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ASYMPTOTIC PROPERTIES OF [/-STATISTICS*

BY

RAYMOND N. SPROULE(')

ABSTRACT.   Let   r  be a fixed positive integer.  A [/-statistic   Un   is an

average of a symmetric measurable function of  r  arguments over a random

sample of size  n.   Such a statistic may be expressed as an average of indepen-

dent and identically distributed random variables plus a remainder term.  We

develop a Kolmogorov-like inequality for this remainder term as well as exam-

ine some of its (a.s.) convergence properties.  We then relate these properties

to the ¡7-statistic.   In addition, the asymptotic normality of   U^¡, where  N  is

a positive integer-valued random variable, is established under certain conditions.

1. Introduction.   Let Xx, • • • , Xn  be independent and identically dis-

tributed random variables and let f(xlt • • • ,xr) be a symmetric function of r

arguments.  Then Hoeffding [4] defined a ¿/-statistic as

/n\-i (."■>■)

Un=(r)       Z/(*<V •••'*<*,)

where the summation here and in the sequel is over all combinations  (at, • • • ,

o¡r) formed from the integers   {1, 2, • • • , n}   and n > r.  The class of [/-sta-

tistics includes many of the best-known statistics including the sample mean and

the sample variance.

Assume  6 = E{Un} = E{f(Xlt • • • ,Xr)}   exists and define

fcixi, ••• ,xc)= £{/(*!, •• • ,xc,Xc+1, • •• ,Xr)}

for c = 1, 2, • • • ,r. We interpret   E{f(xv • • • ,xe,Xe+1, • • • ,Xr)}  as

the expected value of f(Xit ••• ,Xr) given that Xit • • • , Xe  are fixed at the
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56 RAYMOND N, SPROULE

values JCj, • • • ,xc, respectively. Next, define  fc = Wai{fc(X1, • • • ,XC)}

for c = 1, 2, • • • , r.   In particular /¡(x,) = E{/(x,, X2, • • • , Xr)}   and ^

= Vai{fl(Xl)}.  From [4] we have

Lemma 1 (Hoeffding). Assume   E{f(Xx, • • • ,Xr)}2 <°°.   Then

(i) 0 < rc/c < fd/d /or  1 < c < d < r, and

(ii) /or m > r, the variance of Un  is given by

V« «u - Q-' t q (;;;>. - «-■*,+«*->

We now introduce notation used by Hoeffding [5] to develop a decompo-

sition of Un  (the "//-decomposition"), one having great value in establishing

properties of U„  in general.(2)  Define g^\xx) =fl(x1) - 0  and

«<*>(*,, "> ,xn)=fh(xï,-- ,xh)-d- ¿   jf gl'Xx    , . .. , »  )
7=1 '

for A = 2, 3, • • • , r. For example, if A = 2, g(-2\xl, x2) = /ji^, *2) - ^ -

£(1)(*i) - g(1\x2)- Then, for « > r and A = 1, 2, • • • , r, let

In particular F„(1) = if"1^^1^ = w_12?=1 /^x,.) - 0. Strictly speaking,

K^ is not a (/-statistic as it may depend upon unknown functionals. Neverthe-

less, it does have most of the attributes of a (/-statistic.  From [5] we have

Lemma 2 (Hoeffding). Assume that  E{f(X1, • • • , Xr)}2 < °° and let

8h = Varfe^JT,, • • • ,Xh)} for A = 1, 2, • • • ,r.   Then

(i) for h — 1, 2, • • • ,T the mean of VW is 0 and the variance is

Chrl8h. Also,

(ii) for r < m < n.

Cov {F<*>, V™} = Var {K<">},      A = / = 1, 2, • • • , r,

= 0, A*f-1,2, ••• ,r.

A simple relationship exists between the  f's and the S's.  Clearly Sj =

fj. For further details see Hoeffding [4] and Sproule [10]. The following the-

(2) This material has not been formally published by Hoeffding, and is presented here

with his permission.
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ASYMPTOTIC PROPERTIES OF {/-STATISTICS 57

orem given in [5] introduces the //-decomposition.

Theorem 1 (Hoeffding). Assume that E{\fiXy, • • • , Xr)\] < °°. A

U-statistic may be decomposed into a linear combination of uncorrelated [/-sta-

tistics, specifically,

(1.1) un = e+± (rh)v^ = e+rv^ + Rn,
h=\  \"/

where Rn = Zrh=2irh)V^ and Correlation {V^\Rn} = 0. Further, SnH) =

(" ) V^' forms a martingale sequence for h = 1, 2, • • • , r.

Theorem 1 states that  U„  is a linear combination of [/-statistics, mutually

uncorrelated (by Lemma 2) and each successive term having variance of smaller

order.  It shows that a [/-statistic is essentially the sum of an average of I. I. D.

random variables  V^  and a zero-mean remainder term Rn, and that the two

are uncorrelated.  From Lemma 2 we see that Var{Pn} = OQi~2).

Hoeffding [5] uses the //-decomposition to show that, under the assumption

that   E{l/(Xj, • • • , Xr)\} < °°, a [/-statistic converges to its mean almost surely

as n —► °°. Berk [2] contains a rather simple proof of the almost sure conver-

gence of a [/-statistic by recognizing that [/-statistics are reverse martingales.

The asymptotic normality of Un, first proved by Hoeffding [4], follows

directly from the //-decomposition by recognizing that r\/n V^ is asymptotically

7V(0, r2f j), by the Lindberg-Levy central limit theorem, and that

lim    E{sJnRn}2 = 0.

The usefulness of the //-decomposition is further demonstrated in this paper.

2.  Kolmogorov inequalities.  Theorem 1 states that, for each h = 1,2,

• • • ,r, Snh^ = i^V^  forms a martingale sequence.  This fact is used to prove

Lemma 3.   Assume that 0<8h<°° for some h - 1, 2, • • • , r.   Then

the following Kolmogorov-like inequality holds: for X>0 and n>r,

(2.1) p{ max    \sih)\>Xd^(nY\<X-2.
\h*Za<n \hj    )

Proof.   By Lemma 2, EiS^2} = inh)àn- Thus, by the Kolmogorov ine-

quality for martingales, for any  e > 0,

pi max    Isf^Ke^e-^W
ih<a<n ) \h)
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58 RAYMOND N. SPROULE

Putting  e = XÔ^(£)I/2   completes the proof of (2.1).

We now use Lemma 3 to derive a Kolmogorov-like inequality for a (/-statistic.

From Theorem 1,

where we have set 5„ = (")Un  for n>r.

Theorem 2. Assume   E{f(X1, • • • ,Xr)}2<°° and 5^0, and let 5

= 2U(M2-   Then

(2.2) pjmax     Sa - (% > Xôn^ÇSi < rX"2

for X>0.

Proof.   First note that  8h <°° for A = 1, 2, • • • , r as a consequence

of our assumption.  Lemma 1 (i) and the Schwarz inequality.  Let E be the

event in (2.2). Define the events

H^/^Ol
for A = 1, 2, • • • ,r.  Then E C\Jh=iEh, so that by Lemma 3,5(5) <

P{ \Jh=i Eh) < s/i= i ̂ ft) <r\~2, which completes the proof.

The Kolmogorov inequality for (/-statistics (Theorem 2) first appeared in Sproule

[10].  Miller and Sen [7] obtain similar results in the course of proving their

Lemma 2.5.

3.  Strong convergence results. The main theorem is

Theorem 3.   Let   {bn}2   be a positive increasing sequence of real num-

bers with limn_^a>bn = °°. If, for some A = 1, 2, • • • , r, 0 < 8n < °° and

(3.1) I2%?<»
/=i

then b~1SJ¡h^ converges almost surely to  0 as n—> °°.

Proof.   From Lemma 3, for any  e > 0,

M       H,s.ls°W|>c6»He~!i»26»0-
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Then (3.1), (3.2) and the Borel-Cantelli lemma imply that

(3.3) lim &-/W = 0      (a.s.).
7-*oo    2'     2' '

Next define  T, = max , ,., \SJ,h) - Styl for / = 1, 2, • • •  and
' 2'<n<2f+1     " 2>

y  = sty     -Sty for n = 1, 2, • • • . Then   {Y„}7  is a martingale

sequence, so that, by the Kolmogorov inequality for martingales,

(3.4) «ï/>e*a/}<e-a6-/E{ya/}a.

Now, since   EiS^S^} - EiS^}2, then

(3.5) E{r2/.}2 = E(S$ll}> - E{Sty}2 = 5, [(2^) - (* )].

A little computation shows that  i2'h   ) - (2 ) < K2h' for some constant 0 < K

< °°. Thus (3.1), (3.4), (3.5) and the Borel-Cantelli lemma imply that

(3.6) limó-/7, = 0      (a.s).
7~k»    2'      '

Now, for each n, let / be the positive integer such that  2' <n < 2;+1. Then,

since   {bn}2   is positive increasing.

(3.7) K1ls™\<by\sty\ + b;fTJ

for n = h, h + 1, • • • . Combining (3.3), (3.6) and (3.7) completes the proof

of the theorem.

Corollary. Assume 0 < bh < °° for some h = 1, 2, • • • , r.

(i) // 7 < ft/2, then nyV^ converges almost surely to  0 as n—*■ °°.

(ii) // 7 < 1, then nyRn  converges almost surely to  0 as n —► °°,

where Rn  is defined by il .1).

Proof.  To prove (i) let bn = nh~y. Then, since h - 2-y > 0, (3.1) be-

comes  SJ^! 2_/(,I_27) <°°. Thus ny~hS^  converges almost surely to  0 as

n —*■ °° which is equivalent to (i). Part (ii) follows directly from (i).

Theorem 3 is a strong result and leads to the law of the iterated logarithm

for [/-statistics, that is,

Theorem 4. Assume  E{fiXl,--- ,Xr)}2<°° and f, > 0. Then

lim sup n*(Un - 0)/(2r2f, log log nf , f1 = 1      (a.s).

The lim mi as n —*■ °° equals  -1 (a.s.).License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Proof.   Let tn = (2 log log nf l)'Á. From (1.1),

(rfttnr in\un - 0) = rt?*«)-1^0 + ('•f?'«r1«X-

The result then follows from the law of the iterated logarithm for independent

and identically distributed random variables and corollary (ii) of Theorem 3.

Theorem 5. Assume  E{f(Xl, • • • , Xr)}2 < °° and if y< Vl, then

ny(Un - 0) converges almost surely to  0 as n —* °°.

Proof.  The result follows directly from the //-decomposition (1.1) and

corollary (i) of Theorem 3.

4. The asymptotic normality of UN. Let o2 = r2fr Throughout this

section we assume that   E{f(Xl, • •• ,Xr)}2 < °° and S,>0.  Let  {ns}  be

an increasing sequence of positive integers tending to » as s —► °° and   {Ns}

a sequence of proper random variables taking on positive integer values.  <i>(x) rep-

resents the standard normal c.d.f. Anscombe's theorem [1] on the asymptotic

normality of averages of a random number of I.I.D. random variables extends to

(/-statistics as follows.

Theorem 6. Assume that

(4.1) p-lim n~lNt= 1.

Then

(4.2) lim P {{UN  - 0) < N-Vlxa} = $(x).

Proof.  A sequence of random variables   {Yn} satisfies condition C2 of

Anscombe [1] if:  given e>0 and n > 0 there exists a large   Ven  anda

small c > 0 such that for any n > Ve„

P{\Y„- -Yn\<en-Vlo for all n   suchthat   \n'- n\<cn} > I - r¡.

Since  Un  is asymptotically normal, the theorem follows from Theorem 1 of

Anscombe [1] if  {(/„}  satisfies C2. Now   {rF„(1)}  satisfies C2 by Theorem 3

of Anscombe [1]. Also, by corollary (ii) of Theorem 3 we have  lim„_>00«1/25„ =

0 (a.s.) which implies that   {Rn} satisfies C2. Thus   {(/„} satisfies C2 by the

//"-décomposition.

Theorem 7 offers the same conclusion as Theorem 6 except that assumption

(4.1) is replaced by the weaker assumption (4.4). Theorem 6 is introduced mainly

to show that (/-statistics satisfy Anscombe's condition C2, a fact used in the proof

of Theorem 7. Theorem 6 first appeared in Sproule [10].  Later, in a more gen-

eral setting, Miller and Sen [7] demonstrates that Theorem 6 follows as a corollaryLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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of their Theorem 1.

Lemma 4. Suppose that the sequence of I. I. D. random variables Xy,X2,

• • • are defined on a probability space   [ , A, P]   and that Q is an arbitrary

probability measure on   [ , A]   absolutely continuous with respect to P.   Then

(4.2) holds with  Q, n and n —► °° in place of P, Ns and s —► °° respectively.

Lemma4.   Let Sn = (")Un,c„ = i"r)d  and dn = an-\nr).  By the

asymptotic normality of Un, for any real number x  we can find a positive in-

teger n0  such that P{iSk - ck)/dk <x] > 0 for any k >n0. By Theorem 1

and 2 of Renyi [8], the theorem follows if we verify that

(4.3) lim P{iSn - cn)\dn <x\(Sk- ck)ldk <x} = *(x)

for any k > nQ.  To this end write Sn = Sk n 4- Skn  where Sk n-

2fixa j * * ' yXa ) with the summation over all combinations (ct1, • • • , ar)

formed from the integers   {k + 1, k + 2, • • • , «}   and S*n = Sn - Sk n.  Now

E{Skn/dn} = Oin~Vl). Also, using the //-decomposition, Lemma l(ii) and

Lemma 2, a little computation yields Var {Sk*„/dn} = 0(«_1). Thus Skn/dn

converges in probability to  0 as n —* °°.  Next, {(5„ - cn)/dn - Skn/dn <x}

and   {iSk - ck)/dk <x}   are independent, and so, for any k> n,

lim P{iS„ - cn)ldn - S*n/dn <x\iSk - ck)ldk <x]

= lim  P{iSn - cn)/dn - S*Jdn <x}= $(*).
n->oo

Thus (4.3), and therefore the lemma holds.

Denote the integral part of the real number x by   [x]. Following Renyi

[9] we prove

Lemma 5. Let X be a positive random variable having a discrete distribu-

tion. If Ns = [nsX]  for s - 1, 2, • • •  then (4.2) holds.

Proof.   Assume that X takes on values llf l2, • • •  with positive proba-

bility and that 0 < lt < l2 < • • •. (A slight adjustment is made if X takes on a

finite number of values.) Define the events Ak = {X = lk}   for k — I, 2, • •• .

Then, for any k = 1, 2, ■ • • , P{Ak} > 0, and so, using Lemma 4 with Q{'} =

P{' \Ak}, we obtain

lim P{[/(„ , , - 6 <xon;* \Ak] = <ï>(x)

and (4.2) follows from the theorem on total probabilities.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



62 RAYMOND N. SPROULE

Theorem 7. Assume that

(4.4) p-lim nJlNs = X
S-*oo

where X is a positive random variable having a discrete distribution.   Then (4.2)

AoWs.

Proof.  Write Zn = n\Un - 0)/a.  Then

Zn, = Z[„,x] + <2 M -Vl ÍK M *(£^s - ulHsK])M

(4'5) +2KM{^KM-ii-i}.

By Lemma 5, Z,n xx   has an asymptotic normal distribution as s —► °°. Also,

by (4.4),   p-lim ^^ Nf [nsX] ~Vl = 1. Thus, in order to prove (4.2) we need

only verify that

(4.6) p-lim [n,X] \uN  - U[n X]) = 0

Make the same assumptions on  X that are made in the proof of Lemma 5.  Let

msk = ["s^fcl •  Define the events

Es= ÍM]*ltfiV-,-tf[„,Mf>c>'     Csk = ^sk^Ns-Umsk\>e}

and for p > 0, Bs(p) = {\NS - [ns\] I < pns}. Then EsAk < Csk, so that

(4.7) P{5,} < Z P {CskBs(p)Ak} = P {5S(p)}.
fc=i

Now, there exists an 5eT)  such that ns > ly1(veri + 1) for any s > 5eT¡.

Then msk ~>verj  for any s > 5er)  and any k = 1, 2, • •• .  Recall that  Un

satisfies Anscombe's condition C2 (Theorem 6). Thus, for any s> S£     and

any k = 1, 2, • • • ,

(4.8) 5      max \Ut - U-   I >tm¿* \ <r¡
\l-msk\<cmsk

sk

Next, since lt > 0, we can find a K > 0 such that 0<1/K<11. Put p =

c(/j - l/£). Then p>0 and, whenever «S>Ä", we have pns<cmsk for

any fc = 1, 2, • • • . Suppose s>SK ensures that ns > K. Then, by (4.8),

for any s > max(5e   , SK) and any tt — 1, 2, • • • ,

(4.9) Pi      max        1(7, - Um    \> emj* l <r¡.
(\i-msk\<Pns s* \
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Therefore, by (4.9), for s large enough and any k = 1, 2, • • • , we have

P{CskBsip)Ak] <t?.  Then, from (4.7), for s large enough, P{ES} <

P{X> lM} + t\M + P{Bsip)}   for any positive integer M. Now, suppose S > 0.

Choose M large enough so that P {X > lM} < 5/3. Next, let 77 = S/3M

Choose Se5   suchthat P{P/p)}<S/3  for any s>SeS. Therefore finally,

for any s > maxfS^ n, SK, SeS) we have P{ES}<8. This proves (4.6) and

the theorem follows.

5. Examples.  In Examples (1) and (2) we illustrate the //-decomposition

(1.1) as well as Theorem 3.  Assume that Xv X2, • • •  are I. I. D. random

variables having a continuous c.d.f. F.

(1) Let f\xv x2) =1  if Xj 4- x2 > 0 and 0 iî xl+x2<0. Then

e=P{Xl+X2>0}    and   /,(rj) = 1 -P(-xy).

The corresponding [/-statistic  U„ = in2)~í'Li<¡fixi, x¡) is closely related to

Wilcoxon's signed-rank sum [11]. Assume further that the distribution F is

symmetric. Then 6 = H,g(1)(x1) = F(x1)-^, V™ = n-1Z"=1iFixi)- %) and

Un = Vi + 2Vn^ + Rn  where P„  is the zero-mean remainder term.  By Theo-

rem 3, nyRn  converges to  0 (a.s) as n—►«> for 7<1. Thus, the [/-statistic

Un  behaves very much like  Vi + 2m-12"=1 (F(x¡) — Vi) whose distribution

does not depend on the form of F and indeed, is related to the distribution of

the average of a sample drawn from the uniform distribution. See page 258 of

Kendall and Stuart [6].

(2) Let f(xv x2)= I*, - x2\. Then  6 = ff\x1 - x^dFixJdFixJ

and the corresponding  [/-statistic is Gini's mean difference [3],    Un =  \

Qr1^!*!-*/!. Let ri=E{X1}. Then flix1) = 2fx_lFiy)dy+p-x1. De-

fine z, = fjmF(y)dy for 1 = 1,2, • • • , « so that V^ = 2zn - 2xn + p - 0

where zn and xn denote the averages of the z's and the x's respectively.

It may be noted that a may be replaced in Theorems 6 and 7 by any con-

sistent estimate of it.
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