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ASYMPTOTIC PROPERTIES OF STATISTICAL ESTIMATORS
IN STOCHASTIC PROGRAMMING

BY ALEXANDER SHAPIRO

University of South Africa

The aim of this article is to investigate the asymptotic behaviour of
estimators of the optimal value and optimal solutions of a stochastic pro-
gram. These estimators are closely related to the M-estimators introduced by
Huber (1964). The parameter set of feasible solutions is supposed to be
defined by a number of equality and inequality constraints. It will be shown
that in the presence of inequality constraints the estimators are not asymp-
totically normal in general, Maximum likelihood and robust regression meth-
ods will be discussed as examples. *

1. Introduction. In this article we study the following stochastic program-
ming problem. Let (£, %, P) be a probability space. Consider a function
f: X R* - R, a set S C R* and the associated stochastic programming prob-
lem,

(2,) minimize @(v) subjecttov € S,
where o is the expected value of f,

o(v) = E{f(2,0)}

with respect to the probability measure P. Let z,,...,2z, be a sample of
independent random variables with values in & having the common probability
distribution P and consider the mathematical programming problem,

(2,) minimize ¥ ,(v) subjecttov € S,

where

(1.1) Yu(0) =071 X f(2;,0).
i=1

The aim of this article is to study the asymptotic behaviour of the optimal value
8, = inf{y,(v): v € S}

and a corresponding optimal solution o, of the program (£,) as the sample size n
tends to infinity.

There is a substantial statistical literature dealing with various cases of the
problem formulated above. The classical maximum likelihood approach can be
considered in the present framework if the objective function f is taken to be
minus the logarithm of a probability density function. For the case where the
set S is given by equality constraints a relevant asymptotic theory of the
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842 A. SHAPIRO

corresponding maximum likelihood estimators is presented in Aitchison and
Silvey (1958). Closely related to the program (£,) is the method of M-estimators
introduced in Huber (1964) and discussed at length in Huber (1981). Asymptotic
normality of M-estimators was proved in Huber (1967) essentially under the
assumption that the set S is open and consequently there are no restrictions on
local variations of ©,. For more recent work in this direction see, for example,
Boos and Serfling (1980), Tsybakov (1981), Clarke (1983) and Fernholz (1983). It
is also relevant to mention some work on maximum likelihood estimation of
misspecified models [see, e.g., White (1982) and references therein].

In this article we consider the situation where the set S is defined by a
number of equality and inequality constraints. Introduction of inequality con-
straints has the disastrous consequence that then estimators ©, are not asymp-
totically normal in general. This is probably why inequality constraints have
been avoided in statistical literature. However, in stochastic programming in-
equality constraints are most relevant. An extensive discussion, examples, refer-
ences and motivation for developing asymptotic theory involving inequality
constraints can be found in King (1986) and Dupadova and Wets (1988).

We proceed as follows. In the next section we introduce required regularity
conditions and discuss their immediate implications. The main results are formu-
lated and proved in Section 3. These results are influenced by some recent
advances in a (deterministic) perturbation theory of nonlinear programs [Shapiro
(1988a)]. Section 4 is devoted to applications and examples.

We denote by #, the optimal value &, = inf{p(v): v € S} of the program
(#,) and by &, the set of optimal solutions of the program (£,). The gradients,
for example, v f(z, v), and the Hessian matrices, v (2, v) = {9%(z, v)/dv; v},
are always taken with respect to the parameter vector v. We make use of the
concept of generalized gradients of locally Lipschitz functions [Clarke (1983)].
That is let A:R* > R be a locally Lipschitz function. Then the generalized
gradient of A at v, denoted by dA(v), is the convex hull of all limits of the form
limvh(v;), where v, > v and & is differentiable at v, (By Rademacher’s
theorem the set of points where a locally Lipschitz function fails to be differen-
tiable has Lebesgue measure zero.)

2. Regularity conditions and preliminary discussion. In this section we
introduce some required regularity conditions and discuss their immediate conse-
quences.

AssuMPTION A.l. For almost every z, f(z,v) is a continuous function of o
and for all v € S, f(2, v) is a measurable function of z.

AssuMPTION A.2. The family { f(z, v)}, v € S, is uniformly integrable, that
is,

lim sup

/ If (=, 0)IP(dz) = 0.
> peg {2 f(z,0)2c}
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Notice that assumptions A.1 and A.2 imply that the expected value function ¢
is continuous on S.

AssuMPTION A.3. Program (£,) has a unique optimal solution v,

If Assumptions A.1-A.3 hold and the set S is compact, then almost surely the
optimal set %, is nonempty and any selection v, €.%, converges a.s. (or in
probability) to v,. Here the compactness.assumption can be replaced by some
other regularity conditions. For a detailed discussion of such consistency results
see Wald (1949), Le Cam (1953), Huber (1967), Bahadur (1967) and Dupacova
and Wets (1988). We also assume that the considered selection v, €.%, is
measurable. The existence of such measurable selections was proved, under very
general conditions in Pfanzagl (1969), Section 1, and Jennrich (1969), Lemma 2.
[See also Rockafellar and Wets (1984) for a thorough discussion of measurability
in stochastic programming.]

Let A4 be a convex neighbourhood of v,

AsSSUMPTION A.4. For almost every z, f(z, ) is Lipschitz continuous on A",
That is, there exists a positive constant K(z) such that

If(z,w) — f(z,0)| < K(2)l|lw - o|

for all v, w € A".

AssUMPTION A5. For each fixed v € 4", f(z,:) is continuously differen-
tiable at v for almost every z.

AssUMPTION A.6. The family {vVf(z, v)}, v € 4, is uniformly integrable.

PROPOSITION 2.1. Suppose that assumptions A1, A2 and A.4-A.6 hold.
Then o is continuously differentiable on A" and

(2.1) ve(v) = E{vf(z,v)}.

ProoF. First consider the case of k& = 1, that is, v is a scalar. Because of
Assumption A.4 we have that for a.e. z and w,v € A4/,

f(z,w) — f(z,0) = fuwf,’(z, t) dt.

Now

o(w) — o(v) = E{f(z,w) — f(2,v)} = ffuwf/(z, t) dtdP

_ j;wfft'(z, t) dPdt = _/;wE{ £/(z, 0)) dt.

Notice that the order of integration can be interchanged because of Assumption
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A.6. It follows that

B 0) = T < B0

Moreover, Assumptions A.5 and A.6 imply that E{f,(z, t)} is continuous in ¢
and hence

lien o(w )—<P( )_E{f,(z’v)}.

w-—v

In the general case of k > 1, we obtain that the partial derivatives d¢/dv;,
i=1,..., k, do exist and (2.1) holds. It follows from Assumptions A.5 and A. 6
that 8<p / dv; are continuous and hence g is continuqusly differentiable on /4. O

Consider a sequence z,, 2,,... of iid. random variables and the corresponding
function y,(v) defined in (1.1). The following result is a consequence of the
strong law of large numbers.

PROPOSITION 2.2. Suppose that Assumptions A.1, A.2 and A.4-A.6 hold and
let % be a compact subset of A". Then for almost every i.i.d. sequence {z;),
dy,(v) converges to Vo(v) uniformly on %, that is,

lim sup sup |lu-— ve(v)|=0
P20 ve® uedy,(v)
Proor. Since for any set B ¢ R* and a point x,
sup{|lz — x||: € conv(B)} = sup{|lu — x||: u € B},
it suffices to prove that a.s. v{,(v) converges to Vo(v) uniformly for all such

v € % that v,(v) does exist. Consider a point v € # and a sequence #, of
neighbourhoods of v shrinking to {v}. By Assumption A.6,

Jim B sup [9/(z,0) - vf(=,0)l} = B{ lim sup 91(20) - vf(z, 0]
wWEW; X0 wew),
and because of Assumption A.5 the last limit is zero. Moreover, we have that
(2.2) sup VY, (w) - V(o) <n™t Y sup [Vf(z,w) — Vi(z;,0)ll
weW;, i=1 we¥,

and by the strong law of large numbers the right-hand side of (2.2) converges
a.s. to

E{ sup [vf(z,w) = vi(z, o).
wew;,
It follows that for any ¢ > 0 there exists a neighbourhood ¥~ of v such that a.s.
for sufficiently large n,

sup [V, (w) — v, (v)] <e.

wey
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Since % is compact, there exists a finite number of points v,,..., v, € # and
corresponding neighbourhoods #7,...,%;, covering # such that a.s. for suffi-
ciently large n,

sup [V,(w) — V(o) <e,  j=1,...,m.

we1§.

Furthermore, by Proposition 2.1, vo(v) is continuous on 4" and hence the

neighbourhoods ¥7,...,¥,, can be chosen in such a way that
sup [Vo(w) — ve(v)ll <e, j=1,...,m.
wev;

Now by the strong law of large numbers
IV¥a(0) = Vo(o)ll<e, Jj=1,...,m,
a.s. for sufficiently large n and hence ‘
IV¥,(0) = ve(o)ll < 3e
for all v € % where V{,(v) exists. O

Now let us consider the program (%,). It will be assumed that in a neighbour-
hood of v, the set S is defined by a finite number of equality and inequality
constraints.

AssuMPTION B.1. There exist a neighbourhood A" of v, and functions g,(v)
such that

SNn'={veNs g(v)=0,icl g(v)<0,icd},
where I and JJ are finite index sets and g;(v,) = 0 for all i € J.

AssuMPTION B.2. The functions g;, i € I U J, are twice continuously dif-
ferentiable in a neighbourhood of v,.

It will be assumed that the following Mangasarian—Fromovitz (1967) con-
straint qualification is satisfied at the point v,.

AssuMPTION B.3 (MF-condition). (i) The gradient vectors vg;(v,), i € I, are
linearly independent.
(ii) There exists a vector w such that

wvg(v,)=0, i€l
wvg(v,) <0, ied.

Consider the Lagrangian function
o, N)=9(v) + X Agi(v),
ielvuJ

associated with the program (#,), and let A, be the corresponding set of
Lagrange multipliers satisfying the first-order (Kuhn-Tucker) necessary
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conditions. That is, A € A, iff
vi(vy,A) =0

and A; > 0, € J. Under Assumption B.3 the set A, is nonempty (first-order
necessary conditions) and bounded [Gauvin (1977)]. Moreover, by the definition
A, is a closed convex polytope and hence is the convex hull of the finite set &, of
its extreme points.

We now introduce second-order sufficient conditions for the program (2,).

AssuMPTION B.4. The function ¢ is twice continuously differentiable in a
neighbourhood of v,,.

AssuMPTION B.5 (Second-order sufficient conditions). For all nonzero w € C,

(2.3) max w’ v 2(vy, A)w > 0,
A€A,

where C is the cone of critical directions

C={w:w'vg(v) =0,i€Lwvg(v,) <0,i €J; w ve(v,) < 0)}.

Under the constraint qualification of Assumption B.3, Assumption B.5 is the
standard second-order sufficient condition for the program (#,) [Hestenes (1975)
and Ioffe (1979)]. It implies that if the first-order necessary conditions are
satisfied at v, then v is a strict local minimizer of ¢ over S. The corresponding
second-order necessary conditions are obtained by replacing the strict inequality
sign in (2.3) with the sign “greater than or equal to.”

For a given vector A of Lagrange multipliers consider the set

(2.4) S.(\) = (v:8:(0) = 0,i € TUJ, (N},
where
J.(A)={ied: ;> 0]}.
AssUMPTION C.1. There is a neighbourhood A4 of v, such that for every
A € 6, the variable
IV¥a(0) — Vo(0) — V() + Vo(vo)l

)
veS, (AN n=V2 + |l — oy

(2.5)

tends to 0 in probability as n — 0.

Assumption C.1 is not immediately obvious and requires an explanation.
Notice that the supremum in (2.5) is taken over such v that vy ,(v) does exist. It
is a deep result due to Huber (1967) that the following regularity conditions
imply Assumption C.1. Notice that for every A € &,, the gradient vectors
vgi(vy), i € I UJ (N), are linearly independent and hence S, (M) is a smooth
manifold in a neighbourhood of v,. The tangent space to this manifold at v, is
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given by the linear space
M(\) = {w: w' vgi(,) = 0,i € TUJ,(N)).
AssUMPTION C.2. Forevery A € &, the Hessian matrix v 2(v,, A) is positive
definite on M(A), that is,
w’ v vy, N)w > 0

for all nonzero w € M(A).

AssuMPTION C.3. There are strictly positive numbers c;, ¢, and d, such
that for every d > 0 and all v satisfying ||v — vy|| + d < d,,

(i) E{u(z,v,d)} < ¢,
(i) E{u(z,v,d)*} < cyd,
where

u(z,0,d) = sup |vf(z,w) = Vi(z,0)|.

llw—oll<d

Consider the Lagrangian

L(z,0,A) =f(z,0) + Y, Ag(v).
ielud

Clearly, E{L(z,v,A)} = (v, A) and
¥a(0) —@(0) =n7' X L(z;,0,A) = I(v, A).
=1

It follows from Assumption C.2 and continuity of v 2l(v, A) that there exists a
positive number a such that

Ivi(o, M)l = allo = vl

for all v € S, (A)NA, X\ €&, Moreover, because of Assumptions B.2 and
C.3 (),
Iwi(o, M)l < Bllo — o

for some b > 0. Therefore in the present situation, it does not make any
difference if the term ||v — v, in the denominator of the ratio (2.5) is replaced by
IW1(v, A)|. Then we obtain from Lemma 3 of Huber (1967), applied to the
function L(z, v, A\) on the manifold S_(A), that Assumption C.1 is implied by
Assumptions B.2, C.2 and C.3.

It should be mentioned that for very A € &,, the linear space M(A) contains
the:critical cone C. Therefore Assumption C.2 gives conditions which are stronger
than the second-order sufficient conditions of Assumption B.5.

In cases where f(z2, ) is twice differentiable, Assumption C.1 can be ensured
by the following relatively simple conditions.
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AssuMPTION C4. There is a neighbourhood 4" of v, such that

(i) For almost every z, f(z, -) is twice continuously differentiable on A",
(i) The family {v %f(z, v)}, v € A4, is uniformly integrable.

Assumption C.4 implies that ¢(v) is twice continuously differentiable on A"
(Assumption B.4) and that the second-order derivatives of ¢ can be taken inside
the expected value. Moreover, assuming that 4" is compact, it then follows from
the strong law of large numbers that with probability 1, v %,(v) converges to
Vv 2p(v) uniformly on /4" [see, e.g., Le Cam (1953), Corollary 4.1, and Jennrich
(1969), Theorem 2]. By the mean value theorem this implies that

sup IV¥a(0) = Va(ve) = V(o) + volw)ll

veN llo — 00”

0 as.

and hence Assumption C.1 follows.
AssuMPTION D. The expectation E{||Vf(z, vy)||?} is finite.

3. Asymptotic results. In this section we derive asymptotic expansions of
the optimal value 4, and an optimal solution v, € %,. Put

gln = V‘l’n(uo) - V‘P("o)
and
g(w) = max{w’' v ( vy, N)w: A € Ay}.

Notice that the set A, in the definition of g¢(w) can be replaced by the set &, of
its extreme point (assuming that A, is bounded) and hence g(w) is the pointwise
maximum of a finite number of quadratic functions. We now formulate the main
results of this article.

THEOREM 3.1. Suppose that Assumptions A.1-A.6, B.1-B.5, C.1 and D hold
and that there exists a measurable selection v, € ¥, converging in probability to
vy. Then

(3.1) 3, = ¥,(vy) + glei%{w’fn + %q(w)} + op(n‘l).

Under the second-order sufficient conditions of Assumption B.5, the set of
minimizers of the function w’{ + ;q(w) over the critical cone C is nonempty and
compact for all {. Suppose now that this function has a unique minimizer w({)
over C. Such uniqueness can be ensured, for example, by the strong form of

- second-order sufficient conditions given in Assumption C.2.

THEOREM 3.2. Suppose that Assumptions A.1-A.6, B.1-B.5, C.1 and D hold
and for all § the function w'¢ + 3q(w) has a unique minimizer w({) over C. Let



ASYMPTOTIC PROPERTIES OF STATISTICAL ESTIMATORS 849

v, € &, be a measurable selection converging in probability to vy,. Then
(3:2) 15, = 0o — B(E)1l = 0p(n™1%).

By the central limit theorem, under Assumption D, nl/%, converges in
distribution to N(0, ¥) with
(3.3) ¥ = E{[V{(2,0,) — vo(,)][V(2,00) — Vo(v,)]'}.

Also the minimizer ®({) is a continuous, positively homogeneous function of {
and hence n'/25(¢) = @(n'/%¢). Therefore the following asymptotic result is an
immediate consequence of Theorem 3.2.

THEOREM 3.3. Suppose that the Assumptions of Theorem 3.2 hold. Then
n'/%(o, — v,) converges in distribution to &(y), where y is a normal vector
variable with mean 0 and covariance matrix ¥ given in (3.3).

In the remainder of this section we concentrate on proofs of Thegrems 3.1 and
3.2. Our first step will be in reducing the program (#,) to a more convenient one.
Consider the Lagrangian

(o) =0t X L(z00) =4u(0) + T Aigi(v)
Jj=1 ielud

of the program (£,) and the pointwise maximum function
®,(v) = max{l,(v,A): X € Ay}.
Also consider the restricted feasible set
S=U{S(A):\ €&},
where
S(A) = 5.(A) N (v: g(0) <0, € H(N),
S, (M) is defined in (2.4) and Jy(A) = {i € J: A; = 0}. Clearly, in a neighbour-
hood of v,, the set S is a subset of S.

Near the point v, first-order necessary conditions for the program (£,) can be
written in the form: There exists a vector A, of Lagrange multipliers such that

0e aln(ﬁn’j\n) = a\bn(ﬁn) + Z 7\i,nvgi(t_)n)
ielud

[Clarke (1983), Section 6.1]. Then by employing Proposition 2.2, under Assump-
tions A.1-A.6 and B.1-B.3 the following results can be proved essentially along
the same lines as Theorem 2.1 in Shapiro (1988a).

LEMMA 3.1. There exists a neighbourhood A" of v, such that if v, € A", then
a.s. v, is a minimizer of ®,(v) over S and

8, = min{®,(v): v € S}.
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Another required result is that the restricted set S is approximated at v, by
the critical cone C in the sense of the following definition.

DEFINITION. We say that a set S C R* is approximated at v, € S by a
closed cone C, called the approximating cone, if

inf |I(v — v,) —w|| = o(llv = vyll), vES,
wel

and
inf (0 ~ o) = wl = o(lwl),  weC.

The concept of cone approximation goes back to Chernoff (1954). Various
properties, equivalent definitions and applications, of cone approximations are
given in Shapiro (1985, 1987) and Rockafellar (1987).

LEMMA 3.2 [Shapiro (1988a), Lemmas 2.3 and 24]. If the functions g,
i€ IV J, are continuously differentiable near v, and the MF-condition (As-
sumption B.3) holds, then the restricted set S is approximated at v, by the
critical cone C.

LEMMA 3.3. Suppose that the Assumptions of Theorem 3.1 hold. Then
n'/%(%, — v,) is bounded in probability.
ProorF. We have that
®,(v) = max{y,(v) — ¢(v) + I(v, X): X € &,}
= ¥u(0) = 9(v) + (v,) + Fa(v = vy) + o(llv = v,l1*).
By Lemma 3.1, with probability tending to 1, 4, = ®,(v,) and hence
8, — ¥ = ¥u(8,) — 9(5,) + 39(8, — 55) + o([15, — vol1?).

Applying the mean value theorem for locally Lipschitz functions [Clarke (1983),
page 41],
\Pn(an) - (p(ﬁn) = tPn(”O) - (p(DO) + (Bn - UO)Ign*’
where
S € (o) — ve(oy)

and v} is a point on the segment joining v, and v,. It follows that
(3.4) 8, — 9 = ¥,(v5) — 9(vy) + (T, — vo)$F + 3a(B, — )

+0(1[5, = voll*)-

On the other hand,

0): - 00 = ¢n(5n) - (p(DO) =< ‘an(vo) - q)(DO)’
which together with (3.4) implies that

(3.5) (T, — v,) %X + 1q(%, — v5) + o(|15, — voll2) < 0.
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Since with probability tending to 1 we have that ¢, € S (Lemma 3.1), that the
set S is approximated at v, by the critical cone C (Lemma 3.2) and because of
the second-order sufficient conditions (Assumption B.5) it follows that ¢(o, — v,)
is greater than &||o, — v,||2 for some & > 0. It follows then from (3.5) that

(e/2)15, = 0ll* < = (8, — vo) 8.
and hence
(3.6) 18, — voll < 2&™*(8All + 118 — &all)-
Now since v, € S, (A) for some A € &, it follows from Assumption C.1 that
I8 = Sall = 0p(n™"2 + |15, — wl)
and from Assumption D that ||{,||is O,(n~'/2). This together with the inequality
(3.6) completes the proof. O

ProoF oF THEOREM 3.1. Consider (3.4). Because of Assumption C.1 and by
Lemma 3.3 we have that ||§* — {,| is 0,(n™/?). Since ||T, — vy|| is O(n~ /) we
then obtain that

3, — B = ¥,(05) — @(vy) + (T, — vy)%,
+39(0, — vp) + 0,(n7).
Now since S is approximated by C, there exists a point w, € C such that

18, = 05 = w,ll = o(lI5, — ooll).

(3.7)

Then
2(3, = v0) = q(w,) + o(|I5, — wll*)
and since ||5, — v,|| and |[{,|| are O,(n~/*) we obtain from (3.7) that
B, — ¥ = ¥,(v5) — @(v,) + wis, + 39(w,) + o,(n71).
It follows that
(38) 9, = 2 ¥,(00) — 9(v0) + min (S, + ta(w)} + o(n™).
The other inequality, which is obtained from (3.8) by inverting the inequality
sign, can be proved in a similar way by considering a minimizer w, of the
function w’§, + 3q(w) over C. O
Proor oF THEOREM 3.2. From (3.1) and (3.7) we have
(8 = 00)%u + 30(8, — vy) = min {w%, + 3q(w)} + 0,(n")
and hence
n'/2(3, — v,) (n'/%,) + 3q[n"*(5, — v)]

= min {w'(n/%,) + tq(w)} + 0,(1).

wel

(3.9)

Notice that the multiplier n'/2 of w in the right-hand side of (3.9) was absorbed
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into the cone C. Now since n'/%(%, — v,) and n'/%, are bounded in probability it
will be sufficient to show that if u is an accumulation point of n'/%(9, — v,) and
¢ is an accumulation point of n'/%,, then with probability arbitrarily close to 1,
u = &(£). Because S is approximated by C and ||5, — voll is O,(n~'/?), there
exists w, € C such that ||5, — v, — w,|| is o,(n"'/?). Then with probability
arbitrarily close to 1 we obtain that « € C and the equality u = &(§) follows by
passing to the limit in (3.9) and using uniqueness of the minimizer w(£). O

4. Discussion, applications and examples. In practical applications the
required covariance matrix ¥, the function g(v) and the cone C are associated
with the unknown value v, of the parameter vector and should be estimated.
Notice that ¥ can be written in the equivalent form

(4.1) ¥ = E{[VL(z, vy, \)][VL(z, v,, M}, Aen,.

Let {©,}, 0, € ,, be a sequence of optimal solutions converging in probability to
v, and let {A,} be a sequence of the corresponding vectors of Lagrange multipli-
ers. Then the distance from A, to A, tends in probability to 0 and ¥ can be
consistently estimated by

¥ =1 ¥ [VL(z 5 %) [VE (260 50 K)]

i=1

Estimation of the function g(v) involves an estimation of the whole set A of
Lagrange multipliers of the program (#,), which can be difficult or even
impossible to obtain. In two particularly important cases g(v) becomes a
quadratic function. That is, if A, = {A,} is a singleton or if the constraint
functions g;, i € I U J, are linear, then g(v) = v'Ho with H = v ?l(v,, A,) or
H = v 2%p(v,), respectively. In both cases, under suitable regularity conditions,
the required Hessian matrix H can be consistently estimated.

The critical cone C depends on the index set o of the inequality constraints
active at the point v,. Determination of this index set may create a certain
problem which needs further investigation.

Now let us suppose that the gradient vectors vg;(v,), i € I U J, are linearly
independent (the linear independence condition). Then A, = {A,} is a singleton
and the critical cone C can be written in the form

C={w:wvg(v) =0,i€TUJ (Ay);
(4.2) )
w' vg(vy) <0;i€Jy(Ag)}.

Here the strong second-order sufficient conditions of Assumption C.2 mean that
the Hessian matrix H = v2l(v,, A,) is positive definite on the linear space
M(A,). Since ||, — vyl| is O,(n~'/?) and by Assumption C.1, we have that

VIa(B) = Vo(8,) — §, = 0,(n 7).
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Then
V‘l’n(an) + Z AO,ivgi(an) - Vl(an’ A0) - §n = op(n_l/z)

ielud

and hence

Z (Xn,i - AO,i)vgi(ﬁn) + gn + H(an - O0) = Op(n_l/z)'
ielud
It follows that under the AssumptionsA of Theorem 3.2, with Assumptions B.3
and B.5 replaced by the linear independence condition and Assumption C.2,

(43) PR, = Ao) = &%) + 0,1,

where a({) denotes the vector of Lagrange multipliers corresponding to the
minimizer &({) of the quadratic function w’¢ + fw’Hw over the cone C given by
the linear constraints in the form (4.2). Notice that the uniqueness of w({) and
a($) is ensured by the linear independence condition and Assumption C.2.

Even under the linear independence condition and the strong second-order
sufficient conditions the minimizer @({) is not linear in { and hence n'/*(%, — v,)
is not asymptotically normal, unless the critical cone C is a linear space. This is
ensured by the following condition.

STRICT COMPLEMENTARITY CONDITION. All Lagrange multipliers A, ;, i € oJ,
associated with the inequality constraints of the program (£,) are positive.

In the case of strict complementarity the index set Jy(A,) is empty and the
critical cone C, given in (4.2), becomes a linear space. Consider the Jacobian
matrix G whose columns are the gradient vectors vg,(v,), i € IU J. Then
w = &($) and @ = @({) are solutions of the equations

(4 o olls]- 5]

G 0lla 0
Notice that because of the second-order sufficient conditions (here Assumptions
B.5 and C.2 coincide) the matrix in the left-hand side of (4.4) is nonsingular.

THEOREM 4.1. Suppose that Assumptions A.1-A.6, B.1, B2, B4, B.5,C.1,D
and the linear independence and strict complementarity conditions hold. Let
{v,} be a sequence of optimal solutions converging in probability to v, and {A,}
be the corresponding sequence of Lagrange multipliers. Then nY4(%, — v,
A, — A,) converges in distribution to a normal with mean 0 and the covariance
matrix

(49 r-[g ST 2lle S

As an example we now discuss applications of the developed theory to the
maximum likelihood (ML) and robust regression methods. Consider a sample
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Xy,..., %, of iid. vector observations with a common probability density func-
tion f(x, #). The parameter vector 8 is supposed to vary over a set S and it will
be assumed that its true value 6, lies on the boundary of S. That is, in a
neighbourhood of §, the set S is defined by a number of equality and inequality
constraints given in Assumption B.1 (with v replaced by ). Minimization of
minus the log-likelihood function over the set S leads to the ML-estimator §,.
Under standard regularity conditions, in particular the identification condition,
we have that 6, is the unique unconstrained minimizer of the expected value
function E{—log f(x, )} and hence the corresponding Lagrange multipliers are
all zeros. The matrices ¥ = E{[V log f(x, §,)][V log f(x, 6,))} and H =
E{—v?log f(x,0,)} are equal to each other and represent Fisher’s information
matrix. We obtain that n'/%(§, — 6,) is asymptotically distributed as the mini-
mizer of the quadratic function w’y + jw’Hw over C, where y is N(0, H) and

(4.6) C={w:wvgl(l)=0,iclwvg()<0,icJ}

gives the cone approximation of S at 4.

If the information matrix H is nonsingular, then this result can be formulated
in a slightly different form. Consider £ = — H™y. Then £ is N(0, H™!) and since
2wy + wHw = (¢§ — wyH(¢ — w) — £HE,
we obtain that the asymptotic distribution of n/%(, — 6,) is the same as the
distribution of the minimizer &(£) of (§{ — wYH(§{ — w) over C [cf. Chernoff
(1954)]. If the linear independence condition also holds, then n'/*A , is asymptot-
ically distributed as vector a(¢) of Lagrange multipliers corresponding to the
minimizer &(£). It is not difficult to verify that w(¢) and & — @(¢) are indepen-
dent. It follows that the gradient of (£ — w)YH(¢ — w), with respect to w at
w = ®(§), is independent of w(£). Consequently, w(£) and a(§) are independent

and hence n'/2(§, - 8,) and n'/?A are asymptotically independent.

Here the minimizer w(§) represents the orthogonal projection w(§) =
proj(£, C) of ¢ onto C with respect to the scalar product (u, w) = v’Hw. This
orthogonal projection can be decomposed into two parts as follows. Consider the
linear space

L={w:wvg(l)=0icludJ},
its orthogonal complement
| L*= {u:(u,w) = Oforall w € L)

and the cone C* = C N L+. Since L C C, we have that C is representable as the
direct sum of L and C* and hence

(4.7) proj(¢, C) = proj(¢, L) + proj(¢, C*)
[see, e.g., Stoer and Witzgall (1970)]. It can be calculated that

proj(¢, L) = [I - H'G(G'H'G) @]t
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where G is the Jacobian matrix whose columns are the gradient vectors vg;(4,),
i € I U J. It follows that the first term in the right-hand side of (4.7) is normal
with mean 0 and the covariance matrix

(4.8) P=H'-H'G(G'H'G) 'G'H .

Moreover, proj(¢, C*) is equal to proj(r, C*), where r = proj(¢, L+). It can be
verified that n; = proj(£, L) and 7 are independent and hence the two terms in
the right-hand side of (4.7) are independent. We obtain the following result. If
the information matrix H is nonsingular, then n/%(d, — 6,) converges in distri-
bution to the sum 75, + 7, of two independent variables, 5, is normal with mean
0 and the covariance matrix P and 1, = proj(£§, C*). In this decomposition 7,
represents the “nonnormal” part of the distribution with the cone C* giving the
“nonlinear part” of C. For example, if there is only one active at 6§, inequality
constraint, then the cone C* degenerates into a ray (half-line).

In the situationAwhere the set S is defined by equality constraints only, we
obtain that n'/%(6, — ,, A,) is asymptotically normal with mean 0 and the
covariance matrix I' given in (4.5). Since here ¥ = H, the matrix T can be
represented in the form [cf. Aitchison and Silvey (1958), Section 5]

_{P 0
= [ 0 R ]
where P is given in (4.8) and R = (G'H'G)™ ..
As a second example we discuss the robust regression method of Huber (1973).
Consider the (generally nonlinear) model

(4.9) yi = h(xi, 00) + & i = 1,..., n,

where A:R? X R* > R is a known function and z; = (x,, 3), i = 1,..., n, are
i.i.d. observations. It will be assumed that x; and the errors ¢; are independent
and that 6, lies on the boundary of the permissible parameter set S. That is, S is
defined near 6, by constraints as in Assumption B.1. Let p(¢) be a real-valued
function of the scalar ¢ and let §, be a minimizer of the function

n

(4.10) ¥,(0) =n"" Y o(y — h(x,,0))

i=1

over S. Standard examples of the function p are p(#) =¢*> and p(¢) = |¢]
corresponding to the least-squares and least absolute deviations methods, respec-
tively. Some other examples of p are given in Huber (1973, 1981). Typically, p is
a continuous, convex, piecewise differentiable function.

Consider the expected value function ¢(8) = E{p(y — h(x, 8))}. Under suit-
able regularity conditions we have that

ve(0) = E{vo(y — h(x,0))} = —E{¢(y — h(x,0))Vh(x,0)},



856 A. SHAPIRO

with ¢ = p’, and, in particular,
ve(b,) = —E{¢(e)}E{Vh(x,6,)}.

We assume that E{¢(¢)} is 0, and hence vo¢(6,) = 0, and that 6, is a locally
unique minimizer of ¢ over S. It follows that the Lagrange multipliers corre-
sponding to 8, are all zeros. The covariance matrix ¥ is given here by ¥ = ¢2Q,
where o% = E{¢(¢)?} and

Q= E{[Vh(x,.ﬂo)] [vh(x,6,)]'}.

If p is twice continuously differentiable, then under suitable regularity condi-
tions the Hessian matrix H = v (p(00) exists and H = kQ, where k = E{p”(a)}
Then assuming that « > 0 and © is nonsingular, we obtain that n'/%(f, — 6,) is
asymptotically distributed as tne minimizer &(£) of (§ — w)Q(§ — w) over C,
where £ is N(0, k" %62Q ') and C is the approximating cone of S at §,. Under the
linear independence condition, n'/2X , is asymptotically distributed as the corre-
sponding vector a(¢) of Lagrange multlphers and n'/%(4, — 0,) and n'/?A,, are
asymptotically independent.

In situations where p is nondifferentiable, the existence of H = v %p(§,) can
often be ensured by smoothness conditions on the distribution of e. Consider, for
example, the least absolute deviations method p(¢) = |¢|. Suppose that the
distribution function F of ¢ has median 0, that F is continuous and has
continuous and positive density f at zero, that A(x,-) is twice continuously
differentiable for a.e. x, that ||[VA(x, 6)||> and ||V 2A(x, 8)||®> are dominated by
integrable functions for all 4 in a neighbourhood of §, and that the matrix £ is
nonsingular. Then H = «Q, where k = 2f(0), and ¥ = Q. Moreover, the above
conditions imply Assumptlon C.3 and hence Assumptlon C.1 follows. Therefore

n%(4, — 6,) converges in distribution to the minimizer &(£) of (¢ — w)Q(§ — w)
over C, where ¢ is N(0,[2f(0)] 2@~ !). For the unconstrained case and linear
models this result is due to Bassett and Koenker (1978).

Finally, suppose that we are interested in testing a null hypothesis H: § € S,
against an alternative H,: 8§ € S, for the model (4.9). Suppose that the true value
0, is a boundary point of S, and (or) S,, and consider the test statistic

7 — ol wi o
n ;rg;)%((i) ;rggnbn(ﬂ) ,

where ¥ ,(0) is defined in (4.10). It follows from the result of Theorem 3.1 that
under the Assumptions specified above, the test statistic T is asymptotically
distributed -as
U= min ({ - w)Q(¢ — w) — min (¢ — w)'Q(¢ — w),
weC, wel
where { is N(0, k '62Q~!) and C, and C; are the approximating cones of S, and
S, at 6, respectlvely Suppose that the cones C, and C, are convex, C, is

contamed in C, and either C, or C, is a linear space. Then k¢~ 2U and hence
asymptotically ko~ 2T are dlstrlbuted as a mixture of central chi-square distribu-
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tions [see, e.g., Shapiro (1988b) for details and a discussion of the so-called
chi-bar-squared distributions]. Notice that here the correction multiplier k6~ 2 is
the same as in the unconstrained case [cf. Schrader and Hettmansperger (1980)
and Koenker and Bassett (1982)].
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