)

theL2-estimate

||u(t, ·) − w(t, ·)||L2 ≤ C(1 + t)−
1
2 [log(e + t)]−1 {||u1||H2 + ||u2||H1} , (1.3.13)

2as long as the data are regular enough to give these conditions a meaning
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1 Introduction

while the solutionsu andw are in general only bounded (and not decaying). In view of the estimates
by K. Nishihara, [Nis03], and in general T. Narazaki, [Nar04], R. Ikehata conjectured that the sharp
rate for the exterior problem will also be(1 + t)−1.

1.4 Selected results

We will conclude this introductory chapter with several selected results of the thesis. For simplicity, and
in order to make the situation not to complicate, we assume here that the coefficient functionb = b(t)
is a positive, smooth and monotone function oft, which satisfies

∣∣∣∣
dk

dtk
b(t)

∣∣∣∣ ≤ Ckb(t)

(
1

1 + t

)k

(1.4.1)

for all k ∈ N0.
The first result is mentioned for completeness. It states that integrable coefficients are asymptotically

negligible.

Result 1. Assume
∫ ∞
0 b(t)dt < ∞. Then the solutions of(1.2.1)are asymptotically free.[Theorem

3.1]

In fact, this result is a special case of the following one. We denote by

λ(t) = exp

{
1

2

∫ t

0
b(τ)dτ

}
(1.4.2)

an auxiliary function.

Result 2. Assumelim supt→∞ tb(t) < 1. Then the solutionu = u(t, x) of (1.2.1)satisfies theLp–Lq

estimate

||(∂t,∇)u(t, ·)||Lq ≤ C
1

λ(t)
(1 + t)

−n−1
2

(
1
p
− 1

q

) {
||u1||W Np+1

p
+ ||u2||W Np

p

}
(1.4.3)

for p ∈ (1, 2], q the corresponding dual index andNp >
(

1
p − 1

q

)
. [Theorem 3.24]

Furthermore,λ(t)u(t, x) is asymptotically free.[Theorem 3.26]

We will refer to dissipation terms, which lead to this kind of estimates, asnon-effective (weak)
dissipation. Non-effectivity means that the asymptotic properties are still described bythe free wave
equation, at least after modifying it by the energy decay rateλ−1(t).

Related to this case is the coefficient function considered in Chapter 2,b(t) = µ
1+t . Then the resulting

Lq–Lq decay estimate depends on the size of the coefficientµ and the value ofp. For large values ofµ
there is some relation to the following case, referred to aseffective dissipation.

Result 3. Assumetb(t) → ∞ ast → ∞. Then the solutionu = u(t, x) of (1.2.1)satisfies theLp–Lq

estimate

||(∂t,∇)u(t, ·)||Lq ≤ C

(
1 +

∫ t

0

dτ

b(τ)

)−n
2

(
1
p
− 1

q

)
− 1

2 {
||u1||W Np+1

p
+ ||u2||W Np

p

}
(1.4.4)

for p ∈ (1, 2], q the corresponding dual index andNp > n
(

1
p − 1

q

)
. [Theorem 4.25]
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1.4 Selected results

In this case the question of sharpness of the above estimate is closely relatedto the diffusion phe-
nomenon. Note that for the corresponding parabolic surrogate,

wt =
1

b(t)
∆w, (1.4.5)

the above givenLp–Lq estimate is sharp in the decay order. In order to state the sharpness of Result
3, we therefore show that the differencev(t, x) = u(t, x) − w(t, x) decays faster than the above given
rate. Forp = 2 this is done in Theorem 5.22 and Corollary 5.23.

In the case that1/b(t) becomes integrable, Result 3 gives no decay at all. This case will be referred
to as the case ofover-dampingand is characterised by the following remarkable property.

Result 4. Assume
∫ ∞
0

dτ
b(τ) < ∞. Then the solutionu = u(t, x) of (1.2.1)with data fromL2(Rn) ×

H−1(Rn) converges ast → ∞ to the asymptotic state

u(∞, x) = lim
t→∞

u(t, x)

in L2(Rn). Furthermore, this limit is non-zero for non-zero initial data.[Theorem 4.27]
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1 Introduction
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2 Scale-invariant weak dissipation

In this chapter we are concerned with the Cauchy problem

¤u +
µ

1 + t
ut = 0, u(0, ·) = u1, Dtu(0, ·) = u2 (2.0.1)

with a special choice of a time-dependent dissipation term. The coefficientµ is non-negative real
number. The main result is collected in Theorem 2.1 and allows us to conclude energy andLp–Lq

decay estimates, Theorems 2.7 and 2.8, (published in [Wir04]) and alsoLp–Lq estimates for higher
order energies, Theorem 2.9.

This Cauchy problem is of particular interest for several reasons. Atfirst this equation has more
symmetries than other problems with variable coefficient dissipation. If we apply an hyperbolic scaling,
i.e. if we substitute the variables according to

ũ(t, x) = u(σ(t + 1) − 1, σx) (2.0.2)

with σ > 0, the functionũ satisfies the same problem with related data. We say, equation (2.0.1)
is scale-invariant. As will be seen later, this implies that we can compute explicit representations of
solutions in terms of knownspecial functions.

Problem (2.0.1) is closely related to the Euler-Poisson-Darboux (EPD) equation

∆u = utt +
µ

t
ut, (2.0.3)

studied by L. Euler, [Eul70, Sectio secunda, Caput IV], and G. Darboux, [Dar89, Libre IV, Chapitre
III], and later L. Asgeirsson, [Asg36], in connection with the theory ofspherical means. For an detailed
exposition of classical results for the Euler-Poisson-Darboux equationsee the paper of A. Weinstein,
[Wei54], and the literature cited therein. More closely related to our approach is the treatment of
the Euler-Poisson-Darboux equation in the book of R.W. Carroll and R.E.Showalter, [CS76], where
convolution representations of solutions to the (singular) Cauchy problemfor the EPD equation were
given.

The special Cauchy problem considered in this chapter turns out to be thebasic example for a wave
equation with time-dependent dissipation. On page 30 we give an interpretation of one of the main
results and relate it to the forthcoming considerations of this thesis.

2.1 Multiplier Representation

Reduction to Bessel’s equation. At first we construct the fundamental solution of the corre-
sponding ordinary differential equation in the Fourier image. Letû(t, ξ) = Fx→ξ[u] be the partial
Fourier transform,

û(t, ξ) = (2π)−
n
2

∫

Rn

e−ix·ξu(t, x)dx. (2.1.1)

15



2 Scale-invariant weak dissipation

Thenû satisfies the ordinary differential equation

ûtt + |ξ|2û + µ
1+t ût = 0. (2.1.2)

Following K. Taniguchi and Y. Tozaki, [TT80], we use the relation of this differential equation to
Bessel’s equationin order to construct a system of linearly independent solutions. We substitute τ =
(1 + t)|ξ| and get

ûττ + µ
τ ûτ + û = 0. (2.1.3)

If we make the ansatẑu = τρw(τ) this leads to

0 =ρ(ρ − 1)τρ−2w + 2ρτρ−1w′ + τρw′′

+
µ

τ
(ρτρ−1w + τρw′) + τρw

+τρ−2
(
τ2w′′ + (µ + 2ρ)τw′ + (τ2 + ρ(ρ − 1 + µ))w

)
,

i.e. by the choice ofµ + 2ρ = 1,

ρ = −µ − 1

2
, (2.1.4)

and henceρ − 1 + µ = −ρ, we get Bessel’s differential equation

τ2w′′ + τw′ + (τ2 − ρ2)w = 0 (2.1.5)

of order±ρ. Note that our assumption onµ impliesρ ∈ (−∞, 1
2 ]. A system of linearly independent

solutions of (2.1.5) is given by the pair of Hankel functionsH±
ρ (τ). For details on these functions we

refer to the treatment in the book of G.N. Watson, [Wat22], or the short overview on basic properties
contained in Appendix B.1.

Hence
w+(τ) = τρH+

ρ (τ), w−(τ) = τρH−
ρ (τ), (2.1.6)

with ρ determined by (2.1.4) gives a pair of linearly independent solutions of (2.1.3).

Representation of the Fourier multiplier. We are interested in particular solutionsΦ1(t, t0, ξ)
andΦ2(t, t0, ξ) of (2.1.2) subject to initial conditions

Φ1(t0, t0, ξ) = 1, DtΦ1(t0, t0, ξ) = 0, (2.1.7a)

Φ2(t0, t0, ξ) = 0, DtΦ2(t0, t0, ξ) = 1, (2.1.7b)

where the parametert0 > −1 describes the initial time level in order to obtain a representationû(t, ξ) =
Φ1(t, 0, ξ)û1(ξ) + Φ2(t, 0, ξ)û2(ξ). We collect theseΦi in the fundamental matrix

Φ(t, t0, ξ) =

(
Φ1(t, t0, ξ) Φ2(t, t0, ξ)

DtΦ1(t, t0, ξ) DtΦ2(t, t0, ξ)

)
. (2.1.8)

Forw±(t, ξ) = w±((1 + t)|ξ|) we have the following initial values

w+(t0, ξ) = (1 + t0)
ρ|ξ|ρH+

ρ

(
(1 + t0)|ξ|

)
, (2.1.9a)

∂tw+(t0, ξ) = (1 + t0)
ρ|ξ|ρ+1H+

ρ−1

(
(1 + t0)|ξ|

)
, (2.1.9b)

w−(t0, ξ) = (1 + t0)
ρ|ξ|ρH−

ρ

(
(1 + t0)|ξ|

)
, (2.1.9c)

∂tw−(t0, ξ) = (1 + t0)
ρ|ξ|ρ+1H−

ρ−1

(
(1 + t0)|ξ|

)
, (2.1.9d)
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2.1 Multiplier Representation

which follow straightforward from the recurrence relations for Besselfunctions. For instance we have

d

dt

[
(1 + t)ρ|ξ|ρH+

ρ ((1 + t)|ξ|)
] ∣∣

t=t0

= ρ(1 + t)ρ−1|ξ|ρH+
ρ ((1 + t)|ξ|)

∣∣
t=t0

+ (1 + t)ρ|ξ|ρ(H+
ρ )′((1 + t)|ξ|)|ξ|

∣∣
t=t0

=

(
(1 + t0)|ξ|

(
H+

ρ )′((1 + t0)|ξ|) + ρH+
ρ ((1 + t0)|ξ|)

)
|ξ|ρ(1 + t0)

ρ−1

= (1 + t0)
ρ|ξ|ρ+1H+

ρ−1

(
(1 + t0)|ξ|

)
.

From these initial values we determine the constantsCi±(t0, ξ) in

Φi(t, t0, ξ) = Ci+(t0, ξ)w+(t, ξ) + Ci−(t0, ξ)w−(t, ξ), i = 1, 2, (2.1.10)

such that (2.1.7) holds. This means, they have to satisfy
(

w+(t0, ξ) w−(t0, ξ)
Dtw+(t0, ξ) Dtw−(t0, ξ)

) (
C1+(t0, ξ) C2+(t0, ξ)
C1−(t0, ξ) C2−(t0, ξ)

)
= I. (2.1.11)

Hence, we have
(

C1+(t0, ξ) C2+(t0, ξ)
C1−(t0, ξ) C2−(t0, ξ)

)
=

i

detW (t0)

(
Dtw−(t0, ξ) −w−(t0, ξ)
−Dtw+(t0, ξ) w+(t0, ξ)

)
, (2.1.12)

where

det W (t0) = det

(
w+(t0, ξ) w−(t0, ξ)

∂tw+(t0, ξ) ∂tw−(t0, ξ)

)

= (1 + t0)
2ρ|ξ|2ρ+1 det

(
H+

ρ

(
(1 + t0)|ξ|

)
(H+

ρ )′
(
(1 + t0)|ξ|

)

H−
ρ

(
(1 + t0)|ξ|

)
(H−

ρ )′
(
(1 + t0)|ξ|

)
)T

= −4i

π
|ξ|2ρ(1 + t0)

2ρ−1, (2.1.13)

using formula (B.1.8). Thus, we obtain for the fundamental solution

Φ1(t, t0, ξ) =
iπ

4
|ξ|−2ρ(1 + t0)

1−2ρ

{
(1 + t0)

ρ|ξ|ρ+1H−
ρ−1

(
(1 + t0)|ξ|

)
(1 + t)ρ|ξ|ρH+

ρ

(
(1 + t)|ξ|

)

− (1 + t0)
ρ|ξ|ρ+1H+

ρ−1

(
(1 + t0)|ξ|

)
(1 + t)ρ|ξ|ρH−

ρ

(
(1 + t)|ξ|

)}

=
iπ

4
|ξ| (1 + t)ρ

(1 + t0)ρ−1

{
H−

ρ−1

(
(1 + t0)|ξ|

)
H+

ρ

(
(1 + t)|ξ|

)

−H+
ρ−1

(
(1 + t0)|ξ|

)
H−

ρ

(
(1 + t)|ξ|

)}
(2.1.14a)

and similarly

Φ2(t, t0, ξ) =
π

4

(1 + t)ρ

(1 + t0)ρ−1

{
H−

ρ

(
(1 + t0)|ξ|

)
H+

ρ

(
(1 + t)|ξ|

)

−H+
ρ

(
(1 + t0)|ξ|

)
H−

ρ

(
(1 + t)|ξ|

)}
. (2.1.14b)

We collect the results in the following theorem.
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2 Scale-invariant weak dissipation

Theorem 2.1. Assume thatu = u(t, x) solves the Cauchy problem(2.0.1)for datau1, u2 ∈ S ′(Rn).
Then the Fourier transform̂u(t, ξ) can be represented as

û(t, ξ) =
∑

j=1,2

Φj(t, 0, ξ)ûj(ξ),

where the multipliersΦj are given by1

Φ1(t, t0, ξ) =
iπ

4
|ξ| (1 + t)ρ

(1 + t0)ρ−1

∣∣∣∣
H−

ρ−1

(
(1 + t0)|ξ|

)
H−

ρ

(
(1 + t)|ξ|

)

H+
ρ−1

(
(1 + t0)|ξ|

)
H+

ρ

(
(1 + t)|ξ|

)
∣∣∣∣

and

Φ2(t, t0, ξ) =
π

4

(1 + t)ρ

(1 + t0)ρ−1

∣∣∣∣
H−

ρ

(
(1 + t0)|ξ|

)
H−

ρ

(
(1 + t)|ξ|

)

H+
ρ

(
(1 + t0)|ξ|

)
H+

ρ

(
(1 + t)|ξ|

)
∣∣∣∣ .

Time derivatives. Next we need the time derivatives of these functions. Derivation with respect to
t leads to

DtΦ1(t, t0, ξ) =
π

4
|ξ|2 (1 + t)ρ

(1 + t0)ρ−1

∣∣∣∣
H−

ρ−1

(
(1 + t0)|ξ|

)
H−

ρ−1

(
(1 + t)|ξ|

)

H+
ρ−1

(
(1 + t0)|ξ|

)
H+

ρ−1

(
(1 + t)|ξ|

)
∣∣∣∣

usingρH+
ρ (z) + z(H+

ρ )′(z) = zH+
ρ−1(z) and similarly for the second multiplier.

Corollary 2.2. The time derivatives of the multipliersΦj are given by

DtΦ1(t, t0, ξ) =
π

4
|ξ|2 (1 + t)ρ

(1 + t0)ρ−1

∣∣∣∣
H−

ρ−1

(
(1 + t0)|ξ|

)
H−

ρ−1

(
(1 + t)|ξ|

)

H+
ρ−1

(
(1 + t0)|ξ|

)
H+

ρ−1

(
(1 + t)|ξ|

)
∣∣∣∣

and

DtΦ2(t, t0, ξ) =
iπ

4
|ξ| (1 + t)ρ

(1 + t0)ρ−1

∣∣∣∣
H−

ρ

(
(1 + t0)|ξ|

)
H−

ρ−1

(
(1 + t)|ξ|

)

H+
ρ

(
(1 + t0)|ξ|

)
H+

ρ−1

(
(1 + t)|ξ|

)
∣∣∣∣ .

It is possible to obtain a similar expression for higher order time derivativesby induction.

Corollary 2.3. The higher order time derivatives of the multipliersΦj are given by

Dk
t Φ1(t, t0, ξ) =

iπ

4
Ck|ξ|k+1 (1 + t)ρ

(1 + t0)ρ−1

∣∣∣∣∣
H−

ρ−1

(
(1 + t0)|ξ|

)
H−

ρ−k

(
(1 + t)|ξ|

)

H+
ρ−1

(
(1 + t0)|ξ|

)
H+

ρ−k

(
(1 + t)|ξ|

)
∣∣∣∣∣

and

Dk
t Φ2(t, t0, ξ) = −π

4
Ck|ξ|k

(1 + t)ρ

(1 + t0)ρ−1

∣∣∣∣∣
H−

ρ

(
(1 + t0)|ξ|

)
H−

ρ−k

(
(1 + t)|ξ|

)

H+
ρ

(
(1 + t0)|ξ|

)
H+

ρ−k

(
(1 + t)|ξ|

)
∣∣∣∣∣

with Ck = ρk−1 Γ(ρ)
Γ(ρ−k+1)(−i)k for ρ 6∈ −N0 (and the corresponding analytic continuation for the

negative integers).

1| · | stands for determinants ...
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2.2 Estimates

Representation by real-valued functions. If we use the definition ofH±
ρ by the real-valued

Bessel and Weber given in (B.1.6), we obtain an alternative characterisation ofΦ by these functions

Φ1(t, t0, ξ) = −π

2
|ξ| (1 + t)ρ

(1 + t0)ρ−1

∣∣∣∣
Jρ−1

(
(1 + t0)|ξ|

)
Jρ

(
(1 + t)|ξ|

)

Yρ−1

(
(1 + t0)|ξ|

)
Yρ

(
(1 + t)|ξ|

)
∣∣∣∣ , (2.1.15a)

Φ2(t, t0, ξ) = i
π

2

(1 + t)ρ

(1 + t0)ρ−1

∣∣∣∣
Jρ

(
(1 + t0)|ξ|

)
Jρ

(
(1 + t)|ξ|

)

Yρ

(
(1 + t0)|ξ|

)
Yρ

(
(1 + t)|ξ|

)
∣∣∣∣ , (2.1.15b)

DtΦ1(t, t0, ξ) = −i
π

2
|ξ|2 (1 + t)ρ

(1 + t0)ρ−1

∣∣∣∣
Jρ−1

(
(1 + t0)|ξ|

)
Jρ−1

(
(1 + t)|ξ|

)

Yρ−1

(
(1 + t0)|ξ|

)
Yρ−1

(
(1 + t)|ξ|

)
∣∣∣∣ , (2.1.15c)

DtΦ2(t, t0, ξ) = −π

2
|ξ| (1 + t)ρ

(1 + t0)ρ−1

∣∣∣∣
Jρ

(
(1 + t0)|ξ|

)
Jρ−1

(
(1 + t)|ξ|

)

Yρ

(
(1 + t0)|ξ|

)
Yρ−1

(
(1 + t)|ξ|

)
∣∣∣∣ . (2.1.15d)

In the case of non-integralρ the representation can be simplified to

Φ1(t, t0, ξ) =
π

2
csc (ρπ)|ξ| (1 + t)ρ

(1 + t0)ρ−1

∣∣∣∣
J−ρ+1

(
(1 + t0)|ξ|

)
J−ρ

(
(1 + t)|ξ|

)

−Jρ−1

(
(1 + t0)|ξ|

)
Jρ

(
(1 + t)|ξ|

)
∣∣∣∣ , (2.1.16a)

Φ2(t, t0, ξ) = i
π

2
csc (ρπ)

(1 + t)ρ

(1 + t0)ρ−1

∣∣∣∣
J−ρ

(
(1 + t0)|ξ|

)
J−ρ

(
(1 + t)|ξ|

)

Jρ

(
(1 + t0)|ξ|

)
Jρ

(
(1 + t)|ξ|

)
∣∣∣∣ , (2.1.16b)

DtΦ1(t, t0, ξ) = i
π

2
csc (ρπ)|ξ|2 (1 + t)ρ

(1 + t0)ρ−1

∣∣∣∣
J−ρ+1

(
(1 + t0)|ξ|

)
J−ρ+1

(
(1 + t)|ξ|

)

Jρ−1

(
(1 + t0)|ξ|

)
Jρ−1

(
(1 + t)|ξ|

)
∣∣∣∣ , (2.1.16c)

DtΦ2(t, t0, ξ) = −π

2
csc (ρπ)|ξ| (1 + t)ρ

(1 + t0)ρ−1

∣∣∣∣
J−ρ

(
(1 + t0)|ξ|

)
J−ρ+1

(
(1 + t)|ξ|

)

−Jρ

(
(1 + t0)|ξ|

)
Jρ−1

(
(1 + t)|ξ|

)
∣∣∣∣ . (2.1.16d)

In the first and in the last formula we usedcsc (ρπ − π) = −csc (ρπ).

2.2 Estimates

We use the isomorphism (order reduction)

〈D〉s : Lp,s(R
n) → Lp(Rn),

where〈D〉 is the Fourier multiplier with symbol〈ξ〉 =
√

1 + |ξ|2, to characterise theSobolev spaces
of fractional order2 overLp(Rn), p ∈ (1,∞). Note, that〈D〉s defines for alls ∈ R isomorphisms of
the Schwartz spaceS ′(Rn).

2Bessel potential spaces were introduced by N. Aronszajn in the basic articles [AS61] and [AMS63]. For functional analytic
properties and relations to other scales of spaces we refer to the book ofT. Runst and W. Sickel, [RS96].
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2 Scale-invariant weak dissipation

The representation of the fundamental matrixΦ(t, 0, ξ) (as well as the knowledge about strictly
hyperbolic problems) imply a natural regularity difference for the data of one Sobolev order. Therefore
we define the following two operators corresponding to the Cauchy problem (2.0.1). On the one hand
we are interested in the solution itself. Let therefore

S(t, D) : (u1, 〈D〉−1 u2) 7→ u(t, ·) (2.2.1)

be thesolution operator. We used the order reductions in such a way that

S(t, D) : L2(Rn, R2) → L2(Rn).

On the other hand, we are interested in energy estimates. We define theenergy operator

E(t, D) : (〈D〉u1, u2) 7→ (|D|u(t, ·), ∂tu(t, ·)), (2.2.2)

with E(t, D) : L2(Rn, R2) → L2(Rn, R2). For both operators we will give norm estimates fromLp

scale toLq with dual indicesp andq, i.e. p + q = pq andp ≤ q, and compare the obtained estimates
with the knownLp–Lq estimates for wave and damped wave equations.

Properties of Bessel functions. To obtain norm estimates for the operator familiesS(t, D) and
E(t, D), we have to review some of the main properties of Bessel functions for smalland large argu-
ments. For details we refer to [Wat22, §3.13 ,§3.52, §10.6 and §7.2].

Proposition 2.4. 1. The function

Λν(τ) = τ−νJν(τ)

is entire inν andτ . Furthermore,Λν(0) = 2ν

Γ(1+ν) 6= 0 for ν 6∈ {−1,−2,−3, . . .}.

2. Weber’s functionYn(τ) satisfies for integraln

Yn(τ) =
2

π
Jn(τ) log τ + An(τ),

whereτnAn(τ) is entire and non-zero forτ = 0.

3. The Hankel functionsH±
ν (τ) with τ ≥ K can be written as

H±
ν (τ) = e±iτa±ν (τ),

wherea±ν ∈ S− 1
2 (K,∞) is a classical symbol of order−1/2 on each interval(K,∞), K > 0.

4. For small arguments,0 < τ ≤ c < 1, we have

∣∣H±
ν (τ)

∣∣ .

{
τ−|ν|, ν 6= 0,

− log τ, ν = 0.

20



2.2 Estimates

Z2

Z3

Z1

K |ξ|

t

Figure 2.1: Sketch of the used decomposition of the phase space.

2.2.1 Consideration for a model operator

The model operator. Due to the special structure of the fundamental matrixΦ(t, t0, ξ), and hence
of the multipliers corresponding toS(t, D) andE(t, D), we consider the time dependent model multi-
plier

Ψk,s,ρ,δ(t, ξ) = |ξ|k 〈ξ〉s+1−k

∣∣∣∣∣
H−

ρ (|ξ|) H−
ρ+δ

(
(1 + t)|ξ|

)

H+
ρ (|ξ|) H+

ρ+δ

(
(1 + t)|ξ|

)
∣∣∣∣∣ (2.2.3)

parameterised byk, s, ρ, δ ∈ R. Again we can writeΨk,s,ρ,δ(t, |ξ|) in terms of the real-valued Bessel
functions of first and second kind. Similar to (2.1.15) and (2.1.16) we have

Ψk,s,ρ,δ(t, ξ) = 2i|ξ|k 〈ξ〉s+1−k

∣∣∣∣
Jρ

(
|ξ|

)
Jρ+δ

(
(1 + t)|ξ|

)

Yρ

(
|ξ|

)
Yρ+δ

(
(1 + t)|ξ|

)
∣∣∣∣ (2.2.4a)

= 2i csc (ρπ) |ξ|k 〈ξ〉s+1−k

∣∣∣∣
J−ρ

(
|ξ|

)
J−ρ−δ

(
(1 + t)|ξ|

)

(−1)δJρ

(
|ξ|

)
Jρ+δ

(
(1 + t)|ξ|

)
∣∣∣∣ , (2.2.4b)

the last line holds forρ 6∈ Z andρ + δ 6∈ Z.
In order to understand the model multiplier we subdivide the phase spaceR+ ×R

n into three zones,

Z1 = {K ≤ |ξ|}, Z2 = {|ξ| ≤ K ≤ (1 + t)|ξ|}, Z3 = {(1 + t)|ξ| ≤ K}, (2.2.5)

as sketched in Figure 2.2.1. This decomposition reflects algebraic properties of the representation of
the multiplier (and therefore it is different from the decompositions used lateron).

L2–L2 estimates for the model multiplier. By Plancherel’s theoremL2–L2 estimates of the op-
eratorΨk,s,ρ,δ(t, D) correspond toL∞ estimates of the corresponding multiplierΨk,s,ρ,δ(t, ξ). Further-
more, Proposition B.1.1. implies that the operator norm coincides with theL∞-norm of its multiplier.

Lemma 2.5. It holdsΨk,s,ρ,δ(t, ·) ∈ L∞(Rn) for all t ≥ 0 if and only ifs ≤ 0 andk ≥ |δ|. Further-
more the estimate

∣∣∣∣Ψk,s,ρ,δ(t, ·)
∣∣∣∣
∞ .





(1 + t)−
1
2 , |ρ| − k ≤ −1

2 ,

(1 + t)|ρ|−k, ρ 6= 0, |ρ| − k ≥ −1
2 ,

(1 + t)−k log(e + t), ρ = 0, k ≤ 1
2 ,

is valid.
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2 Scale-invariant weak dissipation

Proof. We subdivide the proof into three parts corresponding to the three zonesZ1, Z2 andZ3.
Z1 We use Proposition 2.4.3 together with the definition of the zoneK ≤ |ξ| ≤ (1 + t)|ξ|. Thus

the multiplier is bounded inZ1 iff s ≤ 0. It satisfies

∣∣Ψk,s,ρ,δ(t, ξ)
∣∣ . (1 + t)−

1
2

under this assumption.
Z2 Forρ 6= 0 we can use Proposition 2.4.4 to conclude

∣∣Ψk,s,ρ,δ(t, ξ)
∣∣ . |ξ|k−|ρ|(1 + t)−

1
2 |ξ|− 1

2

.

{
(1 + t)−

1
2 , |ρ| − k ≤ −1

2 ,

(1 + t)|ρ|−k, |ρ| − k ≥ −1
2 .

Forρ = 0 we have to modify this estimate by thelog term

∣∣Ψk,s,0,δ(t, ξ)
∣∣ . |ξ|k log

2K

|ξ| (1 + t)−
1
2 |ξ|− 1

2

.

{
(1 + t)−

1
2 , k > 1

2 ,

(1 + t)−k log(e + t), k ≤ 1
2 .

Z3 In this zone we use the representation ofΨk,s,ρ,δ(t, ξ) in terms of real-valued functions given
by (2.2.4). For non-integralρ andρ + δ we can use the representation by Bessel functions of first kind
to conclude3

∣∣Ψk,s,ρ,δ(t, ξ)
∣∣

.

∣∣∣∣|ξ|
ρJ−ρ(|ξ|)

(
(1 + t)|ξ|

)−ρ−δJρ+δ

(
(1 + t)|ξ|

)
(1 + t)ρ+δ|ξ|k+δ

∣∣∣∣

+

∣∣∣∣|ξ|
−ρJρ(|ξ|)

(
(1 + t)|ξ|

)ρ+δJ−ρ−δ

(
(1 + t)|ξ|

)
(1 + t)−ρ−δ|ξ|k−δ

∣∣∣∣

=(1 + t)|ρ|−k

( ∣∣∣Λ−ρ(|ξ|)Λρ+δ

(
(1 + t)|ξ|

)
(1 + t)ρ−|ρ|((1 + t)|ξ|)k+δ

∣∣∣

+
∣∣∣Λρ(|ξ|)Λ−ρ−δ

(
(1 + t)|ξ|

)
(1 + t)−ρ−|ρ|((1 + t)|ξ|)k−δ

∣∣∣
)

.(1 + t)|ρ|−k.

The conditionk ≥ |δ| is necessary and sufficient for the boundedness inξ.
For integral values ofρ or ρ + δ we use Weber’s functions and Proposition 2.4.2. We sketch the

estimate if bothρ andρ + δ are integral. Then, we have

Ψk,s,ρ,δ = − 4i

π
|ξ|k 〈ξ〉s+1−k log(1 + t)Jρ(|ξ|)Jρ+δ

(
(1 + t)|ξ|

)

+ 2i|ξ|k 〈ξ〉s+1−k

∣∣∣∣
Jρ

(
|ξ|

)
Jρ+δ

(
(1 + t)|ξ|

)

Aρ

(
|ξ|

)
Aρ+δ

(
(1 + t)|ξ|

)
∣∣∣∣

3By estimating the difference structure of the multiplier by triangle inequality we do not lose information. For non-integral
ρ the leading terms of the series expansions do not cancel.
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2.2 Estimates

and, hence,

∣∣Ψk,s,ρ,δ(t, ξ)
∣∣ . log(e + t) (1 + t)−|ρ|−k + (1 + t)|ρ|−k

.

{
(1 + t)|ρ|−k, ρ 6= 0,

(1 + t)−k log(e + t), ρ = 0.

If only one of both indices is an integer we have to mix the representations.4

Lp–Lq estimates for the model multiplier. Using the stationary phase method combined with a
decomposition of the phase space into zones, we obtain alsoLp–Lq estimates. We consider the model
operator

Ψk,s,ρ,δ(t, D) : u(x) 7→ F−1
[
Ψk,s,ρ,δ(t, ξ)û(ξ)

]
(x) (2.2.6)

from Lp,r(R
n) to Lq(Rn), (p, q) a dual pair withp ≤ q. We chooser to be the smallest value, such

that the operator has this mapping property. For all fixedt ≥ 0 the multiplierΨk,s,ρ,δ(t, ξ) can be
decomposed into a sum of functions, which consist for largeξ of a phasee±it|ξ| and a further symbol
of order zero.

Theorem 2.6. Assumep ∈ (1, 2], q such thatpq = p+ q. Let furtherk ≥ |δ|. Then the model operator
(2.2.6)satisfies the norm estimate

||Ψk,s,ρ,δ(t, D)||p,r→q

.





(1 + t)
−n−1

2

(
1
p
− 1

q

)
− 1

2 , d > 1
2 ,

(1 + t)
−n

(
1
p
− 1

q

)
+|ρ|−k

, ρ 6= 0, d ≤ 1
2 ,

(1 + t)
−n

(
1
p
− 1

q

)
+θε−k

(log(e + t))1−θ, ρ = 0, d < 1
2 + ε, ε > 0,

for d = n+1
2

(
1
p − 1

q

)
+ k − |ρ| andr = n

(
1
p − 1

q

)
+ s. The interpolating constantθ in the last case

is given byθ = n+1
2ε+1−2k

(
1
p − 1

q

)
.

Proof. Again we decomposeRt × R
n
ξ into three zones. For this, we use a smooth cut-off function

ψ ∈ C∞(R+) with ψ′ ≤ 0, ψ(r) = 1 for r < 1/2 andψ(r) = 0 for r > 2. Using this function, we
define

φ1(t, ξ) = 1 − ψ(|ξ|/K),

φ2(t, ξ) = ψ(|ξ|/K)
(
1 − ψ

(
(1 + t)|ξ|/K

))
,

φ3(t, ξ) = ψ(|ξ|/K)ψ
(
(1 + t)|ξ|/K

)
,

such thatφ1(t, ξ)+φ2(t, ξ)+φ3(t, ξ) = 1. Thus we can decompose the multiplierΨk,s,ρ,δ into the sum∑
i=1,2,3 φi(t, ξ)Ψk,s,ρ,δ(t, ξ) and estimate each of the summands. We prove the estimate forr = 0,

i.e. we restrict the proof to the corresponding value

s = −n

(
1

p
− 1

q

)
.

4For later reference we use only integral values ofδ.
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2 Scale-invariant weak dissipation

The remaining cases reduce to this one in an obvious way.
Z1 Using Proposition 2.4 we decompose the representation of

φ1(t, ξ)Ψk,s,ρ,δ(t, ξ)

as sum of two multipliers of the form

e±it|ξ|a(|ξ|)b
(
(1 + t)|ξ|

)

with symbolsa ∈ Ss+ 1
2 (K/2,∞) andb ∈ S− 1

2 (K/2,∞) and supp a, b ∈ (K/2,∞). We follow
P. Brenner, [Bre75], to estimate the corresponding Fourier integral operator. The key tool is a dyadic
decomposition together with Littman’s lemma, see Appendix B.2, Lemma B.3. Letχ ∈ C∞

0 (R+) be
non-negative with support contained in[1/2, 2] and

∞∑

j=−∞
χ(2jr) = 1, for r 6= 0. (2.2.7)

Such a function exists, a proof may be found in the paper of L. Hörmander, [Hör60, Lemma 2.3] on
Fourier multiplier. Let furtherχj(ξ) = χ(2−jξ/K).

We obtain anLp–Lq estimate for this operator by interpolatingL1–L∞ andL2–L2 estimates with
Riesz-Thorin interpolation theorem. For this, we define

Ij =
∣∣∣
∣∣∣F−1

[
χj(ξ)e

±it|ξ|a(|ξ|)b
(
(1 + t)|ξ|

)]∣∣∣
∣∣∣
∞

(2.2.8a)

and
Ĩj =

∣∣∣
∣∣∣χj(ξ)e

±it|ξ|a(|ξ|)b
(
(1 + t)|ξ|

)∣∣∣
∣∣∣
∞

(2.2.8b)

and estimate these norms. They correspond to operator norms of the dyadiccomponents of the operator.
For all j < 0 we haveIj = Ĩj = 0. ForIj we perform the substitutionξ = 2jKη and obtain

Ij ≤ C2jn
∣∣∣
∣∣∣F−1

[
e±it2jKηa(2jKη)b((1 + t)2jKη)χ(|η|)

]∣∣∣
∣∣∣
∞

≤ C2jn(1 + 2jKt)−
n−1

2

∑

|α|≤M

||Dαa(2jKη)b((1 + t)2jKη)χ(|η|)||∞

≤ C2jn(1 + 2jKt)−
n−1

2

∑

|α+β|≤M

sup
1/2≤|η|≤2

(2jK|η|)s+ 1
2
−|α|2j|α|((1 + t)2jK|η|)− 1

2
−|β|((1 + t)2j)|β|

≤ C2j(n+s)(1 + 2jKt)−
n−1

2 (1 + t)−
1
2 ,

where in the first step we used Lemma B.3. FromCK(1 + t) ≤ (1 + 2jKt) ≤ C ′
K2j(1 + t) we get

finally
Ij ≤ C2j(n+s)(1 + t)−

n
2 . (2.2.9)

For Ĩj we obtain

Ĩj ≤ C sup
η∈supp χ

φ1(2
jKη)|2jKη|s+ 1

2 |(1 + t)2jKη|− 1
2

≤ C2js(1 + t)−
1
2 . (2.2.10)
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2.2 Estimates

The estimates (2.2.9) and (2.2.10) correspond toL1–L∞ andL2–L2 estimates for the dyadic compo-
nent of the model operator (2.2.6). Interpolation leads to

∣∣∣∣F−1 [φ1(t, ξ)χj(ξ)Ψk,s,ρ,δ(t, ξ)û(ξ)]
∣∣∣∣

q

≤ C2
j
(
n
(

1
p
− 1

q

)
+s

)

(1 + t)
−n−1

2

(
1
p
− 1

q

)
− 1

2 ||u||p (2.2.11)

for all p ∈ (1, 2], p + q = pq. Finally, we use Lemma B.4 to conclude forn
(

1
p − 1

q

)
+ s ≤ 0 the

estimate ∣∣∣∣F−1 [φ1(t, ξ)Ψk,s,ρ,δ(t, ξ)û(ξ)]
∣∣∣∣

q
≤ C(1 + t)

−n−1
2

(
1
p
− 1

q

)
− 1

2 ||u||p. (2.2.12)

Z2 In this zone we subdivide each summand of the multiplier (2.2.3) in twoξ-dependent factors

|ξ||ρ|+εH∓
ρ (|ξ|)φ21(ξ), (2.2.13a)

(
(1 + t)|ξ|

)k−|ρ|−εH±
ρ+δ

(
(1 + t)|ξ|

)
φ22(t, ξ), (2.2.13b)

and the remaining factor(1 + t)|ρ|−k+ε, where

φ21(ξ) = ψ(|ξ|/K) and φ22(t, ξ) = 1 − ψ((1 + t)|ξ|/K), (2.2.14)

such thatφ2(t, ξ) = φ21(ξ)φ22(t, ξ). The constantε will be chosen later. The first multiplier is time
independent and satisfies

|ξ||ρ|+εH∓
ρ (|ξ|)φ21(ξ) ≈ |ξ||ρ|+εH∓

|ρ|(|ξ|)φ21(ξ)

=(1 ± i cot |ρ|π)|ξ|2|ρ|+ε|ξ|−|ρ|J|ρ|(|ξ|)φ21(ξ)

∓ i csc |ρ|π |ξ|ε|ξ||ρ|J−|ρ|(|ξ|)φ21(ξ), ρ 6∈ Z,

=|ξ|2|ρ|+ε|ξ|−|ρ|J|ρ|(|ξ|)φ21(ξ)

± i|ξ|2|ρ|+ε log |ξ| |ξ|−|ρ|J|ρ|(|ξ|)φ21(ξ)

± i|ξ|ε|ξ||ρ|A|ρ|(|ξ|)φ21(ξ), ρ ∈ Z,

whereτ∓|ρ|J±|ρ|(τ) andτ |ρ|A|ρ|(τ) are entire. By≈ we denote equality up to a multiplicative constant
here.

From the Marcinkiewicz multiplier theorem, see the book of E.M. Stein, [Ste70, Chapter IV.3 Theo-
rem 3], it follows that

|ξ|εφ21(|ξ|) ∈ Mp
p ∀ε ≥ 0, (2.2.15a)

|ξ|ε log |ξ| φ21(|ξ|) ∈ Mp
p ∀ε > 0 (2.2.15b)

for all p ∈ (1,∞). Thus, we conclude with the algebra property of multiplier spaces, see [Hör60,
Corollary 1.4], that the first multiplier belongs toMp

p for p ∈ (1,∞) if ε ≥ 0 andρ 6= 0 (or for ρ = 0
if ε > 0).

For the second multiplier we prove anLp–Lq estimate. For this we use again a dyadic decomposition.
Let χ be like in the discussion ofZ1 and

χj(t, ξ) = χ
(
2−j(1 + t)|ξ|/K

)
, (2.2.16a)

χ0(t, ξ) = 1 −
∑

j>0

χj(t, ξ). (2.2.16b)

25



2 Scale-invariant weak dissipation

We estimate

Ij =
∣∣∣
∣∣∣F−1

[
χj(t, ξ)

(
(1 + t)|ξ|

)k−|ρ|−εH±
ρ+δ

(
(1 + t)|ξ|

)
φ22(t, ξ)

]∣∣∣
∣∣∣
∞

(2.2.17)

and
Ĩj =

∣∣∣
∣∣∣χj(t, ξ)

(
(1 + t)|ξ|

)k−|ρ|−εH±
ρ+δ

(
(1 + t)|ξ|

)
φ22(t, ξ)

∣∣∣
∣∣∣
∞

. (2.2.18)

For j > 0 we haveφ22(t, ξ) = 1 on suppχj . Hence, using the substitution(1 + t)ξ = 2jKη, we get
the estimate

Ij =
∣∣∣
∣∣∣F−1

[
ei(1+t)|ξ|a

(
(1 + t)ξ

)
ψj(t, ξ)

]∣∣∣
∣∣∣
∞

≤ C2jn(1 + t)−n
∣∣∣
∣∣∣ei2jKηa(2jKη)ψ(|η|)

∣∣∣
∣∣∣
∞

≤ C2jn(1 + t)−n(1 + 2jK)−
n−1

2 (2jK)−
1
2
+k−|ρ|−ε

≤ C2j(n+1
2

+k−|ρ|−ε− 1
2)(1 + t)−n,

wherea ∈ S− 1
2
+k−|ρ|−ε. ForI0 we obtain a similar estimate in the same way. ForĨj we have

Ĩj ≤ C sup
η∈supp ψ

(2jKη)k−|ρ|−ε− 1
2

≤ C2j(k−|ρ|−ε− 1
2
). (2.2.19)

Interpolation leads to
∣∣∣
∣∣∣F−1

[
ψj(t, ξ)

(
(1 + t)|ξ|

)k−|ρ|−εH±
ρ+δ

(
(1 + t)|ξ|

)
φ22(t, ξ)û(ξ)

]∣∣∣
∣∣∣
q

≤ C2
j
(

n+1
2

(
1
p
− 1

q

)
+k−|ρ|−ε− 1

2

)

(1 + t)
−n

(
1
p
− 1

q

)

||u||p, (2.2.20)

which gives for

ε ≥ n + 1

2

(
1

p
− 1

q

)
− 1

2
+ k − |ρ|

theLp–Lq estimate
∣∣∣
∣∣∣F−1

[(
(1 + t)|ξ|

)k−|ρ|−εH±
ρ+δ

(
(1 + t)|ξ|

)
φ22(t, ξ)û(ξ)

]∣∣∣
∣∣∣
q

≤ C(1 + t)
−n

(
1
p
− 1

q

)

||u||p. (2.2.21)

The ‘regularity’ε is determined from both multipliers, hence the optimal choice is

ε = max
{

0, n+1
2

(
1
p − 1

q

)
− 1

2 + k − |ρ|
}

. (2.2.22)

under the assumptionρ 6= 0. Forρ = 0 the choiceε = 0 is not possible. Therefore, we have to exclude
k ≤ 1

2 . We postpone this exceptional case.
Multiplication of the multipliers corresponds to a concatenation of the corresponding operators.

Hence, we have

∣∣∣∣F−1 [φ2(t, ξ)Ψk,s,ρ,δ(t, ξ)û(ξ)]
∣∣∣∣

q

≤ C(1 + t)
max{−n−1

2

(
1
p
− 1

q

)
− 1

2
, −n

(
1
p
− 1

q

)
+|ρ|−k}||u||p (2.2.23)
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2.2 Estimates

for ρ 6= 0 or ρ = 0 andk > 1/2.

Z2 for ρ = 0 andk ≤ 1/2 In this exceptional case we get an estimate for all dualp andq by inter-
polation. Fromn

2 + k > 0 we can follow the previously used reasoning to conclude an estimate for
dualp, q with

n + 1

2

(
1

p
− 1

q

)
− 1

2
+ k > 0.

If we interpolate the corresponding result with the previously provenL2 estimate in this zone, we obtain

∣∣∣∣F−1 [φ2(t, ξ)Ψk,s,0,δ(t, ξ)û(ξ)]
∣∣∣∣

q
≤ C(1 + t)

−n
(

1
p
− 1

q

)
+θε−k

(log(e + t))1−θ||u||p (2.2.24)

for n+1
2

(
1
p − 1

q

)
− 1

2 + k = ε. The interpolating constantθ is given by

θ =
n + 1

2ε + 1 − 2k

(
1

p
− 1

q

)
.

Z3 We use the estimate

∣∣φ3(t, ξ)Ψk,s,ρ,δ(t, ξ)
∣∣ .

{
(1 + t)|ρ|−k , ρ 6= 0,

(1 + t)−k log(e + t) , ρ = 0

together with the definition of the zoneZ3 to conclude the estimate

||F [φ3(t, ξ)Ψk,s,ρ,δ(t, ξ)û(ξ)]||q
≤ ||φ3(t, ·)Ψk,s,ρ,δ(t, ·)û(ξ)||p
≤ ||φ3(t, ·)||1/

(
1
p
− 1

q

)||û||q||Ψk,s,ρ,δ(t, ·)||∞

. ||u||p(1 + t)
−n

(
1
p
− 1

q

) {
(1 + t)|ρ|−k , ρ 6= 0,

(1 + t)−k log(e + t) , ρ = 0.

Under our assumptions onp andq this estimate is weaker than the estimates in the zonesZ1 andZ2.

2.2.2 Estimates for the solution

If we compare (2.1.14) with (2.2.3), we obtain the representation

Φ1(t, 0, ξ) =
iπ

4
(1 + t)ρΨ1,0,ρ−1,1(t, ξ), (2.2.25a)

Φ2(t, 0, ξ) =
π

4
(1 + t)ρΨ0,−1,ρ,0(t, ξ), (2.2.25b)

DtΦ1(t, 0, ξ) =
π

4
(1 + t)ρΨ2,1,ρ−1,0(t, ξ), (2.2.25c)

DtΦ2(t, 0, ξ) =
iπ

4
(1 + t)ρΨ1,0,ρ,−1(t, ξ) (2.2.25d)

of the entries of the fundamental matrix in terms of our model multiplier. Thus we canapply the
estimates of Lemma 2.5 to get a priori estimates for the solutionu = u(t, x) of (2.0.1). This gives

||u(t, ·)||2 . ||u1||2 + ||u2||H−1





(1 + t)2ρ, ρ ∈ (0, 1
2),

log(e + t), ρ = 0,

1, ρ < 0.

(2.2.26)
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2 Scale-invariant weak dissipation

Together with Theorem 2.6 we conclude the following statement. For convenience we give theL2–L2

estimate separately.

Theorem 2.7. 1. The solution operatorS(t, D) satisfies theL2–L2 estimate

||S(t, D)||2→2 .





(1 + t)1−µ, µ ∈ (0, 1),

log(e + t), µ = 1,

1, µ > 1.

2. The solution operatorS(t, D) satisfies theLp–Lq estimate

||S(t, D)||p,r→q

.





(1 + t)
max{−n−1

2

(
1
p
− 1

q

)
−µ

2
, −n

(
1
p
− 1

q

)
+1−µ}

, µ ∈ (0, 1),

(1 + t)
−n−1

2

(
1
p
− 1

q

)
− 1

2 , µ = 1, δ > 1
2

(1 + t)
−n

(
1
p
− 1

q

)
+θε

(log(e + t))1−θ, µ = 1, δ < 1
2 + ε, ε > 0

(1 + t)
max{−n−1

2

(
1
p
− 1

q

)
−µ

2
, −n

(
1
p
− 1

q

)
}
, µ > 1,

for p ∈ (1, 2], q with pq = p + q, δ = n+1
2

(
1
p − 1

q

)
andr = n

(
1
p − 1

q

)
.

The interpolating constantθ in the third case is given byθ = 2δ
2ε+1 .

TheL2–L2 estimate stated in this theorem is better than corresponding results obtained by weighted
energy inequalities. The naive way to obtain estimates for solutions by integrating estimates for the
time derivative would imply only the rate

||S(t, D)||2→2 . (1 + t)1−
µ
2 , (2.2.27)

for µ < 2, cf. formula (2.2.33).
The dependence of the decay rate from the parameterµ and the indexp is sketched in Figure 2.2 in

order to illustrate the different cases from Theorem 2.7.

Equations with increasing speed of propagation. The obtained estimates imply an excep-
tional behaviour of the caseµ = 1. This case is related to the consideration of A. Galstian given
in [Gal03] for wave equations with exponentially increasing speed of propagation. For the sake of
completeness we will give this relation.

If one considers the Cauchy problem

vtt − λ2(t)∆v = 0, v(0, ·) = v1, Dtv(0, ·) = v2 (2.2.28)

with positive coefficientλ = λ(t), one can apply a change of variables, which reduces it to a problem
with constant speed of propagation and a dissipative term. We introduce thenew time variable

t′ = Λ(t) =

∫ t

t0

λ(s)ds, Λ′(t) = λ(t) > 0, (2.2.29)
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2.2 Estimates

II

I

p = 2

1

III

furtherlog-term

(1 + t)−n( 1
p
− 1

q )+1−µ

(1 + t)−n( 1
p
− 1

q )

(1 + t)−
n−1

2 ( 1
p
− 1

q )−
µ
2

p = 1

µ

II

III
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Figure 2.2: Relation between the decay-rates and the parameterµ and indexp for the estimate of
S(t, D). At the common boundary of I and III thelog-term occurs.

such that∂t = λ(t)∂t′ and∂2
t = λ2(t)∂2

t′ + λ′(t)∂t′ . Thus the problem rewrites in the new variables

λ2(t)

[
¤′v +

λ′(t)
λ2(t)

∂t′v

]
= 0, (2.2.30)

equivalent to an equation with dissipative term

b(t′) =
λ′(Λ−1(t′))
λ2(Λ−1(t′))

. (2.2.31)

Following M. Reissig and K. Yagdjian, [RY00], it is natural to assume for theincreasing behaviour of
λ(t)

λ′

λ
∼ λ

1 + Λ
, in our notation b(t) ∼ 1

1 + t
. (2.2.32)

So the case of scale invariant weak dissipation is naturally related to wave equations with increasing in
time speed of propagation.

This gives (for the right choice oft0) the correspondence

λ(t) = (1 + t)`, ` ≥ 0, ⇐⇒ b(t) =
µ

1 + t
, µ =

`

` + 1
∈ (0, 1),

λ(t) = et, ⇐⇒ b(t) =
1

1 + t
, µ = 1,

the first line corresponds to the approach of M. Reissig, [Rei97], the second one to the paper of A. Gal-
stian, [Gal03].

2.2.3 Estimates for the energy

For the first derivatives we obtain

||ut(t, ·)||2 ≤ C1(1 + t)ρ− 1
2 ||u1||H1 + C2(1 + t)max{ρ− 1

2
,−1}||u2||2, (2.2.33)

||∇u(t, ·)||2 ≤ C1(1 + t)ρ− 1
2 ||u1||H1 + C2(1 + t)max{ρ− 1

2
,−1}||u2||2, (2.2.34)
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2 Scale-invariant weak dissipation

which reestablish already known results on the energy decay for this modelproblem, see the papers
of A. Matsumura, [Mat77], H. Uesaka, [Ues80] and the recent considerations of F. Hirosawa and
H. Nakazawa [HN01, Example 2.1].

We collect the energy estimates in the following theorem.

Theorem 2.8. 1. The energy operatorE(t, D) satisfies theL2–L2 estimate

||E(t, D)||2→2 .

{
(1 + t)−

µ
2 , µ ∈ (0, 2],

(1 + t)−1, µ > 2.

2. The energy operatorE(t, D) satisfies theLp–Lq estimate

||E(t, D)||p,r→q . (1 + t)
max{−n−1

2

(
1
p
− 1

q

)
−µ

2
, −n

(
1
p
− 1

q

)
−1}

for p ∈ (1, 2], q with pq = p + q andr = n
(

1
p − 1

q

)
.

Remark2.1. It should be remarked that it is essential to use theH1-norm on the right-hand side of the
energy estimate (or the normalisation by〈D〉−1 in the definition ofE(t, D)). Otherwise we get for the
usual energy from Lemma 2.5 only the trivial (and in view of this Lemma also sharp!) norm estimate

E(u; t) . E(u; 0).

This implies that information about the size of the datumu1 is necessaryfor precise a priori estimates
of the energy.

Remark2.2. If we fix a pair of initial data, then one can even obtain

lim
t→∞

(1 + t)2E(u; t) = 0

for µ > 2. This result follows from the considerations in the paper of F. Hirosawa and H. Nakazawa,
[HN03, Theorem 1.2].

Remark2.3. The estimates of Theorem 2.8 coincide forµ = 0 (i.e. ρ = 1/2) with the well-known
Lp–Lq estimates for the wave equation, recalled in Section 1.3.1.

Forµ = 2 (i.e. ρ = −1/2) we can reduce the Cauchy problem (2.0.1) to the Cauchy problem for the
wave equation setting

v(t, x) = (1 + t)u(t, x), (2.2.35)

such that¤v = 0. Thus, the solutions behave forµ = 2 like free waves multiplied by the energy
decay rate(1 + t)−1. Together with the a priori estimate||v(t, ·)||2 . (1 + t), the decay rate for the
energy in this case follows immediately from the conservation of energy for free waves. The above
transformation goes back to S.-D. Poisson and was a basic step in his reasoning to deduce explicit
representations for solutions in three dimensional space.

Interpretation. What conclusions can we draw from the statement of Theorem 2.8? If we start with
the L2–L2 estimate we see that two different cases occur. On the one hand, for smallvalues ofµ
the dissipation term has a direct influence on the decay rate for the hyperbolic energy, while for large
values ofµ the decay rate is independent of the size of the coefficient. The second statement makes
this difference more precise. For small values ofµ theLp–Lq decay rate corresponds to the hyperbolic
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decay rate with exponentn−1
2

(
1
p − 1

q

)
known from the free wave equation, which is altered by some

additional decay coming from the influence of the dissipative term.
For large values ofµ the decay exponent has a completely different structure. No relation to the

free wave equation becomes apparent, and, till now, we have no explanation for this factor, except the
calculations done so far. One of the aims of the next two chapters is to understand this paradigm shift
from small to large size of the dissipation term.

The example considered in this chapter will turn out to be the basic example fortime-dependent
dissipation terms. In Chapter 3 dissipation terms will be considered, which leadto estimates, related
to the above given ones, for small values ofµ; this case will be referred to asnon-effective weak
dissipation. Also the close relation to the free wave equation will be made more precise there.

In Chapter 4 the opposite case is treated. We will classify dissipation terms, which lead to similar
estimates like in this chapter for large values ofµ. In these cases the dissipation term will be called
effective, because it alters the asymptotic properties of the solutions in a significant way.

In the next section we will obtain a related statement to Theorem 2.8 for estimatesof higher order; it
can be seen that the same change in the behaviour occurs.

2.2.4 Energy estimates of higher order

The proven estimates for the model multiplier (2.2.3) enable us to conclude also energy estimates of
higher order. By this, we mean estimates forD`

t|D|k−`u depending on Sobolev norms of the data.
We consider the operator family

E
k
` (t, D) : (〈D〉k u1, 〈D〉k−1 u2)

T 7→ D`
t|D|k−`u, (2.2.36)

with ` ≤ k, normalised in the such a way, thatE
k
` (t, D) : L2 → L2. Using Corollary 2.3 we can

represent the corresponding Fourier multiplier as a matrix with entries givenby multiples of

(1 + t)ρΨk+1,0,ρ−1,1−`(t, ξ), (1 + t)ρΨk,0,ρ,−`(t, ξ). (2.2.37)

Theorem 2.6 gives now immediately the corresponding norm estimates. We exclude the casè = 0
corresponding to the exceptional estimate forS(t, D).

Theorem 2.9. Assumek, ` ∈ N, 1 ≤ ` ≤ k.

1. The operatorEk
` (t) satisfies theL2–L2 estimate

||Ek
` (t, D)||2→2 .

{
(1 + t)−

µ
2 , µ ∈ [0, 2k)

(1 + t)−k, µ ≥ 2k

2. The operatorEk
` (t, D) satisfies theLp–Lq estimate

||Ek
` (t, D)||p,r→q . (1 + t)

max{−n−1
2

(
1
p
− 1

q

)
−µ

2
, −n

(
1
p
− 1

q

)
−k}

for p ∈ (1, 2], q with pq = p + q andr = n
(

1
p − 1

q

)
.

For k = 1 and` ∈ {0, 1} the estimates correspond to the energy estimate. We see that for large
values ofµ taking higher order derivatives improves the decay rate a finite number ofsteps. Like for
the free wave equation, for smallµ such an improvement does not take place.

In the case of constant dissipation this improvement for higher order derivatives was observed by
A. Matsumura, [Mat76]. There all derivatives influence the decay rate.
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2 Scale-invariant weak dissipation

2.3 Conclusions

We want to draw some conclusions from the derivation of estimates in the caseof scale-invariant weak
dissipation. The first observation is that the difference in the decay orders for small and for large values
of µ originates in different areas of the phase space.

One may conclude that for small values of the parameterµ large frequencies give the important
contribution to the asymptotic behaviour, while for sufficiently largeµ the interior zones{|ξ| ≤ K}
become of greater importance. This is sketched in Figure 2.3.

tξ

t

tξ

|ξ|

t

|ξ|
Figure 2.3: Part of the phase space responsible for the energy decay, on the left for smallµ, on the right

for largeµ.

The critical valueµ∗ for this change depends on the estimate under consideration. In Table 2.1 this
dependence is given for the case ofL2–L2 estimates. In general, we have to distinguish between sub-
and supercritical cases for the energy estimates. In the sub-critical cases we claim that the decay rates
are determined by the behaviour for large frequencies while for supercritical cases small frequencies
play the essential role.

Estimate µ∗ Reference decay rate
for µ < µ∗ for µ > µ∗

solution µ∗ = 1 Theorem 2.7.1 t1−µ 1

energy µ∗ = 2 Theorem 2.8.1 t−µ/2 t−1

higher order energy µ∗ = 2k Theorem 2.9.1 t−µ/2 t−k

Table 2.1: Critical valuesµ∗ in dependence on the estimate, case ofL2–L2 estimates.

For the more generalLp–Lq estimates, the critical values ofµ are sketched in Figure 2.4. For higher
order energy estimate the picture is essentially the same like forE(t, D), except that the critical line
moves upwards.

We want to fix the main strategies for the following chapters. We will consider more general variable
coefficient dissipation terms, but we want toremain in one of the cases, i.e. we do not want to touch
the above given critical values. The two starting questions are:

Task 1. Which estimates are valid for the solutions of the Cauchy problem (1.2.1), if thecoefficient is
given byb(t) = µ(t)

1+t with
µ(t) → 0, t → ∞.

In this case, we expect that large frequencies determine the asymptotic behaviour of solutions and we
will refer to it asnon-effective (weak) dissipation.
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2.4 Application to the Euler-Poisson-Darboux equation
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Figure 2.4: Critical valuesµ∗ in dependence on the estimate, case ofLp–Lq estimates for dualp andq.
In the shaded region the estimate is determined by the hyperbolic zone. The dashed line in
the left picture corresponds to the occurance of logarithmic terms.

Non-effective dissipation terms will be considered in Chapter 3. The precise assumptions on the
coefficient function are also given there. Basic examples under consideration will be

Example2.4.

b(t) =
µ

(1 + t)κ
with κ > 1,

Example2.5.

b(t) =
µ

(1 + t) log(e + t) · · · log[m](e[m] + t)

with iterated logarithmslog[0] τ = τ andlog[m+1] τ = log log[m] τ and corresponding iterated expo-
nentials.

Task 2. What kind of asymptotic properties possess solutions to the Cauchy problem(1.2.1), if the
coefficient is given byb(t) = µ(t)

1+t with

µ(t) → ∞, t → ∞.

In this case we expect that the main influence arises from smaller frequencies, thus the dissipation term
influences the asymptotic properties much stronger than in the previous task and we will refer to this
case as the case ofeffective dissipation.

Effective dissipation is the content of Chapter 4. Basic example is

Example2.6.

b(t) =
µ

(1 + t)κ
with κ < 1.

2.4 Application to the Euler-Poisson-Darboux equation

We want to give some comments to the related singular problem, theEuler-Poisson-Darboux equation

¤v +
µ

t
vt = 0 (2.4.1)

with parameterµ ∈ R. We restrict the consideration to results related to Fourier representationsof
solutions, classical counterparts are given in the paper of A. Weinstein,[Wei54].
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2 Scale-invariant weak dissipation

We assumev = v(t, x) ∈ C(R+,S ′(Rn)). Similar to the reasoning in Section 2.1 we obtain for the
partial Fourier transform̂v(t, ξ) with t > 0 the representation5

(t|ξ|)ρv̂(t, ξ) = C+(ξ)H+
ρ (t|ξ|) + C−(ξ)H−

ρ (t|ξ|), ρ =
µ − 1

2
, (2.4.2)

with suitableC±(ξ) ∈ S ′(Rn). For non-integralρ we can replace this representation by a correspond-
ing one using Bessel functions of first kind,

(t|ξ|)ρv̂(t, ξ) = C1(ξ)Jρ(t|ξ|) + C2(ξ)J−ρ(t|ξ|), (2.4.3)

while for integralρ
(t|ξ|)ρv̂(t, ξ) = C̃1(ξ)Jρ(t|ξ|) + C̃2(ξ)Yρ(t|ξ|). (2.4.4)

We want to sketch how to draw conclusions for the asymptotic behaviour ast → +0 in dependence
onµ in the spacesXs,k =

⋂k
j=0 Cj(R+, Hs−j(Rn)):

- Forµ ≤ 1 we haveρ ≤ 0 and for non-integralρ, i.e. µ no odd (negative) number, the power(tξ)ρ

cancels the singularity of the Bessel functions and so the functionv̂ is continuous up tot = 0.
Furthermore,(t|ξ|)−ρJ−ρ(t|ξ|) is −µ times continuously differentiable, while the(1 − µ)’th
derivative remains only bounded.

- For the exceptional integersµ = 1,−1,−3,−5, . . . the functionsJρ andJ−ρ are linearly de-
pendent and we have to take a further logarithmic term into account. In this case the(1 − µ)’th
derivative tends to infinity likelog t ast → +0. Especially forµ = 1 we have the same logarith-
mic behaviour of the solution (neart = 0 and fort → ∞ as observed in theL2–L2 estimate of
Theorem 2.7).

- If µ > 1 the power(t|ξ|)−ρ does not cancel the singularities any more. So in this case the
solutions are continuous up tot = 0 only under the assumptionC2(ξ) ≡ 0, and then the solutions
are smooth up tot = 0.

Thus we obtain the following dependence between the regularity of solutionsand the value of the
parameterµ.

Theorem 2.10.Assumev = v(t, x) ∈ C((0,∞), Hs(Rn)) is a solution of the Euler-Poisson-Darboux
equation to the parameterµ ∈ R. Then the following statements are valid.

1. If µ ∈ (−∞, 1) \ (2Z + 1), thenv ∈ Xs,k for k = b1 − µc.

2. If µ = 1 − 2κ with κ ∈ N0, thenv ∈ Xs,2κ−1 and

||∂2κ
t v(t, ·)||Hs−2κ . − log t

for t ¿ 1.

3. If µ > 1, thenv(t, x) extends by continuity up tot = 0 if and only if it has the form̂v(t, ξ) =
C(ξ)(t|ξ|)−ρJρ(t|ξ|); and then it is smooth int, i.e. v ∈ Xs,∞.

The logarithmic singularity occurring for the exceptional odd integersµ = 1 − 2κ, κ ∈ N0, cancels
if we assumeu(t, ·) to be polyharmonic of orderκ, i.e.

∆κu(t, ·) = 0

for all t. In this case the solutions are even smooth. This follows from [CS76, Remark 1.4.8].
5We used−ρ in Section 2.1, but this should not cause any confusion.
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3 Non-effective weak dissipation

We will employ the translation invariance of the Cauchy problem. This implies, thata partial Fourier
transform with respect to the spatial variables may be used to reduce the partial differential equation in
u(t, x),

¤u + b(t)ut = 0, (3.0.1)

to an ordinary differential equation for̂u(t, ξ) parameterised by the frequency parameter|ξ|,

ûtt + b(t)ût + |ξ|2û = 0.

Its solution can be represented in the form

û(t, ξ) = Φ1(t, ξ)û1 + Φ2(t, ξ)û2

in terms of the Cauchy datau1 andu2 with suitable functions (Fourier multipliers)Φ1 andΦ2. Our aim
is to derive structural properties of the functionsΦ1 andΦ2 in order to decide asymptotic properties of
the solutions.

In general estimates forΦ are complicated to obtain directly from the equation; so the natural starting
point is to rewrite the second order equation as system for the micro-energy (|ξ|û, Dtû)T or a modified
one and to use a diagonalization technique to simplify the structure and to estimate itsfundamental
solution.

The main results of this chapter are the solution representation of Theorem 3.15 together with its
consequences for theLp–Lq decay, Theorem 3.24. Furthermore the sharpness of these results follows
from a modified scattering theory given by Theorem 3.26.

The chapter starts with scattering results for integrable coefficientsb(t) ∈ L1(R+) in order to show,
how the constructive approach may be used to represent the Møller waveoperator. The main result is
Theorem 3.1.

3.1 Scattering theorems

We start by characterising these coefficient functionsb = b(t), which lead to free solutions, this means,

the solutionu = u(t, x) of

¤u + b(t)ut = 0, u(0, ·) = u1, Dtu(0, ·) = u2 (3.1.1)

behaves in certain function spaces (inx) for t → ∞ like the solution of the corresponding
free problem

¤ũ = 0, ũ(0, ·) = ũ1, Dtũ(0, ·) = ũ2 (3.1.2)

to (in some sense related) data(ũ1, ũ2).
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3 Non-effective weak dissipation

The operator relating(u1, u2) to (ũ1, ũ2) will be denoted asMøller wave operatorfollowing the conven-
tions from the scattering theory for wave and Schrödinger equations, see e.g the book of R.B. Melrose,
[Mel95, Chapter 3.3] or the basic works of P.D. Lax and R.S. Phillips, [LP73], on dissipative systems.

Scattering results for damped wave equations are special non-decay to zero results for the energy
and go back to considerations of K. Mochizuki, [Moc77], [MN96], forx-dependent dissipation terms.
Recently, H. Nakazawa, [Nak], gave the sharp result for isotropic dissipation terms.1 Their results are
based on the scattering theory of T. Kato, [Kat66]. Independently, there exists an abstract approach to
scattering theories for contraction semigroups by H. Neidhardt, [Nei85] and [Nei89].

3.1.1 Results in L2-scale

The main result is contained in the following theorem, its proof follows the general philosophy of our
approach to construct the main term(s) of the solution representation explicitly. We denote byE(Rn) =
Ḣ1(Rn)×L2(Rn) theenergy spaceand use the order reducing isomorphism(u1, u2) ∈ E(Rn) if and
only if (|D|u1, u2) ∈ L2(Rn).

Theorem 3.1. Assume the coefficientb = b(t) satisfiesb ∈ L1(R+).
Then there exists an isomorphismW+ : E → E of the energy space, such that for the solution

u = u(t, x) of (3.1.1)to data(u1, u2) ∈ E and the solutioñu = ũ(t, x) of (3.1.2)to data(ũ1, ũ2)
T =

W+(u1, u2)
T the asymptotic equivalence

||(u, Dtu) − (ũ, Dtũ)||E → 0 ast → ∞ (3.1.3)

holds.

Proof. We subdivide the proof into several steps and construct the operatorW+ explicitly in terms of
the solution representation. We restrict ourselves to the casen ≥ 2, for n = 1 the same arguments are
valid if we replace|ξ| by ξ or−ξ.

For this, letU = (|ξ|û, Dtû)T . ThenU satisfies

DtU =

(
|ξ|

|ξ|

)
U +

(

ib(t)

)
U.

We consider the first matrix as principal part and the second one as remainder. The remainder is due to
our assumption integrable.
Step 1.We diagonalize the main part. Therefore we use the diagonalizer

M =

(
1 −1
1 1

)
M−1 =

1

2

(
1 1
−1 1

)
(3.1.4)

and considerU (0) = M−1U . We get

DtU
(0) = M−1

(
|ξ|

|ξ|

)
MU (0) + M−1

(

ib(t)

)
MU (0) = D(ξ)U (0) + R(t)U (0), (3.1.5)

where

D(ξ) =

(
|ξ|

−|ξ|

)
(3.1.6)

1See the discussion on page 40 of this section.
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3.1 Scattering theorems

is diagonal and the remainder satisfiesR(t) ∈ L1(R+, C2×2).
Step 2.We start with the fundamental solution to the diagonal main partDt −D(ξ). It is given by

E0(t − s, ξ) = exp {i(t − s)D(ξ)} =

(
ei(t−s)|ξ|

e−i(t−s)|ξ|

)
. (3.1.7)

The matrixME0(t, s, ξ)M
−1 is the multiplier corresponding to the unitary operator

S0(t − s,D) : (|D|ũ(s), Dtũ(s))T 7→ (|D|ũ(t), Dtũ(t))T (3.1.8)

for free waves¤ũ = 0.
Step 3.Now we construct the fundamental solution toDt −D(ξ) − R(t). Let therefore,

R(t, s, ξ) = E0(s − t, ξ)R(t)E0(t − s, ξ).

Using Theorem B.5, it follows that

Q(t, s, ξ) = I +
∞∑

k=1

ik
∫ t

s
R(t1, s, ξ)

∫ t1

s
R(t2, s, ξ) . . .

∫ tk−1

s
R(tk, s, ξ)dtk . . .dt1

solves the Cauchy problem

DtQ(t, s, ξ) −R(t, s, ξ)Q(t, s, ξ) = 0, Q(s, s, ξ) = I.

With Q(t, s, ξ) we can express the fundamental solution to the system (3.1.5). Let thereforeE(t, s, ξ) =
E0(t, s, ξ)Q(t, s, ξ). Then we obtain

Dt(E0Q) = (DtE0)Q + E0(DtQ) = D(ξ)E0Q + E0R(t, s, ξ)Q
= D(ξ)E0Q + R(t)E0Q

andE0(s, s, ξ)Q(s, s, ξ) = I. Thus,E(t, s, ξ) is the desired fundamental solution. Hence, the matrix-
valued functionME(t, s, ξ)M−1 is the multiplier of the operator

S(t, s,D) : (|D|u(s), Dtu(s))T 7→ (|D|u(t), Dtu(t))T

for solutionsu to ¤u + b(t)ut = 0.
Step 4.We estimate this fundamental solution. We do this step by step. At first we have

||E0(t, s, ξ)|| = 1.

We can estimate uniformly inξ and therefore in the multiplier spaceM2
2 (Rn) = L∞(Rn). The next

estimate is
||R(t, s, ·)||∞ ≤ ||R(t)|| ∈ L1(R+),

which will be used to estimateQ(t, s, ξ). We apply (B.3.4). Combined with the series representation
of Q we get

||Q(t, s, ·) − I||∞ ≤
∞∑

k=1

1

k!

(∫ t

s
||R(τ)||dτ

)k

= exp

{∫ t

s
||R(τ)||dτ

}
− 1 . 1
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3 Non-effective weak dissipation

S0(t)

(ũ1, ũ2)

W+

(u1, u2)

S(t, 0)

t = 0

Figure 3.1: Sketch of operators related the definition of the Møller wave operatorW+(D).

and therefore
||E(t, s, ·)||∞ . 1.

Step 5.We are interested in the Møller wave operatorW+(D). Therefore, we consider data(u1, u2)
from the energy space and apply the solution operatorS(t, 0, D). Then we go back to the initial line us-
ing the solution operator of the homogeneous problemS0(−t, D). This gives data to the homogeneous
wave equation which produce a solution coinciding withu at the time levelt. Now we lett → ∞ and
define

lim
t→∞

S0(−t, D)S(t, 0, D) = W+(D), (3.1.9)

compare also Figure 3.1. If this limit exists in the strong sense, it is called the Møller wave operator,
[Mel95, Chapter 3.3].

It holds on the operator level

S0(−t, D)S(t, 0, D) = ME0(0, t, D)E(t, 0, D)M−1 = MQ(t, 0, D)M−1

and thus, it is equivalent to decide whether the limit

lim
t→∞

Q(t, 0, ξ)

exists in an appropriate sense. We prove the existence inL∞(Rn
ξ ) = M2

2 , that means we prove norm-
convergence on the operator-level. Therefore, we consider the difference

Q(t, 0, ξ) −Q(s, 0, ξ)

=
∞∑

k=1

ik
[ ∫ t

0
R(t1, 0, ξ)

∫ t1

0
R(t2, 0, ξ) . . .

∫ tk−1

0
R(tk, 0, ξ)dtk . . .dt1

−
∫ s

0
R(t1, 0, ξ)

∫ t1

0
R(t2, 0, ξ) . . .

∫ tk−1

0
R(tk, 0, ξ)dtk . . .dt1

]

=
∞∑

k=1

ik
∫ t

s
R(t1, 0, ξ)

∫ t1

0
R(t2, 0, ξ) . . .

∫ tk−1

0
R(tk, 0, ξ)dtk . . .dt1.
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3.1 Scattering theorems

If we apply|| · ||∞ on both sides and use (B.3.4) to estimate the integrals we get

||Q(t, 0, ·) −Q(s, 0, ·)||∞ ≤
∞∑

k=1

∫ t

s
||R(t1)||

1

(k − 1)!

(∫ t1

0
||R(τ)||dτ

)k−1

dt1

≤
∫ t

s
||R(t1)||

∞∑

k=0

1

k!

(∫ t1

0
||R(τ)||dτ

)k

dt1

=

∫ t

s
||R(t1)|| exp

{∫ t1

0
||R(τ)||dτ

}
dt1 → 0

ast, s → ∞ from the integrability ofR(t). Thus, it is a Cauchy sequence and therefore the limit exists
in the Banach spaceL∞(Rn). We define

W+(ξ) = lim
t→∞

MQ(t, 0, ξ)M−1 ∈ L∞(Rn).

Step 6.The operatorW+ has the desired property: On the Fourier level we have

(|ξ|û, Dtû)T − (|ξ|ˆ̃u, Dt
ˆ̃u)T = ME0QM−1(|ξ|û1, û2)

T − ME0M
−1(|ξ|ˆ̃u1, ˆ̃u2)

T

= ME0M
−1

[
MQM−1 − W+

]
(|ξ|û1, û2)

T

and the term in brackets tends to0 ast → ∞. Thus, (3.1.3) follows.
Step 7.The transpose of the inverse ofQ(t, s, ξ) satisfies the related equation

DtQ−T (t, s, ξ) + RT (t, s, ξ)Q−T (t, s, ξ) = 0, Q−T (s, s, ξ) = I.

Thus we can estimateQ−T in a similar style asQ, especially we can prove that

lim
t→∞

Q−1(t, s, ξ)

exists. Furthermorelimt→∞Q−1(t, s, ξ) = limt→∞[Q(t, s, ξ)]−1. Thus, the matrixW+(ξ) is in-
vertible in L∞(Rn) or equivalently on the operator levelW+ = W+(D) is invertible inL2(Rn) →
L2(Rn).

Corollary 3.2. Under the assumptions of Theorem 3.1 it holds

||(u, Dtu) − (ũ, Dtũ)||E . ||(u1, u2)||E
∫ ∞

t
b(τ)dτ (3.1.10)

and the occurring constant depends only on||b||1.

Proof. The statement follows directly from

Q(∞, 0, ξ) − Q(t, 0, ξ) =
∞∑

k=1

ik
∫ ∞

t
R(t1, 0, ξ)

∫ t1

0
R(t2, 0, ξ) . . .

∫ tk−1

0
R(tk, 0, ξ)dtk . . .dt1

and

||Q(∞, 0, ·) −Q(t, 0, ·)||∞ ≤
∫ ∞

t
||R(t1)|| exp

{∫ t1

0
||R(τ)||dτ

}
dt1 .

∫ ∞

t
b(τ)dτ,

whereQ(∞, s, ξ) = limt→∞Q(t, s, ξ).
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3 Non-effective weak dissipation

Example3.1. If we consider the special caseb(t) = (1+ t)−κ with κ > 1, the assumptions of Theorem
3.1 are satisfied. The convergence rate from Corollary 3.2 for these examples isO(t1−κ).

Example3.2. We can come sharper to the borderline case using the coefficient function

b(t) =
1

(e[m] + t) log(e[m] + t) · · · log[m−1](e[m] + t)
(
log[m](e[m] + t)

)γ , γ > 1

with e[0] = 1, e[k+1] = ee[k]
, log[0](τ) = τ andlog[k+1](τ) = log(log[k](τ)) for sufficiently largeτ . In

this case it holds ∫ ∞

t
b(τ)dτ =

1

1 − γ

(
log[m](e[m] + t)

)1−γ
,

thus the convergence rate can be of arbitrarily small logarithmic order. Thisexample is essentially the
same as the comparison function of K. Mochizuki and H. Nakazawa, [MN96].

Comparison of results. If we compare our result, Theorem 3.1, with the results K. Mochizuki
and H. Nakazawa contained in [Moc77], [MN96], [Nak], we see two essential differences. On the
one hand, the results in the cited papers are for dissipation depending (essentially) on thex-variable,
while our result is fort-depending coefficients. Besides this difference, the conditions imposedon the
coefficient function are closely related:

• we useb(t) ∈ L1(R+),

• in [Nak] the condition is|b(x)| ≤ a(|x|) with a ∈ L1(R+) and sufficiently smallL1-norm is
used.

On the other hand, the results differ in the strength of the convergence to the wave operator. In the
cited papers the limit exists as strong limit, while our assumption enables us to proveconvergence in the
operator norm. The reason for this difference is not only related to the approach, if the influence comes
from thex-variable one can not expect the result to be uniform in the data in general. This follows
from the finite speed of propagation, if the dissipation is concentrated in oneregion of the space and we
consider data supported in a different part the time when the dissipation influences the solution depends
on the spatial distance of these regions.

Most of the results presented in this section can be generalized to coefficients b = b(t, x) with
b ∈ L1L∞(R+ × R

n). The calculations are closely related and contained in the preprint [Wir02]. On
the other hand, the results of K. Mochizuki and H. Nakazawa are valid, ifwe assume the estimates
uniform in t.

3.1.2 Results in Lq-scale, q ≥ 2

We proved that the energy density(|D|u, Dtu) behaves asymptotically inL2(Rn) like the energy den-
sity of a solution to the free wave equation. It is natural to ask for an extension of this result to other
Lq-spaces. At least forq ≥ 2 this is possible, as the following theorem implies. The argument is
heavily based on thex-independence of the coefficient and the translation invariance of the solution
operator.

Theorem 3.3. Let Es = (|D|−1Hs) × Hs. Then the previously defined Møller wave operator acts
W+ : Es → Es for all s ∈ R and for the solutionu = u(t, x) of (3.1.1)to data(u1, u2) ∈ Es and the
corresponding free solutioñu(t, x) of (3.1.2)to dataW+(u1, u2) it holds

||(u, Dtu) − (ũ, Dtũ)||Es . ||(u1, u2)||Es

∫ ∞

t
b(τ)dτ.
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3.2 Objectives and strategies

Proof. We just have to replace Step 6 of the proof of Theorem 3.1. We have to include the multiplier
〈ξ〉s defining the Sobolev norm. This gives on the Fourier level

〈ξ〉s
(
(|ξ|û, Dtû) − (|ξ|ˆ̃u, Dt

ˆ̃u)
)

= 〈ξ〉s ME0M
−1

[
MQM−1 − W+

]
(|ξ|û1, û2)

= ME0M
−1

[
MQM−1 − W+

]
〈ξ〉s (|ξ|û1, û2)

by the commutation property of Fourier multipliers. Now the assumptions imply the boundedness of
|| 〈ξ〉s (|ξ|û1, û2)||2 and like in the previous proof||MQM−1 − W+||∞ → 0 satisfies the above given
estimate.

Corollary 3.4. Under the assumptions of Theorem 3.3 withs ≥ n
(

1
2 − 1

q

)
for q ∈ [2,∞) ands > n

2

for q = ∞ it holds

||(|D|u, Dtu) − (|D|ũ, Dtũ)||q . ||(u1, u2)||Es

∫ ∞

t
b(τ)dτ.

The assumed regularity for the data is natural in view of theL2–Lq estimates for the wave equation
given by S. Klainerman, [Kla85]. Similarly, forL∞–L∞ estimates a Sobolev regularity of at leastdn

2 e
is required. So the use of Sobolev embedding does not destroy the quality of the estimate. What we
cannot conclude by this method is whether the wave operators are bounded onLq itself.

3.2 Objectives and strategies

There remains a gap between the case of integrable coefficients and the scale invariant case discussed
in Chapter 2. As examples one may take the following coefficient functions originating from the paper
of K. Mochizuki and H. Nakazawa, [MN96], see also Examples 3.2 and 2.5.

Example3.3. Let µ > 0 andm ≥ 1. Then we consider

b(t) =
µ

(1 + t) log(e + t) · · · log[m](e[m] + t)

and ask for (sharp) energy andLp–Lq decay estimates for the solutions of (3.0.1).

To answer this question we follow partly the consideration in Section 3.1 and apply a diagonalization
procedure to derive expressions of the leading terms of the representation of solutions. In opposite to
these considerations we cannot stop after diagonalizing the principal part, some of the lower order
remainder terms influence the asymptotic properties.

The diagonalization procedure is essentially based on the approach usedin a joint paper of M. Reissig
and K. Yagdjian, [RY00], for wave equations with variable speed of propagation or by K. Yagdjian in
[Yag97], [� 	
89], for the case of weakly hyperbolic problems. Basic idea is the construction of a
WKB representation of the solutions to the Fourier transformed equation. Asknown from the theory
of ordinary differential equations, see e.g. the book of M. Fedoryuk,[Fed93], we need assumptions for
derivatives of the coefficient function to construct these representations.

Assumptions. We make the following assumptions on the coefficient functionb = b(t):

(A1) positivity b(t) ≥ 0,

(A2) monotonicityb′(t) < 0,
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3 Non-effective weak dissipation

(A3) b2(t) . −b′(t),

which allow us to conclude energy estimates. Assumption (A3) implies a minimal decay rate of the
coefficient. Integrating both sides of the inequality yields

t .

∫ t

0

−b′(t)
b2(t)

dt =
1

b(t)
− 1

b(0)
, (3.2.1)

and thustb(t) remains bounded.

Basic ideas, zones. Similar to the proof of Theorem 3.1 we can consider the vector-valued func-
tion Ũ = (|ξ|û, Dtû)T , such that

DtŨ =

(
|ξ|

|ξ| ib(t)

)
Ũ . (3.2.2)

Contrary to the consideration in Section 3.1, we cannot say, that|ξ| is the dominating entry in the
coefficient matrix. We have to relate the size ofb(t) to the size of|ξ|. This leads to a decomposition of
the phase space. In Figure 3.2 this idea is sketched.

(|ξ| dominatesb(t))

Zdiss

Zhyp

(b(t) dominates|ξ|)

t

tξ

|ξ|

Figure 3.2: Idea behind the definition of zones for the hyperbolic case.

It is possible to replace Assumptions (A2) and (A3) by Assumption

(A4)` for all numbersk ≤ ` it holds

∣∣∣∣
dk

dtk
b(t)

∣∣∣∣ ≤ Ck

(
1

1 + t

)1+k

.

This allows us to use coefficients which are not monotonous. For the derivation ofLp–Lq estimates
Assumption (A4)̀ is necessary for sufficiently many time derivatives, while for the consideration
in L2-scale Assumptions (A2) and (A3) seem to be more appropriate. The notation (A4)∞ will be
shortened to (A4).

For later reference, we distinguish between a
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3.2 Objectives and strategies

• low regularity theory:
we assumeb ∈ C1 with (A1) to (A3) and a

• high regularity theory:
with b ∈ C` for sufficiently largè and (A1) together with (A4)`.

Definition 3.1. We call the dissipation termb(t)ut in equation(3.0.1)non-effective, if b(t) satisfies
Assumptions (A1) – (A3) or (A1) and (A4)` together with the asymptotic boundlim sup

t→∞
tb(t) < 1.

The last condition is related to the exceptional behaviour of the caseb(t) = (1 + t)−1 observed in
Chapter 2, Theorem 2.7, and allows us to exclude the critical cases arisenin these considerations.

Low regularity theory. We subdivide the phase space into zones corresponding to dominating
entries of the coefficient matrix. For this we use the monotonicity of the functionb = b(t) and define
implicitly tξ by

Nb(tξ) = |ξ| (3.2.3)

for small|ξ| and with a suitably chosen constantN . Furthermore,

Zhyp(N) := { (t, ξ) | t ≥ tξ }, Zdiss(N) := { (t, ξ) | 0 ≤ t ≤ tξ }. (3.2.4)

In thehyperbolic zoneZhyp(N) the entries of first order,|ξ|, dominate the dissipation,ib(t), and we
will use a diagonalization technique to construct an equivalent system with±|ξ| as the main diagonal
part, some lower order terms arising from the dissipation and an integrable and not necessarily diagonal
remainder. The essential point of the low regularity theory is the integrability of −b′(t) and, therefore,
also ofb2(t).

In thedissipative zoneZdiss(N) the main contribution comes fromib(t) and we will use a reformu-
lation as an integral equation to conclude estimates there.

The precise choice of the zone constantN depends on the number of diagonalization steps. In the
low regularity theory the restrictionN > 1

4 follows from the precise structure of the coefficient matrices
in formula (3.3.12).

High regularity theory. If we forget about the monotonicity ofb(t) we have to change the decom-
position of the phase space. Instead of (3.2.3) we will use

(1 + tξ)|ξ| = N (3.2.5)

with suitable constantN for the definition of the zones. This is related to the estimate of Assumption
(A4) and the introduction of symbol classes inZhyp(N) (similar symbol classes were used e.g. in
[RY00] or [Yag97]). Again the precise choice of the zone constant is given later. The existence of suit-
able constants is guaranteed by Lemma 3.12 and it increases with the number ofapplied diagonalization
steps.

Definition 3.2. The time-dependent Fourier multipliera(t, ξ) belongs to thehyperbolic symbol class
S`1,`2

N {m1, m2} with restricted smoothness`1, `2, if it satisfies the symbol estimates

∣∣∣Dk
t D

α
ξ a(t, ξ)

∣∣∣ ≤ Ck,α|ξ|m1−|α|
(

1

1 + t

)m2+k

(3.2.6)

for all (t, ξ) ∈ Zhyp(N) and all natural numbersk ≤ `1 and multi-indices|α| ≤ `2.
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3 Non-effective weak dissipation

We fix the notationSN{m1, m2} for the classS∞,∞
N {m1, m2}. Obviously, it holds

SN{m1, m2} ↪→ S`1,`2
N {m1, m2} ↪→ S

`′1,`′2
N {m1, m2} ∀ `′1 ≤ `1, `′2 ≤ `2.

Using (3.2.5), the embedding rule

S`1,`2
N {m1 − k, m2 + `} ↪→ S`1,`2

N {m1, m2} ∀ ` ≥ k ≥ 0 (3.2.7)

follows, which will be essentially used in the diagonalization scheme.
Definition 3.2 extends immediately to matrix-valued Fourier multipliers. The rules of the symbolic

calculus are obvious and collected in the following proposition.

Proposition 3.5. 1. S`1,`2
N {m1, m2} is a vector space,

2. S`1,`2
N {m1, m2} · S`1,`2

N {m′
1, m

′
2} ↪→ S`1,`2

N {m1 + m′
1, m2 + m′

2},

3. Dk
t D

α
ξ S`1,`2

N {m1, m2} ↪→ S
`1−k,`2−|α|
N {m1 − |α|, m2 + k},

4. S0,0
N {−1, 2} ↪→ L∞

ξ L1
t (Zhyp).

The symbol estimates with restricted smoothness are sufficient to deduce mapping properties in
Lp spaces2. We give one auxiliary result following directly from Marcinkiewicz multiplier theorem,
[Ste70, Chapter IV.3, Theorem 3].

Proposition 3.6. Eacha ∈ S
0,dn

2
e

N {0, m} with supp a ⊆ Zhyp(N) gives rise to an operatora(t, D) :
Lp → Lp for all p ∈ (1,∞) with norm estimate

||a(t, D)||p→p .

(
1

1 + t

)m

.

Formulation in system form. Like in the considerations of Chapter 2 the two components of the
energy behave differently in the dissipative zone. This can be seen as areason to consider not the vector
Ũ defined as above, but themicro-energy

U = (h(t, ξ)û, Dtû)T (3.2.8)

with
h(t, ξ) = Nb(t)φdiss,N (t, ξ) + |ξ|φhyp,N (t, ξ) (3.2.9)

in the low regularity approach andb(t) replaced by 1
1+t in the high regularity one. Here and thereafter,

we denote byφdiss,N (t, ξ) the characteristic function of the dissipative zone and byφhyp,N (t, ξ) the
characteristic function of the hyperbolic zone, or a smooth surrogateφdiss,N (t, ξ) = χ((1 + t)|ξ|/N)
with χ ∈ C∞

0 (Rn), suppχ = B2 andχ ≡ 1 onB 1
2

together withφdiss,N + φhyp,N = 1. Remark that

φhyp,N ∈ Shyp,N{0, 0} by this definition andsupp(∂t,∇)φhyp,N ⊆ Zhyp(N/2) ∩ Zdiss(2N).
Our aim is to prove estimates and structural properties for the fundamental solutionE(t, s, ξ) to the

corresponding systemDtU = A(t, ξ)U .

2We are speaking about Fourier multiplier only, so no essential difficulties can arise by this lack of smoothness.
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3.3 Representation of solutions

3.3 Representation of solutions

3.3.1 The dissipative zone

In the dissipative zone we use the positivity of the coefficient functionb(t). The essential idea is to
write the problem as anVolterra integral equation. The approach works in the low regularity theory
and in the high regularity theory as well. Remark that in the first casetb(t) remains bounded and
therefore the dissipative zone can only be ’smaller’.

In the dissipative zone the micro-energy (3.2.8) reduces to

U =

(
N

1 + t
û, Dtû

)T

and thus we have to solve the system

DtE(t, s, ξ) = A(t, ξ)E(t, s, ξ) =

(
i

1+t
N

1+t
(1+t)|ξ|2

N ib(t)

)
E(t, s, ξ), E(s, s, ξ) = I (3.3.1)

in order to getU(t, ξ) = E(t, s, ξ)U(s, ξ).
We will use the auxiliary function

λ(t) = exp

{
1

2

∫ t

0
b(τ)dτ

}
, (3.3.2)

related to the entryib(t) of the coefficient matrix. It plays an essential role in the description of the
energy decay as will be seen later.

In order to understand the influence of the different entries, we need arelation betweenb(t) andt.
We distinguish the following two cases. Recall that the first one is part of thedefinition of the notion
of non-effective dissipation.

(C1) It holdslim supt→∞ tb(t) < 1.

(C2) It holdslim inft→∞ tb(t) > 1.

The remaining gap corresponds to the exceptional caseb(t) = 1
1+t from Chapter 2. In this case we

have to modify the estimates for the fundamental solution and logarithmic terms haveto occur. In the
calculation we use the following two consequences of Assumptions (C1), (C2).

Proposition 3.7. 1. Assumptions (A1), (C1) imply for the auxiliary functionλ(t) defined by(3.3.2)

∫ t

0

dτ

λ2(τ)
∼ t

λ2(t)

and t
λ2(t)

is monotonous increasing for larget and tends to infinity.

2. Assumption (C2) impliesλ−2(t) ∈ L1(R+) with
∫ ∞

t

dτ

λ2(τ)
.

1 + t

λ2(t)
.

Furthermore t
λ2(t)

is monotonous decreasing for larget.
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3 Non-effective weak dissipation

Proof. Conditions like (C1) and (C2) imply polynomial bounds forλ(t). It holds

1 + t

λ2(t)
= exp

{∫ t

0

(
b(τ) − 1

1 + τ

)
dτ

}
,

and the integrand is strictly negative for largeτ under (C1) or positive under (C2) and behaves like
1

1+τ 6∈ L1(R+). Thus, in the first case the expression tends to zero, while in the second one to infinity.
Hence, under Condition (C1) we haveλ2(t) . 1 + t, while (C2) implies1 + t . λ2(t).

Part 1. Integration by parts yields

∫ t

0

dτ

λ2(τ)
=

t

λ2(t)
+

∫ t

0

τb(τ)

λ2(τ)
dτ.

On the one hand, the right-hand side is larger thantλ−2(t) by Assumption (A1). On the other hand we
conclude fromtb(t) ≤ c < 1 for t > t0 that

∫ t

0

τb(τ)

λ2(τ)
dτ ≤

∫ t0

0

τb(τ)

λ2(τ)
dτ + c

∫ t

t0

dτ

λ2(τ)
,≤ C + c

∫ t

0

dτ

λ2(τ)

and the statement follows from

∫ t

0

dτ

λ2(τ)
≤ 1

1 − c

(
C +

t

λ2(t)

)
.

t

λ2(t)
.

For smallt the statement can be concluded fromλ2(t) ∼ 1.
Monotonicity is a consequence of

d

dt

t

λ2(t)
=

1 − tb(t)

λ2(t)

andtb(t) < 1 for t À 1.
Part 2. From lim inft→∞ tb(t) > 1 + ε we conclude

λ2(t) = exp

{∫ t

0
b(τ)dτ

}
& (1 + t)1+ε,

which implies integrability ofλ−2(t). Furthermore, it follows fort À 1 with tb(t) > 1 + ε

ε

∫ ∞

t

dτ

λ2(τ)
≤

∫ ∞

t

τb(τ) − 1

λ2(τ)
dτ =

t

λ2(t)

and the statement is proven.

Lemma 3.8. Assume (A1) and (C1). Then

||E(t, s, ξ)|| .
λ2(s)

λ2(t)
, tξ ≥ t ≥ s. (3.3.3)
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3.3 Representation of solutions

Proof. If we denote byv(t, s, ξ) and w(t, s, ξ) the entries of a column ofE(t, s, ξ), then equation
(3.3.1) implies

v(t, s, ξ) =
1 + s

1 + t
η1 − i

N

1 + t

∫ t

s
w(τ, s, ξ)dτ, (3.3.4a)

w(t, s, ξ) =
λ2(s)

λ2(t)
η2 − i

|ξ|2
Nλ2(t)

∫ t

s
(1 + τ)λ2(τ)v(τ, s, ξ)dτ, (3.3.4b)

whereη = (η1, η2) = (1, 0)T for the first andη = (0, 1)T for the second column. If we multiply it by

the weight factorλ
2(t)

λ2(s)
, we obtain

λ2(t)

λ2(s)
v(t, s, ξ) =

λ2(t)

λ2(s)

1 + s

1 + t
η1 − i

Nλ2(t)

1 + t

∫ t

s

1

λ2(τ)

(
λ2(τ)

λ2(s)
w(τ, s, ξ)

)
dτ,

λ2(t)

λ2(s)
w(t, s, ξ) = η2 − i

|ξ|2
N

∫ t

s
(1 + τ)

(
λ2(τ)

λ2(s)
v(τ, s, ξ)

)
dτ.

The aim is now, to prove well-posedness of this system of Volterra integralequations inL∞{t ≥
s, (t, ξ), (s, ξ) ∈ Zdiss } and, therefore, a uniform bound on its solution. This follows by TheoremB.9
applied to the equation

λ2(t)

λ2(s)
w(t, s, ξ) = η2−i

|ξ|2
N

∫ t

s
(1+s)

λ2(τ)

λ2(s)
η1dτ+|ξ|2

∫ t

s
λ2(τ)

∫ τ

s

1

λ2(θ)

(
λ2(θ)

λ2(s)
w(θ, s, ξ)

)
dθdτ,

obtained by plugging the first equation into the second one. Proposition 3.7.1implies the condition on
the right-hand side and on the integral kernel

|ξ|2
∫ t

s
(1 + s)

λ2(s)

λ2(τ)
dτ . |ξ|2(1 + t)2 . 1,

∫ t

s
|ξ|2

∫ τ

s

λ2(τ)

λ2(θ)
dτdθ . 1

on Zdiss(N) and uniform ins ≤ t. Furthermore, the first integral equation implies the desired bound
onv(t, s, ξ).

Lemma 3.9. Assume (A1) and (C2). Then

||E(t, s, ξ)|| .
1 + s

1 + t
, tξ ≥ t ≥ s. (3.3.5)

Proof. We estimate the columns separately. Again they satisfy the integral equations (3.3.4).
We start by estimating the first one. If we plug the second integral equation into the first one, we

obtain
1 + t

1 + s
v(t, s, ξ) = 1 − |ξ|2

∫ t

s

∫ τ

s

λ2(θ)

λ2(τ)︸ ︷︷ ︸
≤1

1 + θ

1 + s
v(θ, s, ξ)dθdτ

and Theorem B.9 together with the definition of the zone yields well-posedness of this equation in
L∞(Zdiss ∩ {t ≥ s}). Now, the second integral equation may be used to deduce the same bound for
w(t, s, ξ)

1 + t

1 + s
w(t, s, ξ) . |ξ|2

∫ t

s
λ2(τ)dτ

1 + t

λ2(t)
. 1.
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3 Non-effective weak dissipation

For the second column we obtain similarly

1 + t

1 + s
v(t, s, ξ) = −iN

λ2(s)

1 + s

∫ t

s

dτ

λ2(τ)
− |ξ|2

∫ t

s

∫ τ

s

λ2(θ)

λ2(τ)

1 + θ

1 + s
v(θ, s, ξ)dθdτ

and again Theorem B.9 is applicable, because the first summand is uniformly bounded by Proposition
3.7.2. Forw(t, s, ξ) we use the second integral equation to conclude the desired bound, it holds

|ξ|2
λ2(t)

∫ t

s
λ2(τ)(1 + t)dτ . |ξ|2(1 + t)2 . 1.

Further results for the high regularity case. In order to perform a perfect diagonalization in
the hyperbolic zone, it is essential to find symbol estimates forE(tξ, 0, ξ) for |ξ| ≤ N .

Lemma 3.10. Assume that (A1), (A4)` and (C1) hold. Then for|ξ| ≤ N the symbol-like estimate

||Dα
ξ E(tξ, 0, ξ)|| ≤ Cα

1

λ2(tξ)
|ξ|−|α|

is valid for all |α| ≤ ` + 1.

Proof. It holdsDtE = AE with

A(t, ξ) =

(
N

1+t
1+t
N |ξ|2 ib(t)

)
, ||A(t, ξ)|| .

1

1 + t
.

Thus for|α| = 1 we get
DtD

α
ξ E = Dα

ξ (AE) = (Dα
ξ A)E + A(Dα

ξ E)

or using Duhamel’s formula together with the initial conditionDα
ξ E(0, 0, ξ) = 0

Dα
ξ E(t, 0, ξ) =

∫ t

0
E(t, τ, ξ)(Dα

ξ A(τ, ξ))E(τ, 0, ξ)dτ.

Now the known estimates forE(t, s, ξ), equation (3.3.3), imply together with||Dα
ξ A(t, ξ)|| . 1 the

desired statement||Dα
ξ E(t, 0, ξ)|| . t . |ξ|−1 for (t, ξ) ∈ Zdiss(N) .

For |α| = ` > 1 we use Leibniz rule to get similar representations containing all derivativesof order
less than|α| under the integral and use induction over`. From the estimates

(Dα1
ξ A)(Dα2

ξ E) .
1

λ2(t)
|ξ|1−|α1|−|α2|

for |α1| + |α2| ≤ `, formula (3.3.3) and from the first statement we conclude

||Dα
ξ E(t, 0, ξ)|| .

∫ t

0

1

λ2(τ)
|ξ|1−`dτ .

1

λ2(t)
|ξ|−|α|

by the aid of Proposition 3.7.1. Application of the equation itself and using (A4)` to estimate

||Dk
t A(t, ξ)|| .

(
1

1 + t

)k+1

, k ≤ `,
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3.3 Representation of solutions

implies

||Dk
t D

α
ξ E(t, 0, ξ)|| .

1

λ2(t)

(
1

1 + t

)k

|ξ|−|α|.

Finally, with the estimate for the zone boundarytξ,

|Dα
ξ tξ| . |ξ|−1−|α|, |ξ| ≤ N, (3.3.6)

the statement follows.

This result can be reformulated in the following form. The multiplierλ2(tξ)E(tξ, 0, ξ) is an element
of thehomogeneous symbol class

Ṡ0
(`−1) = { m ∈ C∞(Rn \ {0}) | ∀|α| ≤ ` − 1 : |Dα

ξ m(ξ)| ≤ Cα|ξ|−|α| } (3.3.7)

of restricted smoothness̀− 1. Thus as consequence of the Marcinkiewicz multiplier theorem the
Fourier multiplier with symbolλ2(tξ)E(tξ, 0, ξ) mapsLp into Lp for all p ∈ (1,∞), if ` ≥ dn

2 e − 1.

3.3.2 The hyperbolic zone: low regularity theory

We assume (A1) – (A3) and restrict our considerations to the hyperbolic zone

Zhyp(N) = { (t, ξ) | |ξ| ≥ Nb(t) }
with suitably chosen zone constantN . In this zone the micro-energy (3.2.8) coincides with the usual
hyperbolic energy. Thus, we consider

U = (|ξ|û, Dtû)T

with

DtU = A(t, ξ)U =

(
|ξ|

|ξ| ib(t)

)
U.

We apply two transformations to this system. In a first step we diagonalize the homogeneous princi-
pal part. After that, we perform one further diagonalization step to make theremainder integrable over
the hyperbolic zone.

Step 1. We denote byM the matrix

M =

(
1 −1
1 1

)
(3.3.8)

consisting of eigenvectors of the homogeneous principal part ofA(t, ξ) with inverse

M−1 =
1

2

(
1 1
−1 1

)
. (3.3.9)

Then forU (0) = M−1U we get the system (cf. page 36, where we did exactly the same)

DtU
(0) =

(
D(ξ) + R(t)

)
U (0) (3.3.10)

with

D(ξ) =

(
|ξ|

−|ξ|

)
, R(t) =

ib(t)

2

(
1 1
1 1

)
. (3.3.11)

If b(t) is integrable, we are done. Ifb(t) is not integrable we perform one further diagonalization
step in the hyperbolic zone.
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3 Non-effective weak dissipation

Step 2. Following K. Yagdjian, [Yag97], and M. Reissig / K. Yagdjian, [RY00], we denoteF0 =
diag R and

N (1) =

(
R12

τ1−τ2
R21

τ2−τ1

)
=

(
ib(t)
4|ξ|

− ib(t)
4|ξ|

)
,

B(1) = DtN
(1) − (R − F0)N

(1) =

(
b′(t)
4|ξ|

− b′(t)
4|ξ|

)
−

(
− b2(t)

8|ξ|
b2(t)
8|ξ|

)
,

N1 = I + N (1), detN1 = 1 − b2(t)

16|ξ|2 .

Especially,det N1 6= 0 in Zhyp(N) for zone constantN > 1
4 . Furthermore, the norm satisfies||N1|| =

1 + b(t)
4|ξ| . 1 in Zhyp(N). ThusN1 is invertible with uniformly bounded inverse matrix onZhyp(N).

Thus, if we define
R1(t, ξ) = −N−1

1 B(1)(t, ξ),

a simple calculation shows the (operator3) identity

(
Dt −D(ξ) − R(t)

)
N1(t, ξ) = N1(t, ξ)

(
Dt −D(ξ) − F0(t) − R1(t, ξ)

)
. (3.3.12)

Indeed, we have by the construction given above, that

[D(ξ), N (1)(t, ξ)] = F0(t) − R(t),

and hence,

(Dt −D−R)N1 = DtN
(1) +N1Dt −DN (1) −D−RN (1) −R = −N1R1 +N1Dt −N1D−N1F0.

Step 3. In a third step, we estimate the fundamental solution of the transformed system

(
Dt −D(ξ) − F0(t) − R1(t, ξ)

)
E1(t, s, ξ) = 0, E1(s, s, ξ) = I ∈ C

2×2. (3.3.13)

From (A2) and (A3) we conclude thatb2(t) is dominated by−b′(t), and therefore,

∫ ∞

tξ

||R1(τ, ξ)||dτ .

∫ ∞

tξ

−b′(τ)

|ξ| dτ =
b(tξ)

|ξ| =
1

N
.

Furthermore,F0 is diagonal. Thus, Theorem B.10 implies the estimate

||E1(t, s, ξ)|| .
λ(s)

λ(t)
, t ≥ s ≥ tξ. (3.3.14)

Using that the matricesM andN1 are uniformly bounded with uniformly bounded inverses on the
hyperbolic zoneZhyp(N) for sufficiently large zone constantN , this estimate transfers to the funda-
mental solutionE(t, s, ξ) and thus together with the results from the dissipative zone we can conclude
the following theorem.

3Thus we understand it as a usual identity after multiplying with aC1 vector function from the right-hand side.
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3.3 Representation of solutions

Theorem 3.11.Assume (A1) – (A3) together with (C1). Then the fundamental solutionE(t, s, ξ) satis-
fies for allt ≥ s ≥ 0 and uniform inξ the estimate

||E(t, s, ξ)|| .
λ(s)

λ(t)
.

Assumption (C1) is only used for the estimate in the dissipative zone. If (C1) isviolated the estimate
in Zdiss(N) may dominate the estimate inZhyp(N) and the result of Theorem 3.11 is only valid
uniform in ξ with (s, ξ) ∈ Zhyp(N).

3.3.3 The hyperbolic zone: high regularity theory

Now we replace Assumptions (A2) and (A3) by Assumption (A4) and consider the smaller hyperbolic
zone

Zhyp(N) = { (t, ξ) | (1 + t)|ξ| ≥ N }
with suitably chosen zone constantN . The aim of this section is to prove a stronger variant of Theorem
3.11, which allows the application of stationary phase method to deduceLp–Lq estimates.

Diagonalization. The difference to Section 3.3.2 is that we perform more diagonalization steps. We
use the special symbol classes defined by Definition 3.2. Remark that it holds |ξ|φhyp,N ∈ SN{1, 0}
and by Assumption (A4)` also b(t)φhyp,N ∈ S`,∞

N {0, 1}. For the further calculations we omit the
cut-off functionφhyp,N .

Step 1. Again, we considerU (0) = M−1U and get the system

DtU
(0) =

(
D(ξ) + R(t)

)
U (0)

with coefficient matricesD ∈ SN{1, 0} andR ∈ S`,∞
N {0, 1} given by (3.3.11).

Step k + 1. We construct recursively the diagonalizerNk(t, ξ) of orderk. Let

Nk(t, ξ) =
k∑

j=0

N (j)(t, ξ), Fk(t, ξ) =
k∑

j=0

F (j)(t, ξ),

whereN (0) = I, B(0) = R(t) andF (0) = diag B(0) = F0(t).
The construction goes along the following scheme. Note, thatF0 is a multiple ofI. Then we set

F (j) = diag B(j),

N (j+1) =

(
−B

(j)
12 / 2|ξ|

B
(j)
21 / 2|ξ|

)
,

B(j+1) = (Dt −D − R)Nj+1 − Nj+1(Dt −D − Fj).

Now we prove by induction thatN (j) ∈ S`−j+1,∞
N {−j, j} andB(j) ∈ S`−j,∞

N {−j, j + 1}.
For j = 0 we know

F (0) ∈ S`,∞
N {0, 1}, N (1) ∈ S`,∞

N {−1, 1}, B(1) ∈ S`−1,∞
N {−1, 2},
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3 Non-effective weak dissipation

which follows directly from the representation in Step 2 of the previous section.
For j ≥ 1 we apply an inductive argument. Assume, we knowB(j) ∈ S`−j,∞

N {−j, j + 1}. Then,

by definition ofN (j+1), we have from|ξ|−1 ∈ SN{−1, 0}, thatN (j+1) ∈ S`−j,∞
N {−j − 1, j + 1} and

F (j) ∈ S`−j,∞
N {−j, j + 1}. Moreover,

B(j+1) = (Dt −D − R)(

j+1∑

ν=0

N (ν)) − (

j+1∑

ν=0

N (ν))(Dt −D −
j∑

ν=0

F (j))

= B(j) + [N (j+1),D] − F (j) + DtN
(j+1) + RN (j+1)

+ N (j+1)
j∑

ν=0

F (ν) − (

j+1∑

ν=1

N (ν))F (j).

Now B(j) + [N (j+1),D] − F (j) = 0 for all j. The sum of the remaining terms belongs to the symbol
classS`−j−1,∞

N {−j − 1, j + 2}. HenceB(j+1) ∈ S`−j−1,∞
N {−j − 1, j + 2}.

Now the definition ofB(k) implies the operator identity

(
Dt −D(ξ) − R(t)

)
Nk(t, ξ) = Nk(t, ξ)

(
Dt −D(ξ) − Fk−1(t, ξ)

)
mod S`−k,∞

N {−k, k + 1}.
(3.3.15)

Thus, we have constructed the desired diagonalizer, if we can show thatthe matrixNk(t, ξ) is invert-
ible onZhyp(N) with uniformly bounded inverse. But this follows fromNk − I ∈ S`−k+1,∞

N {−1, 1}
by the choice of a sufficiently large zone constantN . Indeed, we have

||Nk − I|| ≤ C
1

|ξ|b(t) ≤ C ′ 1

|ξ|(1 + t)
≤ C ′

N
→ 0 asN → ∞.

Thus, with the notationRk(t, ξ) = −N−1
k (t, ξ)B(k)(t, ξ) we have proven the following lemma.

Lemma 3.12. Assume (A1) and (A4)`.
For each1 ≤ k ≤ ` there exists a zone constantN and matrix valued symbols

• Nk(t, ξ) ∈ S`−k+1,∞
N {0, 0} invertible for all(t, ξ) ∈ Zhyp(N) and withN−1

k (t, ξ) ∈ S`−k+1,∞
N {0, 0}

• Fk−1(t, ξ) ∈ S`−k+1,∞
N {0, 1} diagonal withFk−1(t, ξ) − ib(t)

2 I ∈ S`−k+1,∞
N {−1, 2}

• Rk(t, ξ) ∈ S`−k,∞
N {−k, k + 1},

such that the (operator) identity

(
Dt −D(ξ) − R(t)

)
Nk(t, ξ) = Nk(t, ξ)

(
Dt −D(ξ) − Fk−1(t, ξ) − Rk(t, ξ)

)
(3.3.16)

holds for all(t, ξ) ∈ Zhyp(N).

Remarks on perfect diagonalization. Lemma 3.12 can be understood as perfect diagonalization
of the original system. If we defineF (t, ξ) asasymptotic sumof theF (k)(t, ξ),

F (t, ξ) ∼
∞∑

k=0

F (k)(t, ξ), (3.3.17)
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3.3 Representation of solutions

this means, we requireF (t, ξ) − Fk(t, ξ) ∈ SN{−k − 1, k + 2} for all k ∈ N, and similarly

N(t, ξ) ∼
∞∑

k=0

N (k)(t, ξ), (3.3.18)

which can be chosen to be invertible, equation (3.3.15) implies

(
Dt −D(ξ) − R(t)

)
N(t, ξ) − N(t, ξ)

(
Dt −D(ξ) − F (t, ξ)

)
∈

⋂

k∈N

SN{−k, k + 1}. (3.3.19)

Thus if we define theresidual symbol classes

H{m} :=
⋂

m1+m2=m

SN{m1, m2}, (3.3.20)

we can findP∞(t, ξ) ∈ H{1} such that
(
Dt −D(ξ) − R(t)

)
N(t, ξ) = N(t, ξ)

(
Dt −D(ξ) − F (t, ξ) − P∞(t, ξ)

)
. (3.3.21)

The classesH{m} are invariant under multiplication byexp(±it|ξ|). This explains why we perform
more than one diagonalization step. Multiplication bye±it|ξ| is not a well defined operation on the
symbol classesSN{m1, m2}, it destroys the symbol estimates according to the following proposition.
It is closely related to the geometry of the hyperbolic zone.

Proposition 3.13.

1. e±it|ξ|S`1,`2
N {m1, m2} ↪→ S`1,`2

N {m1 + `, m2 − `} with ` = `1 + `2,

2. e±it|ξ|H{m} ↪→ H{m}.

Proof. It suffices to prove the first statement. It holds fora ∈ SN{m1, m2}

Dk
t D

α
|ξ|e

it|ξ|a(t, ξ) =
∑

k1+k2=k

∑

α1+α2=α

Ck1,k2,α1,α2 |ξ|k1tα1eit|ξ|Dk2
t Dα2

|ξ|a(t, ξ)

≤
∑

k1+k2=k

∑

α1+α2=α

C ′
k1,k2,α1,α2

|ξ|m1−α2+k1

(
1

1 + t

)m2+k2−α1

≤ Ck,α|ξ|m1+`−α

(
1

1 + t

)m2−`+k

for k ≤ `1, α ≤ `2 using Leibniz rule and the definition of the hyperbolic zone.

Fundamental solution of the diagonalized system. After performing several diagonalization
steps, we want to construct the fundamental solution of the transformed system

(
Dt −D(ξ) − Fk−1(t, ξ) − Rk(t, ξ)

)
Ek(t, s, ξ) = 0, Ek(s, s, ξ) = I ∈ C

2×2 (3.3.22)

and to obtain structural properties of it. The construction goes along the following steps:

• the fundamental solutionE0(t, s, ξ) to Dt −D(ξ),

• influence of the main termF (0)(t, ξ) of Fk−1(t, ξ),
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3 Non-effective weak dissipation

• influence ofFk(t, ξ) − F (0)(t, ξ) andRk(t, ξ).

The fundamental solutionE0(t, s, ξ) describes aphase functionof a Fourier integral operator, i.e. the
oscillatory behaviour of the solution multiplier. The main termF (0)(t, ξ) describes the energy decay.
Together with the other terms it constitutes a Fourier multiplier which behaves as symbol with restricted
smoothness. The numberk of diagonalization steps is directly connected to the smoothness properties
of this symbol.

Step 1. Let

E0(t, s, ξ) = exp {i(t − s)D(ξ)} =

(
ei(t−s)|ξ|

e−i(t−s)|ξ|

)
, (3.3.23)

such that forẼ0(t, s, ξ) = λ(s)
λ(t)E0(t, s, ξ) the equation

DtẼ0(t, s, ξ) =
(
D(ξ) + F (0)(t, ξ)

)
Ẽ0(t, s, ξ) (3.3.24)

is satisfied. Thus̃E0 describes the influence of the main diagonal terms.

Step 2. By the aid ofẼ0(t, s, ξ) we define

Rk(t, s, ξ) = Ẽ0(s, t, ξ)
(
Fk−1(t, ξ) + Rk(t, ξ) − F (0)(t, ξ)

)
Ẽ0(t, s, ξ),

= Fk−1(t, ξ) + E0(s, t, ξ)Rk(t, ξ)E0(t, s, ξ) − F (0)(t, ξ), (3.3.25)

such that, by the aid of the solutionQk(t, s, ξ) to

DtQk(t, s, ξ) = Rk(t, s, ξ)Qk(t, s, ξ), Qk(s, s, ξ) = I ∈ C
2×2, (3.3.26)

the matrixEk(t, s, ξ) can be represented as

Ek(t, s, ξ) = Ẽ0(t, s, ξ)Qk(t, s, ξ) =
λ(s)

λ(t)
E0(t, s, ξ)Qk(t, s, ξ). (3.3.27)

The solution to (3.3.26) is given by the Peano-Baker formula, Theorem B.5, as

Qk(t, s, ξ) = I +
∞∑

`=1

i`
∫ t

s
Rk(t1, s, ξ)

∫ t1

s
Rk(t2, s, ξ) . . .

∫ t`−1

s
Rk(t`, s, ξ)dt` . . .dt1. (3.3.28)

Step 3. The series representation (3.3.28) forQk(t, s, ξ) can be used to deduce estimates. From the
unitarity ofE0(t, s, ξ) it follows that

||Rk(t, s, ξ)|| = ||Rk(t, ξ)|| .
1

(1 + t)2|ξ|

and thus, using ∫ ∞

tξ

dτ

(1 + τ)2|ξ| =
1

(1 + tξ)|ξ|
=

1

N

together with Corollary B.7, it follows that

||Qk(t, s, ξ)|| . 1.
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3.3 Representation of solutions

This gives the counterpart of Theorem 3.11 for the high regularity theory and works for allk ≥ 1. In a
second step we want to estimateξ-derivatives ofQk(t, s, ξ). Proposition 3.13 yields fromRk(t, ξ) ∈
S`−k,∞

N {−k, k + 1} under the Assumption (A4)` and with

k − 1 ≤ ` − k (3.3.29)

thatRk(t, s, ξ) ∈ Sk−1,k−1
N {−1, 2} uniform in the variables and derivations with respect tos behave

like multiplications by|ξ|. Therefore, we set̀ = 2k − 1 from now on.

Proposition 3.14. Assumea ∈ Sk,k
N {−1, 2}. Then

b(t, s, ξ) = 1 +
∞∑

j=1

∫ t

s
a(t1, ξ)

∫ t1

s
a(t2, ξ) . . .

∫ tj−1

s
a(tj , ξ)dtj . . .dt1

defines a symbol fromSk,k
N {0, 0} uniform ins ≥ tξ.

Proof. We use Proposition B.6 to estimate this series. This yields in a first step (without taking deriva-
tives)

|b(t, s, ξ)| . 1 +
∞∑

j=1

∫ t

s

1

|ξ|(1 + t1)2

∫ t1

s

1

|ξ|(1 + t2)2
· · ·

∫ tj−1

s

1

|ξ|(1 + tj)2
dtj · · ·dt1

. exp

{∫ t

tξ

dτ

|ξ|(1 + τ)2

}
. 1

and takingα derivatives with respect toξ yields in each summand further factors|ξ|−|α| according
to Leibniz rule. Furthermore, time-derivatives can be estimated from∂tb(t, s, ξ) = a(t, ξ)b(t, s, ξ)

together witha ∈ Sk,k
N {−1, 2} ⊆ Sk,k

N {0, 1}.

An almost immediate consequence of this proposition is the following structural representation of
the fundamental solution.

Theorem 3.15. Assume (A1) and (A4)2k−1, k ≥ 1. Then the fundamental solutionEk(t, s, ξ) of the
transformed system(3.3.22)can be represented in the hyperbolic zone as

Ek(t, s, ξ) =
λ(s)

λ(t)
E0(t, s, ξ)Qk(t, s, ξ) t, s ≥ tξ

with a symbolQk(t, s, ξ) of restricted smoothness subject to the symbol estimates

∣∣∣
∣∣∣D`1

t D`2
s Dα

ξ Qk(t, s, ξ)
∣∣∣
∣∣∣ ≤ C`,α|ξ|`2−|α|

(
1

1 + t

)`1

t ≥ s ≥ tξ

for all multi-indices|α| ≤ k − 1, all `1 ≤ k − 1 and all `2 ∈ N0.

Of special interest isEk(t, tξ, ξ). The estimate of the previous lemma together with the properties of
the derivatives oftξ from equation (3.3.6) imply

Corollary 3.16. Assume (A1) and (A4)2k−1, k ≥ 1. Then

Qk(t, tξ, ξ) ∈ Sk−1,k−1
N {0, 0}

for t ≥ tξ and|ξ| ≤ N .
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3 Non-effective weak dissipation

Similar to the consideration in Section 3.1, the matrixQk(t, s, ξ) converges fort → ∞ to a well-
defined limit. This limit will be used in Section 3.5 to conclude the sharpness of ourresults.

Theorem 3.17.Assume (A1) and (A4)2k−1, k ≥ 1. The limit

Qk(∞, s, ξ) = lim
t→∞

Qk(t, s, ξ)

exists uniform inξ for |ξ| > ξs. Furthermore,

||Dα
ξ Qk(∞, tξ, ξ)|| ≤ Cα|ξ|−|α|

for all multi-indices|α| ≤ k − 1 and all ξ 6= 0.

Proof. We fix the starting values and consider only|ξ| ≥ ξs (i.e. s ≥ tξ). Taking the difference
Qk(t, s, ξ) −Qk(t̃, s, ξ) in the series representation (3.3.28) yields

Qk(t, s, ξ) −Qk(t̃, s, ξ) =

∞∑

j=1

∫ t

t̃
Rk(t1, s, ξ)

∫ t1

s
Rk(t2, s, ξ) . . .

∫ t`−1

s
Rk(t`, s, ξ)dt` . . .dt1,

such that with Proposition B.6

||Qk(t, s, ξ) −Qk(t̃, s, ξ)||L∞{|ξ|≥ξs} ≤
∫ t

t̃
||R(t1, ξ)|| exp

{∫ ∞

sξ

||R(τ, ξ)||dτ

}
dt1

→ 0, t, t̃ → ∞.

Similarly one obtains for|α| ≤ k − 1

||Dα
ξ Qk(t, s, ξ) − Dα

ξ Qk(t̃, s, ξ)|| . |ξ|−α

∫ t

t̃

dτ

|ξ|(1 + τ)2
→ 0, t, t̃ → ∞

uniform in |ξ| ≥ ξs. Now the second statement follows from the estimates oftξ, formula (3.3.6).

We have proved even more. The limit exists in the homogeneous symbol classṠ0
(k−1) of restricted

smoothness. Proposition B.6 may also be used to estimate the formal representation of Qk(∞, s, ξ) as
symbol in(s, ξ).

Corollary 3.18. The series representation

Qk(∞, s, ξ) = I +
∞∑

j=1

ij
∫ ∞

s
Rk(t1, s, ξ)

∫ t1

s
Rk(t2, s, ξ) . . .

∫ t`−1

s
Rk(t`, s, ξ)dt` . . .dt1

gives an asymptotic expansion ofQk(∞, s, ξ) in S0,k−1
N {0, 0}, i.e. thej-th term belongs toS0,k−1

N {−j, j}.

Step 4. As in the proof of Theorem 3.1, Step 7, the transpose of the inverse ofQk satisfies the related
equation

DtQ−T
k (t, s, ξ) + RT

k (t, s, ξ)Q−T
k (t, s, ξ) = 0, Q−T

k (s, s, ξ) = I ∈ C
2×2. (3.3.30)

The matrixRT
k (t, s, ξ) satisfies the same estimates likeRk(t, s, ξ) and therefore the reasoning of the

previous step holds in the same way forQ−T
k (t, s, ξ). In particular the matrixQk(t, s, ξ) is invertible

in the hyperbolic zone andQ−1
k (∞, s, ξ) exists.

Corollary 3.19. Assume (A1) and (A4)2k−1, k ≥ 1. Then the limit

Q−1
k (∞, s, ξ) = lim

t→∞
Q−1

k (t, s, ξ)

exists uniform inξ for |ξ| ≥ ξs.

56



3.4 Estimates

Transforming back to the original problem. After constructing the fundamental solutionEk(t, s, ξ),
we transform back to the original problem and get in the hyperbolic zone the representation

E(t, s, ξ) = MNk(t, ξ)Ek(t, s, ξ)N
−1
k (s, ξ)M−1 (3.3.31)

with uniformly bounded coefficient matricesNk, N
−1
k ∈ Sk,∞

N {0, 0}. We combine this representation
with the representation obtained in the dissipative zone. This yields for0 ≤ s ≤ tξ ≤ t the expression

E(t, s, ξ) =
1

λ(t)
MNk(t, ξ)E0(t, tξ, ξ)Q(t, tξ, ξ)N

−1
k (tξ, ξ)M

−1λ(tξ)E(tξ, s, ξ). (3.3.32)

Together with the definition of the micro-energyU(t, ξ) from (3.2.8) this formula may be used to
express also the previously introduced multipliersΦ1(t, s, ξ) andΦ2(t, s, ξ).

3.4 Estimates

The representations of solutions obtained so far allow us to conclude estimates for the asymptotic
behaviour. This section is devoted to the study of estimates, which are directlyrelated to our micro-
energy (3.2.8), i.e. estimates for the fundamental solutionE(t, s,D) or to the closely related energy
operatorE(t, D).

Estimates for the solution itself are postponed to Chapter 5.

3.4.1 L2–L2 estimates

The aim of this section is to give energy estimates following from the low regularity theory. The first
result is an immediate consequence of Theorem 3.11.

Theorem 3.20.Assume (A1) – (A3) and (C1). Then theL2–L2 estimate

||E(t, s,D)||2→2 .
λ(s)

λ(t)

holds.

Using the definition of the micro-energy (3.2.8) we can reformulate this estimate interms of the
energy operatorE(t, D). For convenience we recall the relation between the multiplierE(t, s, ξ) and
E(t, ξ). They are a direct consequence of the definition of our micro-energy (3.2.8).

Proposition 3.21. 1. It holdsE(t, ξ) = E(t, s, ξ)E(s, ξ) for s ≥ tξ.

2. The multiplier of the energy operator is related to the fundamental solutionE(t, s, ξ) by

E(t, ξ)

(
h(0,ξ)
〈ξ〉

1

)
=

(
|ξ|

h(t,ξ)

1

)
E(t, 0, ξ).

3. The multiplier|ξ|/h(t, ξ) induces a uniformly bounded family of operators onLp, p ∈ (1,∞)
converging strongly to the identity fort → ∞.

Corollary 3.22. Assumptions (A1) – (A3), (C1) imply

||E(t, D)||2→2 .
1

λ(t)
.
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3 Non-effective weak dissipation

We conclude this section with examples.

Example3.4. Let

b(t) =
µ

1 + t
, µ ∈ (0, 1).

Then the Assumptions (A1) – (A3) and (C1) are satisfied and the above corollary gives again the known
estimate||E(t, D)||22→2 . (1 + t)−µ from Chapter 2.

For µ ∈ (1, 2) Assumption (C2) is satisfied and can be used to deduce the same decay rate.Thus
except for the valueµ = 1 we can reproduce the result of Theorem 2.8 for all sub-critical valuesof µ.

Example3.5. Let µ > 0 andm ≥ 1. Then we consider

b(t) =
µ

(e[m] + t) log(e[m] + t) · · · log[m](e[m] + t)
.

Again the assumptions are satisfied and we obtain

λ(t) =
(
log[m](e[m] + t)

)µ
2 ,

and the energy decay rate

||E(t, D)||2→2 .
(
log[m](e[m] + t)

)−µ
2

may become arbitrary small in the scale of iterated logarithms. This example is related to the paper of
K. Mochizuki and H. Nakazawa, [MN96].

Example3.6. If we considerb(t) = µ
1+t with µ > 2, the decay rate in the dissipative zone dominates the

one from the hyperbolic zone and, analogously to the above stated theorem, we obtain||E(t, D)||2→2 .

(1 + t)−1. This coincides with the estimate of Theorem 2.8.

3.4.2 Lp–Lq estimates

This section is devoted to the results of the high regularity theory. The basic estimate is given in the
following theorem, it restates estimate (1.3.3) in the language of our operators. Although the proof is
contained in the proof of Theorem 2.6 forρ = 1

2 andρ = −1
2 , respectively, we give it for convenience

of the reader in a simplified form.

Theorem 3.23. It holds

||E0(t, 0, D)||p,r→q ≤ Cp,q(1 + t)
−n−1

2

(
1
p
− 1

q

)

for dual indicesp andq, p ∈ (1, 2] and with regularityr = n
(

1
p − 1

q

)
.

Proof. The matrixE0(t, 0, ξ) has entries, which are linear combinations of the termse±it|ξ|. There-
fore, it suffices to consider only these terms. We use a full dyadic decomposition of the phase space,
φj(t, ξ) = χ(2−jt|ξ|) for j ∈ Z,

∑
φj(t, ξ) = 1 for ξ 6= 0 to split the operator into components.

Following the paper of P. Brenner, [Bre75], and the proof of Theorem 2.6 we obtain

Ij =
∣∣∣
∣∣∣F−1

[
φj(t, ξ)e

±it|ξ|
]∣∣∣

∣∣∣
∞

= 2jn
∣∣∣
∣∣∣F−1

[
χ(η)e±i2jη

]∣∣∣
∣∣∣
∞

≤ C2jn(1 + 2jt)−
n−1

2

∑

|α|≤M

||Dαχ(η)||∞ ≤ C2jn(1 + t)−
n−1

2 ,
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3.4 Estimates

substituting2−jt|ξ| = η and using Lemma B.3, and

Ĩj =
∣∣∣
∣∣∣φj(t, ξ)e

±it|ξ|
∣∣∣
∣∣∣
∞

∼ 1.

Interpolation yields for the dyadic components

||F−1[φj(t, ξ)e
±it|ξ|û(ξ)]||q ≤ C2

jn
(

1
p
− 1

q

)

(1 + t)
−n−1

2

(
1
p
− 1

q

)

||u||p,
which implies for the corresponding operators the mapping property

e±it|D| : Ḃr
p,2 → Lq

with regularityr = n
(

1
p − 1

q

)
. Finally, the embedding relation4 Lp,r ↪→ Br

p,2 = Ḃr
p,2 ∩ Lp for r > 0

andp ∈ (1,∞) yields the desired result.

By the aid of this estimate we deduce from our representation a corresponding estimate for the
dissipative Cauchy problem (3.0.1).

Theorem 3.24. Assume (A1), (A4) and (C1). Then the operatorE(t, s,D) satisfies for dual indicesp
andq, p ∈ (1, 2], pq = p + q, the norm estimate

||E(t, 0, D)||p,r→q .
1

λ(t)
(1 + t)

−n−1
2

(
1
p
− 1

q

)

with regularityr = n
(

1
p − 1

q

)
.

Proof. We decompose the proof in two parts. First, we considerE(t, 0, D)φdiss,N (t, D). Using the
estimate||E(t, 0, ξ)φdiss,N (t, ξ)|| . 1

λ2(t)
together with the definition of the zone we get

||E(t, 0, D)φdiss,N (t, D)||p,q .
1

λ2(t)
(1 + t)

−n
(

1
p
− 1

q

)

,

which is a stronger decay rate than the one given in the theorem.
In a second step we consider the hyperbolic part. For small frequencieswe use the representation

E(t, 0, ξ)φhyp,N (t, ξ) =

1

λ(t)
MNk(t, ξ)︸ ︷︷ ︸

q→q

E0(t − tξ, ξ)︸ ︷︷ ︸
p,r→q

Qk(t, tξ, ξ)︸ ︷︷ ︸
p,r→p,r

N−1
k (tξ, ξ)M

−1λ(tξ)E(tξ, 0, ξ)︸ ︷︷ ︸
p,r→p,r

φhyp,N (t, ξ)

together with the mapping properties of the multipliers marked with a brace. They are a direct con-
sequence of the estimates of Lemma 3.10, Lemma 3.12 and Theorem 3.15 in connection with the
Marcinkiewicz multiplier theorem, Theorem B.2, and Theorem 3.23. It is essential, thatk − 1 ≥ dn

2 e.
The operatorE0(t − tξ, ξ) brings the hyperbolic decay rate, the others are uniformly bounded.

For large frequencies the representation simplifies to

E(t, 0, ξ)φhyp,N (t, ξ) =
1

λ(t)
MNk(t, ξ)︸ ︷︷ ︸

q→q

E0(t, ξ)︸ ︷︷ ︸
p,r→q

Qk(t, 0, ξ)︸ ︷︷ ︸
p,r→p,r

N−1
k (0, ξ)M−1

︸ ︷︷ ︸
p,r→p,r

φhyp,N (t, ξ),

the argumentation remains the same.
4For details on Besov spaces we refer to the treatment in the book of Th. Runst and W. Sickel, [RS96]. The above used

embedding relation follows from Proposition 3, Section 2.6.2, together withthe known relations forLp spaces. The
conclusion of the mapping property itself is analogous to the case of inhomogeneous spaces and uses the argument of
P. Brenner, [Bre75, Lemma 2].
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3 Non-effective weak dissipation

Example3.7. If we useb(t) = µ
1+t with µ ∈ (0, 1), we obtain the sameLp–Lq decay estimate as in

Chapter 2, Theorem 2.8. In particular, we understand the structure of the estimate; it splits into the

factor (1 + t)
−n−1

2
( 1

p
− 1

q
) coming from the free wave equation andλ−1(t) = (1 + t)−

µ
2 coming from

the dissipation itself.

Example3.8. If b(t) ∈ L1(R+), the obtained estimate coincides with the estimate for free waves. This
is also natural in view of Section 3.1 and especially theLq-result of Corollary 3.4.

Example3.9. We have not assumed monotonicity of the coefficientb = b(t) and therefore we will give
one non-monotonous example. Let

b(t) =
2 + cos(α log(1 + t))

4 + 4t
.

Then Assumptions (A1), (A4) and Condition (C1) are satisfied. Furthermore for α sufficiently large
the function is not monotonous. It holds

∫
b(t)dt =

1

2
log(e + t) +

1

4α
sin(α log(1 + t)),

and thusλ(t) ∼ (1 + t)
1
4 . Application of Theorem 3.24 yields theLp–Lq estimate

||E(t, 0, D)||p,r→q . (1 + t)
−n−1

2

(
1
p
− 1

q

)
− 1

4 ,

which is independent ofso far the choice ofα and gives the same decay order as the monotonous
coefficient̃b(t) = µ

1+t with µ = 1
2 .

Minimal regularity for the Lp–Lq estimate. With the notation

`n = 2
⌈n

2

⌉
+ 1 =

{
n + 1, n even,

n + 2, n odd,

we can prove the above givenLp–Lq decay estimate under the weaker Assumption (A4)`n on the
coefficient function. If we use this regularity of the coefficient and perform k = dn

2 e diagonalization
steps, we obtainNk(t, ξ) ∈ S0,∞

N {0, 0} andQk(t, s, ξ) is uniformly in t ≥ s ≥ tξ a symbol of
smoothnessdn

2 e. Thus,Nkφhyp, N−1
k φhyp andQkφhyp define operatorsLp(Rn) → Lp(Rn) for all

p ∈ (1,∞) with uniformly bounded operator norm int ≥ s.

3.5 Sharpness

Finally, we want to prove the sharpness of the above given energy decay estimates. Our constructive
approach enables us to formulate the question of sharpness as amodified scattering result. The basic
idea is as follows:

• we relate the energy operatorE(t, D) to the corresponding unitary operatorE0(t, D) for free
waves, defined byE0(t, D) = ME0(t, 0, D)M−1, and multiplied by the decay rate,

• this relation defines a Møller wave operatorW+(D) defining appropriate data to the free wave
equation with the same asymptotic properties (up to the factorλ(t)),
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3.5 Sharpness

• furthermore, we need to know the mapping properties of the Møller wave operator,

• and the convergence defining the wave operator has to be understood.

A first observation follows immediately from Liouville theorem, Theorem B.8, and gives an expression
for the determinant ofE(t, ξ).

Lemma 3.25. It holdsdet E(t, ξ) = 1
λ2(t)

[ξ] with [ξ] = |ξ|
〈ξ〉 .

After these introductory remarks we can state the first theorem. It holds

Theorem 3.26.Assume (A1), (A4)` with ` ≥ 1 and (C1). Then the limit

W+(D) = s-lim
t→∞

λ(t)(E0(t, D))−1
E(t, D)

exists as strong limit inL2(Rn) → L2(Rn) and defines the modified Møller wave operatorW+. It
satisfies

W+(ξ) = (E0(tξ, ξ))
−1MQk(∞, tξ, ξ)N

−1
k (tξ, ξ)M

−1λ(tξ)E(tξ, ξ)

for all 1 ≤ k ≤ `.

Note, thattξ depends on the zone constant and this constant is chosen after diagonalizing k steps.
Thus,

Qk(∞, tξ, ξ)N
−1
k (tξ, ξ)

is independent of1 ≤ k ≤ ` for a sufficiently large zone constantN depending oǹ. Note, further, that
in order to define the matrixQk(t, s, ξ) and without estimating derivatives with respect toξ we only
need Assumption (A4)k. The regularity (A4)2k−1 was necessary to estimateQk(t, s, ξ) as symbol, cf.
the consideration on page 55 leading to formula (3.3.29).

Proof. The proof consists of three steps.
Step 1.With the notation

Vc = {U ∈ L2(Rn)|dist(0, supp Û) ≥ c},

we can construct the dense subspaceM =
⋃

c>0 Vc of L2(Rn). Now Theorem 3.17 together with the
representationE(t, ξ) = E(t, tξ, ξ)E(tξ, ξ) implies the existence of the limit

lim
t→∞

λ(t)E0(t, D)−1
E(t, D)

as limit in the operator norm inVc → Vc for all c > 0 as the following calculation shows. It holds

λ(t)E0(t, ξ)
−1

E(t, ξ) = λ(t)E0(tξ, ξ)
−1ME0(tξ − t, ξ)Nk(t, ξ)

λ(tξ)

λ(t)
E0(t − tξ, ξ)

Qk(t, tξ, ξ)N
−1
k (tξ, ξ)M

−1
E(tξ, ξ)

= E0(tξ, ξ)
−1ME0(tξ − t, ξ)Nk(t, ξ)E0(t − tξ, ξ)

Qk(t, tξ, ξ)N
−1
k (tξ, ξ)M

−1λ(tξ)E(tξ, ξ),

whereQk(t, tξ, ξ) → Qk(∞, tξ, ξ) uniformly on|ξ| ≥ c by Theorem 3.17 and

E0(tξ − t, ξ)Nk(t, ξ)E0(t − tξ, ξ) = I + E0(tξ − t, ξ)
(
Nk(t, ξ) − I

)
E0(t − tξ, ξ)
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3 Non-effective weak dissipation

and the second summand tends to zero like(1 + t)−1 uniformly on |ξ| ≥ c. Thus, the limit exists
pointwise onM .
Step 2.The energy estimate, Corollary 3.22, implies thatλ(t)E0(t, D)−1

E(t, D) is uniformly bounded
in L2(Rn) → L2(Rn). Thus, the theorem of Banach-Steinhaus implies the existence of the stronglimit
and definesW+.
Step 3.The previously defined operatorW+ is given on each subspaceVc as Fourier multiplier with
symbol

W+(ξ) = (E0(tξ, ξ))
−1Qk(∞, tξ, ξ)N

−1
k (tξ, ξ)M

−1λ(tξ)E(tξ, ξ),

which is independent ofc. Thus, the representation holds onM and using the boundedness ofW+ on
the whole space.

Note, that there holds a corresponding result in the low regularity theory under Assumptions (A1) –
(A3), (C1).

Corollary 3.27. It holds under (A1), (A4)1 and (C1) that

det W+(ξ) = lim
t→∞

λ2(t)E(t, ξ) = [ξ]

and thereforeKer W+(D) = {0}.

The representation ofW+(ξ) allows us to conclude also estimates for derivatives with respect toξ.

Corollary 3.28. Under Assumptions (A1), (A4)2k−1, k ≥ 1, and (C1) it holds

W+(ξ) ∈ Ṡ0
(k−1).

The proof of Theorem 3.26 gives no information about the convergence of theξ-derivatives. The
problematic term isE0(tξ − t, ξ)Nk(t, ξ)E0(t − tξ, ξ), where theξ-derivatives ofE0(tξ − t, ξ) behave
as multiplications with|ξ| and do not fit into the symbol estimates.

Interpretation of the result. What have we obtained so far? Theorem 3.26 may be used to con-
struct for any data(〈D〉u1, u2) ∈ L2(Rn) to Cauchy problem (3.0.1) corresponding data(〈D〉 ũ1, ũ2)

T =
W+(D)(〈D〉u1, u2)

T to the free wave equation¤ũ = 0, such that the solutions are asymptotically
equivalent up to the decay factorλ−1(t), i.e. it holds

∣∣∣∣E0(t, D)(〈D〉 ũ1, ũ2)
T − λ(t)E(t, D)(〈D〉u1, u2)

T
∣∣∣∣

2
→ 0 ast → ∞. (3.5.1)

This is a direct consequence of the property ofE0(t, ξ) to be unitary. It implies that the above given
L2–L2 estimates are indeed sharp and describe for all nonzero initial data the exact decay rate.

Remark concerning the supercritical case. A review of the proof of Theorem 3.26 implies the
following observation. Condition (C1) is used only to give the uniform bound in the Banach-Steinhaus
argument. Thus, Step 1 of the previous proof is valid under more generalassumptions.

Corollary 3.29. Assume (A1), (A4)1. OnVc → Vc the limits

W+(D) = lim
t→∞

λ(t)E0(−t, D)E(t, D), W−1
+ (D) = lim

t→∞
1

λ(t)
E
−1(t, D)E0(t, D),

exist as limits in the operator norm.
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3.6 Summary

t = 0

E0(t, D)

W+

λ(t)E(t, 0, D)

Figure 3.3: Modified scattering theory.

Example3.10. If we restrict ourself to the example from Chapter 2,b(t) = µ
1+t , then for allµ ≥ 0 and

data0 6= (u1, u2) with 0 6∈ supp(û1, û2) the energy decays like

E(u; t) ∼ 1

λ2(t)
∼ (1 + t)−µ.

Forµ > 2 the decay rate is not uniform in the norm of the data, the occurring constants depend on the
distance of0 from the support of(û1, û2).

3.6 Summary

We will draw several conclusions from the considerations in this chapter.The main points can be
summarised to be

• the hyperbolic zone determines the decay rate (under condition (C1)) andthe necessary regularity
of the data, cf. Figure 3.4,

• the dissipative zone is subordinate to the hyperbolic one,

• the dissipative termb(t)ut yields an energy decay ofλ−1(t) in both components,

• solutions behave like free waves multiplied by the decay function.

In Table 3.1 we give an overview on the used assumptions related to the zones. It turns out, that the
positivity of the coefficient function is used only in the dissipative zone.

Large frequencies. If we restrict considerations to the hyperbolic zone, which can be achieved by
taking initial data with0 6∈ supp(û1, û2), we can drop Assumption (A1) and Condition (C1) and derive
estimates for the solutions under Assumption (A4)` alone. We give only one example.
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3 Non-effective weak dissipation

|ξ|

t

tξ

∼ 1
λ2(t)

∼ 1
λ(t)

Figure 3.4: The hyperbolic zone determines the decay rate under Condition(C1).

Example3.11. Let

b(t) =
cos log(1 + t)

1 + t

and assume0 6∈ supp(û1, û2). Then the solutionu(t, x) to (3.0.1) satisfies

E(u; t) ∼ E0(u; t) = E(u; 0)

(with constants depending on the distance of0 to the support of(û1, û2)). This estimate follows by
application of Theorem 3.15 and

λ(t) = exp

{
1

2
sin log(1 + t)

}
∼ 1,

together with Corollary 3.29.

Example3.12. If we considerb(t) = sin(1+t)
1+t , the above given conclusion cannot be drawn. In this

case, Assumption (A4)1 is not valid, therefore the diagonalization scheme brings no improvement
for the remainders. It is an open question, whether for this coefficient function and under the above
condition on the data,0 6∈ supp(û1, û2), the energy decays to zero, remains bounded or even tends to
infinity. The auxiliary functionλ(t) behaves as a constant,λ(t) ∼ 1, in this case.
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3.6 Summary

Zone Assumptions onb(t)
dissipative zone

• we used only (A1), i.e.b(t) ≥ 0, together with the tech-
nical conditiontb(t) 6= 1 for larget

• Assumption (C1) guarantees that the hyperbolic zone de-
termines the final decay rate

• smoothness properties ofb(t), (A4)`, are used to estimate
λ2(tξ)E(tξ, 0, ξ) as symbol inξ

hyperbolic zone,
low regularity theory

• Assumptions (A1), (A2) are used to define the zone

• Assumption (A3) allows estimates after diagonalizing
one step

• we need differentiability properties ofb(t) in order to di-
agonalize

hyperbolic zone,
high regularity theory

• Assumption (A4)̀ allows as many diagonalization steps
as we want

• smoothness ofb(t) transfers to smoothness properties of
the symbolQk in the covariableξ

• the sign of the coefficient functionb = b(t) does not mat-
ter in this part of the phase space

Table 3.1: Assumptions used in the zones.
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4 Effective dissipation

In the previous chapter our main concern was to understand the influenceof small dissipation terms.
We observed a close relation of the solutions to free waves and the main contributions come from
the behaviour of large frequencies. The non-effective dissipation term b(t)ut was asymptotically sub-
ordinate to the principal part.

This chapter is devoted to the study of dissipation terms which arelarge; thus the approach of the
previous chapter has to be modified and the dissipation term should be included in the symbolic calculus
(and therefore included in the ‘phase function’ for the WKB-representation of the solutions).

Main results are the representations of Theorems 4.6 and 4.11 and the resulting L2–L2 andLp–Lq

estimates of Theorems 4.21 and 4.25.
Finally, in Theorem 4.27 we explain what happens, if the dissipation becomesto strong. This we

call the case of over-damping.

4.1 Strategies

4.1.1 Transformation of the problem

Our main strategy is to apply a transformation of the Cauchy problem. Following A. Matsumura,
[Mat76], and for variable coefficient dissipation M. Reissig, [Rei01], we transform the dissipative
equation to a wave equation with time-dependent potential or, as we will call it, aKlein-Gordon type
equation. Therefore, we consider the new function

v(t, x) = λ(t)u(t, x), (4.1.1)

whereλ(t) = exp
{

1
2

∫ t
0 b(τ)dτ

}
is the auxiliary function arising in the calculations of Chapter 3, such

that

¤v = λ′′(t)u + 2λ′(t)ut + λ(t)utt − λ(t)∆u =

(
1

4
b2(t) +

1

2
b′(t)

)
v.

Thus, after applying the partial Fourier transform, we have to solve the parameter-dependent differential
equation

v̂tt + m(t, ξ)v̂ = 0 (4.1.2)

with coefficient (micro-local mass term)

m(t, ξ) = |ξ|2 − 1

4
b2(t) − 1

2
b′(t). (4.1.3)

For the behaviour of the solutions to this ordinary differential equation the sign of the coefficientm =
m(t, ξ) is important. While obviously|ξ| ≥ 0 andb2(t) > 0, the derivativeb′(t) may be negative.

Under the Assumptions (A1) – (A3) ofnon-effective dissipation, cf. Definition 3.1, the coefficient
b = b(t) is decaying and−b′(t) dominatesb2(t). Under the further assumptionb2(t) = o(−b′(t))
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4 Effective dissipation

as t → ∞ we have obviouslym(t, ξ) > 0 for all ξ and t ≥ t0. Because we are interested in the
time-asymptotics we may assumet0 = 0. The positivity of the coefficient enables us to consider the
micro-energy

V = (
√

m(t, ξ)v̂,Dtv̂)T

and write the equation as system,

DtV =




Dt

√
m(t,ξ)√

m(t,ξ)

√
m(t, ξ)

√
m(t, ξ)


 V = AV.

Now we see, that the coefficient matrix consists of the self-adjoint anti-diagonal part and the skew
diagonal entry. Thus, we obtain for theL2-norm ofV

∂t||V ||22 = −2 Im (V, AV ) =

∫
2(∂t

√
m(t, ξ))

√
m(t, ξ)v̂2dξ ≤ 2

∣∣∣∣∣

∣∣∣∣∣
∂t

√
m(t, ξ)√

m(t, ξ)

∣∣∣∣∣

∣∣∣∣∣
∞
||V ||22

and, therefore,
||V || . 1

in the case that(∂t

√
m(t, ξ))/

√
m(t, ξ) ∈ L∞

ξ L1
t (R+ × R

n). A simple calculation shows that this

is the case under the assumptionlim inft→∞ b′′/(−bb′) > 0.1 This calculation gives the same energy
decay rate like in Chapter 3, but under the more restrictive assumptionsb ∈ C2, b2 = o(−b′) and
lim inft→∞ b′′/(−bb′) > 0. But, nevertheless, it gives an alternative interpretation of Assumption
(A3).

It is also interesting to considerm(t, ξ) in the case ofscale-invariant weak dissipationtreated in
Chapter 2.

Example4.1. Let b = b(t) = µ
1+t . Then it holds

m(t, ξ) = |ξ|2 +
µ(2 − µ)

4(1 + t)2
(4.1.4)

and, therefore, we get forµ ∈ (0, 2) the positivitym(t, ξ) > 0 for all (t, ξ), while for µ = 2 we get
in correspondence to the free wave equation,m(t, ξ) = |ξ|2 > 0 if ξ 6= 0, and finally forµ > 2 there
exists a part of the phase space with negativem(t, ξ). This part is given by(1 + t)|ξ| ≤ 1

2

√
µ(2 − µ)

and corresponds in the consideration of Chapter 2 to the zoneZ3. The occurrence of this negative
coefficient coincides with the ‘take-over’ of the zoneZ3 in the estimate for the hyperbolic energy, cf.
Theorem 2.8.

Inspired by this example and the previous motivation we state that the case ofeffective dissipation
will be characterised by the occurrence of a region of the extended phase spaceRt×R

n
ξ , wherem(t, ξ)

becomes negative. This leads naturally to the definition of a so-calledseparating curveΓ, which dis-
sects the phase space into the part corresponding to a positive micro-local mass term and the part
corresponding to a negative micro-local mass term, cf. Figure 4.1.

To achieve this decomposition of the extended phase space we make the following assumptions:

1Indeed, we have

∂t

√
m(t, ξ)√

m(t, ξ)
=

1

2

− 1
2
(bb′ + b′′)

|ξ|2 − 1
4
b2 − 1

2
b′

≤
1

2

1
2
(bb′ + b′′)
1
4
b2 + 1

2
b′

and the denominator is a primitive of the numerator. So the assumption guarantees that the integrand does not change its
sign for larget.
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ξ

t

m(t, ξ) > 0

Γ

m(t, ξ) < 0

Figure 4.1: Definition of the separating curveΓ.

(B1) positivity b(t) > 0,

(B2) monotonicity, i.e.b′(t) does not change its sign,

(B3) |b′(t)| = o(b2(t)) ast → ∞.

Later on we will include further symbol-like estimates for derivatives ofb = b(t).

Definition 4.1. We call the dissipation termb(t)ut in equation(1.2.1)effective, if b(t) satisfies As-
sumptions (B1) – (B3).

Assumption (B3) allows us to understandb′(t) as negligible term and to define the separating curve
Γ in terms of the monotonous coefficient functionb = b(t),

Γ : |ξ| =
1

2
b(t). (4.1.5)

By Assumption (B2) all vertical lines|ξ| = const cross the separating curve at most once.

Remark4.2. The separating curve has to be distinguished from the zone boundarytξ used in Chapter 3
or used later on in this chapter. A zone boundary can be moved in the plane,the defining zone constant
N can be chosen almost freely (with some technical restrictions, if we requireinvertibility of symbols).
The separating curve is fixed, at least from its asymptotic behaviour. Thechoice of the constant12 in
the above formula is directly related to the micro-local mass termm(t, ξ).

Assumptions (B1) – (B3) imply that the coefficientb = b(t) can not tend to zero to fast. The
monotonicity ofb′(t) implies from (B3) for decayingb = b(t) that

− b′

b2
= o(1), and therefore o(t) = −

∫ t

0

b′(τ)

b2(τ)
dτ =

1

b(t)
− 1

b(0)

and hence

(B3)’ tb(t) → ∞ ast → ∞
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t tt

|ξ||ξ||ξ|

Figure 4.2: Effective weak and effective strong dissipation.

in contrast to (3.2.1) in the non-effective case.
For effective dissipation we introduce in Definition 4.5 the separating curveΓ in an abstract way. It

is used to describe the behaviour of the functionm(t, ξ). It distinguishes for fixed time-levelt between
small and large frequencies. We will fix a notation.

Definition 4.2. The two parts of the phase space separated byΓ are calledhyperbolic part, containing
large frequencies, andelliptic part, containing the small frequencies.

The aim of this chapter is to achieve bounds on the solution in these two parts ofthe phase space in
order to obtain decay estimates after transforming back to the original problem.

4.1.2 Effective weak and strong dissipation

If we apply the idea of the previous section, we have to distinguish between three (topologically) dif-
ferent cases. On the one hand, ifb(t) tends to zero ast goes to infinity, the separating curve approaches
thet-axis and the hyperbolic part lies on top of the elliptic part.

Definition 4.3. An effective dissipation termb(t)ut is called aeffective weak dissipation, if the corre-
sponding separating curveΓ approaches thet-axis ast tends to infinity.

The situation changes ifb tends to a finite limit. In this case we can useΓ = {|ξ| = const} and the
elliptic and the hyperbolic part are independent of each other. This is the situation in [Rei01]. The third
case arises for unboundedb(t). Under this assumption the elliptic part lies on top of the hyperbolic
part.

Definition 4.4. An effective dissipation termb(t)ut is called astrong dissipation, if there exists a
frequencyξ0 6= 0 such that the line{ξ = ξ0} belongs to the elliptic part for allt À 1.

We will see that these three cases do not differ in the approach. The achieved representations of
solutions coincide in their structure. Basic example for a strong dissipation is the damped wave equation
¤u+ut = 0 with separating curve{|ξ| = 1

2} or, more generally, wave equations with dissipation terms
bounded from below.

In Figure 4.2 the different cases are sketched.
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4.1.3 Notation and basic tools

The separating curve, parts and zones. We formulate the previously discussed strategy in an
abstract way starting from the separating curve and defining appropriate symbol classes related to it.
Later on, these symbol classes explain what kind of assumptions we have tomake for the coefficient
function; this difference is essential in order to understand also non-monotonous coefficients.

Definition 4.5. We call the functionγ : R+ → R+ admissible, if it satisfies the following assumptions:

(Γ1) γ ∈ C1[0,∞), γ(t) > 0, monotonous,

(Γ2) tγ(t) → ∞ ast → ∞.

Furthermore, for an admissible functionγ(t) we define the correspondingseparating curve

Γ = {|ξ| = γ(t)},

together with the auxiliary symbol

〈ξ〉γ(t) :=
√∣∣|ξ|2 − γ2(t)

∣∣. (4.1.6)

This symbol measures thedistanceof a point in the extended phase plane from the separating curve
and will be used in the definition of symbol classes. It replaces|ξ| from the approach of Chapter 3. The
parts are denoted as

Πhyp = {|ξ| > γ(t)} for thehyperbolic partand

Πell = {|ξ| < γ(t)} for theelliptic part.

Inside these parts the auxiliary symbol〈ξ〉γ(t) is differentiable and satisfies the following proposition.

Proposition 4.1. It holds

∂t 〈ξ〉γ(t) = ±γ(t)γ′(t)
〈ξ〉γ(t)

, ∂|ξ| 〈ξ〉γ(t) = ∓ |ξ|
〈ξ〉γ(t)

,

where the upper sign is taken in the elliptic part.

Both parts of the phase space will be decomposed into zones,

Zhyp(N) = {〈ξ〉γ(t) ≥ Nγ(t)} ∩ Πhyp hyperbolic zone,

Zpd(N, ε) = {εγ(t) ≤ 〈ξ〉γ(t) ≤ Nγ(t)} ∩ Πhyp pseudo-differential zone,

Zdiss(c0) = {(1 + t)|ξ| ≤ c0} dissipative zone, (4.1.7)

Zell(c0, ε) = {(1 + t)|ξ| ≥ c0} ∩ {〈ξ〉γ(t) ≥ εγ(t)} ∩ Πell elliptic zone,

Zred(ε) = {〈ξ〉γ(t) ≤ εγ(t)} reduced zone.

In the elliptic and in the hyperbolic zone we define symbol classes and perform later on a diago-
nalization procedure to extract the leading terms. In the remaining smaller zones the solutions can be
estimated directly (Zred(ε)) or known estimates will be used (Zdiss(c0), estimate of Lemma 3.9). The
dissipative zone can be skipped under the further assumption
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Zred

Zpd

Γ

Zpd

|ξ| |ξ|

tt

Zdiss

Γ

Zred

Zhyp

Zell Zell

Zhyp

Figure 4.3: Zones used in the approach.

(Γ3) 1
γ(t)(1+t)2

∈ L1(R+)

on the admissible functionγ = γ(t), i.e. if we are far away from the critical case of Chapter 2. If (Γ3)
is valid, we defineZell(ε) := Zell(0, ε).

The constantsε andN are determined later. The choice ofN is related to the number of diagonaliza-
tion steps and the existence of a suitable one is guaranteed by Lemma 4.5. It turns out, that in case of
effective dissipation the first diagonalization step is sufficient to concludethe desired decay estimates
and we may use the estimate of Lemma 4.4 together with an arbitrary small positiveN . The constant
ε is chosen later, all obtained estimates are independent ofε for sufficiently small valueε.

Symbols in Πhyp. The hyperbolic symbol classes are directly related to the ones of Definition 3.2,
except that we introduce one further weightγ(t). Remark, that it holds

〈ξ〉γ(t) ∼ |ξ| uniformly onZhyp(N). (4.1.8)

Definition 4.6. The time-dependent Fourier multipliera(t, ξ) belongs to thehyperbolic symbol class
S`1,`2

hyp,N{m1, m2, m3} with restricted smoothness`1, `2, if it satisfies the estimate

∣∣∣Dk
t D

α
ξ a(t, ξ)

∣∣∣ ≤ Ck,α 〈ξ〉m1−|α|
γ(t) γm2(t)

(
1

1 + t

)m3+k

(4.1.9)

for all (t, ξ) ∈ Zhyp(N) and allk ≤ `1, |α| ≤ `2.

Furthermore, we fix the notationShyp,N{m1, m2, m3} for S∞,∞
hyp,N{m1, m2, m3}. The rules for the

symbolic calculus follow Proposition 3.5. It holds

Proposition 4.2. 1. S`1,`2
hyp,N{m1, m2, m3} is a vector space,

2. S`1,`2
hyp,N{m1 − k, m2, m3 + `} ↪→ S`1,`2

hyp,N{m1, m2 − k, m3 + `} ↪→ S`1,`2
hyp,N{m1, m2, m3}

for ` ≥ k ≥ 0,

3. S`1,`2
hyp,N{m1, m2, m3} · S`1,`2

hyp,N{m′
1, m

′
2, m

′
3} ↪→ S`1,`2

hyp,N{m1 + m′
1, m2 + m′

2, m3 + m′
3},

4. Dk
t D

α
ξ S`1,`2

hyp,N{m1, m2, m3} ↪→ S
`1−k,`2−|α|
hyp,N {m1 − |α|, m2, m3 + k},

5. S0,0
hyp,N{−1, 0, 2} ↪→ L∞

ξ L1
t (Zhyp).
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Proof. Statements 1 and 4 follow immediately from the definition. Statement 3 is a direct consequence
of Leibniz rule. For statement 2 we use the definition of the zone,|ξ| ∼ 〈ξ〉γ(t) & γ(t), together with
Assumption (Γ2). Statement 5 follows from

∫ t1

t0

1

|ξ|(1 + t)2
dt =

1

|ξ|(1 + t0)
− 1

|ξ|(1 + t1)
,

which is uniformly bounded on the hyperbolic zone by (Γ2).

Symbols in Πell. The elliptic symbols are constructed in a similar manner. The main difference is
that in the elliptic zone the auxiliary symbol〈ξ〉t can be estimated

〈ξ〉γ(t) ∼ γ(t) uniformly onZell(c0, ε). (4.1.10)

Now the definition of the symbol class reads as follows.

Definition 4.7. The time-dependent Fourier multipliera(t, ξ) belongs to theelliptic symbol class
S`1,`2

ell,ε {m1, m2, m3} of restricted smoothness`1, `2, if it satisfies the estimate

∣∣∣Dk
t D

α
ξ a(t, ξ)

∣∣∣ ≤ Ck,α 〈ξ〉m1−|α|
γ(t) |ξ|m2

(
1

1 + t

)m3+k

(4.1.11)

for all (t, ξ) ∈ Zell(c0, ε) and allk ≤ `1, |α| ≤ `2.

Again we fix the notationSell,ε{m1, m2, m3} for S∞,∞
ell,ε {m1, m2, m3}. The rules for the symbolic

calculus are similar to that from the hyperbolic part.

Proposition 4.3. 1. S`1,`2
ell,ε {m1, m2, m3} is a vector space,

2. S`1,`2
ell,ε {m1 − k, m2, m3 + `} ↪→ S`1,`2

ell,ε {m1, m2, m3} for ` ≥ k ≥ 0,

3. S`1,`2
ell,ε {m1, m2, m3} · S`1,`2

ell,ε {m′
1, m

′
2, m

′
3} ↪→ S`1,`2

ell,ε {m1 + m′
1, m2 + m′

2, m3 + m′
3},

4. Dk
t D

α
ξ S`1,`2

ell,ε {m1, m2, m3} ↪→ S
`1−k,`2−|α|
ell,ε {m1 − |α|, m2, m3 + k},

5. S0,0
ell,ε{−1, 0, 2} ↪→ L∞

ξ L1
t (Zell).

Proof. Again we prove only the integrability statement. Under Assumption (Γ3) the statement follows
immediately. Assume now thatγ(t) is monotonically decreasing and the dissipative zone is introduced.
Then it holds

∫ tξ2

tξ1

dτ

γ(τ)(1 + τ)2
≤ 1

γ(tξ2)

∫ tξ2

tξ1

dτ

(1 + τ)2
≤ 1

γ(tξ2)(1 + tξ1)
∼ 1,

wheretξ1 andtξ2 denotes the lower and the upper boundary of the elliptic zone, respectively. Further-
more the definition of the elliptic zone implies that the quotient is constant inξ.
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4.2 Representation of solutions

We start with the case, where the dissipative termb(t) satisfies the assumptions (B1) – (B3)’. Thus
γ(t) = 1

2b(t) is admissible in the sense of Definition 4.5. If we assume further the symbol-like estimate

(B4)` ∣∣∣∣
dk

dtk
b(t)

∣∣∣∣ ≤ Ckb(t)

(
1

1 + t

)k

for k = 1, 2, . . . , `,

we obtain
b(t) ∈ S`,∞

hyp,N{0, 1, 0} ∩ S`,∞
ell,ε{0, 1, 0}.

Thus, for this definition of the separating curve we obtain

〈ξ〉γ(t) ∈ S`,∞
hyp,N{1, 0, 0} ∩ S`,∞

ell,ε{1, 0, 0},

and by the aid of (B1) – (B3)

〈ξ〉−1
γ(t) ∈ S`,∞

hyp,N{−1, 0, 0} ∩ S`,∞
ell,ε{−1, 0, 0}.

Similar to the notation in Chapter 3 we denote (B4)∞ shortly by (B4).
In Sections 4.2.1 to 4.2.3 we construct the main terms of the representation of solutions for equation

(4.1.2) under Assumptions (B1) to (B3) and (B4)2 usingγ(t) = 1
2b(t). Later on in Section 4.2.4 we

will discuss the more general case of non-monotonous coefficients related to a given separating curve
Γ.

4.2.1 The hyperbolic part

Consideration in the hyperbolic zone. We consider the micro-energy

V = (〈ξ〉γ(t) v̂,Dtv̂)T . (4.2.1)

Then it holds

DtV =




(
〈ξ〉γ(t)

〈ξ〉γ(t)

)
+




Dt〈ξ〉γ(t)

〈ξ〉γ(t)
0

b′(t)
2〈ξ〉γ(t)

0





V. (4.2.2)

The entries of the second matrix are uniformly integrable over the hyperboliczone. The function
∂t 〈ξ〉γ(t) does not change its sign and, therefore, for(t1, ξ), (t2, ξ) ∈ Zhyp(N)

∫ t2

t1

∣∣∣∣∣
∂t 〈ξ〉γ(t)

〈ξ〉γ(t)

∣∣∣∣∣ dt =

∣∣∣∣∣

∫ t2

t1

d 〈ξ〉γ(t)

〈ξ〉γ(t)

∣∣∣∣∣ =

∣∣∣∣∣log
〈ξ〉γ(t2)

〈ξ〉γ(t1)

∣∣∣∣∣

and〈ξ〉γ(t) ∼ |ξ| uniformly in the hyperbolic zone. Furthermore,

∫ t2

t1

∣∣∣∣∣
b′(t)
〈ξ〉γ(t)

∣∣∣∣∣ dt =

∣∣∣∣∣

∫ t2

t1

db(t)√
|ξ|2 − b2(t)/4

∣∣∣∣∣ =

∣∣∣∣arcsin
b(t2)

2|ξ| − arcsin
b(t1)

2|ξ|

∣∣∣∣

and|ξ| ≥ b(t)/2 in the hyperbolic zone.
Therefore, the following lemma holds for the fundamental solutionEV (t, s, ξ) to (4.2.2).
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4.2 Representation of solutions

Lemma 4.4. Assume (B1), (B2) and (B3)’. Then in the hyperbolic zoneZhyp(N) the estimate

||EV (t, s, ξ)|| . 1

is valid.

Because this lemma is true for allN > 0 we may setN = ε and the pseudo-differential zone
introduced by (4.1.7) reduces to the empty set.

Diagonalization. To prove the previous lemma we used the special structure of the lower order
terms. It is also possible to use the previously introduced symbol classes to perform several steps of
perfect diagonalization to conclude more structural properties ofEV (t, s, ξ).

We use the matricesM andM−1 from Section 3.3.2 and considerV (0) = M−1V such that

DT V (0) = [D(t, ξ) + R1(t, ξ)]V
(0)

with D(t, ξ) = diag(〈ξ〉γ(t) ,−〈ξ〉γ(t)) andR1(t, ξ) ∈ S`,∞
hyp,N{0, 0, 1} under Assumption (B4)`+1.

By the above argument we see that the entries ofR1(t, ξ) are uniformly integrable over the hyperbolic
zone.

Using 〈ξ〉−1
γ(t) ∈ S`,∞

hyp,N{−1, 0, 0} we can perform several steps of diagonalization and prove the
following lemma. Note that we need one derivative more than in Chapter 3 for the definition ofR1(t, ξ).

Lemma 4.5. Assumeb = b(t) satisfies (B1), (B2), (B3)’ and (B4)`+1. Then for allk ≤ ` there exists a
zone constantN and matrix-valued symbols

• Nk(t, ξ) ∈ S`−k+1,∞
hyp,N {0, 0, 0},

invertible for all (t, ξ) ∈ Zhyp(N) with N−1(t, ξ) ∈ S`−k+1,∞
hyp,N {0, 0, 0},

• Fk−1(t, ξ) ∈ S`−k+1,∞
hyp,N {−1, 0, 2} diagonal and uniformly integrable overZhyp(N),

• Rk(t, ξ) ∈ S`−k,∞
hyp,N {−k, 0, k + 1},

such that the operator identity

(
Dt −D(t, ξ) − R(t)

)
Nk(t, ξ) = Nk(t, ξ)

(
Dt −D(ξ) − Fk−1(t, ξ) − Rk(t, ξ)

)

holds.

To construct a representation for the fundamental solutionEV,k(t, s, ξ) to the transformed system

(
Dt −D(ξ) − Fk−1(t, ξ) − Rk(t, ξ)

)
EV,k(t, s, ξ) = 0, EV,k(s, s, ξ) = I ∈ C

2×2 (4.2.3)

we can follow the lines of Section 3.3.3. In particular, Proposition 3.13 and Proposition 3.14 have a
counterpart within our new hyperbolic symbol classes. Again we need` ≥ 2k − 1 to obtain estimates
for ξ-derivatives up to orderk − 1.

Theorem 4.6. Assume (B1), (B2) and (B4)2k. Then the fundamental solutionEV,k(t, s, ξ) of (4.2.3)
can be represented as

EV,k(t, s, ξ) = Ẽ(t, s, ξ)Qhyp,k(t, s, ξ), (4.2.4)
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4 Effective dissipation

where

Ẽ(t, s, ξ) = exp

{
i

∫ t

s
D(τ, ξ)dτ

}
= diag

(
ei

∫ t
s 〈ξ〉γ(τ)dτ , e−i

∫ t
s 〈ξ〉γ(τ)dτ

)
(4.2.5)

and the symbolQhyp,k(t, s, ξ) satisfies

∣∣∣
∣∣∣D`1

t D`2
s Dα

ξ Qhyp,k(t, s, ξ)
∣∣∣
∣∣∣ ≤ C`,α 〈ξ〉`2−|α|

γ(t)

(
1

1 + t

)`1

, (t, ξ), (s, ξ) ∈ Zhyp(N), t ≥ s

for all multi-indices|α| ≤ k − 1, `1 ≤ k − 1 and`2 ≤ 2k + 1.

In the case of effective weak dissipation or more generally ifγ(t) remains bounded, i.e. if there
exists an interval(γ(∞),∞) such that for allξ0 with |ξ0| ∈ (γ(∞),∞) the line{ξ = ξ0} ends up in
the hyperbolic part, cf. Figure 4.2, we may ask the question whether the limitslimt→∞Qhyp,k(t, s, ξ)
exist or not. Like in Chapter 3 this is the case, the reasoning is exactly the same. The restriction on the
number ofs-derivatives comes from the new phase function given in (4.2.5).

Corollary 4.7. In the case thatγ(t) is bounded the limit

lim
t→∞

Qhyp,k(t, s, ξ) = Qhyp,k(∞, s, ξ)

exists uniform inξ for |ξ| ≥ c > γ(∞)
√

N2 + 1 and satisfies for|α| ≤ k − 1 and` ≤ 2k + 1

||D`
sD

α
ξ Qhyp,k(∞, s, ξ)|| ≤ Cα|ξ|`−|α|.

Similar to Chapter 3 the inverse of the matrixQhyp,k(t, s, ξ) exists and satisfies the same statement,
it is uniformly bounded and converges fort → ∞ toQ−1

hyp,k(∞, s, ξ).
These further diagonalization steps bring no further improvements on decay estimates as we will see

later (due to the fact that the further decay factorλ(t)−1 occurs), but they may be used to deduce sharp
results for the regularity of solutions and data.

Remarks on the pseudo-differential zone. If we diagonalize the terms of lower order in the
hyperbolic zone we choseN sufficiently large and the pseudo-differential zone may be non-empty.
Inside the pseudo-differential zone it is sufficient to use the estimate

||EV (t, s, ξ)|| . 1

from Lemma 4.4.

4.2.2 The elliptic part

In this part of the phase space we consider again the micro-energy

V = (〈ξ〉γ(t) v̂,Dtv̂)T , (4.2.6)

which leads to the system

DtV =




(
〈ξ〉γ(t)

−〈ξ〉γ(t)

)
+




Dt〈ξ〉γ(t)

〈ξ〉γ(t)
0

− b′(t)
2〈ξ〉γ(t)

0





V. (4.2.7)

The main difference to the consideration in the hyperbolic zone is, that the first matrix is not self-
adjoint any more. Thus, it does not lead to a unitary fundamental solution. We apply two steps of
diagonalization inside the elliptic zone.
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4.2 Representation of solutions

Step 1. In a first step we use the diagonalizer of the first matrix, which has to be understood as the
principal part in this zone,

M =

(
i −i
1 1

)
, M−1 =

1

2

(
−i 1
i 1

)
(4.2.8)

such that forV (0) = M−1V the equation

DtV
(0) =

[
D(t, ξ) + R(t, ξ)

]
V (0) (4.2.9)

holds with coefficient matrices

D(t, ξ) =

(
−i 〈ξ〉γ(t)

i 〈ξ〉γ(t)

)
∈ S`,∞

ell,ε{1, 0, 0}, (4.2.10)

R(t, ξ) =




Dt〈ξ〉γ(t)

2〈ξ〉γ(t)
− i b′(t)

4〈ξ〉γ(t)
−Dt〈ξ〉γ(t)

2〈ξ〉γ(t)
+ i b′(t)

4〈ξ〉γ(t)

−Dt〈ξ〉γ(t)

2〈ξ〉γ(t)
− i b′(t)

4〈ξ〉γ(t)

Dt〈ξ〉γ(t)

2〈ξ〉γ(t)
+ i b′(t)

4〈ξ〉γ(t)


 ∈ S`,∞

ell,ε{0, 0, 1} (4.2.11)

under Assumption (B4)`+1. The matrixF0(t, ξ) = diag R(t, ξ) is no multiple of the identity. In the
diagonalization scheme from in Sections 3.3.3 or 4.2.1 we used essentially thatF0(t, ξ) commutes with
all occurring matrices. This property is not valid any more and thus we will include the entries ofF0 in
the diagonalization scheme for the next diagonalization step(s).

Step 2. The difference of the entries ofD(t, ξ) + F0(t, ξ) satisfies

iδ(t, ξ) = 2 〈ξ〉γ(t) +
b′(t)

2 〈ξ〉γ(t)

∼ 〈ξ〉γ(t) (4.2.12)

for t sufficiently large by Assumption (B3). The derivatives ofδ(t, ξ) satisfy similar estimates, such
that the following lemma holds.

Lemma 4.8. Under Assumptions (B1) – (B3) and (B4)`+1 it holds

δ−1(t, ξ) ∈ S`,∞
ell,ε{−1, 0, 0}.

Now we can follow the usual procedure to diagonalize further steps. Let

N (1)(t, ξ) =

(
−R12/δ

R21/δ

)
∈ S`,∞

ell,ε{−1, 0, 1},

B(1)(t, ξ) = DtN
(1)(t, ξ) −

(
R(t, ξ) − F0(t, ξ)

)
N (1)(t, ξ) ∈ S`−1,∞

ell,ε {−1, 0, 2},
N1(t, ξ) = I + N (1)(t, ξ) ∈ S`,∞

ell,ε{0, 0, 0}.

For sufficiently large timet ≥ t0 the matrixN1(t, ξ) is invertible with uniformly bounded inverse
N−1

1 (t, ξ). Now with R1(t, ξ) = −N−1
1 (t, ξ)B(1)(t, ξ) the operator identity

(
Dt −D(t, ξ) − R(t, ξ)

)
N1(t, ξ) = N1(t, ξ)

(
Dt −D(t, ξ) − F0(t, ξ) − R1(t, ξ)

)
(4.2.13)

holds. Furthermore, symbols fromS0,0
ell,ε{−1, 0, 2} are integrable over the elliptic zone by Proposition

4.3. This diagonalization step will be sufficient to obtain structural properties and estimates of the
solution representation.
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Lemma 4.9. Assume (B1) – (B3) and (B4)2. Then there exists a starting timet0 such that inZell(c0, ε)∩
{t ≥ t0} there exist symbols

• N1(t, ξ) ∈ S1,∞
ell,ε{0, 0, 0}, invertible withN−1

1 (t, ξ) ∈ S1,∞
ell,ε{0, 0, 0},

• F0(t, ξ) = diag
(

Dt〈ξ〉γ(t)

2〈ξ〉γ(t)
− i b′(t)

4〈ξ〉γ(t)
,

Dt〈ξ〉γ(t)

2〈ξ〉γ(t)
+ i b′(t)

4〈ξ〉γ(t)

)
∈ S1,∞

ell,ε{0, 0, 1},

• R1(t, ξ) ∈ S0,∞
ell,ε{−1, 0, 2},

which satisfy the operator identity

(
Dt −D(t, ξ) − R(t, ξ)

)
N1(t, ξ) = N1(t, ξ)

(
Dt −D(t, ξ) − F0(t, ξ) − R1(t, ξ)

)
.

It is possible to applỳ diagonalization steps under Assumption (B4)`+1.

Step 3. Construction of the fundamental solution. We can not follow the consideration from
the theory of the hyperbolic zone (cf. Section 3.3.3 and 4.2.1), the main diagonal entries are not real.
The idea is to transform the diagonalized system to an integral equation with diagonal dominated kernel
and application of Theorem B.10.

The definition of the auxiliary symbol〈ξ〉γ(t) implies the following estimate:

Proposition 4.10. It holds
√

〈ξ〉γ(t) γ(t) + 〈ξ〉2γ(t)√
〈ξ〉γ(s) γ(s) + 〈ξ〉2γ(s)

∼ γ(t)

γ(s)
∼

〈ξ〉γ(t)

〈ξ〉γ(s)

uniformly inZell(c0, ε)∩ {t ≥ t0}. Furthermore, ifγ(∞) 6= 0 the quotient of two of the terms tends to
a nonzero and continuous limit ast → ∞ and for|ξ| < γ(∞).

This estimate is useful to understand and prove the following theorem, which states the main result
within the elliptic zone.

Theorem 4.11. Assume (B1) – (B3), (B4)2. Then the fundamental solutionEV,1(t, s, ξ) of the trans-
formed systemDt −D(t, ξ) − F0(t, ξ) − R1(t, ξ) can be represented as

EV,1(t, s, ξ) =
〈ξ〉γ(t)

〈ξ〉γ(s)

exp

{∫ t

s
〈ξ〉γ(τ) dτ

}
Qell,1(t, s, ξ)

for (t, ξ), (s, ξ) ∈ Zell(c0, ε) ∩ {t ≥ t0}, t ≥ s, and with a uniformly bounded matrixQell,1(t, s, ξ).
In the case thatγ(t) 6→ 0 ast → ∞ and without introducing a dissipative zone the limit

lim
t→∞

Qell,1(t, s, ξ) = Qell,1(∞, s, ξ)

exists uniformly on compact sets in|ξ| ∈ [0, γ(∞)) and defines a continuous functionQell,1(∞, s, ξ).

Proof. We transform the system forEV,1(t, s, ξ) to an integral equation forQell,1(t, s, ξ). If we differ-
entiate

exp

{
i

∫ t

s
[D(τ, ξ) + F0(τ, ξ)]dτ

}
EV,1(t, s, ξ)
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with respect tot the diagonal structure ofD + F0 implies

Dt

[
exp

{
i

∫ t

s
(D(τ, ξ) + F0(τ, ξ))dτ

}
EV,1(t, s, ξ)

]

= −
(
D(t, ξ) + F0(t, ξ)

)
exp

{
i

∫ t

s
(D(τ, ξ) + F0(τ, ξ))dτ

}
EV,1(t, s, ξ)

+ exp

{
i

∫ t

s
(D(τ, ξ) + F0(τ, ξ))dτ

} (
D(t, ξ) + F0(t, ξ) + R1(t, ξ)

)
EV,1(t, s, ξ)

= exp

{
i

∫ t

s
(D(τ, ξ) + F0(τ, ξ))dτ

}
R1(t, ξ)EV,1(t, s, ξ),

such that by integration over the interval[s, t] we obtain

EV,1(t, s, ξ) = exp

{
−i

∫ t

s
(D(τ, ξ) + F0(τ, ξ))dτ

}
EV,1(s, s, ξ)

+ i

∫ t

s
exp

{
−i

∫ t

θ
(D(τ, ξ) + F0(τ, ξ))dτ

}
R1(θ, ξ)EV,1(θ, s, ξ)dθ. (4.2.14)

The exponential is not bounded. In order to compensate this bad behaviour we introduce a weight
factor. Let therefore,

Qell,1(t, s, ξ) = exp

{
−

∫ t

s
w(τ, ξ)dτ

}
EV,1(t, s, ξ)

with an appropriate weightw(t, ξ). Then we obtain the integral equation

Qell,1(t, s, ξ) = exp

{∫ t

s
(iD(τ, ξ) + iF0(τ, ξ) − w(τ, ξ)I)dτ

}

+

∫ t

s
exp

{∫ t

θ
(iD(τ, ξ) + iF0(τ, ξ) − w(τ, ξ)I)dτ

}
R1(θ, ξ)Qell,1(θ, s, ξ)dθ. (4.2.15)

We made essential use of the fact that the weight factor commutes with all matrices. This integral
equation is well-posed inL∞({(t, s, ξ) | (t, ξ), (s, ξ) ∈ Zell, t ≥ s}) for suitable weightw(t, ξ). By
Proposition 4.3 the matrixR1 is uniformly integrable over the elliptic zone. It remains to see that the
exponential function remains bounded and this is guaranteed by a sign condition on the exponent.

The entries ofiD(t, ξ) + iF0(t, ξ) are given by

(I) = 〈ξ〉γ(t) +
∂t 〈ξ〉γ(t)

2 〈ξ〉γ(t)

+
γ′(t)

2 〈ξ〉γ(t)

,

(II) = − 〈ξ〉γ(t) +
∂t 〈ξ〉γ(t)

2 〈ξ〉γ(t)

− γ′(t)
2 〈ξ〉γ(t)

.

Now it follows that the first one is dominating. Inequality(II) ≤ (I) is equivalent to

γ2(t) − |ξ|2 + γ′(t) ≤ 0,

which is true inZell(c0, ε) for t ≥ t0 from |b′(t)| = o(b2(t)), Assumption (B3). Thus choosing
w(t, ξ) = (I) gives the optimal weight function and Theorem B.9 implies the well-posednessin L∞.
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Now from

∫ t

s

[
∂t 〈ξ〉γ(τ)

2 〈ξ〉γ(τ)

+
γ′(τ)

2 〈ξ〉γ(τ)

]
dτ =

1

2
log

〈ξ〉γ(t)

〈ξ〉γ(s)

+
1

2
log

γ(t) + 〈ξ〉γ(t)

γ(s) + 〈ξ〉γ(s)

=
1

2
log

〈ξ〉γ(t) γ(t) + 〈ξ〉2γ(t)

〈ξ〉γ(s) γ(s) + 〈ξ〉2γ(s)

and Proposition 4.10 the representation forEV,1(t, s, ξ) follows. Furthermore,

H(t, s, ξ) = exp

{∫ t

s
(iD(τ, ξ) + iF0(τ, ξ) − w(t, ξ)I)dτ

}

= diag

(
1,

γ(s) + 〈ξ〉γ(s)

γ(t) + 〈ξ〉γ(t)

exp

{
−2

∫ t

s
〈ξ〉γ(τ) dτ

})
→

(
1 0
0 0

)

for t → ∞.
It remains to show the existence of the limit. Choosingt0 sufficiently large the integral kernel (i.e.

essentiallyR1(θ, ξ)) can be estimated uniformly on compact subsets of[0, γ(∞)) by anL1-function in
θ and therefore the representation ofQell,1(t, s, ξ) by a Neumann series

Qell,1(t, s, ξ) = H(t, s, ξ) +

∞∑

k=1

ik
∫ t

s
H(t, t1, ξ)R1(t1, ξ)

∫ t1

s
H(t1, t2, ξ)R1(t2, ξ) · · ·

∫ tk−1

s
H(tk−1, tk, ξ)R1(tk, ξ)dtk · · ·dt2dt1 (4.2.16)

converges. The existence of the limit follows by the same way as in the proofsfor Theorems 3.17 or
3.1. Furthermore the uniform convergence on compact subsets implies continuity.

Corollary 4.12. Assume 1
(1+t)2b(t)

∈ L1(R+), such that (Γ3) is satisfied. ThenQell,1(∞, s, 0) 6= 0.

Proof. We solve the ordinary differential equationûtt + b(t)ût arising forξ = 0 directly. It holds

û(t, 0) =

∫ t

0

dτ

λ2(τ)
ût(0, 0) + û(0, 0)

and from Assumption (B3) integrability of1/λ2 follows

v̂(t, 0) ∼ λ(t)

[
û(0, 0) + ût(0, 0)

∫ ∞

0

dτ

λ2(τ)

]
.

We can also representv̂ by the fundamental solutionEV , which simplifies in this case to

EV (t, s, 0) =
γ(t)

γ(s)
λ(t)N1(t, 0)Qell,1(t, s, 0)N−1

1 (s, 0),

where the matricesN1 andN−1
1 are uniformly bounded and tend to the identity fort → ∞. If we

compare the results, we see that the first row ofQell,1(∞, s, 0) can never be zero.
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In the case thatγ(t) 6→ 0 we see thatQell,1(∞, s, ξ) is different from zero in a neighbourhood of
the frequencyξ = 0. We can even see more, both rows of the matrixQell,1(t, s, ξ) behave differently.
While the first one tends to a non-zero limit the second one satisfies a decay-estimate.

Corollary 4.13. Assume thatγ(t) 6→ 0. Then the limit

lim
t→∞

H(s, t, ξ)Qell,1(t, s, ξ)

exists uniformly on compact subsets of[0, γ(∞)).

Proof. In the series representation (4.2.16) we can factor outH(t, s, ξ) and get

H(s, t, ξ)Qell,1(t, s, ξ) = I +
∞∑

k=1

ik
∫ t

s
H(t1, s, ξ)R1(t1, ξ)

∫ t1

s
H(t1, t2, ξ)R1(t2, ξ) . . .

∫ tk−1

s
H(tk−1, tk, ξ)R1(tk, ξ)dtk . . .dt2dt1

which remains bounded and takes limits by the same argumentation as above.

Corollary 4.14. The second row of the matrixQell,1(t, s, ξ) satisfies in the elliptic zone the estimate

||eT
2 Qell,1(t, s, ξ)|| .

γ(s)

γ(t)
exp

{
−2

∫ t

s
〈ξ〉γ(τ) dτ

}
.

γ(s)(1 + s)

γ(t)(1 + t)
. (4.2.17)

The different behaviour of the two rows of the matrixQell,1(t, s, ξ) transfers by diagonalization to

Qell,0(t, s, ξ) = N1(t, ξ)Qell,1(t, s, ξ)N
−1
1 (s, ξ) (4.2.18)

using that the principal part ofN1 is the identity matrix, that meansN1(t, ξ) − I ∈ S1,∞
ell,ε{−1, 0, 1}.

Thus after applying the diagonalizer matrices the first row will remain bounded, but the second one
decays at least like symbols fromS0,0

ell,ε{−1, 0, 1}. Thus the second estimate of Corollary 4.14 is also
true forQell,0(t, s, ξ).

The dissipative zone. In case that (Γ3) does not hold, i.e. if in our caseb(t) is ‘close to’ 1
1+t , we

introduced the dissipative zone to ensure integrability ofS0,0
ell,ε{−1, 0, 2} overZell(c0, ε). In these cases

we apply Lemma 3.9 to estimate the fundamental solution toU = ( c0
1+t û, Dtû) and relate this estimate

to the corresponding one forV = (〈ξ〉γ(t) v̂,Dtv̂)T .

4.2.3 The reduced zone

In the reduced zone we replace〈ξ〉γ(t) by εγ(t). Thus, we consider

V = (εγ(t)v̂,Dtv̂)T , (4.2.19)

such that

DtV =




Dtγ(t)
γ(t) εγ(t)

|ξ|2− 1
4
b2(t)− 1

2
b′(t)

εγ(t)


 V. (4.2.20)

The lower left corner entry can be estimated byεγ(t)− b′(t)
εb(t) and by Assumption (B3) the second term is

dominated by the first one for all (fixed)ε. Thus, we can estimate the norm of the coefficient matrix by
2εγ(t) for sufficiently larget. Application of Corollary B.7 implies an estimate for the corresponding
fundamental solutionEV (t, s, ξ) within the reduced zone. It holds

81



4 Effective dissipation
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〈ξ〉γ(t)

〈ξ〉γ(t)

Γ

εγ(t)

t

|ξ|

Figure 4.4: On the definition ofV in the reduced zone. Note, that the defined energy is continuous and
‘cuts out’ the zero of〈ξ〉γ(t) on the separating curveΓ.

Lemma 4.15. Under Assumptions (B1)–(B3) the fundamental solutionEV (t, s, ξ) to (4.2.20)can be
estimated by

||EV (t, s, ξ)|| ≤ exp

{
ε

∫ t

s
b(τ)dτ

}

for t ≥ s ≥ t0 with sufficiently larget0 and(t, ξ), (s, ξ) ∈ Zred(ε).

This estimate seems to be very rough. But we can make the reduced zone as small as we want and
therefore we can control the constantε. This (in general) exponential estimate is then dominated by
λ(t) and gives no contribution to the final energy andLp–Lq estimates. This idea for the choice ofε is
used e.g. in the proof of Theorem 4.21, whereε < 1

4 will be necessary.

4.2.4 Treatment of non-monotonous coefficients

The considerations done so far can be generalized to non-monotonous coefficients. Let thereforeγ(t)
be an admissible function in the sense of Definition 4.5 and let the coefficientb = b(t) satisfy Assump-
tion (B1) and (B4)̀ together with the relation

(Bγ) |b(t) − 2γ(t)| ≤ cγ(t)
(

1
1+t

)
.

This implies for the micro-local mass termm(t, ξ) defined by equation (4.1.3) the following estimates.
Remark that includingb′(t) in this term implies the loss of one further derivative compared to Sections
4.2.1 – 4.2.3.

Proposition 4.16. 1. m(t, ξ) ∈ S`−1,∞
hyp,N {2, 0, 0}. ∩ S`−1,∞

ell,ε {2, 0, 0},

2. There exist a starting timet0 and a zone constantN such that

|m(t, ξ)| & γ2(t) in Zhyp(N) ∪ (Zell(c0, ε) ∩ {t ≥ t0}) .

Furthermore, √
|m(t, ξ)| ∈ S`−1,∞

hyp,N {1, 0, 0} ∩ S`−1,∞
ell,ε {1, 0, 0}

and
1√

|m(t, ξ)|
∈ S`−1,∞

hyp,N {−1, 0, 0} ∩ S`−1,∞
ell,ε {−1, 0, 0}.
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4.2 Representation of solutions

We explain only the first estimate of the second statement in the elliptic zone, the other estimates are
straightforward. It holds

− m(t, ξ) =
1

4
b2(t) +

1

2
b′(t) − |ξ|2 ≥ 1

4
b2(t) +

1

2
b′(t) − (1 − ε′)γ2(t)

≥ −Cγ2(t)

(
1

1 + t

)
− C ′γ(t)

(
1

1 + t

)
+ ε′γ2(t)

using|ξ|2 ≤ (1 − ε′)γ2(t) together with (Bγ) and after this (Γ2) to absorb the second term in the last
one for sufficiently larget0.

These estimates allow us to consider the micro-energy

V = (
√
|m(t, ξ)|v̂,Dtv̂)T (4.2.21)

in Zhyp(N)∪ (Zell(c0, ε) ∩ {t ≥ t0}) and a suitable continuous extension inside the remaining zones.2

Proposition 4.16 allows us to diagonalize inside the elliptic and inside the hyperbolic zone. We will
sketch this approach and the corresponding results. The system forV reads as

DtV =




Dt

√
|m(t,ξ)|√

|m(t,ξ)|

√
|m(t, ξ)|

√
|m(t, ξ)| 0


V, (4.2.22)

leading after two steps of diagonalization to

DtV
(1) = (D(t, ξ) + F0(t, ξ) + R1(t, ξ))V (1), (4.2.23)

where inside the hyperbolic zone

D(t, ξ) = diag
(√

|m(t, ξ)|,−
√
|m(t, ξ)|

)
, (4.2.24)

F0(t, ξ) =
Dt

√
|m(t, ξ)|

2
√
|m(t, ξ)|

I, (4.2.25)

R1(t, ξ) ∈ S`−2,∞
hyp,N {−1, 0, 2}; (4.2.26)

while inside the elliptic zone we get

D(t, ξ) = diag
(
−i

√
|m(t, ξ)|, i

√
|m(t, ξ)|

)
, (4.2.27)

F0(t, ξ) =
Dt

√
|m(t, ξ)|

2
√
|m(t, ξ)|

I, (4.2.28)

R1(t, ξ) ∈ S`−2,∞
ell,ε {−1, 0, 2}. (4.2.29)

Now the construction of the fundamental solution follows the lines of the previous sections. In the
hyperbolic zoneD(t, ξ) is self-adjoint, thus the fundamental solution is unitary. Furthermore,R1 is
integrable and the integral over the diagonal term is uniformly bounded. Thus, we get

||EV (t, s, ξ)|| . 1 (4.2.30)

like in Lemma 4.4. Inside the elliptic zone
√
|m(t, ξ)| occurs in the exponential and the coefficient

in front changes slightly. The result is closely related to the representations given by M.V. Fedoryuk,
[� �
85,�� �� � � � §�].

2There the precise structure of the micro-energy is not essential. The coefficient replacing
√

|m(t, ξ)| in the reduced zone
should be small.
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Theorem 4.17.Assume (B1), (B4)2 and (Bγ). Then the fundamental solutionEV,1(t, s, ξ) to the trans-
formed systemDt −D(t, ξ) − F0(t, ξ) − R1(t, ξ) can be represented inside the elliptic zone as

EV,1(t, s, ξ) =

(
m(t, ξ)

m(s, ξ)

) 1
4

exp

{∫ t

s

√
|m(τ, ξ)|dτ

}
Qell,1(t, s, ξ)

for t ≥ s and with a uniformly bounded matrixQell,1(t, s, ξ) tending to a continuous limit ast → ∞
in the case thatγ(t) 6→ 0.

The treatment of the dissipative zone and the reduced zone remains the sameas for monotonous
coefficients. Inside the pseudo-differential zone we stop after the first diagonalization step and use the
rough estimate

∫ t

s

∣∣∣∣∣
∂t

√
m(τ, ξ)√

m(τ, ξ)

∣∣∣∣∣ dτ .

∫ t

s

dτ

1 + τ
. log

1 + t

1 + s
,

which leads to some polynomial loss of decay which can be compensated by theexponential estimates
in the elliptic zone.

Example4.3. To give one example of a coefficient function, which can be handled by this approach,
we consider

γ(t) = (1 + t)κ

with κ ∈ (−1, 1) and define

b(t) = 2(1 + t)κ + sin
(
α log(1 + t)

)
(1 + t)κ−1

with α ∈ R. This coefficient satisfies (B1) and (B4) and obviously also (Bγ). At least for sufficiently
largeα this coefficient violates (B2).

4.3 Estimates

4.3.1 Relation to the energy operator and auxiliary estimat es

We want to obtain estimates for the solution representation and for the energyoperatorE(t, D) to
our original Cauchy problem. The representation ofEV (t, s, ξ) in the different zones constructed in
Section 4.2 may be used to conclude a representation for the fundamental solution E(t, s, ξ) to the
micro-energy (3.2.8) used in Chapter 3 and corresponding estimates for the operatorsE(t, s,D) and
E(t, D). We restrict ourselves to the case of monotonous coefficient functionsb = b(t) satisfying (B1)
to (B3) and (B4)2 with the notation2γ(t) = b(t).

Outside the reduced zone it holds

E(t, s, ξ) = T (t, ξ)EV (t, s, ξ)T−1(s, ξ), (4.3.1)

where we used the matrix-valued functionT (t, ξ),

(
h(t, ξ)û

Dtû

)
=




h(t,ξ)
λ(t)〈ξ〉γ(t)

0

i γ(t)
λ(t)〈ξ〉γ(t)

1
λ(t)




︸ ︷︷ ︸
T (t,ξ)

(〈ξ〉γ(t) v̂

Dtv̂

)
(4.3.2)
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with inverse

T−1(t, ξ) =




λ(t)〈ξ〉γ(t)

h(t,ξ) 0

−iγ(t)λ(t)
h(t,ξ) λ(t)


 . (4.3.3)

This relation follows directly from the definition ofv(t, x) in (4.1.1). Recall that inside the dissipative
zoneh(t, ξ) = c0

1+t , while outside it is equal to|ξ|.
Inside the reduced zone, we have replaced〈ξ〉γ(t) by εγ(t) and, therefore, we replace in the definition

of the matrixT the corresponding terms. This yields

T (t, ξ) =

(
h(t,ξ)

ελ(t)γ(t) 0

i 1
ελ(t)

1
λ(t)

)
, ||T (t, ξ)|| ∼ λ−1(t) (4.3.4)

for all (t, ξ) ∈ Zred(ε).

Auxiliary estimates. We continue this section with some auxiliary estimates, which are essentially
used to obtain energy andLp–Lq estimates later on.

Lemma 4.18.Assume (B1) – (B3) and set2γ(t) = b(t) andλ(t) = exp
{

1
2

∫ t
0 b(τ)dτ

}
. Then it holds:

1. The definition of〈ξ〉γ(t) implies〈ξ〉γ(t) − γ(t) ≤ − |ξ|2
b(t) .

2. It holds
λ(s)

λ(t)
exp

{∫ t

s
〈ξ〉γ(τ) dτ

}
. exp

{
−|ξ|2

∫ t

s

dτ

b(τ)

}
.

3. With(1 + tξ)|ξ| ∼ 1 it holds

exp

{
−|ξ|2

∫ tξ

0

dτ

b(τ)

}
∼ 1.

4. It holds

b2(t)

∫ t

0

dτ

b(τ)
→ ∞.

5. For all α ∈ R the function (
1 +

∫ t

0

dτ

b(τ)

)α

λ(t)

is monotonously increasing for larget.

Proof. The first statement is an elementary inequality and implies the second statement directly from
the definition ofλ(t).

The third statement follows for decreasingb(t) from

∫ t

0

dτ

b(τ)
≤ t

b(t)
. (1 + t)2,

using the monotonicity of1/b(t) together withtb(t) → ∞ from Assumption (B3).
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The next one follows from the calculation

b2(t)

(
1 +

∫ t

0

dτ

b(τ)

)
& b2(t) − b′(t)

∫ t

0

dτ

b(τ)
& b2(t) −

∫ t

0

b′(τ)

b(τ)
dτ ∼ b2(t) − log b(t) → ∞

in caseb(t) → 0. Otherwise the estimate is obvious by the monotonicity ofb.

The last statement can be obtained by differentiating the expression. It holds

∂t

(
1 +

∫ t

0

dτ

b(τ)

)α

λ(t) = α

(
1 +

∫ t

0

dτ

b(τ)

)α−1
1

b(t)
λ(t) + b(t)

(
1 +

∫ t

0

dτ

b(τ)

)α

λ(t)

=
1

b(t)

(
1 +

∫ t

0

dτ

b(τ)

)α−1

λ(t)

(
α + b2(t) + b2(t)

∫ t

0

dτ

b(τ)

)

and from statement 4 we find a sufficiently large timet0 depending onα, such that the expression is
positive for allt ≥ t0.

Representation of E(t, s, ξ) in the elliptic zone. Because of its technicality, we separate the
estimate ofE(t, s, ξ) inside the elliptic zone from the proofs of the main results of this section. We will
see that we have to combine the estimates of Section 4.2 with a new idea to get desired results.

Inside the elliptic zone, i.e. for(t, ξ), (s, ξ) ∈ Zell(c0, ε), it holds

EV (t, s, ξ) ∼ b(t)

b(s)
exp

{∫ t

s
〈ξ〉γ(τ) dτ

}
Qell,0(t, s, ξ),

where the matrixQell,0 defined in (4.2.18) is uniformly bounded fors ≤ t. This yields in combination
with (4.3.1) for the energy multiplierE(t, s, ξ) the estimate

|E(t, s, ξ)| . exp

{∫ t

s

(
〈ξ〉γ(τ) − γ(τ)

)
dτ

} (
|ξ|
b(t) b(t)

)
|Qell,0(t, s, ξ)|

(
1
|ξ|
1
|ξ|

1
b(s)

)

. exp

{
−|ξ|2

∫ t

s

dτ

b(τ)

} (
1 |ξ|

b(s)
b(t)
|ξ|

b(t)
b(s)

)
,

where we used Lemma 4.18.1 . The estimate for the first row seems to be optimal, while the estimate
obtained for the second row is not optimal in this form, because at least forincreasing coefficient
functionsb = b(t) it is increasing int like b(t) for fixed frequencyξ, which contradicts to our a priori
knowledge that the energy itself decays.

As we will see later the reason for this behaviour is that during the transformation back to the energy
E(t, s, ξ) further terms cancel inside the differenceλ(t)Dtû = γ(t)v̂ − Dtv̂, which we estimated by
the bounds for the two summands.

Our basic idea is to relate the entries of the above given estimate to the multipliersΦi(t, s, ξ) and use
Duhamel’s formula to improve the estimates for the second row using estimates from the first one. A
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comparison yields so far

|Φ1(t, s, ξ)| . exp

{
−|ξ|2

∫ t

s

dτ

b(τ)

}
, (4.3.5)

|Φ2(t, s, ξ)| .
1

b(s)
exp

{
−|ξ|2

∫ t

s

dτ

b(τ)

}
, (4.3.6)

|∂tΦ1(t, s, ξ)| . b(t) exp

{
−|ξ|2

∫ t

s

dτ

b(τ)

}
,

|∂tΦ2(t, s, ξ)| .
b(t)

b(s)
exp

{
−|ξ|2

∫ t

s

dτ

b(τ)

}
.

The multipliersΦi solve the second order equationΦ̈i + |ξ|2Φi + b(t)Φ̇i = 0 and, therefore, we obtain
for Ψi(t, s, ξ) = ∂tΦi(t, s, ξ) the first order equation

∂tΨi + b(t)Ψi = −|ξ|2Φi(t, s, ξ), Ψi(s, s, ξ) = iδi2, (4.3.7)

where the source term on the right hand side can be estimated with the above bounds. Duhamel’s
formula yields now

Ψ1(t, s, ξ) = −|ξ|2
∫ t

s

λ2(τ)

λ2(t)
Φ1(τ, s, ξ)dτ,

|Ψ1(t, s, ξ)| .
|ξ|2

λ2(t)

∫ t

s
b(τ)λ2(τ)

1

b(τ)
exp

{
−|ξ|2

∫ τ

s

dθ

b(θ)

}
dτ

.
|ξ|2

λ2(t)

[
λ2(τ)

1

b(τ)
exp

{
−|ξ|2

∫ τ

s

dθ

b(θ)

}]t

s

− |ξ|2
λ2(t)

∫ t

s
λ2(τ)

( |ξ|2
b2(τ)

− b′(τ)

b2(τ)

)
exp

{
−|ξ|2

∫ τ

s

dθ

b(θ)

}
dτ

.
|ξ|2
b(t)

exp

{
−|ξ|2

∫ t

s

dτ

b(τ)

}
− |ξ|2

b(s)

λ2(s)

λ2(t)
,

using∂tλ
2(t) = b(t)λ2(t) and|ξ|2/b2(t) ≤ 1/2 from the definition of the elliptic part together with

b′(t)/b2(t) = o(1) from Assumption (B3). The second summand is subordinate to the first one because

b(s)

b(t)
exp

{
−|ξ|2

∫ t

s

dτ

b(τ)

}
λ2(t)

λ2(s)
= exp

{ ∫ t

s

(
b(τ) − |ξ|2

b(τ)
− b′(τ)

b(τ)︸ ︷︷ ︸
>0, if τ > t0

)
dτ

}
> 1 (4.3.8)

for t ≥ s ≥ t0 with t0 sufficiently large.
Similarly, one obtains forΨ2 the representation

Ψ2(t, s, ξ) = i
λ2(s)

λ2(t)
− |ξ|2

∫ t

s

λ2(τ)

λ2(t)
Φ2(τ, s, ξ)dτ,

|Ψ2(t, s, ξ)| .
λ2(s)

λ2(t)
+

|ξ|2
λ2(t)b(s)

∫ t

s
λ(τ) exp

{
−|ξ|2

∫ τ

s

dθ

b(θ)

}
dτ

.
λ2(s)

λ2(t)
+

|ξ|2
b(t)b(s)

exp

{
−|ξ|2

∫ t

s

dτ

b(τ)

}
.

Thus, we have proven the following lemma.
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Lemma 4.19. Assume(t, ξ), (s, ξ) ∈ Zell(c0, ε) with t ≥ s. Then the multiplierE(t, s, ξ) satisfies the
pointwise estimate

|E(t, s, ξ)| . exp

{
−|ξ|2

∫ t

s

dτ

b(τ)

} (
1 |ξ|

b(s)
|ξ|
b(t)

|ξ|2
b(t)b(s)

)
+

λ2(s)

λ2(t)

(
0 0
0 1

)
. (4.3.9)

There exist at least two important special cases. If we sets = tξ to be the lower bound of the elliptic
zone (for increasingb = b(t)) or t = tξ the upper bound of the elliptic zone (for decreasing coefficients
b = b(t)), then some of theb’s cancel with|ξ| and the estimate simplifies. We will employ Lemma 4.19
to prove the main results of this section.

Remark4.4. The estimate of Lemma 4.19 for the second row is better than the estimate obtained
directly by application of Theorem 4.11. This is related to the fact that we cannot use the better
behaviour of the second row ofQell,0(t, s, ξ) during the transformation toE(t, s, ξ) and to the fact that
there arises some cancellation in the differenceγ(t)v̂(t) − Dtv̂(t).

Remark4.5. For smallξ and withs = t0 fixed, the second summand in (4.3.9) is dominated by the
first one. In case of strong dissipation and withs = tξ, the lower boundary of the elliptic zone for large
frequencies, we can use|ξ| ∼ b(tξ) to deduce from (4.3.8) the following estimate.

Corollary 4.20. It holds in the notation of Remark 4.5 that

|E(t, tξ, ξ)| . exp

{
−|ξ|2

∫ t

0

dτ

b(τ)

} (
1 1
|ξ|
b(t)

|ξ|
b(t)

)
.

4.3.2 L2–L2 estimates

We start with the formulation of the estimate inL2-scale or equivalently with the estimate of the mul-
tiplier E(t, s, ξ) in L∞-norm. It holds

Theorem 4.21.Assume (B1)–(B3) and (B4)2. Then theL2–L2 estimate

||E(t, 0, D)||2→2 .

(
1 +

∫ t

0

dτ

b(τ)

)− 1
2

is valid.

Proof. It suffices to consider the zones separately. In the dissipative zone theestimate follows directly
from Lemma 3.9 together withtb(t) → ∞ as consequence of (B3).

Similarly, for the part of the hyperbolic zone contained in|ξ| ≥ c we obtain a decay ofλ−1(t) from
the transformation back to our original problem, cf. formulae (4.3.1) – (4.3.3).

It remains to understand the influence of the elliptic zone, of the reduced zone and the influence of
hyperbolic zone for small frequencies.
The elliptic zone for small frequencies.We denote bytξ the upper boundary of the dissipative zone3.
Then the multiplierE(t, 0, ξ) can be represented asE(t, tξ, ξ)E(tξ, 0, ξ), where the first one satisfies

3If c0 = 0 we settξ = 0.
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the estimate of Lemma 4.19 and the second one can be estimated by Lemma 3.9. This yields for all
(t, ξ) ∈ Zell(c0, ε) ∩ {|ξ| ≤ c0}

|E(t, 0, ξ)| . |E(t, tξ, ξ)| |E(tξ, 0, ξ)|

. exp

{
−|ξ|2

∫ t

tξ

dτ

b(τ)

} (
1 1

(1+tξ)b(tξ)
|ξ|
b(t)

|ξ|
b(t)

1
(1+tξ)b(tξ)

)
1

1 + tξ

. exp

{
−|ξ|2

∫ t

0

dτ

b(τ)

} (
|ξ| |ξ|
|ξ|2
b(t)

|ξ|2
b(t)

)
,

where we used (B3)’ to conclude(1 + tξ)b(tξ) & 1 and Lemma 4.18.3 to extend the above integral.
Now we distinguish between estimates for the first row and estimates for the second one. For the

first row we obtain

|ξ| exp

{
−|ξ|2

∫ t

tξ1

dτ

b(τ)

}
.

(
1 +

∫ t

0

dτ

b(τ)

)− 1
2

and therefore the desired estimate. For the second row we obtain

|ξ|2
b(t)

exp

{
−|ξ|2

∫ t

tξ1

dτ

b(τ)

}
.

1

b(t)

(
1 +

∫ t

0

dτ

b(τ)

)−1

,

which decays faster by Lemma 4.18.4. The maximum of the dominating function aretaken along the
lines

|ξ|2
∫ t

0

dτ

b(τ)
∼ const

and using again Lemma 4.18.4 we see that these lines belong (at least for large values oft) to the
interior ofZell(c0, ε)∩{|ξ| ≤ c0}. It remains to show, that the remaining parts of the phase space have
a better behaviour. We distinguish between different cases related to the behaviour of the separating
curve.
Case 1. Weak dissipation,γ(t) → 0. In this case, for small frequencies the reduced zone and the
hyperbolic zone lie on top of the elliptic one.

In the reduced zone we obtained the estimate of Lemma 4.15, which together with (4.3.4) and the
above estimates yields for(t, ξ) inside this zone

|E(t, 0, ξ)| . |ξ| exp

{
−|ξ|2

∫ tξ

0

dτ

b(τ)
+

∫ t

tξ

(ε − 1

2
)b(τ)dτ

} (
1 1
1 1

)
,

wheretξ denotes the upper boundary of the elliptic zone. Thus, using

|ξ|2 ≤ (
1

2
− ε)b2(t)

for ε sufficiently small, we claim, that inside the reduced zone the multiplier satisfies the same estimates
like in the elliptic zone. It remains to consider the hyperbolic zone, but there the maximum of the
dominating function

exp

{
−|ξ|2

∫ tξ

0

dτ

b(τ)
− 1

2

∫ t

tξ

b(τ)dτ

}
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4 Effective dissipation

is taken at a pointξ independent ont ≥ tξ and, thus, it decays likeλ−1(t), which is faster than the
estimate from inside the elliptic zone.
Case 2. Strong dissipation,γ(t) → ∞. In this case, the elliptic part lies on top of the hyperbolic one. It
remains to consider large frequencies|ξ|. Inside the hyperbolic zoneE(t, 0, ξ) behaves like 1

λ(t) , while
in the reduced zone we have

||E(t, 0, ξ)|| . exp

{∫ t

tξ1

(ε − 1

2
)b(τ)dτ −

∫ tξ1

0

1

2
b(τ)dτ

}
,

which is also decaying int, but decaying less than in the hyperbolic part. Heretξ1 denotes the lower
boundary of the reduced zone. Thus the essential supremum of our estimate of||E(t, 0, ξ)|| has to be
taken inside the elliptic zone.

There it holds for large frequencies

|E(t, 0, ξ)| . |E(t, tξ2 , ξ)| |E(tξ2 , 0, ξ)|

. exp

{
−|ξ|2

∫ t

tξ2

dτ

b(τ)

} (
1 1
|ξ|
b(t)

|ξ|
b(t)

)
1

λ(tξ2)
exp

{
ε

∫ tξ2

tξ1

b(τ)dτ

} (
1 1
1 1

)

. exp

{
−|ξ|2

∫ t

tξ2

dτ

b(τ)
+ (ε − 1

2
)

∫ tξ2

tξ1

b(τ)dτ − 1

2

∫ tξ1

0
b(τ)dτ

} (
1 1
|ξ|
b(t)

|ξ|
b(t)

)

with tξ2 the upper boundary of the reduced zone. Thus, using

exp

{
−|ξ|2

∫ t

tξ2

dτ

b(τ)
+ (ε − 1

2
)

∫ tξ2

tξ1

b(τ)dτ − 1

2

∫ tξ1

0
b(τ)dτ

}
≤ exp

{
−c2

0

∫ t

0

dτ

b(τ)

}

for c0 <
√

2
2 b(0) andε sufficiently small we see that the maximum of the first row is taken for larget

inside|ξ| ≤ c0.
Caseγ(t) tends to a finite limit.In this case essentially the same kinds of estimates are used to conclude
that the essential supremum of the multiplier is taken inside the elliptic zone and therefore the resulting
estimate follows.

By the aid of Proposition 3.21 we conclude

Corollary 4.22. Assumptions (B1) – (B3) and (B4)2 imply

||E(t, D)||2→2 .

(
1 +

∫ t

0

dτ

b(τ)

)− 1
2

.

Examples. We continue this section with examples for special coefficient functions.

Example4.6. Let
b(t) = µ(1 + t)κ, µ > 0, κ ∈ (−1, 1).

Forκ = 0 the energy estimates are given by A. Matsumura, [Mat76]. We obtain for allκ ∈ (−1, 1)

||E(t, D)||2→2 . (1 + t)
κ−1

2 .

This estimate is slightly better than the estimate given by H. Uesaka, [Ues80].
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4.3 Estimates

Example4.7. If we setb(t) = µ
1+t with µ ≥ 2 we have from the consideration of Chapter 2

||E(t, D)||2→2 . (1 + t)−1,

which coincides formally with the estimate from Example 4.6.

Example4.8. Let

b(t) =
log[m](e[m] + t)

1 + t
, m ≥ 1.

Then Assumptions (B1) – (B4) are satisfied and Corollary 4.22 implies from

∫ t

0

dτ

b(τ)
∼ (1 + t)2

log[m](e[m] + t)

ast → ∞ the estimate

||E(t, D)||2→2 . (1 + t)−1
(
log[m](e[m] + t)

) 1
2 ,

which comes close to the one of Example 4.7.

Example4.9. Let b(t) = µt. Then Corollary 4.22 implies

||E(t, D)||2→2 .
(
log(e + t)

)− 1
2 .

Example4.10. The previous example can be improved in the following way. For

b(t) = µ(e[m] + t) log(e[m] + t) . . . log[m−1](e[m] + t)

it holds
||E(t, D)||2→2 .

(
log[m](e[m] + t)

)− 1
2 .

This can be understood as counterpart to the Example 3.5. Again the energy decay rate becomes
arbitrary small (within the scale of iterated logarithms).

If we make the further assumption,

(B5)
∞∫
0

dt
b(t) = ∞,

the estimate of Corollary 4.22 implies the decay of the energy to zero.

Corollary 4.23. Assume (B1) – (B3), (B4)2 and (B5). Then

lim
t→∞

E(t, D) = 0

in L2(Rn) → L2(Rn).

Example4.11. Assume 1
b(t) ∈ L1(R+). Then Corollary 4.22 gives only the obvious estimate

||E(t, D)||2→2 . 1,

following from (B1) alone. We will investigate this case in Section 4.4 and showthat this estimate is
sharp. This situation will be calledover-damping.
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4 Effective dissipation

4.3.3 Lp–Lq estimates

We start with an auxiliary lemma.

Lemma 4.24. Under Assumption (B1) it holds

∣∣∣∣
∣∣∣∣ |ξ|

` exp

{
−|ξ|2

∫ t

0

dτ

b(τ)

}∣∣∣∣
∣∣∣∣
p

.

(
1 +

∫ t

0

dτ

b(τ)

)− `
2
− n

2p

.

Proof. The proof follows by direct calculation. Then it holds

∣∣∣∣
∣∣∣∣ |ξ|

` exp

{
−|ξ|2

∫ t

0

dτ

b(τ)

} ∣∣∣∣
∣∣∣∣
p

=

∫ ∞

0

(
|ξ|` exp

{
−|ξ|2

∫ t

0

dτ

b(τ)

})p

|ξ|n−1d|ξ|

=

∫ ∞

0
|ξ|p`+n−1 exp

{
−p|ξ|2

∫ t

0

dτ

b(τ)

}
d|ξ|

=
1

2

∫ ∞

0
η

n+`p
2

−1e−pηdη

(∫ t

0

dτ

b(τ)

)n+`p
2

by settingη = |ξ|2
∫ t
0

dτ
b(τ) with dη = 2|ξ|

∫ t
0

dτ
b(τ)d|ξ|.

Contrary to the non-effective case, we did not perform more diagonalization steps to obtainLp–Lq

decay estimates. This is related to the fact that the asymptotic properties are mainly described by the
elliptic partΠell while the hyperbolic partΠhyp brings in the factorλ−1(t). Instead we estimate the
L1-norm of the Fourier multiplier to deduce theL1–L∞ estimate and interpolation with the previously
provenL2–L2 results yields the following statement.

Theorem 4.25.Assume (B1) – (B3) and (B4)2. Then for dual indicesp ∈ [1, 2], pq = p + q and with

regularity r > n
(

1
p − 1

q

)
the estimate

||E(t, 0, D)||p,r→q .

(
1 +

∫ t

0

dτ

b(τ)

)− 1
2
−n

2

(
1
p
− 1

q

)

holds.

Proof. It suffices to prove the corresponding statement forp = 1 and q = ∞. Then the general
statement follows by the Riesz-Thorin interpolation theorem forLp-spaces, [SW71], together with
Theorem 4.21. Let thereforer > n. Then an estimate of theL1–L∞ decay rate is given by the
L1-norm of the multiplier, i.e. by the function

|| 〈ξ〉−r E(t, 0, ξ)||1.

We will estimate thisL1-norm in the different zones separately. Inside the dissipative zone thisyields
the rate(1+t)−1−n, which is much stronger than the desired result. It remains to consider the remaining
part of the phase space.
Part Πell ∩ {|ξ| ≤ c0}. In this part we have〈ξ〉 ∼ 1 and all components ofE(t, 0, ξ) can be estimated
by

|ξ| exp

{
−|ξ|2

∫ t

0

dτ

b(τ)

}
,
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4.3 Estimates

such that the desiredL1-norm can be estimated by Lemma 4.24 as

||E(t, 0, ξ)||L1(Πell∩{|ξ|≤c0}) .

(
1 +

∫ t

0

dτ

b(τ)

)−n
2
− 1

2

,

which is the desired estimate.
Part Πhyp∩{|ξ| ≤ c0}. If γ(t) → 0 ast → ∞ the hyperbolic part lies on top of the elliptic one. There,
we obtain withξt the inverse function oftξ

||E(t, 0, ξ)||L1(Πhyp∩{|ξ|≤c0}) .

∫ c0

ξt

|ξ|n exp

{
−|ξ|2

∫ tξ

0

dτ

b(τ)

}
λ(tξ)

λ(t)
d|ξ|

.

∫ c0

ξt

(
|ξ|2

∫ tξ

0

dτ

b(τ)

)n
2

exp

{
−|ξ|2

∫ tξ

0

dτ

b(τ)

}

(
1 +

∫ tξ

0

dτ

b(τ)

)−n+1
2 λ(tξ)

λ(t)
d

(
|ξ|

(∫ tξ

0

dτ

b(τ)

) 1
2

)

.

(
1 +

∫ t

0

dτ

b(τ)

)−n+1
2

using the monotonicity of the function

(
1 +

∫ t

0

dτ

b(τ)

)−n+1
2

λ(t)

following from Lemma 4.18.5.
Large frequencies.For Πhyp ∩ {|ξ| ≥ c} we have the uniform decay rateλ−1(t) of the multiplier
E(t, 0, ξ), while for Πell ∩ {|ξ| ≥ c} the multiplier decays at least likeexp{−c2

0

∫ t
tξ

dτ
b(τ)}. Together

with || 〈ξ〉−r ||1 . 1 this gives a much stronger decay rate then obtained in the elliptic part for small
frequencies.

Remark4.12. Further diagonalization steps in the hyperbolic zone can only be used to improve the

estimate in the used regularity forp ∈ (1, 2] from r > n
(

1
p − 1

q

)
to r = n

(
1
p − 1

q

)
. Note that for

p = 1 the given regularity is sharp within the scale of Bessel potential spaces.

Corollary 4.26. Under the same assumptions as in Theorem 4.25 it holds

||E(t, D)||p,r→q .

(
1 +

∫ t

0

dτ

b(τ)

)− 1
2
−n

2

(
1
p
− 1

q

)

.

Examples. We review the examples of Section 4.3.2 and give the correspondingLp–Lq estimates.
Except for the case of constant dissipation, where estimates are given by A. Matsumura, [Mat76], these
estimates are new.

Example4.13. Let
b(t) = µ(1 + t)κ, µ > 0.

Then we obtain for allκ ∈ (−1, 1)

||E(t, D)||p,r→q . (1 + t)
(κ−1)

(
n
2

(
1
p
− 1

q

)
+ 1

2

)

,

under the conditions onp, q andr from Theorem 4.25.
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4 Effective dissipation

Example4.14. If we setb(t) = µ
1+t with µ ≥ n + 3 we have from the consideration of Chapter 2

||E(t, D)||p,r→q . (1 + t)
−n

(
1
p
− 1

p

)
−1

,

which coincides formally with the estimate from Example 4.13.

Example4.15. Let

b(t) =
log[m](e[m] + t)

1 + t
, m ≥ 1.

Then we get

||E(t, D)||p,r→q . (1 + t)
−n

(
1
p
− 1

p

)
−1(

log[m](e[m] + t)
)n

2

(
1
p
− 1

p

)
+ 1

2 .

Example4.16. Let b(t) = µt. Then it holds

||E(t, D)||p,r→q .
(
log(e + t)

)−n
2

(
1
p
− 1

p

)
− 1

2 .

Example4.17. The previous example can be improved in the following way. For

b(t) = µ(e[m] + t) log(e[m] + t) . . . log[m−1](e[m] + t)

it holds

||E(t, D)||p,r→q .
(
log[m](e[m] + t)

)−n
2

(
1
p
− 1

p

)
− 1

2 .

Example4.18. Assume 1
b(t) ∈ L1(R+). Then we get

||E(t, D)||p,r→q . 1,

that means, we obtainedno decayto zero at all. In Section 4.4 we will show that this estimate is sharp.

4.4 How to interpret over-damping?

We conclude this chapter on effective dissipation with further results in the special case of an increasing
dissipation term. If we assume that (B5) is violated, i.e. if

(OD) the inverse of the coefficient becomes integrable,
∫ ∞

0

dτ

b(τ)
< ∞,

the decay estimates proven in Section 4.3 trivialise in the sense, that we obtain no energy and noLp–Lq

decay to zero any more. We want to make this result more precise. The firstmain result is the following
consequence of the representation of solutions within the elliptic part. Remarkthat (OD) together with
the other assumptions implies (B3).

Theorem 4.27.Assume (B1), (B2), (B4)2 and (OD). Then for(u1, u2) ∈ L2(Rn)×H−1(Rn) the limit

u(∞, x) = lim
t→∞

u(t, x)

exists inL2(Rn) and is different from zero for non-zero data. Furthermore, if the data is more regular,
(u1, u2) ∈ H2(Rn) × H1(Rn), then it holds

||u(t, ·) − u(∞, ·)||2 = O(t/b(t)).
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The proof of this statement is based on the representation of solutions proven in Section 4.2 together
with the following estimate. We denote bytξ the lower boundary of the elliptic zone.

Proposition 4.28. Assume thatγ−1(t) ∈ L1. Then

−|ξ|tξ ≤
∫ ∞

tξ

[〈ξ〉γ(t) − γ(t)]dt ≤ 0.

Proof. It holds

γ(t) − |ξ|2
γ(t)

≤
√

γ2(t) − |ξ|2 ≤ γ(t) − |ξ|2
2γ(t)

for all |ξ| ≤ γ(t) and, therefore, the desired statement follows from

∫ ∞

t

dτ

γ(τ)
=

t

γ(t)
+

∫ ∞

t

τγ′(τ)

γ(τ)
dτ ≥ t

γ(t)

with γ′(t) > 0 in the over-damping case.

Using this statement, we can prove that in the elliptic zone the (weighted) limit of the solution
representationEV (t, s, ξ) for t → ∞ exists. We seteT

1 = (1, 0) and extractû(t, ξ) from V =(
〈ξ〉γ(t) λ(t)û, Dt(λ(t)û)

)T
.

Lemma 4.29. Assume (B1),(B2),(B4)2 and (OD). Then the limit

S(s, ξ) = eT
1 lim

t→∞
1

λ(t) 〈ξ〉γ(t)

EV (t, s, ξ)

exists uniformly on compact sets inξ and is different from zero.

Proof. The over-damping condition implies thatγ(t) → ∞ and therefore it suffices to consider the
elliptic partΠell of the phase space and to use the representation of Theorem 4.11 together with the fact
that the diagonalizerN(t, ξ) → I ast → ∞. This yields

1

λ(t) 〈ξ〉γ(t)

EV (t, s, ξ) ∼ 1

λ(s) 〈ξ〉γ(s)

exp

{∫ t

s
[〈ξ〉γ(τ) − γ(τ)]dτ

}
Qell,0(t, s, ξ).

Now the exponential converges by Proposition 4.28. Furthermore, Corollary 4.13 implies the conver-
genceQell,0(t, s, ξ) → Qell,0(∞, s, ξ) and this matrix is non-zero in the first row:

The representation ofQell,0(∞, s, ξ) by a Neumann series fors ≥ t0 following from (4.2.16) con-
verges fors → ∞ to the matrixdiag(1, 0) and, therefore, the upper left corner entry ofQell,0(∞, s, ξ)
is different from zero for larges. Thus, at least the first element of the rowS(s, ξ) is nonzero for large
s. Now the obvious relationS(s, ξ) = S(s1, ξ)EV (s1, s, ξ) implies from the invertibility ofEV (s1, s, ξ)
thatS(s, ξ) can never be zero for any choice ofs andξ.

Of special interest is the cases = 0. The multiplierS(0, ξ) takes the Cauchy data in the form
V (0, ξ) = (〈ξ〉γ(0) û1, û2 − i1

2b(0)û1)
T and maps it to the asymptotic stateû(∞, ξ). This will be used

in the following proof.
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Proof. (Theorem 4.27) The first part of Theorem 4.27 follows from the observation that

û(∞, ξ) = S(0, ξ)V (0, ξ). (4.4.1)

The convergence follows at least for data having compact support onthe Fourier level, thus on a dense
subset ofL2-space. Together with an a priori bound of the solution we conclude that the limit exists
for all data fromL2(Rn) × H−1(Rn). This a priori bound follows the same way we have proven the
L2–L2 estimate.

It is possible to obtain a better description of this limit. From the solution representation we know
that ||ût(t, ·)||2 = O(1/b(t)), similarly we can obtain||ûtt(t, ·)||2 = O(1/tb(t)). The proofs of these
estimates of higher order are postponed to Chapter 5. We want to draw onlyone consequence from the
latter one. Using the differential equation

ûtt + |ξ|2û + b(t)ût = 0 (4.4.2)

for all t together with the existence of the limit for the second summand, we get fromutt → 0 in
L2(Rn) under regularity assumptions on the data,(u1, u2) ∈ H2(Rn) × H1(Rn), that

lim
t→∞

b(t)ut(t, x) = ∆u(∞, x) (4.4.3)

converges inL2(Rn). Furthermore,

||u(∞, ·) − u(t, ·)||2 ≤
∫ ∞

t
||ut(τ, ·)||2dτ ≤ C

(
||u1||H2 + ||u2||H1

) ∫ ∞

t

dτ

b(τ)
= O (t/b(t)) ,

(4.4.4)

and the second statement of Theorem 4.27 follows.

Remark4.19. Using the commutation properties of Fourier multipliers, we see that regularity ofthe
initial data transfers directly to convergence in Sobolov spaces. So the proof of Theorem 4.27 implies
directly a corresponding result for data(u1, u2) ∈ Hs(Rn)×Hs−1(Rn). In this caseu(t, ·) → u(∞, ·)
in Hs(Rn).

Interpretation. At least for sufficiently high regularity of the data we have seen, that the term |ξ|2û+
b(t)ût overrules the influence of the second time-derivativeûtt in the equation. Thus, it seems to be
natural to consider the parabolic problem

wt =
1

b(t)
∆w, w(0, ·) = w0 ∈ L2(Rn), (4.4.5)

as related differential equation describing the asymptotic behaviour. Its solution is given by

ŵ(t, ξ) = exp

{
−|ξ|2

∫ t

0

dτ

b(τ)

}
ŵ(0, ξ). (4.4.6)

For t → ∞ it takes inL2(Rn) the limit

w(∞, x) = eβ∆w0(x) (4.4.7)

with β = ||1/b(·)||1. The operatoreβ∆ is smoothing, it maps the space ofL2-functions intoH∞(Rn).
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limits exist

no decay,

decay

|ξ|

t

Figure 4.5: Time-asymptotic properties of the multiplierE(t, s, ξ) in the case of over-damping.

Regularity of the asymptotic profile. Lemma 4.29 states that the solution operator, mapping the
Cauchy data to the solution at the time levelt, tends strongly to an operator associating an asymptotic
profileu(∞, x). This operator is represented by a Fourier multiplier and, therefore, it is natural to ask
for estimates of this Fourier multiplier with respect to the frequency variableξ. It turns out that the
operator is smoothing in the following sense.

Theorem 4.30.Assume (B1), (B2), (B4)2 and (OD). Then the multiplierS(s, ξ) satisfies the estimate

||S(s, ξ)|| . 〈ξ〉−1 e−c|ξ|tξ , |ξ| ≥ ξs

uniform ins, ξ.

Proof. The representation used in the proof of Lemma 4.29 implies together with Proposition 4.28, that

||S(tξ, ξ)|| .
1

λ(tξ) 〈ξ〉
,

and, together with the estimates coming from the hyperbolic zone, Lemma 4.4, andthe reduced zone,
Lemma 4.15,

||EV (tξ, s, ξ)|| . exp{ε|ξ|tξ},

we can use the representationS(s, ξ) = S(tξ, ξ)EV (tξ, s, ξ) to conclude the desired estimate. To
estimateλ(tξ), we use, that byb′(t) > 0 and Assumption (B4)1

b(t) ≤ b(t) + tb′(t) ≤ cb(t)

and, therefore, after integration ∫ t

0
b(τ)dτ ∼ tb(t)

holds.

An almost immediate consequence of this estimate for the multiplierS(s, ξ) is, that the asymptotic
stateu(∞, ·) = S(0, D)V0 for Cauchy datau1 ∈ H1(Rn) andu2 ∈ L2(Rn), and thusV0 ∈ L2(Rn),
is a very smooth function.
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Theorem 4.31. Assume (B1), (B2), (B4)2 and (OD). Then for datau1 ∈ H1(Rn) andu2 ∈ L2(Rn)
the asymptotic stateu(∞, ·) defined by Theorem 4.27 belongs to the spaceB∞(Rn) and satisfies the
estimates

||Dαu(∞, ·)||∞ ≤ C1C
|α|
2 α! (4.4.8)

for all multi-indicesα ∈ N
n
0 and with constants independent ofα.

Proof. It suffices to prove the following statement: Letg ∈ L2(Rn) andf̂(ξ) = e−c|ξ|tξ ĝ(ξ). Thenf
satisfies (4.4.8).

Using the boundedness of the Fourier transform as mapL1 → L∞ this statement follows from

||ξαf̂(ξ)||1 =
∣∣∣∣ ξαe−c|ξ|

︸ ︷︷ ︸
∈L∞

ec|ξ|(1−tξ)
︸ ︷︷ ︸
||·||L2≤C

ec|ξ|tξ ĝ(ξ)︸ ︷︷ ︸
||·||L2≤C

∣∣∣∣
1
≤ C1C

|α|
2 α!

by using

sup
ξ

∣∣∣ξαe−c|ξ|
∣∣∣ ≤ c−|α| sup

|ξ|
(c|ξ|)|α|e−c|ξ| ≤ c−|α||α||α|e−|α| ≤ c−|α|α!,

because the maximum ofzse−z for z > 0 is taken at the points = z for eachs > 0 and by Stirling’s
formula|α||α| ≤ α!e|α|.

Corollary 4.32. It holdsS(t, D) : L2(Rn) → A(Rn), the asymptotic profile is a real-analytic function.

4.5 Summary

In the case of effective dissipation, we have used a reduction to a Klein-Gordon type equation with a
negative mass term to deduce the representation of solutions. We have seen especially, that

• the asymptotic behaviour is described by the elliptic zone, i.e. by small frequencies,

• related to this fact, the solutions satisfy asymptotic estimates of a type known for parabolic
problems,

• the oscillatory behaviour of the multiplier inside the hyperbolic zone has no influence on decay
estimates.

This relation to parabolic problems is known for wave equations with constant dissipation as pointed
out in Section 1.3.2. There arises the question, whether it is possible to obtainsimilar results at least
in the case ofγ(t) 6→ 0 for t → ∞. Section 5.4 is devoted to the study of this question based on the
representation of solutions from Section 4.2. In Table 4.1 we sketch the relation between the zones and
the used assumptions on the coefficient function.

Under the weaker assumptions (B1), (B4)` and (Bγ) related to a given admissible functionγ = γ(t)
subject to (Γ1) and (Γ2) we sketched in Section 4.2.4 an approach to diagonalize and to deduce main
terms of the representation of solutions.
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4.5 Summary

Zones Assumptions onb(t)
dissipative zone

• we used (B1), i.e.b(t) ≥ 0, together with (B3)’,tb(t) →
∞, which implies condition (C2)

• smoothness ofb = b(t) plays no role

elliptic and hyperbolic zone

• Assumption (B2) is used to define the separating curve

• Assumptions (B1), (B3) are used to replacem(t, ξ) by
〈ξ〉2γ(t) inside these zones

• Assumption (B4)̀ allows as many diagonalization steps
as we want

• the sign of the coefficientb = b(t) is essential inside the
elliptic zone

reduced zone

• (B1) and (B2) are used to define this zone

• (B3) is used to make the mass-term small in this zone

Table 4.1: Assumptions used in the different zones/parts.

Modified scattering for (effective) weak dissipation. We want to conclude this chapter with
some remarks concerning the asymptotic properties of the solution in the hyperbolic zone for weak
dissipation.

If the dissipation term is non-effective we have seen from Theorem 3.17and in consequence from
the modified scattering theory of Section 3.5 that inside the hyperbolic zoneZhyp(N) and fort → ∞
the fundamental solutionE(t, s, ξ) behaves like

λ(s)

λ(t)
ME0(t, s, ξ)M

−1 with E0(t, s, ξ) = diag
(
ei(t−s)|ξ|, ei(s−t)|ξ|

)
. (4.5.1)

E0(t, s, ξ) coming from the propagation of free waves. Now in the case of effectiveweak dissipation,
Corollary 4.7 in combination with (4.3.2) yields forE(t, s, ξ) the related behaviour like

λ(s)

λ(t)
M Ẽ(t, s, ξ)M−1, (4.5.2)

where the unitary matrix̃E(t, s, ξ) is given by (4.2.5). This modified hyperbolic behaviour is related
to the representation for large frequencies given by T. Narazaki in [Nar04] for damped wave equations
and also by K. Nishihara in [Nis03] in the special case of three-dimensional space.

If we restrict our considerations tolarge frequencies, i.e. if we consider data(u1, u2) with 0 6∈
supp(û1, û2) we obtain for the hyperbolic energy the two-sided estimate

E(u; t) ∼ 1

λ2(t)
, (4.5.3)

which is much stronger than the decay rate obtained for arbitrary data. In general, this modified scat-
tering behaviour is overruled by the influence of the elliptic part.
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4 Effective dissipation

|ξ|

t

|ξ|

t

Γ

∼ λ(s)
λ(t) Ẽ∼ λ(s)

λ(t) E0

Figure 4.6: Modified scattering theory for non-effective dissipation (left) and a related description for
effective weak dissipation (right).

Example4.20. If we considerb(t) = µ(1 + t)−κ with κ ∈ (0, 1) andµ > 0, this yields for data
u1 ∈ H1 andu2 ∈ L2 with 0 6∈ supp(û1, û2) the estimate for the hyperbolic energy

E(u; t) ∼ exp

(
µ

1 − κ
t1−κ

)
,

which is closely related to Example 3.10.
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5 Further results

5.1 New directions

For non-effective weak dissipation the modified scattering theory of Theorem 3.26 implies, that for all
non-zero data the energy decay rate is given by the auxiliary functionλ(t),

E(u; t) ∼ 1

λ2(t)
.

In the case of effective dissipation such a result is not valid. There exists a relation between further
conditions on the data and corresponding improved energy decay rates.The aim of this section is to
give an outline of several results in this direction related to our representations of Chapter 4. We restrict
ourselves to the estimates inL2 scale, the proofs can be generalized to the caseLp,r(R

n) → Lq(Rn),
where we needq < ∞ for the improved results in the strong topology.

5.1.1 Norm estimates versus estimates in the strong topolog y

The estimates proven so far are estimates for the norm of the so-called energy operator. As already
pointed out in Remark 2.2 of the second chapter F. Hirosawa and H. Nakazawa recently obtained a faster
decay of the energy. In order to understand this estimate better we replacethe estimate in the norm-
topology by a convergence in the strong operator topology. Similar to the proof of Theorem 3.26, the
key tool to understand such estimates is the theorem of Banach-Steinhaus.Condition (B5) is essential
for this result.

Theorem 5.1. Assume (B1) – (B3), (B4)2 and (B5). Then the strong limit

s-lim
t→∞

√∫ t

0

dτ

b(τ)
E(t, D) = 0

is taken inL2(Rn) → L2(Rn).

Proof. We employ the Banach-Steinhaus argument for the dense subspaceM =
⋃

c>0 Vc of L2(Rn),
where

Vc = {U ∈ L2(Rn)|dist(0, supp Û) ≥ c}.

The energy estimate implies the uniform bound

√∫ t

0

dτ

b(τ)
E(t, D) . 1.

On the other hand, for data(u1, u2)
T ∈ Vc the representation ofE(t, ξ) obtained in Chapter 4 shows

that
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5 Further results

Case 1:if b(t) → 0 ast → ∞ or supp(u1, u2) contains only frequencies ending up in the hyperbolic
part forb(t) ≤ c, the energy satisfies the estimate (cf. formula (4.5.3))

||E(t, D)(u1, u2)||2 .
1

λ(t)
,

tending to zero faster than the above given estimate, and
Case 2:if b(t) 6→ 0 andsupp(û1, û2) contains frequencies which ‘end up’ in the elliptic part, we use
that the dominating function (cf. Corollary4.20)

|ξ| exp

{
−|ξ|2

∫ t

0

dτ

b(τ)

}

can be estimated by

exp

{
−c2

∫ t

0

dτ

b(τ)

}

onVc. This estimate again decays faster.
Thus, in both cases the theorem of Banach-Steinhaus implies the desired result.

Example5.1. We sketch one application of Theorem 5.1. For the special coefficient function b(t) =
µ(1 + t)κ with exponentκ ∈ (−1, 1) andµ > 0 we obtain by Corollary 4.22

E(u; t) = O(tκ−1), t → ∞,

while now we have
E(u; t) = o(tκ−1), t → ∞.

The main difference is, that the last estimate is not uniform in the data.

Remark5.2. The theorem of Banach-Steinhaus implies also, that both estimates, the norm-estimate
and this estimate in the strong operator topology, are sharp at the same time.

Remark5.3. In [HN03] F. Hirosawa and H. Nakazawa obtained this result for the special caseb(t) =
µ(1 + t)κ with µ > 2 for the rangeκ ∈ [−1,−1

2). The above theorem extends this result toµ > 0 for
κ ∈ (−1, 1].

5.1.2 Exceptional behaviour of the frequency ξ = 0

The reason for the improvement of the decay rate in Theorem 5.1 is the exceptional behaviour of the
frequencyξ = 0. Under Assumption (B5) theL∞-norm of the multiplierE(t, 0, ξ) is determined by
the neighbourhood of the line

|ξ|2
∫ t

0

dτ

b(τ)
= const . (5.1.1)

This curve approaches thet-axis ast → ∞ if (B5) holds. If we assume, that the data can be estimated
in their Fourier image for small frequencies by|ξ|µ with someµ > 0, this implies a further decay along
this line and therefore improves the estimates.

Our strategy is as follows. We do not consider the energy operatorE(t, D) as operatorL2(Rn) →
L2(Rn) but as operator from asmaller space with stronger topologyto L2(Rn). Forµ ≥ 0 this space
is given by

[D]µL2(Rn) = { u ∈ L2(Rn) | [ξ]−µû ∈ L2(Rn) } (5.1.2)
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5.1 New directions

with [ξ] = |ξ|/ 〈ξ〉 and endowed with the induced norm

||u||[D]µL2 = ||[ξ]−µû||2. (5.1.3)

Note, that by Plancherel’s theorem[D]0L2(Rn) = L2(Rn).

Theorem 5.2. Assume (B1) – (B3), (B4)2 together with (B5). Then

s-lim
t→∞

(
1 +

∫ t

0

dτ

b(τ)

)µ+1
2

E(t, D) = 0.

holds as strong limit in[D]µL2(Rn) → L2(Rn), furthermore,

||E(t, D)||[D]µL2→L2 .

(
1 +

∫ t

0

dτ

b(τ)

)−µ+1
2

.

Proof. (Sketch) The proof follows essentially the proof of theL2-estimate, Theorem 4.21, and the
improvement from Theorem 5.1, taking into account, that we can use a further factor|ξ|µ in the multi-
plier.

This estimate is the basic tool for several improvement results. The condition[ξ]−µû ∈ L2(Rn)
does not mean a zero behaviour in the usual sense, it can be understood as aregularity statement of
û in ξ = 0. This is related to the following version of Sobolev-Hardy inequality, which isby itself a
consequence of a result of R.S. Strichartz, [Str67, Theorem 3.6].

Lemma 5.3. Assume0 ≤ s < n
2 . Then

|| |x|−sf ||2 ≤ C||f ||Hs

for all f ∈ Hs(Rn).

Applying this lemma in the Fourier image yields a continuous embedding of the weighted L2-space
〈x〉−s L2(Rn) = L2(Rn, 〈x〉2s dx), whose Fourier image isHs(Rn), into [D]sL2(Rn). Indeed we
have with a smooth cut-off functionχ ∈ C∞

0 , χ(ξ) = 1 in a neighbourhood ofξ = 0,

||f ||[D]sL2 = ||[ξ]sf̂ ||2 ∼ || |ξ|sχ(ξ)f̂ ||2 + ||(1 − χ(ξ))f̂ ||2
. ||χ(ξ)f̂ ||Hs + ||f̂ ||2 ≤ ||f̂ ||Hs = ||f ||〈x〉−sL2 .

Thus, Theorem 5.2 implies

Corollary 5.4. Assume (B1) – (B3), (B4)2 and (B5).
Then for data(〈D〉u1, u2) ∈ 〈x〉−s L2(Rn), 0 ≤ s < n

2 , it follows

||E(t, D)||〈x〉−sL2→L2 .

(
1 +

∫ t

0

dτ

b(τ)

)− 1+s
2

and, furthermore, the improved estimate

s-lim
t→∞

(
1 +

∫ t

0

dτ

b(τ)

) 1+s
2

E(t, D) = 0

is taken in〈x〉−s L2(Rn) → L2(Rn).
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5 Further results

Example5.4. Setb(t) = (1 + t)κ, κ ∈ (−1, 1). Then for data(〈D〉u1, u2) from 〈x〉s L2(Rn) with
0 ≤ s < n

2 we have

E(u; t) = o(t(κ−1)(s+1)), t → ∞.

This result is closely related to a result of R. Ikehata and A. Saeki, [SI00, Theorem 1.3]. They proved
for b(t) = 1 ands = 1 the energy estimate

E(u; t) ≤ C/(1 + t)2

with a constantC depending on||u1||H1 , ||u2||2 and|| 〈x〉 (u1 + u2)||2 and for space dimensionn >
2. For n = 2, which is also critical in our approach, they used the weighted space〈x〉−1 log(1 +
〈x〉)−1L2(R2) to recover the same estimate. The log-term occurs from a corresponding logarithmic
Sobolev-Hardy inequality valid in this case, see e.g. W. Dan and Y. Shibata,[DS95].

Remark5.5. Corollary 5.4 shows, that weight conditions on the data may be used to improvethe decay
rate for the hyperbolic energy. The possible improvement is limited by the space dimension. This can
be understood by the relation to Theorem 5.2 and the application of Sobolev-Hardy inequality in the
Fourier image. If we assume more decay for the data, we have continuity in theFourier image and
we need further moment conditions on the data to ensure a zero behaviour in the frequencyξ = 0 of
sufficiently high order.

Remark5.6. In the case of the damped wave equation R. Ikehata obtained in [Ike03d] and [Ike03c]
for data fromL2(Rn) ∩ 〈x〉µ L1(Rn) with largeµ improved decay rates assuming further moment
conditions.

5.1.3 Data from Hs ∩ Lp, p ∈ [1, 2).

Like in the classical paper of A. Matsumura, [Mat76], the assumption of a furtherLp-regularity,p ∈
[1, 2), for the data allows an improvement of the energy decay rate. Lemma 4.24 canbe used to obtain
corresponding estimates within the elliptic part. It follows

Theorem 5.5. Assume (B1) – (B3), (B4)2 and (B5). Then for data(〈D〉u1, u2) ∈ Lp(Rn) ∩ L2(Rn),
p ∈ [1, 2], it follows

||E(t, D)||L2∩Lp→L2 .

(
1 +

∫ t

0

dτ

b(τ)

)−n
2

(
1
p
− 1

2

)
− 1

2

.

Furthermore, forp ∈ (1, 2] the decay rate can be improved to

s-lim
t→∞

(
1 +

∫ t

0

dτ

b(τ)

) 1
2
+n

2

(
1
p
− 1

2

)

E(t, D) = 0

in L2(Rn) ∩ Lp(Rn) → L2(Rn).

Remark5.7. For p = 1 the subspaceM =
⋃

c>0 Vc is not dense inL1(Rn) ∩ L2(Rn). This is the
reason to exclude this case in the second statement. In this case, the improved decay rate follows for
the closed subspace of data with vanishing mean, which is the closure ofM in L1(Rn) ∩ L2(Rn).

Remark5.8. Under certain geometric conditions this vanishing mean condition follows immediately.
If we consider the initial boundary value problem on the half-space with Dirichlet boundary conditions
and data fromL1(Rn

+)∩L2(Rn
+), the usual odd continuation to a Cauchy problem satisfies this moment

condition. In the caseb(t) = 1 this was used by R. Ikehata in [Ike03a], [Ike03b] and [Ike04].
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5.2 Estimates for the solution itself

Example5.9. If we setb(t) = 1 andp = 1 we get for data(〈D〉u1, u2) ∈ L2(Rn)∩L1(Rn) the energy
decay rate

E(u; t) = O(t−
n
2
−1), t → ∞,

like in [Mat76].

Example5.10. More generally, forb(t) = (1 + t)κ with κ ∈ (−1, 1) we get for(〈D〉u1, u2) ∈
L2(Rn) ∩ L1(Rn) the energy decay rate

E(u; t) = O(t−(1−κ)n+2
2 ), t → ∞.

Example5.11. For b(t) = 1 + t we get under the same assumptions on the data

E(u; t) = O((log(e + t))−
n+2

2 ), t → ∞.

5.2 Estimates for the solution itself

The estimates for the solution follow basically from the proven estimates for the micro-energyU(t, ξ) =
(h(t, ξ)û, Dtû). In both cases, for weak dissipation in Chapter 3 and for effective dissipation in Chap-
ter 4 we have constructed explicit Fourier multiplier representations. Using

1

h(t, ξ)
. 1 + t,

one can recover estimates foru from energy estimates, one can even obtain better estimates if one uses
the representation of the solutions in the different zones.

Similar to the treatment in Chapter 2 we consider thesolution operator

S(t, D) : (u1, 〈D〉−1 u2) 7→ u(t, ·),

normalised in such a way, thatS(t, D) : L2(Rn) → L2(Rn), and formulate estimates for its asymptotic
behaviour.

5.2.1 Remarks on free waves

For the sake of completeness we start with the case of free waves,¤u = 0. It is well-known that in this
case the solution to the Cauchy problem can be represented as

û(t, ξ) = cos(t|ξ|)û1 + it sinc(t|ξ|)û2,

wheresinc x = sinx/x. Using the boundedness ofsinc x one obtains an increasing behaviour of the
solution. It can also be seen, that the two multipliers constitutingS(t, ξ) behave differently.

Lemma 5.6. For the case of free waves the limit

s-lim
t→∞

(1 + t)−1
S(t, D) = 0

exists as strong limit inL2(Rn) → L2(Rn).
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Proof. The uniform bound||S(t, D)||2→2 . 1 + t can be seen immediately from the representation of
u. To obtain the existence of the limit we again employ the Banach-Steinhaus argument for the dense
subsetM =

⋃
c>0 Vc, Vc = {dist(0, supp U) ≥ c}. For each of the subspacesVc we obtain for the

second multiplier
sinc(t|ξ|) ≤ 〈t|ξ|〉−1 → 0, t → ∞

uniform on|ξ| ≥ c.

Remark5.12. On the smaller spaceVc we have even more. If0 6∈ supp(û1, û2), we get boundedness
of the solution, i.e.

||u(t, ·)||2 . 1,

where occurring constants depend on the norm of the data and the distance of 0 to the Fourier support
of them.

5.2.2 Non-effective weak dissipation

The representation of Chapter 3, Lemma 3.8 and Theorem 3.15, implies immediatelythe following
theorem.

Theorem 5.7. Assume (A1), (A4)1 and (C1). Then the solution operator satisfies theL2–L2 estimate

||S(t, D)||2→2 .
1 + t

λ2(t)
.

Proof. In the hyperbolic zone and for|ξ| ≥ c we estimated|ξ|û by λ−1(t) and we can just divide by
|ξ| to get an estimate foru by

1

λ(t)
.

1 + t

λ2(t)
.

For small|ξ| we have to take into account that dividing byh(t, ξ) brings a further factor(1+t). Thus
we obtain inside the dissipative zone(1 + t)/λ2(t) and in the hyperbolic zone for small frequencies

1

|ξ|λ(t)λ(tξ)
∼ 1 + tξ

λ(t)λ(tξ)
.

1 + t

λ2(t)
,

using the monotonicity oft/λ(t) for larget following from condition (C1).

This result coincides for the caseb(t) = µ
1+t , µ < 1, with the estimate from Theorem 2.7. The

following observation is important to understand the essential difference between the solution estimate
and the estimate for the energy.

In the non-effective dissipative case the estimate for the solution operatorS(t, D) comes
from properties of the dissipative zone.

This coincides with theL2–L2 estimate of Theorem 2.7.1 and the case of effective dissipation. Note,
that energy estimates depend on large frequencies.

We can improve the decay rate of the above theorem. For|ξ| > c we end up in the hyperbolic zone
and, thus, we can estimate the multiplier uniformly in|ξ| > c by

λ2(t)

1 + t
||S(t, ξ)|| .

λ(t)

1 + t
.

1

λ(t)
→ 0

using Proposition 3.7 forλ(t) → ∞. Otherwise, ifλ(t) remains bounded,λ(t)(1 + t)−1 → 0.
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Corollary 5.8. In L2(Rn) → L2(Rn) it holds

s-lim
t→∞

λ2(t)

1 + t
S(t, D) = 0.

Example5.13. If b(t) ∈ L1(R+) this corollary implies

s-lim
t→∞

(1 + t)−1
S(t, D) = 0,

like in the case of free waves.

Example5.14. If we set

b(t) =
µ

(e[m] + t) log(e[m] + t) · · · log[m](e[m] + t)

like in Example 3.5, we get

s-lim
t→∞

(1 + t)−1
(
log[m](e[m] + t)

)µ
S(t, D) = 0.

Example5.15. For b(t) = µ
1+t and withµ ∈ (0, 1) we obtain

s-lim
t→∞

(1 + t)µ−1
S(t, D) = 0,

related to the statement of Theorem 2.7.1.

A review of the proof of Theorem 3.24 together with the structure of the multiplier S(t, ξ) in the
zones yieldLp–Lq decay estimates for the solution operator. Note that, similar to the treatment of
Chapter 2, forp andq near to2 the dissipative zone determines the decay rate.

Theorem 5.9. Assume (A1), (A4) together with (C1). Then the solution operatorS(t, D) satisfies the
Lp–Lq estimate

||S(t, D)||p,r→q .





1
λ2(t)

(1 + t)
1−n

(
1
p
− 1

q

)

, p ≥ p∗,

1
λ(t)(1 + t)

−n−1
2

(
1
p
− 1

q

)

, p < p∗,

for dual indicesp ∈ (1, 2], pq = p + q and with regularityr = n
(

1
p − 1

q

)
. The critical valuep∗ is

chosen in such a way that

(1 + t)
1−n+1

2

(
2

p∗
−1

)

& λ(t).

Remark5.16. For b(t) = µ
1+t with µ ∈ [0, 1), this estimate coincides with the corresponding one from

Theorem 2.7.

Remark5.17. In case thattb(t) → 0, the critical valuep∗ is given byp∗ = 2n+2
n+3 .

5.2.3 Effective dissipation

Also in the case of effective dissipation the representation of solutions from Chapter 4, Theorems 4.6,
4.11 and 4.15, together with the definition of the micro-energy, implies estimates for the solution itself.
Without taking time or spatial derivatives, we have nothing to cancel the non-decay of the factor

exp

{
−|ξ|2

∫ t

0

dτ

b(τ)

}

arising from the representation of Lemma 4.11. On the other hand, this factordecays for non-integrable
b−1(t) uniformly on |ξ| ≥ c > 0. Thus, together with Theorem 4.27 one obtains the following state-
ment.
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Theorem 5.10.Assume (B1) – (B3), (B4)2. Then the estimate

||S(t, D)||2→2 . 1

holds uniformly int. Furthermore,

s-lim
t→∞

S(t, D) = S(∞, D)

exists onL2(Rn) → L2(Rn) andS(∞, D) = 0 iff (B5) holds.

Furthermore, a review of the proof of Theorem 4.25 yields forS(t, D) a correspondingLp–Lq result.

Theorem 5.11.Assume (B1) – (B3), (B4)2. Then theLp–Lq estimate

||S(t, D)||p,r→q .

(
1 +

∫ t

0

dτ

b(τ)

)−n
2

(
1
p
− 1

q

)

holds for dual indicesp ∈ [1, 2], pq = p + q and with regularityr > n
(

1
p − 1

q

)
.

Example5.18. If we consider the special caseb(t) = (1+ t)κ with κ ∈ (−1, 1), we get for the solution
u = u(t, x) to (1.2.1) the decay estimate

||u(t, x)||q ≤ C(1 + t)
−(1−κ)n

2

(
1
p
− 1

q

)(
||u1||Lp,r + ||u2||Lp,r−1

)
.

Example5.19. If we setb(t) = 1 + t, we obtain the estimate

||u(t, x)||q ≤ C
(
log(e + t)

)−n
2

(
1
p
− 1

q

)(
||u1||Lp,r + ||u2||Lp,r−1

)
.

Example5.20. For b(t) = µ
1+t with sufficiently largeµ we get from the consideration of Chapter 2

the corresponding decay results. Furthermore, the stronger decay inZ1 (related to estimates in the
subspaceVc) implies, that for allµ > 1 the statement

s-lim
t→∞

S(t, D) = 0

is also valid. Forµ = 1 the logarithmic term in the estimate of Theorem 2.7.1. comes from the
treatment of the zonesZ2 andZ3 and, therefore, we obtain

s-lim
t→∞

log(e + t) S(t, D) = 0

in this case.

Like the corresponding estimate for the energy this result may be improved under further assump-
tions on the data. We restrict our consideration to a zero-behaviour forξ = 0 in L2(Rn) and obtain
(similar to Theorem 5.2) the following result. Note, that Assumption (B5) guarantees, that the maxi-
mum of the multiplier is taken on a line approachingξ = 0.

Theorem 5.12.Assume (B1) – (B3), (B4)2 and (B5). Then forµ ≥ 0 the strong limit

s-lim
t→∞

(
1 +

∫ t

0

dτ

b(τ)

)µ

S(t, D) = 0

is taken in[D]2µL2(Rn) → L2(Rn).
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5.3 Energy estimates of higher order

Now the argument of Section 5.1.2 transfers this result to weighted initial data and data satisfying
further moment conditions.

Example5.21. For b(t) = (1 + t)κ with κ ∈ (−1, 1) we obtained

||S(t, D)||[D]µL2→L2 . (1 + t)
1−κ

2
µ.

Example5.22. For b(t) = 1 + t the corresponding estimate reads as

||S(t, D)||[D]µL2→L2 .
(
log(e + t)

)−µ
2 .

Example5.23. For b(t) = (1 + t)κ with κ > 1 no improvement is possible by choosing data from
[D]µL2(Rn). This is a direct consequence of Lemma 4.29.

5.3 Energy estimates of higher order

Higher order energy estimates are a natural tool to investigate parabolic problems, while for the wave
equation they bring no profit. This is different for damped wave equations. The estimates of A. Mat-
sumura, [Mat76], yield the same (parabolic) improvement by taking higher order derivatives like for
the heat equation.

We recall theL2–L2 estimates from that paper. It holds for a solutionu(t, x) of the damped wave
equation¤u + ut = 0 to Cauchy datau1 andu2 (cf. the overview given in Section 1.3.2)

||D`
tD

α
xu(t, ·)||L2 ≤ C(1 + t)−`− |α|

2 {||u1||H`+|α| + ||u2||H`+|α|−1} , (5.3.1)

similar to the estimates for the heat equation,wt = ∆w with Cauchy dataw0,

||D`
tD

α
xw(t, ·)||L2 ≤ C(1 + t)−`− |α|

2 ||w0||H`+|α| . (5.3.2)

The aim of this section is to underline, that corresponding results are also valid for time-dependent
dissipation terms. In detail, we show that

• in case ofnon-effective dissipation, higher order energies satisfy the same decay estimates like
the usual hyperbolic (first order) energy,

• in case ofeffective dissipationand under Assumption (B5), derivatives improve the decay rates
and the improvement differs between time and spatial derivatives and

• in case ofover-damping, only time derivatives give improvements.

In order to make this more precise we define in analogy to the energy operator E(t, D) energy oper-
ators of higher order. They are given by

E
k
` (t, D) : (〈D〉k u1, 〈D〉k−1 u2) 7→ |D|k−`D`

tu(t, ·) (5.3.3)

for ` ≤ k and withk ≥ 1 and describe the behaviour ofk−` spatial and̀ time derivatives. The number
k gives the total number of derivatives and stands for the order of the energy. The energy operator itself
is given byE(t, D) = (E1

0(t, D), E1
1(t, D))T . We exclude the casek = 0 because of its exceptional

behaviour. It was considered in Section 5.2.
The main task is to provide estimates for time derivatives. The spatial derivatives can be considered

later on using the following relation.

Proposition 5.13. It holdsE
k
` (t, ξ) = [ξ]k−`

E
`
`(t, ξ).
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5.3.1 Non-effective weak dissipation

In the case of non-effective dissipation, we simply apply the differential equation in system form to the
known estimates1 for the micro-energyU = (h(t, ξ)û, Dtû)T , which yields by Leibniz rule

DtU = A(t, ξ)U, D`
tU =

`−1∑

m=0

(
` − 1

m

)
(Dm

t A(t, ξ))D`−1−m
t U. (5.3.4)

Now we can prove by induction over` the following statement for the fundamental solutionE(t, 0, ξ),
which brings no improvement by taking higher order derivatives int.

Lemma 5.14. Assume (A1), (A4)` together with (C1). Then the estimate

||D`
tE(t, 0, ξ)|| .

1

λ(t)

∑̀

m=0

(h(t, ξ) + b(t))m

(
1

1 + t

)`−m

.
1

λ(t)
〈ξ〉`

holds.

We obtain even more. Applying (5.3.4) recursively, we get

D`
tE(t, 0, ξ) =

`−1∑

m=0

(
` − 1

m

)
(Dm

t A(t, ξ))D`−1−m
t E(t, 0, ξ) = · · · = B(t, ξ)E(t, 0, ξ),

whereB(t, ξ) = F (A, DtA, · · · , D`
tA) defines a symbol of order` uniform in the variablet. Thus, we

obtain not only the resultingL2–L2 estimate forD`
tE(t, 0, ξ), but also anLp–Lq estimate.

Theorem 5.15.Assume (A1), (A4)` together with (C1). Then theLp–Lq estimate

||D`
tE(t, 0, D)||p,(r+`)→q .

1

λ(t)
(1 + t)

−n−1
2

(
1
p
− 1

q

)

holds for dual indicespq = p + q, p ∈ (1, 2] and with regularityr = n
(

1
p − 1

q

)
.

Using, that the main contribution ofB(t, ξ) comes fromA(t, ξ)`,

B(t, ξ) = (A(t, ξ))` + O
(

`−1∑

m=1

(
1

1 + t

)1+m

|ξ|`−1−m

)
, (1 + t)|ξ| → ∞,

M−1B(t, ξ)M = M−1

(
|ξ|`

(−1)`|ξ|`
)

M + O(|ξ|`−1(1 + t)−1),

and, therefore, the modified scattering results of Theorem 3.26 imply the sharpness of the above given
estimate. Using the previously introduced notation for the higher order energy operatorsEk

` (t, D), we
obtained the following (sharp) estimate, which is independent onk and`.

Corollary 5.16. For all k, ` ∈ N0, k ≥ max{`, 1} it holds

||Ek
` (t, D)||p,r→q .

1

λ(t)
(1 + t)

−n−1
2

(
1
p
− 1

q

)

for dual indicespq = p + q, p ∈ (1, 2] and with regularityr = n
(

1
p − 1

q

)
.

1We useφdiss andφhyp as smooth functions in order to differentiate the coefficient matrix, cf. thedefinition of the micro-
energy and the introduction of these functions on page 44.
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Thus, as already mentioned, for the case of non-effective weak dissipation higher order derivatives
have the same time-asymptotic behaviour as the energy. This is closely related tothe asymptotic rela-
tion to free waves and the modified scattering theory introduced in Section 3.5.

5.3.2 Effective dissipation

In the case of effective dissipation, we can use essentially the same arguments within the hyperbolic
part for large frequencies,Πhyp ∩ {|ξ| ≥ c}, like in the case of non-effective weak dissipation. The
crucial point is to estimate the small frequencies inΠell ∩ {|ξ| ≤ c}. For this, we follow the idea of
Lemma 4.19 and recall, that the entries ofE

`
`(t, ξ) are multiples of∂`

tΦi(t, 0, ξ). Let tξ denote the
lower boundary of the elliptic zone, i.e.b(tξ) ∼ |ξ| for largeξ in the case of strong dissipation.

Lemma 5.17. Assume (B1) – (B3) and (B4)`+1. Then for all (t, ξ) ∈ Zell(c0, ε) ∩ {t ≥ t0} the
pointwise estimate

|∂`
tΦi(t, tξ, ξ)| .

∑

µ+ν=`
µ≥1

( |ξ|2
b(t)

)µ (
1

1 + t

)ν

exp

{
−|ξ|2

∫ t

tξ

dτ

b(τ)

}

holds.

Proof. The proof goes by induction over`. For` = 1 the statement is contained in Corollary 4.20. For
` > 1 we assume the induction hypothesis

|∂`′

t Φi(t, tξ, ξ)| .
∑

µ+ν=`′

µ≥1

( |ξ|2
b(t)

)µ (
1

1 + t

)ν

exp

{
−|ξ|2

∫ t

tξ

dτ

b(τ)

}

for all `′ ≤ `. Differentiating the equation

Φ̈i + |ξ|2Φi + b(t)Φ̇i = 0

` times with respect tot yields

∂t

(
∂`+1

t Φi

)
+ b(t)

(
∂`+1

t Φi

)
= −|ξ|2∂`

tΦi −
∑̀

k=1

(
`

k

) (
∂k

t b(t)
) (

∂`−k+1
t Φi

)
=: Ψ`

with new right-hand sideΨ`(t, tξ, ξ). Its solution is given by

∂`+1
t Φi(t, tξ, ξ) =

λ2(tξ)

λ2(t)
∂`+1

t Φi(tξ, tξ, ξ) +

∫ t

tξ

λ2(τ)

λ2(t)
Ψ`(τ, tξ, ξ)dτ, (5.3.5)

which can be estimated by the induction hypothesis together with the estimate of the initial values

|∂k
t Φi(tξ, tξ, ξ)| . 〈ξ〉δ(k) , δ(k) ∈ N,

following directly by applying the equation to the initial valuesΦi(tξ, tξ, ξ) and∂tΦi(tξ, tξ, ξ) given in
(2.1.7). Now the integral equation (5.3.5) together with these initial values andthe induction hypothesis
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gives

∣∣∣∂`+1
t Φi(t, tξ, ξ)

∣∣∣ .
λ2(tξ)

λ2(t)
〈ξ〉δ(k)

+ |ξ|2
∫ t

tξ

λ2(τ)

λ2(t)

∑

µ+ν=`
µ≥1

( |ξ|2
b(τ)

)µ (
1

1 + τ

)ν

exp

{
−|ξ|2

∫ τ

tξ

dθ

b(θ)

}
dτ

+

∫ t

tξ

λ2(τ)

λ2(t)

∑̀

k=1

b(τ)

(
1

1 + t

)k

`−k+1∑

`′=1

∑

µ+ν=`′

µ≥1

( |ξ|2
b(τ)

)µ (
1

1 + τ

)ν

exp

{
−|ξ|2

∫ τ

tξ

dθ

b(θ)

}
dτ

.
λ2(tξ)

λ2(t)
〈ξ〉δ(k) +

∑

µ+ν=`+1
µ≥1

( |ξ|2
b(t)

)µ (
1

1 + t

)ν

exp

{
−|ξ|2

∫ t

tξ

dτ

b(τ)

}
.

Furthermore, the first summand is subordinate to the second one. It holds

λ2(tξ)

λ2(t)
〈ξ〉δ(k) .

(
|ξ|b(tξ)

b(t)

)`+1

exp

{
−|ξ|2

∫ t

tξ

dτ

b(τ)

}

from

1 . exp

{∫ t

tξ

(
− |ξ|2 1

b(τ)
+ b(τ) − (` + 1)

b′(τ)

b(τ)
+ (` + 1) log |ξ| − δ(k) log 〈ξ〉

)
dτ

}

. exp

{ ∫ t

tξ

1

b(τ)

(
b2(τ) − |ξ|2 − (` + 1)b′(τ) + ckb(τ) log |ξ|︸ ︷︷ ︸

≥ 1
2
b2(τ)≥0, τ≥t0

)
dτ

}

for large|ξ|, while for small|ξ| the estimate is obvious.

In order to apply the previous lemma, we remark that each term of the form

( |ξ|2
b(t)

)µ

exp

{
−|ξ|2

∫ t

tξ

dτ

b(τ)

}

brings a decay rate of order
1

bµ(t)

(
1 +

∫ t

0

dτ

b(τ)

)−µ

.

To understand the influence of the different summands, we distinguish between the case of effective
weak and the case of strong dissipation.

Proposition 5.18. Assume (B1) – (B3). Then it holds

b(t)

∫ t

0

dτ

b(τ)
. t,
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if b′(t) ≤ 0, and

b(t)

∫ t

0

dτ

b(τ)
& t,

if b′(t) ≥ 0.

Proof. Integration by parts implies

b(t)

∫ t

0

dτ

b(τ)
= t + b(t)

∫ t

0

τb′(τ)

b2(τ)
dτ

and the statement follows immediately.

Example5.24. With b(t) = (1 + t)κ with κ ∈ (−1, 1), we can calculate the expression explicitly and
get

b(t)

∫ t

0

dτ

b(τ)
=

1

1 − κ
(1 + t)κt1−κ ∼ t.

The estimates of Proposition 5.18 are both valid. Ifb(t) = 1+ t, thus if we takeκ = 1, only the second
estimate

(1 + t)

∫ t

0

dτ

1 + τ
= (1 + t) log(1 + t) & 1 + t

holds.

The first theorem corresponds mainly to the case of effective weak dissipation.

Theorem 5.19.Assume (B1) – (B3), (B4)`+1 together withb′(t) ≤ 0. Then theL2–L2 estimate

||Ek
` (t, D)||2→2 .

1

b`(t)

(
1 +

∫ t

0

dτ

b(τ)

)− k+`
2

holds for allk ≥ `. Furthermore, the strong limit

s-lim
t→∞

b`(t)

(
1 +

∫ t

0

dτ

b(τ)

) k+`
2

E
k
` (t, D) = 0

is taken inL2 → L2.

For strong dissipation terms we use the second inequality of Proposition 5.18 toget the following
theorem. We distinguish between estimates containing time derivatives and suchestimates containing
only spatial derivatives. The latter ones are special cases of the solution estimate of Theorem 5.12.

Theorem 5.20.Assume (B1) – (B3), (B4)`+1 together withb′(t) ≥ 0.

1. For ` = 0 theL2–L2 estimate

||Ek
0(t, D)||2→2 .

(
1 +

∫ t

0

dτ

b(τ)

)− k
2

holds for allk ∈ N0. Furthermore, if (B5) is satisfied, the strong limit

s-lim
t→∞

(
1 +

∫ t

0

dτ

b(τ)

) k
2

E
k
0(t, D) = 0

is taken inL2 → L2.
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2. For ` ≥ 1 theL2–L2 estimate

||Ek
` (t, D)||2→2 .

1

b(t)

(
1

1 + t

)`−1 (
1 +

∫ t

0

dτ

b(τ)

)− k−`
2

−1

holds for allk ≥ ` ≥ 1. Furthermore, if (B5) is satisfied, the strong limit

s-lim
t→∞

b(t)(1 + t)`−1

(
1 +

∫ t

0

dτ

b(τ)

) k−`
2

+1

E
k
` (t, D) = 0

is taken inL2 → L2.

We proceed with some examples.

Example5.25. For damped waves, i.e.b(t) = 1, we obtain the estimate

||Ek
` (t, D)||2→2 .

(
1

1 + t

)`+ k−`
2

.

In view of the definition of the higher order energy operator (5.3.3) we control k − ` spatial and̀ time
derivatives and therefore the estimate coincides with the estimates given by A. Matsumura, cf. formula
(5.3.1) with|α| = k − `.

Example5.26. For b(t) = µ
1+t with sufficiently largeµ related estimates for higher order derivatives

were proven in Theorem 2.9. These estimates fit to the estimates of the above given theorems. In this
case, the improvement by spatial and time derivatives is the same.

Example5.27. For b(t) = (1 + t)κ with κ ∈ (−1, 1) we obtain

||Ek
` (t, D)||2→2 . (1 + t)−

κ+1
2

`− 1−κ
2

k.

The improvement rates for time and spatial derivatives are different forall κ > −1. Time derivatives
bring more improvements on the decay order than spatial derivatives.

Example5.28. For b(t) = (1 + t) time derivatives improve the decay rate by one order, while spatial
derivatives give logarithmic orders. It holds for` > 1

||Ek
` (t, D)||2→2 . (1 + t)−`

(
log(e + t)

)− k−`
2

−1
,

while for ` = 0

||Ek
0(t, D)||2→2 .

(
log(e + t)

)− k
2 .

Example5.29. If we setb(t) = (1 + t) log(1 + t) · · · log[m](e[m] + t) spatial derivatives give improve-
ments by the rate

(
log[m+1](em+1)

)−1
. It holds

||Ek
` (t, D)||2→2 .

(
log(1 + t) · · · log[m](e[m] + t)

)−1
(1 + t)−`

(
log[m+1](e[m+1] + t)

)− k−`
2

−1

for ` > 0 and

||Ek
0(t, D)||2→2 .

(
log[m+1](e[m+1] + t)

)− k
2
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Example5.30. In case, that the over-damping condition (OD) is satisfied, i.e. if (B5) is violated, the
solution tends to a non-zero limit and, therefore, spatial derivatives give no improvement of the decay
at all. In this case we obtain

||Ek
` (t, D)||2→2 .

1

b(t)
(1 + t)1−`

for all k ≥ ` ≥ 1.

Similar to the case of non-effective dissipation the expressions obtained for ∂`
tΦi(t, tξ, ξ) in combi-

nation with the estimates for derivatives ofE(t, 0, ξ) in Πhyp,

||∂`
tE(t, 0, ξ)|| .

1

λ(t)
〈ξ〉` ,

allow us to conclude alsoLp–Lq estimates for higher order energies. In the case of effective dissipation
these estimates are determined by the behaviour of small frequencies inside the elliptic part.

The following theorem is a consequence of Lemma 4.24 together with the idea ofthe proof of
Theorem 4.25.

Theorem 5.21. Assume (B1) – (B3) and (B4)`+1. Then forp ∈ [1, 2] and withq the corresponding
dual index theLp–Lq decay estimate

||Ek
` (t, D)||p,r→q .





1
b`(t)

(
1 +

∫ t
0

dτ
b(τ)

)− k+`
2

−n
2

(
1
p
− 1

q

)

, b′(t) ≤ 0,
(
1 +

∫ t
0

dτ
b(τ)

)− k
2
−n

2

(
1
p
− 1

q

)

, b′(t) ≥ 0, ` = 0,

1
b`(t)

(
1

1+t

)`−1 (
1 +

∫ t
0

dτ
b(τ)

)− k−`
2

−1−n
2

(
1
p
− 1

q

)

, b′(t) ≥ 0, ` ≥ 1,

holds forr > n
(

1
p − 1

q

)
.

Remark5.31. While for ` = 0 and` = 1 the constructed representations may be used to claim optimal-
ity for the estimates as norm-estimates, for` > 1 we can not ensure the existence of a corresponding
term in the representation and, therefore, the optimality is not guaranteed.

Furthermore, forp ∈ (1, 2] more diagonalization steps in the hyperbolic part together with a higher

regularity of the coefficient function may be used to obtain the sharp regularity r = n
(

1
p − 1

q

)
. For

p = 1 the above used regularity is sharp within the scale of Bessel potential spaces.

5.4 The diffusion phenomenon for effective dissipation

The estimates of higher order energies hint to an underlying parabolic structure of damped waves and
wave equations with effective dissipation. As already pointed out in the introduction, Section 1.3.2, this
underlying parabolic structure can be expressed in terms of the so-calleddiffusion phenomenon and the
asymptotics of the solutions to the damped wave equation are related to corresponding solutions of the
heat equation.

The aim of this section is to extend this result to the case of time-dependent coefficients. We relate
the solutions to our Cauchy problem

{
utt − ∆u + b(t)ut = 0,

u(0, ·) = u1, Dtu(0, ·) = u2,
(5.4.1)
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to corresponding solutions of the parabolic problem
{

wt = 1
b(t)∆w,

w(0, ·) = w0,
(5.4.2)

with related dataw0. There arise two main difficulties in this section. On the one hand we have to find
an expression for the related datumw0. In the case of the damped wave equationw0 = u1 + iu2 is
used. On the other hand, we have to give a precise meaning to the asymptotic relation between these
two Cauchy problems.

We will distinguish between two cases. A review of the estimates related to the diffusion phe-
nomenon for damped waves given by T. Narazaki in [Nar04] shows, that the relation to the heat equa-
tion holds in the neighbourhood of the exceptional frequencyξ = 0, [Nar04, Theorem 1.1], while for
datau1 andu2 with 0 6∈ supp(û2, û2) exponential decay rates occur and the behaviour is a modified
hyperbolic one, [Nar04, Theorem 1.2]. In the latter case, the decay rate is stronger than the decay for
the parabolic problem. In our discussion of the diffusion phenomenon we will speak of (frequency-)
local diffusion, if this relation to one exceptional frequency occurs. Contrary to this in Section 4.4 we
observed that in case of an over-damping both, the solution of the dissipative wave equation and the
solution of the corresponding parabolic equation tend to a (in general nonzero) limit ast → ∞. We
will speak ofglobal diffusion, if a relation to the corresponding parabolic problem takes place for all
frequencies.

5.4.1 The local diffusion phenomenon

The treatment of this section follows in some ideas the paper of T. Narazaki, [Nar04]. Assumptions on
the coefficient are (B1) – (B3) together with (B4)2 and

(LD)
∫ ∞

0

dτ

b3(τ)
= ∞,

to characterise the local diffusion phenomenon.
Under these assumptions, Theorem 4.11 implies with formula (4.2.18) andγ(t) = 1

2b(t) the repre-
sentation

EV (t, t0, ξ) =
〈ξ〉γ(t)

〈ξ〉γ(t0)

exp

{∫ t

t0

〈ξ〉γ(τ) dτ

}
Qell,0(t, t0, ξ) (5.4.3)

for the fundamental solutionEV (t, t0, ξ) corresponding to the micro-energyV . Furthermore, we have
Qell,0(t, t0, ξ) → Qell,0(∞, t0, ξ) uniformly on compact subsets of{|ξ| ≤ c} in the case of strong
dissipation.

The transformation back tôu(t, ξ) yields (assuming that the choicet0 = 0 is possible)

S(t, ξ) = exp

{∫ t

0

(
〈ξ〉γ(τ) − γ(τ)

)
dτ

}
eT
1 Qell,0(t, 0, ξ)

for |ξ| ≤ c and the proof to Corollary 4.12 implies forS(∞, 0) = eT
1 Qell,0(∞, 0, 0) the representation

eT
1 Qell,0(∞, 0, 0) =

(
1, i

∫ ∞

0

dτ

λ2(τ)

)
.

Compared to the representation of solutions to the corresponding parabolicproblem,

ŵ(t, ξ) = SP (t, ξ)ŵ0(ξ) = exp

{
−|ξ|2

∫ t

0

dτ

b(τ)

}
ŵ0(ξ), (5.4.4)
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and thereforêw(t, 0) = ŵ0(0), this can be used as choice for the initial datumw0. We set

w0 = u1 + iu2

∫ ∞

0

dτ

λ2(τ)
= W̃ (D) (u1, 〈D〉−1 u2)

T , (5.4.5)

and thusW̃ (ξ) = (1, i
∫ ∞
0

dτ
λ2(τ)

〈ξ〉).
Example5.32. For the special caseb(t) ≡ 1 this givesw0 = u1 + iu2 like it is used by T. Narazaki in
[Nar04] or K. Nishihara in [Nis03]. For the general constant dissipation b(t) = b0 the representation
would bew0 = u1 + i

b0
u2.

Main result of this section is the following comparison of damped waves and solutions of the
parabolic problem. Note, that||SP (t, D)||2→2 = 1.

Theorem 5.22.Assume (B1) – (B3), (B4)2 and (LD). Then in the case of strong dissipation

||S(t, D) − SP (t, D)W̃ (D)||2→2 .

(
1 +

∫ t

0

dτ

γ(τ)

)−1

,

while in the case of effective weak dissipation and under the further assumption 1
b(t)(1+t)2

∈ L1(R+)

||S(t, D) − SP (t, D)W̃ (D)||2→2 .
1 + t

b3(t)

(
1 +

∫ t

0

dτ

b(τ)

)−2

.

Remark5.33. If the data satisfies0 6∈ supp(û1, û2) (and equivalently0 6∈ supp ŵ0) both terms,
S(t, D)(u1, 〈D〉−1 u2)

T andSP (t, D)W̃ (u1, 〈D〉−1 u2)
T tend to zero under Assumption (B5) (which

follows from (LD)). The statement is only of interest for neighbourhoods of the exceptional frequency
ξ = 0.

Proof. Let c > 0. In view of Remark 5.33, it suffices to consider

||S(t, ξ) − SP (t, ξ)W̃ ||L∞{|ξ|≤c}.

We distinguish between the two cases of effective weak and strong dissipation.
Case 1: Strong dissipation.In the first case we assume thatb(t) ≥ 2c > 0. Under this assumption only
the elliptic zone is of interest and we may use the representation (withγ(t) = 1

2b(t))

S(t, ξ) = exp

{∫ t

0

(
〈ξ〉γ(τ) − γ(τ)

)
dτ

}
eT
1 Qell,0(t, 0, ξ),

where the matrix functioneT
1 Qell,0(t, 0, ξ) tends uniformly to a non-zero limit ast → ∞. This is a

direct consequence of Theorem 4.11 in connection with Corollary 4.12.
Furthermore, we know from Corollary 4.12, that

eT
1 Qell,0(∞, 0, 0) =

(
1, i

∫ ∞

0

dτ

λ2(τ)

)
.

In order to understand the behaviour ofeT
1 Qell,0(∞, 0, ξ) in a neighbourhood ofξ = 0, we differen-

tiate the integral equation (4.2.15) with respect toξ. This yields forDα
ξ Qell,1(t, s, ξ) with |α| = 1 a

corresponding integral equation with the same kernel and a further source term
∫ t

s
exp

{∫ t

θ
(iD(τ, ξ) + iF0(τ, ξ) − w(τ, ξ)I)dτ

}
R̃1(θ, ξ)Qell,1(θ, s, ξ)dθ,
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R̃1 ∈ S1,∞
ell,ε{−1, 0, 2} + S1,∞

ell,ε{−2, 0, 2} ⊆ S1,∞
ell,ε{−1, 0, 2} (γ(t) is bounded from below!) related

to the derivative ofR1 and the derivative of the exponent, which itself is a symbol of order{0, 0, 0}.
Thus, the boundedness ofQell,1(t, s, ξ) together with the reasoning used for the proof of Theorem 4.11
implies continuity of the derivative and its uniform convergence. Togetherwith the smoothness of the
diagonalizerN1(t, ξ) and its inverse we obtain smoothness ofeT

1 Qell,0(∞, 0, ξ) for small ξ. Higher
derivatives can be handled exactly the same way. Thus, together with the dependence ofQell,0 on |ξ|
by rotational symmetry of the problem, we obtain

eT
1 Qell,0(∞, 0, ξ) − eT

1 Qell,0(∞, 0, 0) = O(|ξ|2), ξ → 0.

Furthermore,eT
1 Qell,0(∞, 0, ξ) − eT

1 Qell,0(t, 0, ξ) = O( 1
(1+t)γ(t)) ast → ∞ uniformly on compact

sets inξ from the representation (4.2.16) andN1(t, ξ) − I ∈ S1,∞
ell,ε{−1, 0, 1}.

The main tool to get the desired estimate is the comparison of the leading terms of therepresentations.
It holds

0 ≤ exp

{
−|ξ|2

∫ t

0

dτ

2γ(τ)

}
− exp

{∫ t

0

(
〈ξ〉γ(τ) − γ(τ)

)
dτ

}

= exp

{
−|ξ|2

∫ t

0

dτ

2γ(τ)

} (
1 − exp

{∫ t

0

(
〈ξ〉γ(τ) − γ(τ) +

|ξ|2
2γ(τ)

)
dτ

})

︸ ︷︷ ︸
∼

∫ t
0

|ξ|4

γ3(τ)
dτ∼ t|ξ|4

γ3(t)

for small t|ξ|4
γ3(t)

, while for large ones the second exponential becomes small. Thus one obtains under
this smallness assumption

.
t

γ3(t)
|ξ|4 exp

{
−|ξ|2

∫ t

0

dτ

2γ(τ)

}
(*)

.
t

γ3(t)

(
1 +

∫ t

0

dτ

2γ(τ)

)−2

.
1

γ(t)(1 + t)

by Proposition 5.18. The maximum of expression (*) is taken on a line with|ξ|2
∫ t
0

dτ
2γ(τ) ∼ 1 and

again by Proposition 5.18 the above used smallness assumption follows. If thesmallness assumption is
violated the estimate follows directly

exp

{
−|ξ|2

∫ t

0

dτ

2γ(τ)

}
≤ exp

{
−C

√
γ(t)√
1 + t

γ(t)

∫ t

0

dτ

γ(t)

}
≤ exp

{
−C ′√γ(t)(1 + t)

}

using Proposition 5.18.
Combining all the estimates yields

||S(t, ξ)−SP (t, ξ)W̃ (ξ)||L∞{|ξ|≤c}

≤ sup
|ξ|≤c

∣∣∣∣
∣∣∣∣ exp

{∫ t

0

(
〈ξ〉γ(τ) − γ(τ)

)
dτ

}
eT
1 Qell,0(t, 0, ξ)

− exp

{
−|ξ|2

∫ t

0

dτ

2γ(τ)

}
eT
1 Qell,0(∞, 0, 0)

∣∣∣∣
∣∣∣∣
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and

exp

{∫ t

0

(
〈ξ〉γ(τ) − γ(τ)

)
dτ

}
eT
1 Qell,0(t, 0, ξ) − exp

{
−|ξ|2

∫ t

0

dτ

2γ(τ)

}
eT
1 Qell,0(∞, 0, 0)

=

(
exp

{∫ t

0

(
〈ξ〉γ(τ) − γ(τ)

)
dτ

}
− exp

{
−|ξ|2

∫ t

0

dτ

2γ(τ)

})
eT
1 Qell,0(t, 0, ξ)︸ ︷︷ ︸

.1

+ exp

{
−|ξ|2

∫ t

0

dτ

2γ(τ)

} (
eT
1 Qell,0(t, 0, ξ) − eT

1 Qell,0(∞, 0, ξ)
)

+ exp

{
−|ξ|2

∫ t

0

dτ

2γ(τ)

} (
eT
1 Qell,0(∞, 0, ξ) − eT

1 Qell,0(∞, 0, 0)
)

︸ ︷︷ ︸
.|ξ|2

.
1

(1 + t)γ(t)
+

(
1 +

∫ t

0

dτ

γ(τ)

)−1

.

(
1 +

∫ t

0

dτ

γ(τ)

)−1

.

The estimate is determined by the behaviour ofQell,0(∞, 0, ξ) nearξ = 0.
Case 2: Effective weak dissipation.If b(t) → 0 ast → ∞, we can not take the limit ofQell,0(t, 0, ξ)
for t → ∞. Nevertheless, the leading terms of the representation cancel. Using (Γ3) we can setc0 = 0
in the definition of the elliptic zone. Letφ(t, ξ) be the characteristic function of the elliptic zone. Then,
similar to the treatment in the first case, we obtaineT

1 Qell,0(t, 0, ξ) − eT
1 W̃ (0) = O( 1

(1+t)γ(t)) for
(t, ξ) ∈ Zell(0, ε). Furthermore, the difference of the exponentials satisfies

0 ≤ exp

{
−|ξ|2

∫ t

0

dτ

2γ(τ)

}
− exp

{∫ t

0

(
〈ξ〉γ(τ) − γ(τ)

)
dτ

}
.

1 + t

γ3(t)

(
1 +

∫ t

0

dτ

γ(τ)

)−2

,

similar to the treatment in the first case. Using Proposition 5.18 it follows

1

(1 + t)γ(t)
.

1 + t

γ3(t)

(
1 +

∫ t

0

dτ

γ(τ)

)−2

and, therefore,

||(S(t, ξ) − SP (t, ξ)W̃ (ξ))φ(t, ξ)|| .
1 + t

b3(t)

(
1 +

∫ t

0

dτ

b(τ)

)−2

,

which is determined by the difference of the exponentials in this case. Note, that the line|ξ|2
∫ t
0

dτ
γ(τ) ∼

1, where the maximum of the difference of the exponentials is taken, lies inside theelliptic zone for
larget.

It remains to show, that the difference decays faster outside the elliptic zone. For|ξ| ≥ γ(t) we get

||SP (t, ξ)|| . exp

{
−b2(t)

∫ t

0

dτ

b(τ)

}
. exp{−Cb(t)t},

||S(t, ξ)|| . exp{−Cb(tξ)tξ}
λ(tξ)

λ(t)
. exp{−C ′b(t)t},

and, thus, for both terms the boundexp{−Ctγ(t)} follows, which decays faster.
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5 Further results

Remark5.34. Assumption (LD) was necessary to get control, ift|ξ|4 is not dominated byγ3(t). So
Condition (LD) guarantees, that the diffusion phenomenon of this form takes place only in neighbour-
hoods of the exceptional frequencyξ = 0. At least for effective weak dissipation we know, that for
|ξ| ≥ c > 0 the hyperbolic zone is essential and yields a close relation to a modified hyperbolic
representation, cf. Figure 4.6.

Theorem 5.22 states an asymptotic equivalence for solutions of the dissipative wave equation and
the corresponding parabolic problem. A similar equivalence can be stated for spatial derivatives, where
we use in the proof a further factor|ξ|s for small|ξ|.
Corollary 5.23. Under the assumptions of Theorem 5.22 and strong dissipation it holds

||S(t, D) − SP (t, D)W̃ (D)||Hs→Ḣs .

(
1 +

∫ t

0

dτ

b(τ)

)−1− s
2

,

while in the case of effective weak dissipation

||S(t, D) − SP (t, D)W̃ (D)||Hs→Ḣs .
1 + t

b3(t)

(
1 +

∫ t

0

dτ

b(τ)

)−2− s
2

.

5.4.2 The global diffusion phenomenon

The treatment of this section is closely related to the discussion of the case of over-damping. If we
replace Assumption (LD) by

(GD)
∫ ∞

0

dτ

b3(τ)
< ∞,

the exponentials

exp

{∫ t

s

(
〈ξ〉γ(τ) −

1

2
b(τ)

)
dτ

}
and exp

{
−|ξ|2

∫ t

s

dτ

b(τ)

}

behave inside the elliptic part asymptotically equivalent fort → ∞. This is a direct consequence of

〈ξ〉γ(τ) −
1

2
b(τ) +

|ξ|2
b(τ)

∼ |ξ|4
b3(τ)

. (5.4.6)

We can formulate this equivalence in form of the existence of a corresponding limit.

Theorem 5.24.Assume (B1), (B2), (B4)2 together with (SD). Then the limit

W (ξ) = lim
t→∞

Sp(t, ξ)
−1

S(t, ξ)

exists locally uniform inξ. Furthermore,W (ξ) 6= 0.

Proof. ForSp(t, ξ)
−1

S(t, ξ) we obtain the representation

Sp(t, ξ)
−1

S(t, ξ) = exp

{∫ t

tξ

(
〈ξ〉γ(τ) − γ(τ) + |ξ|2 1

2γ(τ)

)
dτ

}
eT
1 Qell,0(t, tξ, ξ)

exp

{∫ tξ

0

(
|ξ|2 1

2γ(τ)
− γ(τ)

)
dτ

}
E(tξ, 0, ξ)

and, due to the Assumption (SD), the exponential converges fort → ∞ to a non-zero limit, while,
due to Theorem 4.11, the limit ofeT

1 Qell,0(t, tξ, ξ) ast → ∞ exists. Furthermore, this limit is also
non-zero.
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5.4 The diffusion phenomenon for effective dissipation

Thus, if we take data(u1, u2) with compact Fourier support, by the aid of Theorem 5.24 we can
construct dataw0 = W (D)(u1, 〈D〉−1 u2)

T to the corresponding parabolic problem, such that the
solutions coincide asymptotically.

It turns out, that the functionW (ξ) increases exponentially inξ. Therefore,W (D) induces an
operator mappingL2-functions to Gevrey distributions. The importance of Theorem 5.24 lies in the
asymptotic equivalence of the multipliers localized to the elliptic part.
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6 Further developments and open problems

In this short concluding chapter we give an overview on related questions arising in connection with
the considerations of this thesis. The list is not complete in any sense, it should only give some hints of
possible generalisations, applications and also parallel developments.

Influence of oscillations. In the language of the results of M. Reissig and co-authors, [RY00],
[Rei01], [RS03], the coefficient functionb = b(t) in our approach is allowed to have certain very slow
oscillations. For a variable speed of propagation the influence of oscillations is well understood and, if
we allow weaker assumptions on the derivatives, i.e. if we allow slow or evenfast oscillations, there
occurs a loss of decay for the energy. By means of an approach related to Floquet theory it can even be
shown that for arbitrary oscillations in the propagation speed noLp–Lq decay occurs. In the case of a
periodic coefficient this is treated by K. Yagdjian in [Yag00].

In case of oscillations which do not influence the principal part directly, oscillations may also have
deteriorating influences on the resulting estimates. Till now there exists no description of their precise
influence, even if we remain in the cases introduced in this thesis. For a coefficient functionb = b(t)
oscillating around the critical caseb(t) = 1

1+t the influence of the decay estimate for the solution may
even be worse.

Domains. Throughout the thesis treated the Cauchy problem for a wave equation withtime-dependent
dissipation. It seems to be natural to ask for results on more general domains. If one treats the Dirichlet
problem on a domain with sufficiently smooth boundary representations of thesolution and the energy
operator can be obtained in terms of a spectral calculus of the Dirichlet extension of the Laplacian. This
leads to representations in the Hilbert spaceL2(Ω) and can be used to deduce estimates inL2-scale.

The representations obtained in this thesis can be used. With the notationD =
√
−∆ the energy

operator is given asE(t, D) and the solution operator asS(t, D) as analytic functions of the Dirichlet
Laplacian.

It turns out that one has to distinguish different cases,

• bounded domains (where−∆ has a pure point spectrum),

• unbounded domains without Poincaré inequality (i.e.0 ∈ σ(−∆)),

• unbounded domains with Poincaré inequality (i.e.−∆ is strictly positive).

In the first case only estimates inL2-scale are of interest and one has only to distinguish between weak
and strong dissipation. For the latter cases alsoLp–Lq estimates are worth to consider and at least for
exterior domains the behaviour may be guessed to be closely related to that ofthe Cauchy problem.

M. Yamaguchi treated in [Yam80] semi-linear perturbations of the damped wave equation and the
Euler-Poisson-Darboux equation on bounded domains.

Exterior domains are considered in the papers of A. Matsumura, [Mat77],H. Uesaka, [Ues80] and
F. Hirosawa and H. Nakazawa, [HN03] to deduce energy estimates. Furthermore, in [Ike02] R. Ikehata
has proven the diffusive structure of damped waves in exterior domains.
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6 Further developments and open problems

Results for domains which are neither interior nor exterior are rather seldom in the literature. Re-
cently P. Lesky and R. Racke, [LR03], obtainedLp–Lq decay estimates for the wave and the Klein-
Gordon equation in so-called wave guides. These are domains of the structureΩ×R

m with a bounded
domainΩ with smooth boundary, such that Poincaré inequality is valid in them.

Abstract problems of the form

utt + Au + b(t)ut = 0

for a functionu(t) taking values in a Hilbert spaceH and with a positive closed operatorA : H ⊇
D(A) → H can be treated by the same arguments in terms of a spectral calculus for the operatorA.

For the corresponding damped problem withb(t) ≡ 1 R. Ikehata and K. Nishihara investigated in
[IN03] a corresponding diffusion phenomenon towards an abstract parabolic problem.

A scattering theory for abstract Cauchy problems with time-dependent operatorA(t) was developed
by A. Arosio in [Aro84]. The treatment is closely related to our approach of Section 3.1.

Coefficients depending on both variables seem to be a closely related problem. Nevertheless,
there arise essential problems in dealing with

utt − ∆u + b(t, x)ut = 0, u(0, ·) = u1, Dtu(0, ·) = u2..

The main point is that one has to control all frequencies in order to deducesharp operator estimates.
By means of the pseudo-differential calculus and a diagonalization/decoupling procedure J. Rauch
and M. Taylor obtained in [RT75] estimates of the solution and the energy in theCalkin algebra
L(L2)/K(L2) of bounded modulo compact operators.

The obtained pseudo-differential representations are closely related toour results restricted to the
hyperbolic part. In case of non-effective dissipation their results transfer to estimates in the operator al-
gebra. Our considerations show that for effective dissipation terms essential properties of the solutions
are lost in this way.

A different approach to handle coefficients depending ont andx are so-called weighted energy in-
equalities. By means of this technique the cited results of A. Matsumura, [Mat77], H. Uesaka, [Ues80],
K. Mochizuki, [Moc77], [MN96] and F. Hirosawa / H. Nakazawa, [HN03], are obtained. All these
results are estimates inL2-scale and provide no further structural information on the representation of
solutions.

For coefficients depending onx only and under the strong effectivity assumption

b(x) ≥ c0 > 0 for large values of|x|,

M. Nakao, [Nak01], has provenLp–Lq estimates related to damped waves. His approach works on
general exterior domains with further effectivity assumptions near parts of the boundary and is based
onL2-estimates for the local energy.

It is an interesting question to weaken the above effectivity assumption for largex and to consider
coefficients estimated from below like

b(x) ≥ c0 〈x〉−α

for someα ∈ (0, 1). For the upper estimate|b(x)| ≤ 〈x〉−1−ε it is known from the scattering results
of K. Mochizuki, [Moc77], that the solutions are asymptotically free. One may conjecture that in this
case the sameLp–Lq estimates like for the free wave equation are valid.
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Recently T. Matsuyama, [Mat], considered coefficients depending ont andx, but supported only in
a set of the form{(t, x) | |x| ≤ C(1+ t)α} with α ∈ (0, 1

2). Under this assumption the dissipation term
is not effective and he obtainedLp–Lq estimates related to free waves and also a scattering result, both
based on local energy estimates.
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A Notation – Guide to the reader

A.1 Preliminaries

We useslantedtext style for notions, we define or introduce in the text, whileitalics is used to emphasise
words and phrases and to underline links to other fields of research. Not all parts are completely split
into theorems and their proofs, at several passages a step by step derivation of results is preferred and
theorems are formulated as conclusions of these calculations.

In formulas, the brackets[, (, { are used without special meaning in order to underline several levels.
Furthermore,{·} is also used to denote sets. Bracket symbols with special meaning are

〈·〉 which stands for〈x〉 =
√

1 + |x|2,
| · | denotes the absolute value of a scalar expression and for a matrix the

matrix of the absolute values of its entries,
[ξ] with definition[ξ] = |ξ|/ 〈ξ〉,
d·e denotes the smallest integer larger then a given number,

dxe = min{m ∈ Z | x ≤ m},
b·c corresponds tobxc = max{m ∈ Z | x ≥ m},
|| · || for a vector or a matrix denotes a sub-multiplicative matrix norm. We

use the row sum norm in applications.

The matrix norm has to be distinguished from norms in certain function spacesor operator norms. The
corresponding space is used as index of this norm. Exceptions are the frequently used Lebesgue and
Bessel potential spaces, where we set

|| · ||p = || · ||Lp and || · ||p,r = || · ||Lp,r .

Operator norms and operator spaces are denoted by an intuitive arrow notation, e.g.

Lp → Lq for L(Lp, Lq), endowed with the norm topology, and
|| · ||p,r→q for the operator norm inLp,r → Lq.

Furthermore, the asymptotic relations

f . g if there exists a constantC > 0, such that for all argumentsf ≤ Cg
holds,

f & g if g . f ,
f ∼ g if f . g andg . f

for nonnegative functionsf andg are used frequently. We usef ≈ g, if we need a stronger equivalence
of functions, the notion may vary from occurrence to occurrence and will be explained there. In these
cases the quotientf/g is more regular than just bounded from below and from above.
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A.2 Frequently used function spaces

We collect some of the function spaces occurring in this thesis together with a short definition:

Lp(Rn) Lebesgue spaces,1 ≤ p ≤ ∞,
LpLr(Rn × R

m) mixed space,LpLr(Rn × R
m) = Lp(Rn, Lr(Rm)),

Lp,α(Rn) Bessel potential spaces,Lp,α(Rn) = 〈D〉−α Lp(Rn),
L̇p,α(Rn) Riesz potential spaces,L̇p,α(Rn) = |D|−αLp(Rn) ⊆ S ′

P(Rn),
Hs(Rn), Ḣs(Rn) special case forp = 2:

Hs(Rn) = L2,s(R
n) andḢs(Rn) = L̇2,s(R

n),
H±∞(Rn) projective and inductive limit,

H∞(Rn) =
⋂

s Hs(Rn) andH−∞(Rn) =
⋃

s Hs(Rn) =
(
H∞)′

,
Ck(Rn) space ofk-times continuously differentiable functions,
C∞(Rn) inductive limitC∞(Rn) =

⋂
k Ck(Rn),

Bk(Rn) Bk(Rn) = {f ∈ Ck(Rn)|Dα
xf ∈ L∞ ∀|α| ≤ k},

B∞(Rn) inductive limitB∞(Rn) =
⋂

k Bk(Rn),
S(Rn) Schwartz space of rapidly decaying functions,

S(Rn) = {f ∈ C∞(Rn)|xαDβ
xf(x) ∈ L∞ ∀α, β},

S ′(Rn) space of tempered distributions,
S0(R

n) space of Schwartz functions satisfying moment conditions of all orders,
S0(R

n) = {f ∈ S(Rn)|Dα
ξ f̂(0) = 0, ∀α},

(sometimes also denoted asZ(Rn), cf. [RS96, 2.6]),
S ′
P(Rn) dual space ofS0(R

n), tempered distributions modulo polynomials,
Bs

p,q(R
n) Besov spaceBs

p,q(R
n) = {f ∈ S ′(Rn)|2sjφj(D)f ∈ `q

j(L
p
x)},

where{φj(ξ)}j∈N0 is dyadic partition of unity, [RS96],
F s

p,q(R
n) Lizorkin-Triebel space, defined as

F s
p,q(R

n) = {f ∈ S ′(Rn)|2sjφj(D)f ∈ Lp
x(`q

j)},
Ḃs

p,q(R
n), Ḟ s

p,q(R
n) corresponding homogeneous spaces (i.e. using a full dyadic decompo-

sition{φj(ξ)}j∈Z and replacingS ′ by S ′
P ),

A(Rn) space of real analytic functions,

Besov and Lizorkin-Triebel spaces are independent of the chosen dyadic decomposition and the
resulting norms are equivalent. Due to its importance for the subject of the thesis, we mention also the
following multiplier spaces:

M q
p (Rn) space of multipliers inducing bounded translation invariant operators

Lp → Lq, [Hör60],
Sk

(`), Sk set of multipliers with symbol-like estimates of orderk with restricted
smoothness̀,
Sk

(`) = {m(ξ) ∈ C`(Rn) | |Dα
ξ m(ξ)| ≤ Cα 〈ξ〉k−|α| , |α| ≤ ` },

endowed with the induced locally-convex topology,Sk = Sk
(∞),

Ṡk
(`), Ṡk corresponding spaces with homogeneous estimates,

Ṡk
(`) = {m(ξ) ∈ C`(Rn \ {0}) | |Dα

ξ m(ξ)| ≤ Cα|ξ|k−|α|, |α| ≤ ` },

Ṡk = Ṡk
(∞).
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A.3 Symbols used throughout the thesis

Some of the symbols are used in all chapters of the thesis and for convenience of the reader we will
collect them here. The following list can also be seen as a list of definitions for these auxiliary functions.
If the symbols are related to a particular chapter, we give also the corresponding reference.

Our aim is the investigation of the Cauchy problem

¤u + b(t)ut = 0, u(0, ·) = u1, Dtu(0, ·) = u2 (A.3.1)

with time-dependent dissipation termb(t)ut. Related to it we use

E(u; t) hyperbolic energy,E(u; t) = 1
2

∫
(|∇u|2 + |ut|2)dx,

Φj(t, ξ), j = 1, 2 Fourier multiplier of the solution representation, i.e.̂u(t, ξ) =∑
j=1,2 Φj(t, ξ)ûj(ξ); it is a fundamental system of solutions to the or-

dinary differential equation̂utt + |ξ|2û + b(t)ût = 0,
h(t, ξ) h(t, ξ) = N

1+tφdiss,N (t, ξ)+|ξ|φhyp,N (t, ξ) with the characteristic func-
tionsφdiss,N andφhyp,N of the zones used in the case of non-effective
dissipation,

U(t, ξ) micro-energy,U = (h(t, ξ)û, Dtû)T , satisfiesDtU = A(t, ξ)U ,
E(t, s, ξ) fundamental solution toDt − A(t, ξ), i.e. the matrix-valued solution to

DtE = A(t, ξ)E , E(s, s, ξ) = I ∈ C
2×2,

E0(t, s, ξ) E0(t, s, ξ) = diag
(
exp((t − s)|ξ|), exp((s − t)|ξ|)

)
,

Ek(t, s, ξ) fundamental solution of the system afterk steps of diagonalization,
k ≥ 1, used in Chapter 3,

λ(t) λ(t) = exp
{

1
2

∫ t
0 b(τ)dτ

}
,

W+(ξ) multiplier corresponding to the Møller wave operator (Section 3.1) or
the modified wave operator (Section 3.5),

E(t, ξ) multiplier corresponding to the energy operator
E(t, D) : (〈D〉u1, u2)

T 7→ (|D|u, Dtu), it consists of the columns
E

1
0(t, ξ) andE

1
1(t, ξ),

E
k
` (t, ξ) multiplier corresponding to the operator

(〈D〉k u1, 〈D〉k−1 u2)
T 7→ |D|k−`D`

tu, Section 5.3,
S(t, ξ) multiplier corresponding to the solution operator

S(t, D) : (u1, 〈D〉−1 u2)
T 7→ u, Section 5.2,

v(t, x) v(t, x) = λ(t)u(t, x), used in Chapter 4,
γ(t), Γ admissible functionγ(t), used in Chapter 4 to define the separating

curveΓ = {γ(t) = |ξ|},

〈ξ〉γ(t) 〈ξ〉γ(t) =
√∣∣|ξ|2 − γ2(t)

∣∣ (Chapter 4),

V (t, ξ) micro-energy,V (t, ξ) = (〈ξ〉γ(t) v̂,Dtv̂)T ,
EV (t, s, ξ) fundamental solution of the system forV (t, ξ),
EV,k(t, s, ξ) fundamental solution afterk steps of diagonalization in the hyperbolic

and in the elliptic zone, Section 4.2.
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The purpose of this appendix is, to collect several basic tools, which areessential for the results of this
thesis. They are well-known and, only if necessary and possible, we sketch the main ideas of the proof.

B.1 Bessel’s differential equation and Bessel functions

In Chapter 2 we used a reduction of our partial differential equation to Bessel’s equation in order to
represent solutions explicitly. Following the treatise of G.N. Watson, [Wat22], we collect some of the
most important formulae used throughout the calculations of Chapter 2.

There are several ways to define the Bessel functions. We will use the power series expansion

Λν(z) = z−νJν(z) =
∞∑

k=1

(−1)k z2k

2ν+2kΓ(k + 1)Γ(k + ν + 1)
(B.1.1)

to define theBessel function of first kind and orderν ∈ R, Jν(z). These functions satisfy the ordinary
differential equation

z2w′′ + zw′ + (z2 − ν2)w = 0. (B.1.2)

For non-integral values ofν the functionsJν(z) andJ−ν(z) are linearly independent and therefore they
form a fundamental system of solutions. For integral values ofν one has to find a suitable replacement.
Due to H.M. Weber (and in this form L. Schläfli) one defines

Yν(z) =
Jν(z) cos νπ − J−ν(z)

sin νπ
(B.1.3)

analytically continued toν ∈ C, and callsYν(z) the Bessel function of second kind and orderν or,
shortly,Weber functionof this order. To understand their properties for small arguments, one mayuse
the relation

2
(
γ + log

z

2

)
Jν(z) − πYν(z) =

ν−1∑

r=0

(ν − r − 1)!

r!

(z

2

)ν−2r

+

∞∑

r=0

(−1)r ψ(r + ν + 1) − ψ(r + 1) + 2γ

r!(ν + r)!

(z

2

)ν+2r
(B.1.4)

for integral values ofν. In this formulaγ stands for the Euler-Mascheroni constant,γ = −Γ′(1), and
ψ denotes the Gaussianψ-function

ψ(z) =
Γ′(z)

Γ(z)
= −γ +

z−1∑

s=1

1

s
, (B.1.5)

the last expression forz = 1, 2, . . .. The treatment of large real arguments is simpler, if one uses the
Bessel functions of third kind orHankel functions. They are defined due to N. Nielsen as

H±
ν (z) = Jν(z) ± iYν(z) (B.1.6)
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and, contrary to the functions of first and second kind, they are complex-valued for real arguments. All
three kinds of Bessel functions satisfy the same kind of recurrence relations. We will write down them
only for the Hankel functions. It holds, [Wat22, §3.61],

H±
ν−1(z) + H±

ν+1(z) =
2ν

z
H±

ν (z), (B.1.7a)

H±
ν−1(z) −H±

ν+1(z) = 2(H±
ν )′(z), (B.1.7b)

νH±
ν (z) + z(H±

ν )′(z) = zH±
ν−1(z), (B.1.7c)

νH±
ν (z) − z(H±

ν )′(z) = zH±
ν+1(z). (B.1.7d)

To understand these fundamental systems of solutions, it is of aid to know its Wronskian. Following
the treatment of G.N. Watson, [Wat22, §3.63], it holds

W(Jν(z),Yν(z)) =
2

πz
(B.1.8)

and, therefore, also

W(H+
ν (z),H−

ν (z)) = −2iW(Jν(z),Yν(z)) = − 4i

πz
. (B.1.9)

B.2 Fourier multiplier and multiplier spaces

By the aid of theFourier transform

f̂(ξ) = Fx→ξ[f ] = (2π)−
n
2

∫

Rn

e−ix·ξf(x)dx (B.2.1)

with inverseF−1
ξ→x = F∗

x→ξ, extendible to isomorphismsF ,F−1 : S ′(Rn) → S ′(Rn), we can use the
description of translation invariant operators by so-calledFourier multipliers. In our notation we write

m(D)f := F−1
ξ→x

[
m(ξ)Fx→ξ[f ]] (B.2.2)

for a suitably regular function or distributionm(ξ), themultiplier. For details on operators of this kind
we refer to the treatment in the paper of L. Hörmander, [Hör60].

Basic facts follow directly from the mapping properties of the Fourier transform,

F : L2(Rn) → L2(Rn), unitary, (B.2.3)

F : L1(Rn) → C∞(Rn) ⊆ L∞(Rn), C∞(Rn) = {f ∈ C(Rn) | lim
|x|→∞

f(x) = 0}, (B.2.4)

together with Hölder’s inequality. We denote forp ≤ q

M q
p (Rn) := {m(ξ) | m(D) : Lp(Rn) → Lq(Rn)}, (B.2.5)

the so-calledmultiplier space1. It is a Banach space endowed with the corresponding operator norm. It
holds

Proposition B.1. 1. M2
2 (Rn) = L∞(Rn),

1Forp > q there exist no bounded translation invariant operators except the trivial one.
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2. Mp
p (Rn) ⊆ M2

2 (Rn) for all p ∈ [1,∞],

3. Mp
p (Rn) = M q

q (Rn) for dualp andq,

4. L1(Rn) ⊆ M∞
1 (Rn),

the same for the space of bounded complex measures,Mb(R
n) ⊆ M∞

1 (Rn),

5. M∞
1 (Rn) ∩ M2

2 (Rn) ⊆ M q
p (Rn) for arbitrary dualp andq.

Under regularity assumptions, the concatenation of such operators corresponds to the multiplication
of the multipliers. This may be used to deduce mapping properties of given multipliers in connection
with the following characterisation.

Theorem B.2 (Marcinkiewicz multiplier theorem). Assumem(ξ) ∈ Ck(Rn \ {0}) for k =
⌈

n
2

⌉
and

∣∣Dα
ξ m(ξ)

∣∣ ≤ Cα|ξ|−|α|

for all |α| ≤ k.2 Thenm ∈ Mp
p (Rn) for all p ∈ (1,∞).

A proof can be found in the book of E.M. Stein on singular integrals, [Ste70, Chapter IV.3].

ExampleB.1. The multiplierRi(ξ) = ξi/|ξ| satisfies the assumptions of Theorem B.2 and defines,
therefore, a bounded linear operator

Ri(D) : Lp(Rn) → Lp(Rn)

for all p ∈ (1,∞), the so-calledi-th Riesz transform. Together with the formal unitarity

n∑

i=1

Ri(D)R∗
i (D) = I,

the operatorR = (R1, . . . , Rn)T forms an isomorphismLp(Rn) → Lp(Rn, Rn). Furthermore, to-
gether with

R(D) |D|f = ∇f,

we deduce, that for allp ∈ (1,∞) the norms|| |D|f ||p and||∇f ||p are equivalent.
The casesp = 1 andp = ∞ are exceptional.

To deduceM q
p -properties, the oscillatory behaviour of the multiplier may be of importance. In

Chapter 2 we use a dyadic decomposition and mapping properties in Besov spaces combined with the
stationary phase method. Basic tool is the following version of Littman’s lemma taken from the paper
of P. Brenner, [Bre75, Lemma 4].

Lemma B.3. LetP be a real and smooth function in the neighbourhood ofsupp φ, φ ∈ C∞
0 . Assume

further, that the rank of the HessianHP (ξ) = (∂2P/∂ξi∂ξj ) is at leastρ on supp φ. Then, there exists
an integerM , depending on the space dimension, and a constantC > 0, depending on bounds of
derivatives ofP on suppφ, such that

||F−1[eitP (ξ)φ(ξ)]||∞ ≤ C 〈t〉−
ρ
2

∑

|α|≤M

||Dαφ||1

holds.
2Thus, with the notation introduced on page 49 we needm ∈ Ṡ0

k.
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For completeness, we give also a lemma which explains how to sample the estimates for the dyadic
components. It is a combination of [Bre75, Lemma 1] and [Bre75, Lemma 2]. Let, therefore,χj(ξ)
be a dyadic decomposition satisfying (2.2.7). Basic idea of the proof are embedding relations between
Lebesgue and Besov spaces.

Lemma B.4. Leta ∈ L∞(Rn) and assume that

||F−1[a(ξ)χj(ξ)v̂]||q ≤ C||v||p

holds uniform for allj and a dual pairp ∈ (1, 2], pq = p + q. Then for a constantA independent ofa
it follows

||F−1[a(ξ)v̂]||q ≤ AC||v||p.

B.3 The Peano-Baker formula

First order systems of ordinary differential equations

d

dt
u = A(t)u, u(0) = u0 ∈ C

n (B.3.1)

are solved in terms of the fundamental solutionE(t, s) asu(t) = E(t, 0)u0. The matrix functionE(t, s)
is the solution to

d

dt
E(t, s) = A(t)E(t, s), E(s, s) = I ∈ C

n×n. (B.3.2)

It is well known, that for a constant matrix this fundamental solution can be expressed in terms of the
matrix exponential,

E(t, s) = exp((t − s)A), exp(A) = I +
∞∑

k=1

1

k!
Ak. (B.3.3)

For variable coefficients this representation is not valid any more. For the sake of completeness, we
give the representation used several times throughout our calculations.

Theorem B.5. LetA ∈ L1
loc(R, Cn×n). Then the fundamental solutionE(t, s) to ∂t −A(t) is given by

the Peano-Baker formula

E(t, s) = I +
∞∑

k=1

∫ t

s
A(t1)

∫ t1

s
A(t2) · · ·

∫ tk−1

s
A(tk)dtk · · ·dt2dt1.

The proof follows by differentiating the series term by term. To prove the convergence of the series
and its formal derivative one uses the domination by the exponential seriesfollowing from Proposition
B.6.

Proposition B.6. Assumer ∈ L1
loc(R). Then

∣∣∣∣
∫ t

s
r(t1)

∫ t1

s
r(t2) . . .

∫ tk−1

s
r(tk)dtk . . .dt1

∣∣∣∣ ≤
1

k!

(∫ t

s
|r(τ)|dτ

)k

(B.3.4)

for all k ∈ N.
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The proof follows by induction overk.

Corollary B.7. LetA ∈ L1
loc(R, Cn×n). Then the fundamental matrixE(t, s) satisfies

||E(t, s)|| ≤ exp

{∫ t

s
||A(τ)||dτ

}
.

In several applications we need not only the estimates for the fundamental solution, but also state-
ments about its asymptotic behaviour and invertibility. It is convenient to use theTheorem of Liouville
in the following form, a proof may be found in standard text-books on differential equations like the
one of V.I. Arnold, [Arn01], or M.V. Fedoryuk, [� �
85].

Theorem B.8. LetA ∈ L1
loc(R, Cn×n). Then the fundamental solutionE(t, s) satisfies

det E(t, s) = exp

∫ t

s
trA(τ)dτ.

B.4 Remarks on Volterra integral equations

The estimate of Corollary B.7 is in general not sharp, to obtain better estimates,we are interested in
solutions to the Volterra equation

f(t, p) +

∫ t

0
k(t, τ, p)f(τ, p)dτ = ψ(t, p) (B.4.1)

with kernelk = k(t, τ, p) and right-hand sideψ(t, p) , both depending on some parameterp ∈ P ⊆ R
n.

Theorem B.9. Assumeψ ∈ L∞(R+ × P ), k ∈ L∞(R2
+ × P ) and

∫ t

0
||k(·, τ, p)||∞dτ ∈ L∞(R+ × P ).

Then, there exists a (unique) solutionf(t, p) of (B.4.1) in L∞(R+ × P ),

ess sup
t∈R+, p∈P

|f(t, p)| < ∞.

Sketch of the proof.Uniqueness of the solution follows for smallt by the contraction mapping princi-
ple. It remains to show the global bound on the solution.

We may represent the solutions to this integral equation by the Neumann series

f(t, p) = ψ(t, p) +
∞∑

k=1

(−1)k

∫ t

0
k(t, t1, p)

∫ t1

0
k(t1, t2, p)

· · ·
∫ tk−1

0
k(tk−1, tk, p)ψ(tk, p)dtk · · ·dt2dt1

and use Proposition B.6 to conclude

||f(t, p)||∞ ≤ ||ψ||∞
(

1 +
∞∑

k=1

∫ t

0
||k(·, t1, p)||∞

∫ t1

0
||k(·, t2, p)||∞ · · ·dt1

)

≤ ||ψ||∞ exp

{∫ t

0
||k(·, τ, p)||∞

}
.
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For results under weaker assumptions on the integral kernel we refer tothe treatment of G. Gripen-
berg, S.-O. Londen and O. Staffans, [GLS90].

For the applications we may take also domains for the parameterp depending on both variablest
andτ . In this case one can trivially extent the kernel functionk(t, τ, p) by zero to a larger common
parameter domain without changing the solution. This will be the case in most of the applications.

Due to its importance for the understanding of the results in Chapter 4 we giveone auxiliary appli-
cation of this theorem.

Theorem B.10. Assume

A(t, p) ∈ L∞(P, L1
loc(R+, Cn×n)), diagonal, Re A(t, p) ≤ a(t, p)I

B(t, p) ∈ L∞(P, L1(R+, Cn×n)).

Then the fundamental solutionE(t, s, p) to ∂t − A(t, p) − B(t, p) satisfies

||E(t, s, p)|| . exp

{∫ t

s
a(τ, p)dτ

}
.

Sketch of proof.In order to prove this, we consider the fundamental solutionE0(t, s, p) to the system
∂t − A(t, p) and conclude from

E(t, s, p) = exp

{∫ t

s
A(τ, p)dτ

}
, ∂tE−1

0 (t, s, p) = −E−1
0 (t, s, p)A(t, p),

that

∂t(E−1
0 (t, s, p)E(t, s, p)) = E−1

0 (t, s, p)B(t, p)E(t, s, p).

Thus, we obtain the integral equation

E(t, s, p) = I + E0(t, s, p)

∫ t

s
E−1

0 (τ, s, p)B(τ, p)E(τ, s, p)dτ

= I +

∫ t

s
E0(t, τ, p)B(τ, p)E(τ, s, p)dτ,

which can be transformed to

exp

{
−

∫ t

s
a(τ, p)dτ

}
E(t, s, p) = exp

{
−

∫ t

s
a(τ, p)dτ

}

+

∫ t

s
exp

{∫ t

s
[A(τ, p) − a(τ, p)I]dτ

}
B(τ, p)E(τ, s, p)dτ.

Now the exponential term is bounded byI and the assumptions onB(t, p) an be used to conclude the
boundedness ofexp{−

∫ t
s a(τ, p)dτ}E(t, s, p) by Theorem B.9.

RemarkB.2. If the parameter domainP is compact andB(t, p) ∈ C(P, L1(R+, Cn×n)), the second
condition onB is vacuous and follows from theL1-property.
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B.5 Potential spaces

Under the notionpotential space overLp, we understand a (in most cases dense) subspace ofLp, which
is representable as image of a Fourier multiplier and endowed with the induced norm. Thus, for given
φ(ξ) ∈ Mp

p (Rn), we consider

φ(D)Lp(Rn) = { φ(D)f | f ∈ Lp(Rn) }

and define the norm in this space by

||g||φ(D)Lp = inf
g=φ(D)f

||f ||Lp .

Using the reflexivity ofLp(Rn), p ∈ (1,∞), one obtains, that the infimum is really taken. The vector
spaceφ(D)Lp(Rn) with the norm|| · ||φ(D)Lp forms a Banach space.

Special examples of such potential spaces are the well-known Bessel potential spacesLp,r(R
n) =

〈D〉−r Lp(Rn) used in this thesis as representations of fractional order Sobolev spaces overRn or the
sets[D]kLp(Rn) of functions having a zero in the frequencyξ = 0 of orderk.3

Note, that for the definition of potential spaces only the residue class ofφ modulo invertible ele-
ments inMp

p (Rn) is of interest. Translation invariant operators between such potential spaces can be
characterised using the classesM q

p (Rn). It holds (if the symbols are sufficiently regular functions such
that the multiplication is well defined in the multiplier space, [Hör60])

m(D) : φ1(D)Lp(Rn) → φ2(D)Lq(Rn) iff φ−1
2 (ξ)m(ξ)φ1(ξ) ∈ M q

p (Rn).

For us the situationp = q = 2 is of special interest, whereM2
2 (Rn) = L∞(Rn).

3There exists a relation to decay assumptions, cf. Lemma 5.3 and the discussion in Section 5.1.
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