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Abstract. We consider a particular two dimensional model, which has a wide
applications in statistical signal processing and texture classi®cations. We
prove the consistency of the least squares estimators of the model parameters
and also obtain the asymptotic distribution of the least squares estimators. We
observe the strong consistency of the least squares estimators when the errors
are independent and identically distributed double array random variables.
We show that the asymptotic distribution of the least squares estimators are
multivariate normal. It is observed that the asymptotic dispersion matrix
coincides with the Cramer-Rao lower bound. This paper generalizes some
of the existing one dimensional results to the two dimensional case. Some
numerical experiments are performed to see how the asymptotic results work
for ®nite samples.
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1. Introduction

We consider the following two dimensional model:

y�m; n� �
Xp

k�1
A0

k cos�ml0
k � nm0

k� � X�m; n�;

for m � 1; . . . ;M; n � 1; . . . ;N �1�
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where A0
k 's are unknown real numbers, l0

k 's, m0
k 's are unknown numbers, where

l0
k A �ÿp; p� and m0

k A �0; p�. X �m; n� is a two dimensional (2-D) sequence of
independent and identically distributed random variables. `p' is assumed to
be a known integer. Given a sample y�m; n�; m � 1; . . . ;M; n � 1; . . . ;N, the

problem is to estimate A0
k 's, l0

k 's, m0
k 's for k � 1; . . . p and the error variance

s2.
This is also a well discussed model in Multidimensional Signal Processing,

when X�m; n�'s are independently and identically distributed (i.i.d.) random
variables on a 2-D plane. See for example the works of Barbieri and Barone
(1992), Cabrera and Bose (1993), Chun and Bose (1995), Hua (1995), Lang
and McClellan (1982) and see the references there for the di¨erent estimation
procedures. It is interesting to observe that the model (1) is the 2-D extension
of the one dimensional frequency model, which was originally discussed by
Hannan (1971) and Walker (1971) in the time series analysis.

It is also observed that the model (1) can be used to model textures. To see
how this model represents di¨erent textures the readers are referred to the
work of Manderekar and Zhang (1995). They provided nice 2-D image plots
of y�m; n�, whose grey level at �m; n� is proportional to the value of y�m; n�
and when it is corrupted by independent Gaussian noise ®eld. Manderakar
and Zhang (1995) considered this problem and obtained the consistency
properties of the estimators of lk's and mk's when the estimators are obtained
through the periodogram analysis and when X�m; n�'s are from a stationary
random ®eld. Their results based on the work of Lai and Wei (1982) and they
did not provide the asymptotic distribution of the estimators.

But no where, at least not known to the authors, the properties of the least
squares estimators have been discussed of the model (1). It is important to
observe that the model (1) is a nonlinear regression model and unfortunately
it does not satisfy the su½cient conditions stated by Jennrich (1969) or Wu
(1981) for the least squares estimators (LSE) to be consistent. It may noted
that when p � 1, M � 1 and l0

k � 0, this model coincides with the one
dimensional model discussed in Hannan (1971), Walker (1971), Kundu (1993)
and Kundu and Mitra (1996). It was shown in Kundu (1993) that even the one
dimensional model does not satisfy the su½cient conditions of Jennrich (1969)
or Wu (1981). Therefore the consistency or the asymptotic normality of the
LSE's is not immediate in this case. It is also worth mentioning at this stage
that Bunke and Bunke (1989) also considered several nonlinear regression
models in their book, but did not consider this particular model. One of the
major di¨erence of this particular model with the other usual nonlinear models
is in the rate of convergence. Usually in the nonlinear model we observe the
rate of convergence to be

���
n
p

but for this model, at least for the frequencies,

the rate of convergence is n3=2.
The main idea of this paper is to study the properties of the least squares

estimators of the parameters of the model (1) and see how the asymptotic
results behave for ®nite sample. We prove the strong consistency of the least
squares estimators (LSE's) of Ak's, lk's and mk's when the errors are i.i.d.
double array random variables. We obtain that the asymptotic distribution of
the least squares estimators are multivariate normal. The explicit expression of
the asymptotic dispersion matrix of the LSE's are obtained, which may be
useful to obtain the con®dence bounds. It is observed that the asymptotic
dispersion matrix coincides with the Cramer Rao bound, which may not be
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very surprising. We prove that the LSE of s2 is strongly consistent when the
error variance is ®nite and the asymptotic distribution of the LSE of s2 can be
obtained when the fourth order moment of error random variables are ®nite.
Our approach is di¨erent from that of Mandrekar and Zhang (1995). Our
results extend some of the existing one dimensional results of Walker (1971),
Hannan (1971), Kundu (1993), and Kundu and Mitra (1996) to the two
dimensional case.

The rest of the papers is organized as follows. In Section 2, we prove the
strong consistency of the LSE's of Ak's, lk's and mk's when the errors are i.i.d.
random variables. In Section 3, the asymptotic normality results of those
estimators are established under the same set of assumptions. The consistency
and the asymptotic normality results of the estimator of s2 are obtained
in section 4. A summary of numerical experiments is given in Section 5 and
®nally we draw conclusions from our work in Section 6.

2. Consistency of the LSE's of Ak, lk and mk

We need the following lemma to prove the necessary results. We denote the
set of positive integers by Z.

Lemma 1. Let fX�m; n�; m; n A Zg be a i.i.d. sequence of double array random
variables with mean zero and ®nite variance then;

sup
a;b

���� 1N 1

M

XM
m�1

XN

n�1
X�m; n� cos�ma� cos�nb�

����
! 0 a:s: when min fM;Ng !y �2�

where a.s. means almost surely.

Proof of Lemma 1: Consider the following random variables;

Z�m; n� � X �m; n� if jX�m; n�j < �mn�3=4

� 0 otherwise

First we will show that Z�m; n� and X �m; n� are equivalent sequences. Con-
sider

Xy
m�1

Xy
n�1

PfX�m; n� 6� Z�m; n�g �
Xy
m�1

Xy
n�1

PfjX�m; n�j > �mn�3=4g

Now observe that there are at most 2kk combinations of �m; n�'s such that
mn < 2k, therefore we have
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Xy
m�1

Xy
n�1

PfjX�m; n�jV �mn�3=4g

U
Xy
k�1

X
2kÿ1Ur<2k

PfjX �m; n�jV r3=4g �here r � mn�

U
Xy
k�1

k2kPfjX�1; 1�jV 2�kÿ1�3=4g

UC
Xy
k�1

k2k EjX �1; 1�j2
2�kÿ1�3=2

UC
Xy
k�1

k

2k=2
<y �3�

Here C is a constant and note that it may represent di¨erent constant at
di¨erent places. Therefore, X�m; n� and Z�m; n� are equivalent sequences. So

PfX�m; n� 6� Z�m; n� i:o:g � 0 �4�

Here i.o. means in®nitely often. Let U�m; n� � Z�m; n� ÿ E�Z�m; n��, then

sup
a;b

���� 1N 1

M

XM
m�1

XN

n�1
E�Z�m; n�� cos�ma� cos�nb�

����U 1

N

1

M

XM
m�1

XN

n�1
jE�Z�m; n��j

Since E�Z�m; n�� ! 0 as M;N !y, therefore as M;N !y

1

N

1

M

XM
m�1

XN

n�1
jE�Z�m; n��j ! 0 �5�

Therefore, it is enough to prove that

sup
a;b

���� 1N 1

M

XM
m�1

XN

n�1
U�m; n� cos�ma� cos�nb�

����! 0 a:s: �6�

Now for any ®xed e > 0, ÿp < a, b < p and 0 < hU
1

2�MN�3=4
, we have

P

���� 1N 1

M

XM
m�1

XN

n�1
U�m; n� cos�ma� cos�nb�

����V e

( )

U 2eÿhMNe
YM
m�1

YN
n�1

EehU�m;n� cos�ma� cos�nb� �7�

Since jhU�m; n� cos�ma� cos�nb�jU 1=2, using ex < 1� x� x2 for jxj < 1=2,
we have

2eÿhMNe
YM
m�1

YN
n�1

EehU�m;n� cos�ma� cos�nb�U 2eÿhMNe�1� h2s2�MN : �8�
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Now choose h � 1

2�MN�3=4
, therefore for large M and N

P

���� 1N 1

M

XM
m�1

XN

n�1
U�m; n� cos�ma� cos�nb�

����V e

( )

UCeÿ�MN�1=4e=2es 2=4 �C is a constant�:

Let K �M 2N 2, choose K points, y1 � �a1; b1�; . . . ; yK � �aK ; bK�, such that
for each point y � �a; b� A �ÿp; p�, we have a point yj satisfying

jaj ÿ aj � jbj ÿ bjU 2p

M 2N 2
�9�

Note that���� 1N 1

M

XM
m�1

XN

n�1
U�m; n�fcos�ma� cos�nb� ÿ cos�maj� cos�nbj�g

����
UC

1

MN

XM
m�1

XN

n�1

MN

M 2N 2
�m� n� ! 0 as M;N !y:

Therefore for large M and N, we have

P sup
a;b

���� 1N 1

M

XM
m�1

XN

n�1
U�m; n� cos�ma� cos�nb�

����V 2e

( )

UP max
jUM 2N 2

���� 1N 1

M

XM
m�1

XN

n�1
U�m; n� cos�maj� cos�nbj�

����V e

( )

UCM 2N 2eÿ�MN�1=4=2: �10�

Since
Py

t�1 t2eÿt1=4 <y,

sup
a;b

���� 1N 1

M

XM
m�1

XN

n�1
U�m; n� cos�ma� cos�nb�

����! 0 a:s: �11�

Where (11) follows from the Borel Cantelli lemma.

Consider the following assumptions:

Assumption 1: Let A0
1 ; . . . A0

p be arbitrary real numbers not anyone of them are

identically equal to zero, l0
1 ; . . . l0

p A �ÿp; p� and they are distinct, similarly

m0
1 ; . . . m0

p A �0; p� and they are distinct.
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Assumption 2: Let fX�m; n�; m; n A Zg be i.i.d. sequence of double array
random variables and E�X �m; n�� � 0, E�X�m; n�2� � s2.

Now we would like to prove the following results:

Theorem 1: Under the assumptions 1 and 2, the least squares estimators of the
parameters of the model (1), i.e., which are obtained by minimizing

XM
m�1

XN

n�1
y�m; n� ÿ

Xp

k�1
Ak cos�mlk � nmk�

 !2
�12�

with respect to the unknown parameters, are strongly consistent estimators of
the corresponding parameters.

Proof of Theorem 1: We take p � 2 for notational convenience. Let's use the
following notations: A � �A1;A2�, l � �l1; l2� and m � �m1; m2�. Consider the
following expression;

RM;N�A; l; m�

� 1

MN

XM
m�1

XN

n�1
y�m; n� ÿ

X2
k�1

Ak cos�mlk � nmk�
 !2

� 1

MN

XM
m�1

XN

n�1

X2
k�1

A0
k cos�ml0

k � nm0
k� ÿ

X2
k�1

Ak cos�mlk � nmk�
 !2

� 1

MN

XM
m�1

XN

n�1
X�m; n�2 � 2

1

MN

XM
m�1

XN

n�1
X�m; n�

�
X2
k�1

A0
k cos�ml0

k � nm0
k� ÿ

X2
k�1

Ak cos�mlk � nmk�
 !

:

Consider the following set;

Sd;T � f�A1;A2; l1; l2; m1; m2�; jA1 ÿ A0
1 jV d; jA1jUT ; jA2jUT or

jA2 ÿ A0
2 jV d; jA1jUT ; jA2jUT or

jl1 ÿ l0
1 jV d; jA1jUT ; jA2jUT or

jl2 ÿ l0
2 jV d; jA1jUT ; jA2jUT or

jm1 ÿ m0
1 jV d; jA1jUT ; jA2jUT or

jm2 ÿ m0
2 jV d; jA1jUT ; jA2jUTg
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First we will prove the following;

lim inf
�A;l;m� ASd; T

RMN�A; l; m� > s2 for all d > 0 �13�

here lim denotes lim inf. Now suppose �ÂMN ; l̂MN ; m̂MN� be the least squares
estimators of �A0; l0; m0� and they are not consistent, therefore either;

Case 1: For all subsequences �MK ;NK� of �M;N�, jÂMK NK
j !y or

Case 2: There exists a d > 0 and a T <y, and a subsequence �MK ;NK� of
�M;N� such that;

�ÂMK NK
; l̂MK NK

; m̂MK NK
� A Sd;T �14�

for all K � 1; 2; . . . : Now

RMK ;NK
�ÂMK NK

; l̂MK NK
; m̂MK NK

�URMK ;NK
�A0; l0; m0� �15�

as �ÂMK NK
; l̂MK NK

; m̂MK NK
� is the least squares estimator of �A0; l0; m0�, when

M �MK and N � NK . As K !y, the left hand side of (15) converges to a
number which is strictly greater than s2 due to (13), whereas the right hand
side of (15) converges to s2. That gives a contradiction. Hence the consistency
of the least squares estimators can be established once we prove (13).

To prove (13), consider the following sets:

A1d � f�A1;A2; m1; m2; l1; l2�; jA1jUT ; jA2jUT ; jA1 ÿ A0
1 jV dg

A2d � f�A1;A2; m1; m2; l1; l2�; jA1jUT ; jA2jUT ; jA2 ÿ A0
2 jV dg

M1d � f�A1;A2; m1; m2; l1; l2�; jA1jUT ; jA2jUT ; jm1 ÿ m0
1 jV dg

M2d � f�A1;A2; m1; m2; l1; l2�; jA1jUT ; jA2jUT ; jm2 ÿ m0
2 jV dg

L1d � f�A1;A2; m1; m2; l1; l2�; jA1jUT ; jA2jUT ; jl1 ÿ l0
1 jV dg

L2d � f�A1;A2; m1; m2; l1; l2�; jA1jUT ; jA2jUT ; jl2 ÿ l0
2 jV dg

Since we have

SdT � A1d WA2d WM1d WM2d WL1d WL2d �16�

therefore (13) can be established if we can prove that

lim inf
�A;l;m� AV

1

MN

XM
m�1

XN

n�1

X2
k�1

A0
k cos�ml0

k�nm0
k�ÿ

X2
k�1

Ak cos�mlk � nmk�
 !2

> 0 for d > 0 �17�
where V is any one of the sets A1d;A2d;M1d;M2d;L1d;L1d or L2d. We will
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prove (17) when V � A1d. The other cases can be proved similarly. Observe
that

lim inf
A1d

1

MN

XM
m�1

XN

n�1

X2
k�1

A0
k cos�ml0

k � nm0
k� ÿ

X2
k�1

Ak cos�mlk � nmk�
 !2

� �A0
1 ÿ A1�2 lim

M;N!y

1

MN

XM
m�1

XN

n�1
cos2�ml0

k � nm0
k�2

V
1

2
d2 > 0 a:s: �18�

Hence (13) has been established, so Theorem 1 is proved.

3. Asymptotic normality of Â, l̂, m̂

In this section we obtain the asymptotic distribution of the least squares
estimators of the parameters of the model (1).

Theorem 2: Under the assumptions 1 and 2, the limiting distribution of
fM 1=2N 1=2�ÂÿA0�; M 3=2N 1=2�l̂ÿl0�; M 1=2N 3=2�m̂ÿm0�g as Min�M;N� !
y, is a 3p variate normal with mean vector zero and covariance matrix 2s2Sÿ1,
when Sÿ1 has the following structure:

Sÿ1 �
Sÿ111 0 0

0 Sÿ122 Sÿ123

0 Sÿ132 Sÿ133

264
375 �19�

where Sÿ111 � Ip; Sÿ122 � Sÿ133 � 48
7

diagfA0ÿ2
1 ; . . . ;A0ÿ2

p g, and Sÿ123 � Sÿ132 �
ÿ 36

7
diagfA0ÿ2

1 ; . . . ;A0ÿ2
p g,

Proof of Theorem 2: Let's denote y � �A; l; m�, ŷ � �Â; l̂; m̂� and

Q�y� �
XM
m�1

XN

n�1
y�m; n� ÿ

Xp

k�1
Ak cos�mlk � nmk�

" #2
: �20�

Then

Q 0�ŷ� ÿQ 0�y0� � �ŷÿ y0�Q 00�y�; �21�

here Q 0�ŷ� is a 1� 3p vector de®ned as follows:

Q 0�ŷ� � dQ�y�
dA

;
dQ�y�

dl
;

dQ�y�
dm

� �
�22�
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and Q 00�y� is a 3p� 3p, matrix as follows;

Q 00�y� �

dQ�y�
dAdAT

dQ�y�
dAdlT

dQ�y�
dAdmT

dQ�y�
dldAT

dQ�y�
dldlT

dQ�y�
dldmT

dQ�y�
dmdAT

dQ�y�
dmdlT

dQ�y�
dmdmT

26666666664

37777777775
: �23�

ŷ denotes the LSE of y and y is a point lying between the line joining the point
ŷ and y0. Consider the following 3p� 3p diagonal matrix D as follows;

D �
Mÿ1=2Nÿ1=2Ip 0 0

0 Mÿ3=2Nÿ1=2Ip 0

0 0 Mÿ1=2Nÿ3=2Ip

26664
37775: �24�

Since ŷ is the LSE of y, therefore Q 0�ŷ� � 0, and hence (21) can be written as;

�ŷÿ y0� � ÿQ 0�y0��Q 00�y��ÿ1 �25�
and

�ŷÿ y0�Dÿ1 � ÿ�Q 0�y0�D��DQ 00�y�D�ÿ1: �26�
First we will compute Q 0�y0�D. Observe that for i � 1; . . . ; p,

dQ�y�
dAi

� ÿ2
XM
m�1

XN

n�1
y�m; n�ÿ

Xp

k�1
Ak cos�mlk�nmk�

 !
cos�mli�nmi�;

dQ�y�
dli

� ÿ2
XM
m�1

XN

n�1
y�m; n�ÿ

Xp

k�1
Ak cos�mlk�nmk�

 !
Aim sin�mli�nmi�;

dQ�y�
dmi

� ÿ2
XM
m�1

XN

n�1
y�m; n�ÿ

Xp

k�1
Ak cos�mlk�nmk�

 !
Ain sin�mli�nmi�:

(27)

Therefore, we have

dQ�y0�
dAi

� ÿ2
XM
m�1

XN

n�1
X�m; n� cos�ml0

i � nm0
i �;

dQ�y0�
dl i

� ÿ2
XM
m�1

XN

n�1
A0

i mX �m; n� sin�ml0
i � nm0

i �;

dQ�y0�
dmi

� ÿ2
XM
m�1

XN

n�1
A0

i nX �m; n� sin�ml0
i � nm0

i �: �28�
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Observe that (28) satisfy the Lindeberg-Feller condition (see Chung; 1978).
Therefore, Q 0�y0� with proper normalization will be asymptotically normal.
We now look at the asymptotic covariance matrix of the vector Q 0�y0�. We
need the following results for b 6� 0,

lim
N!y

1

N

XN

t�1
sin2�bt� � 1

2
; and lim

N!y

1

N 2

XN

t�1
t sin2�bt� � 1

6
: �29�

Similar results hold for cosine function also (see Walker; 1971 or Mangulis;
1965). So we have;

Mÿ1Nÿ1Cov
dQ�y0�

dAi
;

dQ�y0�
dAj

 !
! 0 if i 6� j

2s2 if i � j

� �
�30�

Mÿ3Nÿ1Cov
dQ�y0�

dli
;

dQ�y0�
dlj

 !
!

0 if i 6� j

2
3

s2A02

i if i � j

( �
�31�

Mÿ1Nÿ3Cov
dQ�y0�

dmi

;
dQ�y0�

dmj

 !
!

0 if i 6� j

2
3

s2A02

i if i � j

( �
�32�

Mÿ2Nÿ2Cov
dQ�y0�

dli
;

dQ�y0�
dmj

 !
!

0 if i 6� j

1
2

s2A02

i if i � j

( �
�33�

Q 0�y0�D converges to a 3p Multivariate Normal with mean vector 0 and the
dispersion matrix 2s2S, where

S �
Ip 0 0

0 D1 D2

0 D2 D1

24 35; �34�

here both D1 and D2 are p� p matrices and they are as follows;

D1 � diagf1
3

A02

1 ; . . . ; 1
3

A02

p g;

D2 � diagf1
4

A02

1 ; . . . ; 1
4

A02

p g:

Observe that y converges to y0 a.s., and

lim
M;N!y

�DQ 00�y�D� � lim
M;N!y

�DQ 00�y0�D� � S �35�

Therefore

�ŷÿ y0�Dÿ1 ! N3p�0; 2s2Sÿ1� �36�
where Sÿ1 is as de®ned before.
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4. Consistency and asymptotic normality of ŝ2

In Sections 2 and 3 we considered the LSE's of Ak's, lk's, mk's and obtained
the consistency and asymptotic normality properties. In this section we con-
sider the estimation procedures of s2 and obtain its asymptotic properties. If
Âk's, l̂k's and m̂'s are the LSE's of Ak, lk, mk respectively, then the LSE of s2

will be

ŝ2 � 1

MN

XM
m�1

XN

n�1
y�m; n� ÿ

Xp

k�1
Âk cos�ml̂k � nm̂k�

 !2
: �37�

First we will show that ŝ2 is a consistent estimator of s2. To prove that we
need the following lemmas;

Lemma 2: Let fX�m; n�; m; n A Zg be a i.i.d. sequence of double array random

variables and E�X�m; n�� � 0, E�X �m; n�2� � s2, then

sup
a;b

1

M 2N

XM
m�1

XN

n�1
mX �m; n� cos�ma� cos�nb� ! 0 a:s:

sup
a;b

1

MN 2

XM
m�1

XN

n�1
nX �m; n� cos�ma� cos�nb� ! 0 a:s:

Proof of Lemma 2: It follows similarly as that of Lemma 1.

Lemma 3: If l̂k and m̂k are the LSE's of lk and mk respectively of the model (1),
then

M�l̂k ÿ l0
k� ! 0 a:s:

N�m̂k ÿ m0
k� ! 0 a:s:

as fM;Ng !y.

Proof of Lemma 3: Observe that from (21) we have

�ŷÿ y0� � ÿQ 0�y0��Q 00�y��ÿ1: �38�

Now suppose R is a 3p� 3p diagonal matrix as given below;

R �

Ip 0 0

0
1

M
Ip 0

0 0
1

N
Ip

26664
37775: �39�
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From (38),

�ŷÿ y0�Rÿ1 � Q 0�y0�R�RQ 00�y�R�ÿ1

� 1

MN
Q 0�y0�R

� �
1���������

MN
p RQ 00�y� 1���������

MN
p R

� �ÿ1
: �40�

Observe that
1���������

MN
p R � D (as de®ned in Section 3). Therefore

1���������
MN
p RQ 00�y� 1���������

MN
p R

� �ÿ1
! Sÿ1 �41�

and because of Lemma 2, we have

1

MN
Q 0�y0�R! 0 a:s: �42�

which proves the result.

Theorem 3: Under the assumptions 1 and 2 of the model (1), ŝ2 is a strongly
consistent estimator of s2.

Proof of Theorem 3: Note that

ŝ2 � 1

MN

XM
m�1

XN

n�1
y�m; n� ÿ

Xp

k�1
Âk cos�ml̂k � nm̂k�

 !2

� 1

MN

XM
m�1

XN

n�1
X �m; n�2 � 2

1

MN

XM
m�1

XN

n�1
X �m; n�

�
Xp

k�1
A0

k cos�ml0
k � nm0

k� ÿ
Xp

k�1
Â0

k cos�ml̂k � nm̂k�
" #

� 1

MN

XM
m�1

XN

n�1

Xp

k�1
A0

k cos�ml0
k � nm0

k� ÿ
Xp

k�1
Â0

k cos�ml̂k � nm̂k�
" #2

� T1 � T2 � T3 �say�: �43�

Observe that T2 converges to zero almost surely because of Lemma 1 and T3

converges to zero almost surely because of Lemma 3. Since T1 converges to s2

almost surely because of Strong Law of Large Numbers, it proves the theorem.

Now to prove the asymptotic normality of ŝ2, the second order moment
conditions of X �m; n�'s are not su½cient. We need a stronger assumption than
the second order moment conditions. We need the following assumption:
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Assumption 3: Let fX �m; n�; m; n A Zg be a i.i.d. sequence of double array
random variables and E�X �m; n�� � 0, E�X�m; n�2� � s2 and E�X�m; n�4� �
a (say).

The asymptotic normality results of ŝ2 is established by the following
result:

Theorem 4: Under the Assumptions 1 and 3 of the model (1),
���������
MN
p �ŝ2 ÿ s2� is

asymptotically normal with mean 0 and variance �aÿ s4�.

To prove Theorem 4, we need the following lemmas.

Lemma 4: Let fX�m; n�; m; n A Zg be a i.i.d. sequence of double array random
variables satisfying Assumption 2 and l̂k and m̂k are the LSE's of lk and mk re-
spectively of the model (1). Then

1���������
MN
p

XM
m�1

XN

n�1
X�m; n��cos�ml0

k � nm0
k� ÿ cos�ml̂k � nm̂k��

! 0 in Prob: �44�

Proof of Lemma 4: Using Lemma 2 and Theorem 2, the result is immediate.

Lemma 5: Let fX�m; n�; m; n A Zg be a i.i.d. sequence of double array random
variables satisfying Assumption 2 and Âk, l̂k and m̂k are the LSE's of Ak, lk and
mk respectively of the model (1) then

1���������
MN
p

XM
m�1

XN

n�1
�cos�ml0

k � nm0
k� ÿ cos�ml̂k � nm̂k��2 ! 0 in Prob: �45�

Proof of Lemma 5: Using Lemma 3 and Theorem 2, the result can be proved.

Lemma 6: Under the same Assumptions 1 and 2 of the model (1), ŝ2 can be
represented as;

ŝ2 � 1

MN

XM
m�1

XN

n�1
X�m; n�2 � op�Mÿ1=2Nÿ1=2� �46�

where Z � op��MN�ÿ1=2� means that
���������
MN
p

Z converges to zero in probability.

Proof of Lemma 6: From the expression (43), using Lemma 4 and Lemma 5,
the result can be obtained.

Proof of Theorem 4: From Lemma 6, Theorem 4 follows using the Central
Limit Theorem.

Two dimensional model 95



5. Numerical experiments and discussions

In this section we give summary of some numerical experiments performed to
see how the asymptotic results behave for ®nite sample sizes. We performed
all the experiments in PC-486, using the random deviate generator of Press
et al. (1993). We considered the following model:

y�m; n� � 4:0 cos�2:0m� 1:0n� � 5:0 cos�2:5m� 1:5n� � X �m; n�; �47�

fX �m; n�; m � 1; . . . ;M; n � 1; . . . ;Ng are i.i.d. Gaussian random variables

with mean zero and ®nite variance s2. We considered M � N � 10; 20; 30; 40;
50 and s � :25, .50, .75, 1.0. For each sample size and for each s we computed
the LSE's of A1, A2, l1, l2, m1 and m2 and observed the average estimates and
the average mean squared errors (MSE's) over ®ve hundred replications.
However we do not provide the results due to space, but provide the central
®ndings of our simulation works below.

From the simulations it became very clear that as sample size increases or
the variance decreases, the average MSE's and biases of all the estimators
decrease. It shows the consistency properties of all the estimators. It is clear
that the MSE's of the estimators of the non-linear parameters are smaller than
that of the linear parameters even for small sample sizes. Some of the asymp-
totic behaviors are present even at small sample sizes. For example if A1 < A2,

then it is observed that the MSE's of m̂2 and l̂2 are smaller than that of m̂1 and
l̂1 respectively. It is also observed that as sample size increases the MSE's
become closer to the asymptotic variances. Therefore looking at the behavior
of the MSE's we can say that the asymptotic results can be used to draw the
small sample inferences for the di¨erent model parameters.

6. Conclusions

In this paper we consider the estimation of the parameters of a two dimen-
sional model, which has wide applicability in Statistical Signal Processing and
Texture classi®cations. We study the asymptotic properties of the LSE's of the
model parameters and show that the LSE's estimators are strongly consistent.
We also obtain the asymptotic distribution of the LSE's, which may be useful
to obtain the con®dence region or testing of hypothesis problem. This paper
generalizes some of the existing one dimensional results to the 2-D case.
Numerical experiments suggest that the asymptotic results can be used to
draw the small sample inferences for the linear and non-linear parameters.

Acknowledgments: The authors thank the referees for corrections and suggestions for improve-
ments. The editorial comments are also appreciated which led to better presentation of the paper.
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