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ABSTRACT

Some asymptotic properties of the nonoscillating solutions of operator-
differential equations of arbitrary order are investigated.
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1. Introduction

The goal of the present paper is, by means of a single approach, to investigate some
asymptotic properties of the nonoscillating solutions of differential equations with “maximum”,
with distributed delay, with autoregulable deviation, with integro-differential equations, and with
other properties. To realize this single approach, an operator with certain properties is
introduced, as well as appropriately chosen operator-differential equations and inequalities. In the
paper, some results obtained in {2]-[4], [6], [7], [10], [11] are generalized.

Each of the concrete realizations of the operator introduced generates a class of differential
equations which find application in the theory of optimal control, theoretical physics, population
dynamics, pharmacokinetics and economics.

We shall note that the ordinary differential equations with “maxima” (where the operator A

considered has the form (Az)(t) = m<[1:c(t)(atv](s)) are still seldom studied. On the other hand, such
s & (g(t)

equations arise, for instance, in the mathematical simulation of some systems with automatic
regulation. We shall illustrate the above by an example - a mathematical model of a system for
automatic regulation of the voltage of a constant current generator ([5], [8]).
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The object regulated is a constant current generator with parallel stimulation. The quantity
regulated is the voltage between the clamps of the generator which feeds an electric circuit with
various consumers. External disturbances f(¢) occur under a change of the consumption of
electricity in the circuit or under a change of the normal angular velocity of the rotor of the
generator. They cause an undesirable deviation of the voltage u(t) from the previously fixed
regime ug = const. The automatic regulator is intended to maintain a constant voltage u, under
external disturbances. It consists of a measuring device and of a regulating device which are
connected in series. Under a deviation z(t) of the voltage from the fixed stationary regime uy, the
regulating device (rheostat) changes the resistance v of the stimulating circuit. Then as a result
of this correction 6 = A7, the voltage produced returns to the stationary regime u.

The dynamics of the process of regulation of the voltage is described by the equation
Toz'(t) +z(t) = — kob(1) + f(2)
where x(t) is the deviation of the voltage from the given regime uy, T, is a constant of time
dimension which depends on the inductivity of the stimulating circuit and on the static

characteristics of the generator, &, is the amplification factor of the object, and f(¢) the external
effect.

On the other hand, the equation of the “ideal” regulator which corresponds to the maximal
deviation of the voltage in an interval of time A has the form

8(t) = Ky - maz{x(s),s € [t — h,t]}

where k, is the amplification factor of the regulator. Then the equation of the system for
automatic regulation of the voltage of a constant current generator takes on the form

Tox'(t) + x(t) + Kok - maz{z(s),s € [t —h, t}} = f(1).

2. Preliminary Notes

Consider the operator-differential equation

(70 1D, 2O Lro(Dz(@)]. . Y +6F(t, (Az)(t)) = b(2) (1)

for t > 1;, where {;€ER is a fixed number, n > 1 is an integer, A is an operator with certain
properties, § = + 1 and

ri € O™ ([t 00%5(0,00)), i=0,1,..n—1, b€ C([tg,00)R).

Introduce the following notation:
(Loz)(t) = 7o(t)z(2)

(Lgz)(t) = 7,(D[(L; _2) ()], 1 < i <my7 (1)

Ml

1,

where z: [T ,00)—-R, T >.t,.

Denote by 9D the set of all functions z € C([T,,o0),R) such that the functions L
(0 <7< n) exist and are continuous in [T, 00).
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Definition 1: The function z is said to be a solution of equation (1) if z € D, and x satisfies
equation (1) for ¢t > max{T,,T 4,.}.

Definition 2: A given function u:[ty,00)—R is said to eventually enjoy the property P if there
exists a point tyuZlo such that for ¢ > by u it enjoys the property P.(See note from proofer)

Definition 3: The solution ¢ of equation (1) is said to be regular if sup{|z(¢)}} > 0 event-

ually.

Definition 4: The regular solution z of equation (1) is said to oscillate if sup{t,z(t) =0} =
oo. Otherwise, the regular solution z is said to be nonoscillating.

Introduce the following conditions:

Hl:
H2:

H3:

HA:
Hb:
H6:
HT:

HS:

H9:

T, €C"” i([to, 00);(0,00)),0 < i < n.

6= +1.

[ee]
T‘_i(tt):oo,lgign—-l.
2

b€ O((tg, )i R).

A: D, —C([T 4, 00);R), T 4, > 1.

If u,v € D, and u(t) < v(t) for t > t,, then (Au)(t) < (Av)(t) for t > T 4,.
fu,ued, (p= 1,2,...) and {u,}7°_ ; is a monotone sequence and I!Lr&up(t) =
u(t) for ¢ > t,, then lim (Au,)(t) = (Au)(t) for each t > ¢,

If ue D, and the function u is eventually of constant sign and nonzero, then the
function Au is also eventually of constant sign and nonzero, and they have the same
sign.

FGC([tO,oo)X(R+ UR—))7R+ =(0,00),R_ = (~00,0).

Lemma 1 [11]:  Let the following conditions hold:

1.
2.
3.

Conditions H1 — H3 are met.
r€D,,x(t) >0 for t >T (T > t,).
(L, z)(t) is of constant sign in [T, c0).

Then there exists an integer € such that:

1.

2.
3.
4.

For (L,x)(t) <0, n+¢€ is an odd number.
For (L,x)(t) >0, n+ € is an even number.
(- L) &) >0 for t<n—1, j=b..,n—1; 1> T.
(Liz)(t)>0 forl>1,1<i<e—1,t>T.

Lemma 2 [11]:  Let the following conditions hold:

1.
2.

3.

Condition H1 1s satisfied.
0 <liminfr(t)<limsuprt(t) <oo,1<i<n-—1.
t—o0 t—o0

z€D,.

Then, if one of the following two conditions hold:

1.
2.

Loz ts a bounded function in [T, c0) andtlim (L,z)(t)=0.
—00

L,z is a bounded function in [T,00) andtlirgo(LO,w)(t)ER, then tlirgo(Lix)(t) =0,
1<i<n-—1.

For any function y € C([T,00);R) and for any integer ¢, 0 < £ < n define the function
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( o< o0 oQ
1 / 1 / 1 / / dsd dsyd
y(s)dsds,, ..ds,ds
@ e | o) wme, ) 2
t 51 Sn—2 Sn—1
for £=10
o0
0 = I / / o ke oS
t) = s)ds...dsyds ...ds,ds
(p7y)(2) TO(t) T1(s1) ) To(s5)" 7_2 TZ+1(82+1) ) y(s) 70 -1 2%°1
n—1
for0<f<n-1
t 51 Sp—2 Sn—1
L / / / / (s)dsds,, ds,ds, for L =n
To(t) ) T1(s To(s2)" Tn— 1(3n ~1) () i
{ T T
3. Main Results
Theorem 1: Let the following conditions hold:
1. Conditions H1-H9 are met.
2. There exists a function w defined in [ty,00) such that w € D, and (L, w)(t) = b(t).
3. The function Lyw is bounded below in the interval [y, c0).
4 There exists a positive solution y of the inequality
6(Lyz)(t) + F(t,(Az)(2)) <6 -b(1) (2)
such thattll'ﬂ)inf(ljoy)(t) > 0.
5. F(t,u) >0 for (t,u)€[ty,00)xR and F(t,u) is an increasing function with

respect to u €R

Then there exists a positive solution z of equation (1) with the following properties:
1. tlim inf(Lyr)(t) >0
- 00

2. z(t) < y(t) eventually. (3)

Proof: Let y(t) >0 be a solution of inequality (2) in the interval [Ty, 00) (T >1t,) and
ltim inf(Lgy)(t) > 0. Then (Ay)(t) > 0 eventually.
00

Introduce the following notation:

wy(t) = w(t) ~ ( )lzm inf(Lyw)(t)

u(t) = y(t) — wo(t)-
Then 0 < F(t,(Ay)(t)) < — (L, u)(t) eventually, i.e. the function (L, u)(t) is of constant sign

for t > T,. Hence the function Lyu is monotone in [T, 00). This fact implies the existence of
lim (Lou)(t) € RU{ —~ o0, + oo}
—_o0



Asymptotic Propertis of the Solutions of a Class of Operator-Differential Equations 557

But tlim (Lou)(t) :tlim inf(Lyy)(t) > 0. Thus we obtained that u is an eventually positive
— 00 —00
function. Let [r,00), 7 > T, be the largest interval in which the function u is positive.

From Lemma 1 it follows that there exists an integer £ (0 < £ < n) such that
1. n+ € is an odd number for é = 1.
2. n+ £ is an even number for 6 = — 1.
3. (- )£+J(Lu)(t)>0for2<n—l,]_€ an—1;t>7.
4 (Lu)()>0f0r€>11<z<£—1,t>7' >,

Introduce the following notation:

T for £ =0 orl=1
T =
™ for £ >1
fim (Lyu)(0), =0
K =
(Lou)(T), ¢>0.

From condition H1 and the fact that the function u is eventually positive it follows that
k> 0. From (2) we obtain that — & < (Lgw,)(t) eventually, i.e. ( )+ wy(t)y>0for t > 17T.

After a repeated integration of inequality (2) we obtain that
y(2) 2 Hs 4 w(t) + (o (F (- AW)(O)
Let X be the set of all continuous functions z for ¢ > T such that
et S #(t) < w(d).

For any function z € X define the function Z (¢):

® z(t), t>T
T(t) =
% y(1), T,<t<LT.

From the definition of Z (1) it follows that

+wy(t) <F (1) <y(t), t>T,.

0 <
Define the operator S: X —F by the formula
(5z)(1) = ( RO (PE(P(-, AT ))(®)

where E is the set of all continuous functions in [Ty, 00).
The inclusion SX C X is valid since:
1. From the definition of the operator S it follows that

( Syt e < (S0, 12T,
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2. From condition 3 of Theorem 1 and condition H6 we obtain that
y(t) > (Sz)(1).

Let z;,z, € X and 0 < z,(t) < zy(t). From the definition of the operator S it follows that
0 < (Szy)(t) < (Sx,)(t) for t > T, i.e. S is a monotone increasing mapping of the set X into
oo

itself. Let {z,(t)|, - be a monotone decreasing sequence of elements of the set X for ¢t > T
obtained by the following recurrent formula:

xo(t) = y(t), t>T

n(t) = (Sz, 1)), t2T. (4)

Let lim z,.(t) = x(t) for t > T. Then lim (Az,)(t) = (Az)(t). From the Lebesgue dominated
convergence theorem we obtain that lim (Sz,)(t) = (Sz)(f) for t > T. But from (4) it follows
that lim (Sz,)(t) = z(t). Then we obtain that (Sz)(t) = z(t), i.e. z(t) is the positive solution
sought of equation (1) such that tlirgoinf(Lox)(t) > 0, z(t) < y(t) eventually. O

Theorem 2: Let the following conditions hold:

1. Conditions 1 and 2 of Theorem 1 are mel.

2. The function Lyw is bounded above for t > .
3. There exists a negative solution y of the inequality

8(Lpz)(t) + F(t,(Az)(1)) 2 6b(1)

such that lim sup(Lyy)(t) < 0.
t—o0

4. F(t,u) <0, (t,u) € ([ty,00) xR _), F(t,u) is an increasing function with respect to
ueR_.

Then there exists a negative solution & of equation (1) with the properties:
1. tlim sup(Lyz)(t) <0
—00

2. z(t) > y(t) eventually. (5)
The proof of Theorem 2 is carried out along the scheme of the proof of Theorem 1.

Theorem 3: Let the following conditions hold:

1. Condition 1 of Theorem 2 is mel.
2. There eziststlim (Low)(t) € R.
= OO

3. F(t,u) > 0 for (t,u) € [tg,00) xR, (F(t,u) <0 for (t,u) € [ty,00) x R_).
Then each positive (negative) solution of equation (1) enjoys the property

lim (Lyz)(t) € RU{ — 00, + 00} (6)

t—oo

Proof: Let z be a positive solution of equation (1) in the interval [T, c0), T > t,.

Introduce the notation:

wo(t) = w(t) —;(—jm lim (Low)(t)
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u(t) = z(t) —wy(t),t > T.

Then (L,u)(t) = —6F(t,(Ax)(t)), i.e. L,u is of constant sign in the interval [T,00). This
implies that Lyu is a monotone function for ¢ > T, i.e. there exists

tl_z;rgo(Lou)(t) €RU{— o0, + c0}.

But tlim (Lgu)(t) :tlim (Lgx)(1), i.e. there also exists tlim (Lox)(t) € RU {— o0, + 0}.
—00 —00 o0

Theorem 4: Let the following conditions hold:
1. Conditions 1, 2 and 5 of Theorem 1 hold.
2. There exists a positive solution y of the equation

(Lne)(t) + 6F (1, (Ax)(t)) = 0 (7)
such thattlirgo([/oy)(t) > 0.
Then there exists a positive solution & of equation (1) with the properties:
1. t&r&(Lox)(t) > 0,
2. z(t) < y(t) eventually.

Proof: Let y be a positive solution of equation (7) in the interval [Tj,o0), Ty > t, and
tlim (Loy)(t) > 0.
—00

Introduce the notation:

wo(t) = w(t) — =L lim (Lgw)(1)
To(t)t 0o

u(t) = y(t) + wy(t).

Thentlim (Lou)(t) :tlim (Low)(t) > 0.

Choose a constant C such that 0 < C <tlz'm (Lou)(t). Let us choose T' > T so that for ¢t > T,
—r 00
(Lou)(t) > C, (Lqwy)(t) <C.  Then for the function u(t)= u(t) _7% we obtain that
0
0<u(t)<y(t), L2 T.

Cousequently, @ (t) > 0 is a solution of the inequality

8(L, 7 )(1) + F(t, (A7 )(1)) < 6b(1).

Moreover, tlim (Lou )(t) :tlim (Lou)(t) > 0. From Theorem 1, it follows that there exists a
—00 —0O0
positive solution z of equation (1) such that tlim (Lgx)(t) > 0, x(t) <u(t) < y(t) eventually. O
—00
Theorem 5: Let the following conditions hold:

1. Conditions 1 and 2 of Theorem 3 and condition 4 of Theorem 2 are met.
2. There exists a negative solution y of equation (7) such that tlim (Loy)(t) < 0.
—00

Then there exists a negative solution x of equation (1) with the properties:
1. 1’lim (Lgz)(t) <0



560 A. AKCA, D.D. BAINOV, and M.B. DIMITROVA

2. z(t) > y(t) eventually.
The proof of Theorem 5 is carried out along the scheme of the proof of Theorem 4.

Consider the operator-differential equation

[m7 - 1(Dl75 _ 2O Lo (Dz@)]. . JTT + 6F (2, (Az)(2)) = 0

where 7 € C"—i([to,oo);R+), 0<i<n-1

Introduce the following notation:
(Loz)(t) = m5(1)x(t)

(L)1) = 75 OULT - 2)(O)) i = 1,2, 75(1) = 1.

Theorem 6: Let the following conditions hold:

. 4t —o 1<i<n—1.
T:‘(t) P ==
2. Ti(t) <7,(t) fort >t;, 0<n—1.
3. Conditions H1-H9 and condition b of Theorem 1 are met.
4. There exists a positive solution y of equation (8) such thattlim (L3y)(t) > 0.
—00

Then there exists a posttive solution x of equation (7) with the following properties:
1. tlim (Loz)(t) >0
OO0

2. z(t) < y(t) eventually.

(8)

(9)

Proof: Let y be a solution of equation (8) in [Tj,00) for Tj >t, and tlim (Lgy)(t) > 0.
—00

Consequently,
(Lry)(t) = —86F(t,(Ay)(t)) i.e. (Lyy)(t)>0for 6 = —1 and

(Lyy)(t)<O0for 6=1,1t>T,.

From Lemma 1 it follows that there exists an integer £, 0 < ¢ < n such that n+ € is an odd

number for 6§ = 1, n+ £ is an even number for § = — 1 and
(=D L)1) >0, t> T, t<n—1,8<j<n-1

(Liy)(t)>0,t>T,, T, >Ty, €>1,1<i<l-1.

Introduce the following notation:

Ty, =0 orf=1
T =
Ty, £>1
fim (Loy) (), =0

(Loy)(T), £>0.



Asymptotic Properiis of the Solutions of a Class of Operator-Differential Equations 561

Then for ¢t > T we obtain that

y(t) > =+ (b F (-, Ap))().
To(t)

But from condition 2 of Theorem 6 it follows that

w1 > o+ (l(F (-, An)().

To(t
Consider the set X of all continuous functions @ in [T',00) such that — 'zt) < z(t) < y(t) and
define 0
z(t), t>T
Z(t)=
z(T)
SO, To<t<T

for each function =z € X.

Define the operator 5: X—C([ty,00);R) by the formula

(Sa)(t) = 25 + (LF (-, Az ))(0).

It is immediately verified that

B~ < (Sz)(t) S y(t), t > 1y, ie. S X—X.
To(1)

Let 2,2, € X and z(t) < x,(t), t >T. Then

—_

(Sz,)(t) < (Szy)(t), t > T.

Consider the convergent sequence {xz, (¢)}7°_ ¢, ¢ > T such that

k=0
zo(t) = y(t)
z, (t)=(Sz,_{)(t), k=1,2,....

Thus the sequence {z (t)}3°_, is decreasing for t>T. If a(t)=lim z,(t) then from the

Lebesgue dominated convergence theorem it follows that xz(¢t) = (Sz)(t), i.e. « is a positive
solution of equation (7) with the properties (9).

Theorem 7: Let the following conditions hold:
1. Conditions 1, 2 and 3 of Theorem 6 and condition 4 of Theorem 2 are met.
2. There erists a negative solution y of equation (8) with the properties

. *
Jim (Loy)(t) <0.
Then there ezists a negative solution x of equation (7) with the following properties:
1. tlim (Loz)(t) <0,
—0

2. z(t) > y(t) eventually.

The proof of Theorem 7 is carried out along the scheme of the proof of Theorem 6.
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Theorem 8: Let the following conditions hold:
1. Conditions H1, H2, H4-H9 and condition 5 of Theorem 1 are met.
2. There exists a positive solution y of the inequality

8(Lpz)(t) + F(t,(Az)(2)) < 0
such that tILrgo(LOy)(t) > 0.
Then there exists a positive solution x of equation (7) with the following properties:

fim (Lo)(t) >0
0 < (L;z)(t) < (Ly)(t) eventually, 0 <i<€-1,¢>1 (10)
0< (- 1)£+'(L z)(t) < (- 1)£+’(L y)(t) eventually, €<i<n-1, €<n—1, where € is an
integer, 0 < €< n, such that n+ € is odd for 6 =1 and n+ & is even for 6 = — 1.
Theorem 8 is a corollary of Theorem 1 and Lemma 1.

Theorem 9: Let the following conditions hold:
1. Conditions H1, H2, HA-H9 and condition 4 of Theorem 2 are mel.
2. There exists a negative solution y of the inequality

§(Ln2)(0) + F(t, (A2)(1)) > 0
such thattﬁrgo(LOy)(t) <0.
Then there exists a negative solution z of equation (7) with the properties
(L;y)(t) < (L;x)(t) eventually, £>0,0<i<l—1
lzm( o®)(t) <0 (11)

(— 1)€ + z'(Ll-y)(t) <(~- l)é + i(Liz)(t) <0 eventually, £ <n—1,€<i<n-—1 where € is an integer
(0 < €< n) such that n+ € is odd for § =1 and n+ € is even for § = — 1.

Theorem 9 is a corollary of Theorem 2 and Lemma 1.

Theorem 10: Let the following condition hold:
1. Conditions 1, 2 and 3 of Theorem 1 are met.
2. There exists a positive solution y of equation (1) such thattlim inf(Loy)(t) > 0.
—00

Then there exists a positive solution © of equation (7) with the following properties:
1. lzm( o®)(t) >0

2. z(t) < y(t) eventually. (12)
Proof: Let y be a positive solution of equation (1) in [T, 00), Ty >t, such that lim
. t—oo
inf(Lyy)(t) > 0.
Introduce the following notation:

wo(t) = w(t) = 5 () Jim inf(Loy)(?)
v(t) = y(t) — w(t)-
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Then tlir(r)zo(LOv)(t) :tlirgoinf(LOy)(t) > 0. From the fact that tlim (Lgv)(t) > 0 it follows that
— — —00
we can choose a constant C such that 0 < C < tlz'm (Lov)(t). Choose T > T, so that for
—00

t > T the following inequalities are valid

(Lw)(t) > C >0 and (Lyw)(t) > —C.
If we denote ¥ (v) = v(t) —T—%—) for t > T, then we obtain that
0

0<w(t)<y(t), t>T.

Then 6(L,v)(t)+ F(t,(Av)(t)) <0. Since tﬁr&(Loi )(t) :tlirgo(LOU)(t) — C >0, then from

Theorem 8, it follows that there exists a positive solution z of equation (7) for which
tlim (Loz)(t) > 0 and z(t) <o (t) < y(1).
00

Theorem 11: Let the following conditions hold:
1. Conditions 1, 2, 3 and 4 of Theorem 2 are valid.
2. There exists a negative solution y of equation (1) such thattlim sup(Lgyy)(t) < 0.
—+00

Then there ezists a negative solution x of equation (7) with the following properties:
1. tlim (Loz)(t) <0,
—00

2. z(t) > y(t) eventually.

The proof of Theorem 11 is carried out along the scheme of the proof of Theorem 10.

4. Some Particular Realizations of the Operator

1. Let (Az)(t) = maz z(s), where Mh(t) = [p(t),q(t)] is a compact subset of the interval
Se t
[tO,OO), t Z t() and tl—argop(t) = 00, p(t) S q(t) fOI‘ t Z tO’ D, q € C([tO’OO)aR)

We shall prove that for the so defined operator condition H5-H8 are satisfied.

In fact, if 0 <z(t) <y(t) for t>1t, then it is immediately verified that 0 < (Az)(t) =
maxr  z(s) = mazx s) = (Ay)(t) and z(t)(Az)(t) > 0 for t > ¢,
o, #6)= map 3(6) = (49)(D) and (0420 > 1y

Let z,z, € C([tg,00);R), £ = 0,1,..5 z,(t) < 2(t) or z,(t) > z(t) and lim z,(t) = (i).

We shall prove that lim| maz x (2)|=maz z(s).
K09 5 e M(t) S € M(t)

To this end, we shall use the inequality

ez, w0 =mas ()< map [x(6)=u(s)) (o 9.

From the fact that z,(t) — (t) for t > 14 it follows that for each ¢ >0 there exists kg >0
such that if £ > kg, then |z, (t) —z(t)| <efor t > ¢,
Then

|Zréafm(t)x"(s) —snéaﬁb(t)x(s) |
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_ sn‘éaj%(t)arn(s) —snéaj%(t)z(s), z, (1) > =(t)
mas ()= oz (), ealt) < 2(1)

snéaj'ﬂ)(t)[xn(s) —z(s)] < ¢

IA

srréaj'ﬂo(t)[x(s) -z (s)]<e

If 2€D,, then Az € C([T 4,,00);R) (cf. [1]).

Example 1: Consider the differential equation

-1 ' 1,-3 — _ 42
(t7 2'(1)) +5t ser[rtu_z_rl’t]x(s).- 174 t>1 (13)

and the differential inequality

-1 ;r ;1,3 -2
(t ™ 2'(t)) + 5t . er[,tuixl,t]x(s) < —t7* t>1. (14)
Here (Az)(t) = \ 67[7}(1 ] t]x(s). The functions 74(¢) = 1, 7,(t) =t 71, F(t,u) = %ut =3 satisfy the

conditions of Theorem 1 and y(¢) =4t >0 is a solution of (14). Then there exists a positive
solution z of equation (13) with the properties of (3).

For instance, x(t) = 2¢ is such a solution.

Example 2: Consider the differential equation
t= () +1¢-3 =172 t>1 15
(WY +§70 man e =17 (15)
and the differential inequality
=)y +1¢-3 >t72 1> 1. 16
(1) +57% ez o(0)> 077 0> (16)
Here (Az)(t) = r{7;tam+ 1]:c(s). The functions 7y(t) = 1, 7(t) =t~ 1, F(t,u) = %t =3y and b(t) =
s €|t t
t=2, w(t)= —tfor t > 1 satisfy the conditions of Theorem 2 and y(t) = —4t < 0 is a solution of

(16). Then there exists a negative solution = of equation (15) with the properties (5). For
instance, z(t) = — 2t is such a solution.

Example 3: Consider the differential equation

[e ™ e ™ [ Te'z(t)] 1Y ~ e~ Sts maz | t]x(S) =0,t>1 (17)

and the differential inequality

[e = e ™ 2e ™ Helx()]]]T — 4e ™3 max z(s)>0,t>1. (18)
selt—1,t]
Here (Ax)(t) = ren[aix . t]x(s). The functions 7y(t) =ef, 7,(t)=73(t) =e™ %, 7,(t) =%,

F(t,u) = 4e 7 3% and M(t) = [t — 1,t] satisfy the conditions of Theorem 8§ and y(t) =e*" is a
solution of (18) such that tlim (e'-et!) = co. Then there exists a positive solution = of equation
— 0
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(17) with the properties (10). For instance, 2(t) = e is such a solution.

Example 4: Consider the differential equation

[e ™ e~ 2 e~ Yetx(D)))]] — 4e ™ ite?tl,atw+ 1]ats(s) =0,t>1 (19)

and the differential inequality

[e e 2 e~ etz (t)]]]) — 4e _:te T[Ttl,%ﬂ 1]ar(s) <0,t>1. (20)

Here (Az)(t) = m[axt 1]1:(5). The functions 7y(t) = e, 7(t) = et r(t) =e ™2, 73(t) =e Y,
se(t,t+

F(tu) = 4e ~3u satisfy the conditions of Theorem 9. Moreover, y(t) = —e* is a solution of

inequality (20) such that tlim (Loy)(t) < 0. Then there exists a negative solution z of equation
—00

(19) with the properties (11). For instance, z(f) = — e’ is a solution of equation (19) for which
tlz'm (Lgx)(t) = — 0.
—00

For n =4 and § = — 1 we obtain that £ = 2. Then it is immediately verified that
(Liy)(t) < (L;z)(t) <0, i=0,1

(- FHLy)(0) < (~ 1P Fi(La)() <0, i=2,3; (> 1.

Example 5: Consider the differential equations

1y =1 Nt __934—5 — _94—3
[t [t~ 2'()]] — 3¢ ' [rtn_a:ln',t]a:(s) 3 t>2 (21)
=1y =1 1 __94—35 —
[Tt~ 2’ (D)) -3¢ , er[?(ixl’t]m(s) 0, t>2. (22)
Here (Ax)(t) = \ er[rtuiacl t]x(s). The functions 74(t) = 1, 7,(t) = 75(t) =t !, F(t,u) =3t °u,

2
b(t) = 3t =3, w(t) = %[t2lnt~%] satisfy the conditions of Theorem 10. Moreover, y(t) =t >0 is
a solution of equation (21) such that inf y(t) =4 > 0. Then there exists a solution z of equation
t>2

(22) with the properties (12). For instance, z(t) =t is a solution of equation (22) for which
Jim (Loz)(t) = oo and z(t) = t < t2 = y(t) for t > 2.
—00

2. Let (Az)(t) = z(g(¢)), where g € C’([to,oo);[R),tlim g(t) = oo.
—00
It is immediately verified that for the operator considered conditions H5-H8 are met.

Example 6: Consider the differential equation
[e ™ et/ ()] +2¢ ~ Ha(2t) =2, t>2 (23)
and the differential inequality
[e™ e~ '/ (O] +2¢ Ha(2) <2e 7, 1> 2. (24)
Here (Az)(t) = z(2t). The functions 7o(t) = 1, 7,(¢) = 7(t) = e~ %, w(t) =t, F(t,u)=2e — Aty

and b(t) = 2¢ ~ %! satisfy the conditions of Theorem 1. Moreover, y(t) = te! is a solution of
inequality (24) such that tlim infy(t) > 0. Then there exists a positive solution z of equation
— 0

(23) with the properties (3).
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For instance, z(t) = e is a solution of equation (23), for which tIim inf(Lyz) (t) >0 and
z(t) = ¢! < te' = y(t) for t > 2. —00

Example 7: Consider the differential equation
[e et/ ()] + 2~ Ha(2t) = =2 H, t>2 (25)
and the differential inequality
[e et/ (8)]') +2¢~ 4a(2t) > —2 2%, t>2. (26)
Here (Az)(t) = z(2t). The functions 7o(t) = 1, 7,(t) = 75(t) = e ™%, w(t) = —t F(t,u) = 2¢ ~ *u,

b(t) = —2¢ ™2t satisfy the conditions of Theorem 2. Moreover, y(t) = —te* is a solution of
inequality (26). Then there exists a negative solution z of equation (25) with the properties (5).

For instance, z(t) = — e’ is such a solution.

Example 8: Consider the differential equation
[t~ 22(t))) +t ~Se(3t®) =6t 1, t>1. (27)
Here t = 2(312). The functions w(t) = 2t, b(t) =6t~ 4, F(t,u) =t % >0 for ueR i

, and Tl(t) =t~ ! satisfy the conditions of Theorem 3. Then each positive solution of
equatlon (27) enjoys the property (6). For instance, z(f{) =t is such a solution for which

1im = = .

t—o0 ¢

Example 9: Consider the differential equation
[e ™ Helz(t)]']) — 2e ~tx(2t) =0, t>2 (28)
and the differential inequality
—le" ete(D)]] + 2¢ ~te(2t) > 0, t>2. (29)

Here (Az)(t)==z(2t). The functions 74(t)=c¢', 7,(t)=e™ % F(t,u)=2e"'u satisfy the

conditions of Theorem 9. Moreover, y(t) = — e*! is a solution of inequality (29) such that
lzm( o¥)(t) = —oo. Then there exists a negative solution z of equation (28) with the properties
(11).

For instance, z(t) = — e’ is such a solution.

Example 10: Consider the differential equations
=2t @)y -4t~ T2(t) = —4t =3, t>1 (30)
[t 24t~ e ()])) — 4t~ Te(tH) =0, t > 1. (31)

Here (Az)(t) = z(t?). The functions () =1" L To(t) = t=2 F(t, u) =4t~ Ty, b(t) = —4t ™3,
and w(t) = —t3 satisfy the conditions of Theorem 10. Moreover, y(t) = {? is a solution of equatlon

(30) such that tlzm infy(t) > 0. Then there exists a positive solution z of equation (31) with the
—00

properties (12).  For instance, z(t)=1>0 is a solution of equation (31) for which
Jim (Lyz)(t) = oo, ety =t <t*=y(t), t > 1.
—00
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t
3. Let (Az)(t) = [ x(t,s)z(s)ds where a is a positive constant, x € C([t, + a,00)?; (0,00))
t—a
and there exists a constant ¢ > 0 such that «(¢,u) < ¢ eventually.
We shall prove that for the operator consider conditions H5-H8 are met.

If 0 < 2(¢) < y(t), then
t

(A(t) = (Aa)(1) = [ w(t2)y(s) = a()ds 2 0.

t—-a
It is immediately verified that conditions H5 and H9 hold. Let

z, 2 €D, £=0,1,.., limz, (1) = z(t), i.e for any ¢ > 0

and each fixed number ¢2> 1, there exists x; >0 such that for x>, we have |z (t)—
z(t) | <za

Then
Jira (Ao, )(0) = (Az)(0)
Example 11: Consider the differential equation

t

2
e~ etz (O] + / e* " te(s)ds = 62_216t, t>1 (32)
t—-1 ¢
and the differential inequality
t
2
e e t2'()]] + / e* " tx(s)ds < 62_216t, t>1. (33)
€

t—1

t
Here (Az)t)= [ e°~ tm(s)ds. The functions 74(t) =1, 7(t)=79(f)=¢" t F(t,u) =,
t—1

k(t,s)=e* "t and w(t) = 622_216:” satisfy the conditions of Theorem 1. Moreover, y(t) = te' is a
solution of inequality (33) sush that tlirgoinf(LOy)(t) > 0. Then there exists a positive solution z
of equation (32) with the properties (3).
For instance, z(t) = e’ is such a solution.
Example 12: Consider the differential equation
t

[e = e t2'()]] + / e* " lr(s)ds = 12;262et, t>1 (34)

t—1
and the differential inequality

e e~ @O + [ & ta(s)ds > L=t 121, (35)

t
Here (Az)(t)= [ e¢*~'z(s)ds. The functions 74(t)=1, 7(t)=7y(t)=¢" tOF(tu) =u,
t—1

2 2 e
Kty s) =S~ H< 1, b(t) =1=et, and w(t) =1 —=, 3t satisfy the conditions of Theorem 2.
2¢ 12e
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Moreover, y(t) = — te! is a solution of inequality (35).

For instance, z(t) = —e

Then there exists a negative solution z of equation (34) with the properties (5).

t is such a solution.
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