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ASYMPTOTIC PROPERTIES OF THE MAXIMUM

IN A STATIONARY GAUSSIAN PROCESS

BY

JAMES PICKANDS UK1)

1. Introduction. Let {X(t), — oo < t < 00} be a separable measurable version of a

stationary Gaussian stochastic process. It is assumed without loss of generality

that for all s, t, -co <s, t < 00

(1.1) EX(t) = 0,       EX(s)X(s+t) = r(t),

where r(t) is the covariance function. By stationarity, of course, the latter does

not depend upon s. It is assumed, throughout, that

(1.2) r(i)= l-C\t\" + o(\t\a)

as / -» 0 for some C, 0 < C < 00, and some a, 0 < a 5¡ 2. This is sufficient to ensure

that the realizations are continuous everywhere with probability 1. See Belayev [1].

A covariance function cannot satisfy (1.2) with a>2, since then, r(t) would not be

positive definite. In this paper, we investigate the random variables

(1.3) Z(t)= sup  X(s),
OSsSf

and their behavior as t -> 00.

In §2, the form of the asymptotic distribution of Z(t) is given for all a. This

generalizes the result of [6] wherein a = 1, and the result of Cramer [4] and Volkonski

and Rozanov [9], wherein a = 2. In §3, the almost sure asymptotic behaviour of

Z(t) is investigated for all a. For the case a = 2, the result extends that of Shur [8].

The results of this work depend heavily upon some of the results involving

upcrossings given in [7]. They are valid for smallest as well as for largest values,

provided appropriate but obvious modifications are made.

2. The asymptotic distribution.   The main result of this section is the following

Theorem 2.1. If (I.I) and (1.2) hold, and either

(2.1) lim r(t) log t = 0,
Í-» 00

or

(2.2) P   r2(t) dt < co,
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then for all x, — oo < x < oo,

(2.3) Mm P{(A(f))-\Z(t)-B(t)) Ö x} = exp -e~x,
t-* CO

where

(2.4) ,4(0 = (2 log 0"1'2,

and

B(t) = (2 log 01/2

+ ((l~c:) l0g l0g ' + l0g ((2^)"1,2C1,a77a2(2-a>'20)/(2 log 01'2,

and
/•OO

(2.6) 0 < 77a = lim T~x \    esPi sup   7(0 > s\ds < oo,
r-oo Jo \ostsr J

where Y(t) is a nonstationary Gaussian process with means and covariances;

£7(0 = -\t\a,       cov(7(A), 7(r2)) = |ii|a+|r2|a-|r2-r1|«.

Before proceeding to the proof, a lemma is presented which summarizes the

results of Theorems 2.1 and 3.2 of [7].

Lemma 2.1. Let N(e, y, t) be the number of "e-upcrossings" of the level y in the

interval (o, t). An " e-upcrossing" of the level y is said to have occurred at t0 if

X(t0) = x, and X(t)<x,for all t, t0 — e^tSt0- Then under the conditions of Theorem

2.1,
lim P{N(e, y, X/p.) = k} = e~xXk/k\,       k = 0, 1, 2,...,
y-*<x>

where p=EN(e, y, t)jt, has the same value for all t. Furthermore

p. ~ (27r)-1'2C1/a77aj(2-a)'aexp(-.y2/2),

as v ->■ oo, where Ha is given by (2.6).

Proof of Theorem 2.1. Clearly

PÍN(e,A(t)x + B(t),t) = 0,   sup   X(t) = A(t)x + B(t)\

ú P{(A(t)Y\Zít)-B(t)) á x) = 7>{Z(0 Ú A(t)x+B(t)}

^ P{N(e, A(t)x + B(t), t) = 0}.

But

Pj;V(£,,4(0x-r-.S(0, 0 = 0,   suP<   X(t) = A(t)x + B(t)\

= P{N(e,A(t)x + B(t),t) = 0}

-PSN(e, A(t)x+B(t), 0 = 0,   sup   X(t) > A(t)x + B(t)\
\ -cStSO J

è P{A^(£, A(t)x + B(t), t) = 0}-PS  suP<   X(t) > A(t)x + B(t)\.
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However, A{sup_E<iSo X(t)> A(t)x + B(t)} ->-0, as r-^oo, since A(t)x + B(t) -^co

as / -> co for all real x, and, as observed in the introduction, the realizations are

continuous everywhere with probability 1. So it is sufficient to prove that

lim P{N(e, A(t)x + B(t), t) = 0} = exp -e'x
¡-»CO

for all real x. But, by Lemma 2.1, this is true, provided

(2.7) lim tp. = e~x.
(-»CO

However pL~(2TT)~ll2C'ilaHay(2'a)la exp (—y2/2), as _y->oo, or equivalently as

r->oo, where y = A(t)x + B(t). Evidently/2-a)/a~2(2-a)/2a(log 0<2~a)/2û! as î-^co.

But

j2/2 = (x2/4 log O + log t + ((Dy log log t+D2)2/4 log t) + x

+ (x(Dy log log t + D2)/2 log t) + (Dy log log t+D2)

= log t + x + Dy log log r + A>2 + o(l)       asr->oo,

where A>!= 1/a-1/2, and D2=log((2TT)-xt2CllaHaT2-aVa). So

exp (-y2/2)~t~\log t)~Die~D2e'x       as r-^oo,

and

tp. ~ (2TT)-ll2CllaHa2(2-a)la(logt)«2-a)l2a)-Die-D2e-x = e~x       as r-^oo.

The theorem is proved.

When a= 1, it was shown in [7], using the results of [6], that Hy = 1. Then, the

result of Theorem 2.1 coincides with the result of Theorems 4.2 and 4.3 of [6],

albeit under slightly weaker conditions.

When a = 2, it was shown in [7], using the results of [4] and [9], that H2 = l/\/w.

When this is the case the result of Theorem 2.1 coincides with those in [4] and [9],

which are the same except that the conditions in [4] are weaker than those in [9].

The conditions considered in this work are of two kinds. Those involving the

behaviour of r(t) as f->0 are called "local conditions". An example is (1.2).

Those concerning the behaviour of r(t) as t -» oo are called "mixing conditions".

Examples are (2.1) and (2.2). The conditions of both types are weaker in Theorem

2.1 than in [4].

It is natural to inquire whether the conditions of Theorem 2.1 might be further

weakened. In particular, might the conditions (2.1) or (2.2) be replaced by the

condition that

(2.8) lim r(t) = 0.
(-♦ CO

For the case of stationary Gaussian sequences, a similar question was answered

negatively in [6]. So it is strongly conjectured that (2.8) is not sufficient.
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The remarks at the end of §4 of [6] concern the conditions on the spectral

distribution function which are sufficient for the conditions (2.1), (2.2), and (2.8).

Conditions which are sufficient for (1.2) are given in §4 of [7].

From the discussion at the end of §4 of [6], it is clear that the strong mixing

condition is sufficient for the result of Theorem 2.1.

3. The almost sure behaviour. In this section, asymptotic inequalities are given

which hold with probability 1. The main results are Theorems 3.1, 3.2 and 3.3.

Theorem 3.3 simplifies the conditions of Theorem 3.2.

Theorem 3.1. If X(t) is such that (1.1) and (1.2) hold, and if

sup  |r|-a(l-r2(0) > 0,
ostsi

then

(3.1) pjlim sup (2 log 0m(A-(0-(2 log 01,2)/log log t Ú \+-\ = I.
I,   (-.to ¿a)

Note that this theorem requires no "mixing" condition. A "mixing" condition

is one involving the behaviour of r(0 as t -> oo.

Before proceeding to the proof, a few lemmas are given.

Lemma 3.1. For all x > 0,

(3.2) l-<D(x)^(x),

where

(3.3) <D(x) = ^\\ exp (- r2/2) dt,

and

(3.4) </<x) = (2tt) - ll2x-l exp (-x2/2).

Furthermore

(3.5) lim (l-<J>(x))M(x) = 1.
X-.CO

The result (3.5) is shown in Cramer [3, p. 374]. The result (3.2) follows by

differentiation.

Lemma 3.2. If t is so chosen that

(3.6) inf   |i|-a(l-r2(5)) > 0,
OâsSf

and if (Ll) and (1.2) hold, then

lim P{Z(t) > x}lx2la<P(x)t = CllaHa,
X-. CO

where >p(x) is given by (3.4) and Ha by (2.6).

This is Lemma 2.9 of [7].
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Lemma 3.3. Let

(3.7) ^(x,y) = x'exp(-x2/2)

and let

(3.8) x(j8, t) = (2 log ty+ß log log r/(2 log if'2.

Then

(3.9) ^(x(j8, 0, r) ~ 2"'2i"1(log i)-^"'2,

as r-^oo.

Proof. By definition (3.8), x2(j8, 0/2 = log r+^ log log r+^2(log log i)2/4 log í

= log t+ß log log r+o(l), as í -> oo. So

(3.10) exp (-x2(j3, 0/2) ~ ^(log r)"',

as i->co. Furthermore, logx(j8,0=i log 2 +i log log r+log (1 +ß log log r/2 log 0

= | log 2 + ^ log log t + o(l), as í ^oo. So

(3.11) x"(j8, 0 ~ 2"'2(log 0"2,

as r-*co. Combining (3.10) and (3.11), the result (3.9) follows. The lemma is

proved.

Proof of Theorem 3.1. Clearly it is sufficient to prove that for any ß > (1/2 + 1/a),

Xn7ix(ß, ri), only a finite number of times with probability one, where x(ß, t) is

given by (3.8), and A^supn-jgss,, X(s). By Lemmas 3.2 and 3.3, P{Xn^x(ß, ri)}

~2W2(27r)-1/2C1,aA/a«-1(log «)-"+W2, where y = 2/o-1. But then

2 P{Xn 1 x(ß, ri)} < oo   if -ß+ 1/a-1/2 < -1,
n=l

or equivalently, if ß> l/a+1/2. The theorem is proved.

Theorem 3.2. Assume that for every sufficiently small e>0, there exists a y> 1

and a 8, 0 < 6 < 1, such that

(3.12) Urn (log tyD(e, t) = 0,

where

[x2/«f/a]

(3.13) D(e, 0=    2   ([x2,at/a]-k)\r(kax-2la)\exp-x2/(l + \r(kax'2la)\),
k = l

where [x] ii the greatest integer less than or equal to x,

(3.14) /=[x2/a0/a],

and

(3.15) *sx((_l+i_.),,),
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where x(ß, t) is given by (3.8). Assume also that (1.1) and (1.2) hold, and that

(3.16) lim r(0 = 0.

Then

(3.17) pjlim inf (2 log 01,2(Z(i)-(2 log 01/2)/log log t ä -\ + -\ = 1.
I.   (-.oo ¿a)

Before proceeding to the proof, a series of supporting lemmas is given.

Lemma 3.4. Let t(e, m) be a real valued function of the positive real valued argument

e, and the integer valued argument m. Assume that for every sufficiently small e>0,

(3.18) h(e, t(e, m)) = h(2e, t(e, m +1))

for all sufficiently large m, where

= (2 log 01/2 + ( -\+l-E) !og !°g '/i21°B 01'2-

(3.19)

If, for every sufficiently small e>0, Z(t(e, m))^h(e, t(e, m)), only a finite number of

times with probability 1, then (3.17) holds.

Proof. What is to be proved is that for any sufficiently small £>0, with prob-

ability 1 there exists a t0 which is such that

(3.20) Z(0 > h(e, t)

for any t>t0. Let £>0 be chosen arbitrarily but sufficiently small so that the

condition (3.18) of the lemma is satisfied. By assumption, with probability 1 there

exists an integer m0 which is such that, for all m^m0, Z(t(e, m))^h(e, t(e,m)).

But then, Z(0 is nondecreasing and for sufficiently large t, x(t, e) is nondecreasing

in t. We can assume, without loss of generality, that mQ is so large that x(t, e) is

nondecreasing for all t^t(e, m0). Let t be any real number greater than t(e, m0),

and let m be suchthat t(e, m)¿t<t(e, m+l). Clearly m ^m0. Then Z(t)^Z(t(e, m))

^h(e,t(e,m))^h(2e,t(e,m+\))^h(2e,t). So, the result (3.20) holds, provided £

is replaced by 2e. But e was arbitrarily chosen. The lemma is proved.

Lemma 3.5. The condition (3.18) of Lemma 3.4 is satisfied if

(3.21) t(e, m) = exp em.

Proof. It is to be proved that

(3.22) h(e, t(e, m)) - h(2e, t(e, m +1)) = 0,

where h(e, t) is given by (3.19). But
3

(3.23) h(e, t(e, m))-h(2e, t(e, m+1)) = 2  A,
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where

Dy = (2 log t(e, m))ll2-(2 log t(e, m+l))112,

D2 = (|-^+e)((2 log t(e, m+l))-112 log log t(e, m+l)

-(2 log t(e, m))"1'2 log log t(e, m)),

and

D3 = e(2 log r(e, m+ I))"1'2 log log t(e, m+l).

First, consider the term Dy. Clearly (m+l)ll2 — mll2~^m~112 as f-^co. So

(3.24) Dy ~ -iO/m)1'2

as «z -> oo. Consider the term D2. Observe that D2~(%-(l/a) + ¿)(g(m + l)—g(m)),

as w -> oo, where g(«2) = (2£m)-1'2 log em. So for sufficiently large m,

(3.25) Z)2 ~ (2e)-1,2(i-i+eV-^w-3,2log£m + «7-3/2)

as m -> oo. On the other hand

(3.26) A>3 = e(2£(«i+1))"1'2 log e(m+1)

which is, asymptotically, the dominant term. So by (3.23) through (3.26), the result

follows. The lemma is proved.

Lemma 3.6. 7« order that (3.17) hold, it is sufficient that for every sufficiently

small £>0, there exists ay>l such that

(3.27) lim (log t)yP{Z(t) s; h(e, t)} = 0.
¡-.00

Proof. By Lemmas 3.4 and 3.5 and the Borel Cantelli Lemma (Loeve [5, p.

228]), it is sufficient to show that for every sufficiently small e > 0,

00

2 P{Z(t(e, m)) á h(e, t(e, m))} < co;
m=l

where h(e, t) is given by (3.19) and t(e, m) by (3.21). It is sufficient that for any

e>0, for some y>l, limm_œ myP{Z(t(e, m))á«(e, t(e, m))} = 0. Equivalently, by

(3.21) the condition (3.27) is sufficient. The lemma is proved.

Lemma 3.7. Let P() and P'() be two multivariate Gaussian measures assigning

means 0, variances 1, and covariances ri} and r¡,- respectively. Then, for any real

finite c,

|Af max Xt ^ c\-A'imax X% ̂ c\\
\lSiSn J \lSfan j|

(3.28)
úDn=   2 (l-(4)2)-1,2k«-'-»l exp -c2/(l + |4|),

ij=i

where r"j=max (rt), r[¡).
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This lemma was proved by Berman [2], who expressed it in terms of stationary

covariance sequences. The present formulation was given by the author in [6].

Lemma 3.8. For any a, t, 0<a, t<cc, there exists a real finite positive constant

Ha(a) such that

lim P{Zx(t) > x}/x2la<p(x)t = CllaHa(a)/a,
X-.CO

where </>(x) is given by (3.4) and

(3.29) Zx(t) = Zx(o, t),

(3.30) Zx(bx,b2)= max X(iax-2la),
lbix2l"la: SiSlb2x2l<*lal

provided (1.1) and (1.2) hold and

(3.31) inf   |í|-a(l-r(í)) > 0.
OSsât

This is Lemma 2.5 of [7].

Proof of Theorem 3.2. Let £ > 0 be arbitrarily chosen and let 6, 0 < 6 < 1 be

chosen arbitrarily but so that the condition (3.12) is satisfied. Let

Z;(0 =   max Zx(k -1 + 6, k).
lSJcSif]

Clearly, Z(0 is stochastically larger than Z*(0- That is for any x, P{Z(t)rix}

^P{Z'x(t)^x}. So, by Lemma 3.6, it is sufficient to prove that for some y>\,

lim (log 077{Z;(0 Ú h(e, 0} = 0,
(-.00

where x = h(e, t), which is given by (3.19). The proof proceeds in two stages. First,

it is shown that for some y>\,

(3.32) lim (log tyP'{Z'x(t) Ú h(e, t)} = 0,
Í-.00

where P'(-) is the measure which confers independence among the successive half

open (on the left) unit intervals, but is otherwise identical to P '( ■ ). More specifically,

let J^ be the subsigma field generated by (X(t), k-\<f¿k). On every subsigma

field &k,P'()=P(), but on J2; which is generated by (X(t), -co<t <oo), P'() is

the product measure. The second part consists in proving that for some y> 1,

(3.33) lim (log ty(P{Z'x(t) Û h(e, t)}-P'{Z'x(t) ^ h(e, t)}) = 0,

where x=h(e, t), which is given by (3.19).

First, let us prove (3.32). By the definition of P'(),

m

P'{Zx(t) = h(e, 0} Ú \\P{Zx(k-\+e, k) Ú h(e, t)}.
i = l

So -log P'{Z'x(t)úh(e, t)}^-[t] log P{Zx(k-\+e, k)^h(e, t)}. But, if F(x) is

any cumulative distribution function, -log 7'(x)= -log (1 -(1 -F(x))) = (l -F(x))

+ 0(l-F(x))2, as Tïx)-^ 1. The condition (3.16) together with (1.2) implies that
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the condition (3.31) of Lemma 3.8 is satisfied. Taken together with Lemma 3.3,

this implies that there exists a positive finite constant Cy which is such that

-logA'{Zx(0^«(e, 0}^C1'"1(logOe> where x = «(e, t). Thus

-logP'{Zi(0 ^ K*, 0} ̂  d(log0£.

That is P'{Zx(t)úh(e, 0/^exp -Cj(log O6 as t -* oo. So (3.32) holds.

Now (3.33) is proven. By the condition (3.16), and the fact that intervals of width

e are "chopped out", the term (1 — r,2)_ 1/a can be replaced by a constant in applying

Lemma 3.7. The latter, however, establishes that the condition (3.12) implies (3.33).

The theorem is proved.

Theorem 3.3. If either

(3.34) lim ?V(0 = 0,
¡-.00

for some A > 0, or

(3.35) P   r2(0 dt < oo
J — 00

and if (l.l) and (1.2) hold, then (3.17) holds.

Before proving the theorem, a few lemmas are given.

Lemma3.9. Simultaneously for all«îâ 1, if (l.l) and (1.2) hold, for any a,0 < a <oo,

1 2 \r(kax-2'")\ = ^ f \r(t)\ dt + o(ax'2'"),
m k=l L   -¡O

as x -+ oo, where A=max~2/a.

This is Lemma 3.6 of [7].

Lemma 3.10. 7« order that the condition (3.12) hold, it is sufficient that

(3.36) lim A*"1 C \r(t)\dt = 0,
r-co Jo

for some X > 0, and

(3.37) lim r(t) = 0.
(-.00

Proof. Observe that exp (-x2/(l +r)) = (exp (-x2/2))2/(1+r), that, by (3.19),

(3.38) x ~ (2 log 01'2

as /->oo, and by Lemma 3.3, exp —x2/2~t'1(logt)~ß, where ß=(—^+l/a—e).

But

([x2,ar/a]-Â:)exp(-x7(l+r)) g [x2,0!r/a] exp (-x2/(l+r))

~ 21/aa-1r(log O1"** "2,(1+r)(log 0"2i'<1+r)

g 21'aa-1r(log01/ar_2'(1+r>

= 21'aa-1r-1(log01'a'2r/(1+r)       as i-^co.
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So
[x2l«tla]

(log t)yD(e, t) ~ 21/aa-1Z-1(log ty + lla   2    \r(kax-2la)\t2Wkax-2"'mi + ̂ kax-Va^

k=l

where / is given by (3.14). Let t0 be an arbitrary positive finite real number. Then

(logOr7X£, 0= Dx(e,t) + D2(e,t),

where Dx(e, t) is the same as (log t)vD(e, t) except that the sum is from / to

[x2lat0/a]. By (3.37), all of the terms \r(kax~2la)\ are less than 3(0), where, for

any s, 0<s<co, by (3.37), S(j)=.supsâi<c0 2|r(s)|/(l + |r(j)|)< 1. So for any fixed

r0, and any Clt 21""a-1<C1<oo,

Dx(e,t) ¿ C1S1(c7Xlog07 + 1,a'(2i(9),a + d<e),)~1*2,<7ö

for all sufficiently large t. So

(3.39) lim DAe, 0 = 0.
[-.CO

Let A>0 be chosen arbitrarily, but so that the condition (3.36) is satisfied, and let

r0 be so chosen that 8(t0)< X. By (3.39), it is sufficient to prove that lim,^ D2(e, t)

= 0. But, clearly, there exists a constant C2 such that

[*2"»i/a]

D2(e,t)^C1(\ogty + 1¡atx'1    2    V(kax-2la)\
k=l

[x^l'tla]

úC2(\ogty + 2lat\x2i«t/a)-1    2    \r(kax-2la)\.
k = i

But, by Lemma 3.9,

limsupix^r/a)-1    T     \r(kax~2la)\   [T-1 \    \r(t)\ dt) <: I.
*-» JTl I \ Jo I

So, it is sufficient that there exist a A' > 0 such that

(3.40) lim T^'-Hlogr)^2'* i*   |r(0| dt = 0,
r-oo Jo

and that (3.37) hold. But for any A'>0 which satisfies (3.40), there is a A>0 which

satisfies (3.36). The lemma is proved.

Lemma 3.11. 7/(3.35) holds, then (3.37) does.

This is Lemma 4.8 of [6].

Proof of Theorem 3.3. By Theorem 3.2 and Lemma 3.10, it is sufficient to prove

that the conditions (3.36) and (3.37) hold, if either (3.34) or (3.35) does. By Lemma

3.11, if (3.35) holds then (3.37) does. Clearly (3.34) implies (3.37). Now it must be

proved that for some A>0, (3.36) holds.

First assume that (3.34) holds. In particular, let A be so chosen that it does. Let
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£>0 be arbitrarily chosen. Then there exists a t0, such that if ?^r0, r(0 = «i~A

Clearly

(3.41) AA"X f |r(0| dt = A*"1 f° |r(0| dt + T^1 f |r(0| ¿i.
Jo Jo Jta

But, if A< 1, as can be assumed without loss of generality,

lim A^1 f° \r(t)\dt = 0.
T^to Jo

Consider the second term on the right side of (3.41).

A*"1 f \r(t)\dt á ¿A*"1 C rxdt
•¡to Jto

= £AA-1(A1-A-/J-A)(l-A)-1^e(l-A)-1,    as A^oo,

provided A< 1. But e>0 was arbitrarily chosen. So (3.34) is sufficient for (3.35).

Now assume that (3.35) holds. By the Cauchy-Schwarz inequality

A^1 f   \r(t)\dt ÚT^T-1 [  r2(t)dt\    ->0,    as/

if A< 1/2. The theorem is proved.

Theorems 3.1 and 3.3 can be combined to give the following.

Corollary 3.1. If (1.1) and (1.2) hold, and either (3.34) or (3.35) holds, then

p\lim inf (2 log 01,2(Z(0-(2 log 01,2)/log log t
{.   t-.cc

è --\, lim sup (2 log 01/2(Z(0-(2 log 01,2)/log log t á - + \\ = 1,

where Z(t) is given by (1.3).

Proof. Observe that x(ß, t) given by (3.8) is monotonically increasing. So X(t)

is bounded by x(ß, t) for all sufficiently large t if and only if Z(t) is. So X(t) can be

replaced by Z(t) in Theorem 3.1. Obviously (3.34) implies (3.37). By Lemma 3.11

(3.35) implies it as well. This is sufficient to guarantee that

inf \t\-a(l-r2(t)) > 0.
OSfSl

The corollary is proved.

The remarks at the end of §2 pertain to this section as well. In fact, all of the

conditions which have been found to be sufficient for (2.1) are sufficient for (3.34)

as well.

For the case a = 2, the result of Theorem 3.1 is the same as that given by Shur [8].

The result of Theorem 3.3 is stronger. His conditions are the same as those given

by Cramer [4], which are the same as the condition (3.34).
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It is strongly conjectured that the inequality signs can be replaced by equality

signs in the results of Corollary 3.1. Watanabe asserts that this is so in the first of

these inequalities as a corollary to a very interesting result which he announces in

[10]. The referee has pointed out that the mutual singularity of any two processes

having different values of either a or C, is an immediate corollary of this conjecture.
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