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Abstract: The D-test for homogeneity in finite mixtures is appealing because the

D-test statistic depends on the data solely through parameter estimates, whereas

likelihood ratio-type test statistics require both parameter estimates and the full

data set. In this paper we establish asymptotic equivalences between the D-test

and three likelihood ratio-type tests for homogeneity. The first two equivalences,

under maximum likelihood and Bayesian estimation frameworks respectively, ap-

ply to mixtures from a one-dimensional exponential family; the second equivalence

yields a simple limiting null distribution for the D-test statistic as well as a simple

limiting distribution under contiguous local alternatives, revealing that the D-test

is asymptotically locally most powerful. The third equivalence, under an empirical

Bayesian estimation framework, pertains to mixtures from a normal location fam-

ily with unknown structural parameter; the third equivalence also yields a simple

limiting null distribution for the D-test statistic. Simulation studies are provided to

investigate finite-sample accuracy of critical values based on the limiting null dis-

tributions and to compare the D-test to its competitors regarding power to detect

heterogeneity. We conclude with an application to medical data and a discussion

emphasizing computational advantages of the D-test.
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1. Introduction

Mixture models are useful for describing complex, heterogeneous popula-
tions. Everitt and Hand (1981), Lemdani and Pons (1997), Ott (1999), and
Sun, Morrison, Harding, and Woodroofe (2009) discuss applications of mixture
modeling to genetics, astronomy, and other sciences. However, determining the
number of distinct components in a finite mixture is challenging (Titterington,
Smith and Makov (1985); Lindsay (1995)), exemplified by the non-identifiability
of mixture parameters under the null hypothesis of homogeneity (i.e., when the
mixture has only one distinct component). In fact, the usual chi-square the-
ory for (negative twice) the (log) likelihood ratio (LR) test statistic is not valid
(see, e.g., Ghosh and Sen (1985); Hartigan (1985); Bickel and Chernoff (1993);
Chernoff and Lander (1995)).
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Under fairly general conditions, the asymptotic null distribution of the LR
test statistic is that of supθ∈Θ{W+(θ)}2, where W+ is the positive part of a
Gaussian process W and Θ is the compact parameter space for the component-
specific parameters (see, e.g., Dacunha-Castelle and Gassiat (1999); Chen and
Chen (2001); Liu and Shao (2003)). Inferences can be made by computing tail
probabilities for supθ∈Θ{W+(θ)}2 using the random field theory in Sun (1993).

Chen, Chen and Kalbfleisch (2001) took a different approach in their seminal
work on modified likelihood ratio (MLR) testing. They proposed a test for homo-
geneity based on the maximum values attained by a penalized log likelihood in re-
stricted (homogeneous) and unrestricted (heterogeneous) models. The estimated
weights of the mixture components in the unrestricted model are forced away from
zero by the penalty term, which reduces the effects of the non-identifiability. If
θ is one-dimensional and regularity conditions are satisfied, then the asymptotic
null distribution of the MLR test statistic is an equal-probability mixture of a
point mass at zero and a chi-square distribution on one degree of freedom. Chen,
Chen and Kalbfleisch (2001) report that the MLR test is competitive with the
C(α) test of Neyman and Scott (1966), the bootstrap test by McLachlan (1987),
and the methodology of Davies (1987). Thus, we adopt the MLR test as a bench-
mark in our simulation studies on mixtures from a one-dimensional exponential
family (Section 6).

Li, Chen and Marriott (2009) subsequently developed the “EM test” for ho-
mogeneity. The EM test is like the MLR test except that: (i) only a few iterations
of the expectation maximization (EM) algorithm are run to secure parameter es-
timates; and, (ii) multiple sets of initial values may be explicitly considered. If θ

is one-dimensional, then the asymptotic null distribution of the EM test statistic
is the same as that of the MLR test statistic; however, the EM test statistic
achieves this with weaker regularity conditions (in particular, no compactness
requirement on Θ). Chen and Li (2009) adapted the EM test to normal location
mixtures with unknown structural (standard deviation) parameter; the EM test
statistic has an analytically tractable asymptotic null distribution in this setting
(dependent on what sets of initial values are considered), whereas the MLR test
statistic does not. Hence, we view the EM test as a benchmark in our simulation
studies on normal location mixtures with unknown structural parameter (Section
6).

Charnigo and Sun (2004) broke away from the LR paradigm and introduced
the D-test for homogeneity in finite continuous mixtures. The D-test has a simple
geometric motivation: the L2 distance between fitted homogeneous and heteroge-
neous models is likely to be large when the null hypothesis is false, so a test based
on this L2 distance is likely to detect multiple distinct components when they are
present. The D-test statistic is denoted d(k, n), where k is the number of distinct
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components under the alternative hypothesis and n is the sample size. While
LR-type test statistics cannot be calculated without the full data set, d(k, n)
depends on the data only through mixture parameter estimates. Thus, d(k, n)
can be computed more quickly than an LR-type test statistic if: (i) parameter
estimates are available from a previous review of the data set; or, (ii) updating
formulas for parameter estimates can accommodate a new addition to the data
set without recalling the old portion of the data set. Point (ii) has become a
reality with the partial EM estimator introduced by Sun, Liu, and Chen (2009).
We will elaborate on this in Section 7.

In this paper we investigate the asymptotic behavior of the D-test statistic
and establish three unanticipated equivalences: one between the D-test and LR
test for mixtures from a one-dimensional exponential family, one between the D-
test and MLR test, and one between the D-test and EM test for normal location
mixtures with unknown structural parameter. Let Rn and Mn denote the LR
and MLR test statistics, let En(α0) denote the EM test statistic based on one
set of initial values that includes the initial value α0 ∈ (0, 0.5] for α (the weight
of the second mixture component), and let d(2, n) be abbreviated to dn.

With a maximum likelihood framework for estimating mixture parameters,
we show that ndn = C∗(θ̂2)Rn + op(1) under the null hypothesis of homogeneity
(Theorem 3.1 in Section 3), where C∗(θ) is a computable deterministic function
of its argument and θ̂2 estimates the component-specific parameter in the second
mixture component.

With a Bayesian framework corresponding to the penalized likelihood of
Chen, Chen and Kalbfleisch (2001), we prove that ndn = C∗(θ0)Mn + op(1)
under the null hypothesis (Theorem 4.1 in Section 4), where θ0 is the true value
of θ in the restricted (homogeneous) model. Thus, n dn C∗(θ0)−1 converges in
law to an equal-probability mixture of a point mass at zero and a chi-square
random variable on one degree of freedom, yielding an asymptotic critical value of
n−1C∗(θ0)χ2

1,2α for dn (Corollary 4.1). Here χ2
1,2α denotes the upper 2α quantile

of the chi-square distribution on one degree of freedom, where the subscript α is
the significance level, not the weight of the second mixture component. Moreover,
ndn C∗(θ0)−1 converges in law under contiguous local alternatives (Corollary
4.2), and the limiting distribution is such that the D-test is asymptotically locally
most powerful.

With an empirical Bayesian framework corresponding to the penalized like-
lihood of Chen and Li (2009), we find that ndn = A∗(α0){En(α0)−2 log[2α0]}+
op(1) under the null hypothesis (Theorem 5.1 in Section 5), where A∗(α) is an
estimable deterministic function of its argument. If α0 = 0.5, then A∗(α0)−1n dn

converges in law to an equal-probability mixture of a point mass at zero and a
chi-square random variable on one degree of freedom, producing an asymptotic
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critical value of n−1A∗(α0)χ2
1,2α for dn; if α0 < 0.5, then A∗(α0)−1n dn converges

to a chi-square random variable on one degree of freedom, yielding an asymptotic
critical value of n−1A∗(α0)χ2

1,α (Corollary 5.1).
In addition to developing large-sample theory, we study the finite-sample

accuracy of critical values suggested by the second and third equivalences (Section
6.1). We also compare the D-test to the MLR test and the EM test regarding
power to detect heterogeneity (Section 6.2). A practical illustration is provided
with a medical data set (Section 6.3). The paper concludes with a discussion
(Section 7) to explain further why the D-test is a competitive alternative to
LR-type tests, especially for large and online data sets. Proofs and regularity
conditions appear in the online Appendix, http://www.stat.sinica.edu.tw/
statistica.

2. Models and Test Statistics

A general mixture model. Let X1, . . . , Xn be a simple random sample from
the general two-component mixture model

(1 − α)fσ(x, θ1) + α fσ(x, θ2), (2.1)

where 0 ≤ α ≤ 1/2 and σ denotes, if applicable, an unknown structural param-
eter common to both components. The σ subscripts are dropped if there is no
unknown structural parameter.

Mixture from a one-dimensional exponential family. A specific model of
interest to us, in which there is no unknown structural parameter, takes

f(x, θ) := a(x) exp[−b(θ) + t(x)θ] (2.2)

in (2.1). Besides assuming that (2.2) belongs to a minimal exponential family
(Cf., Brown (1986)), we require the regularity conditions in the Appendix (Con-
ditions A1-A5). We then refer to (2.2) as regular, or say that it belongs to a
regular exponential family of distributions.

Normal location mixture with unknown structural parameter. A second spe-
cific model of interest puts

fσ(x, θ) := (2πσ2)−1/2 exp[−(x − θ)2

2σ2
] (2.3)

in (2.1). Consequently, both mixture components have the same standard devi-
ation.

Four tests of homogeneity. We now describe four approaches to testing H0 :
α(θ2 − θ1) = 0 against H1 : α(θ2 − θ1) 6= 0 in (2.1). The null hypothesis says
that (2.1) simplifies to fσ0(x, θ0), where the use of σ0 here (rather than σ) helps
to avoid ambiguity in defining the test statistics below.

http://www.stat.sinica.edu.tw/statistica
http://www.stat.sinica.edu.tw/statistica
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The D-test. Let θ̂1, θ̂2, α̂, and σ̂ denote estimators (maximum likelihood,
Bayesian, empirical Bayesian, or any other kind) of the corresponding parameters
in the unrestricted (heterogeneous) model allowed by the alternative hypothesis.
Let θ̂0 and σ̂0 denote estimators of the corresponding parameters in the restricted
(homogeneous) model determined by the null hypothesis. The D-test statistic
(Charnigo and Sun (2004)) is

dn :=
∫ [

(1 − α̂)fσ̂(x, θ̂1) + α̂ fσ̂(x, θ̂2) − fσ̂0(x, θ̂0)
]2

dx. (2.4)

Clearly, dn depends on X1, . . . , Xn only through the estimators θ̂1, θ̂2, α̂, σ̂, and
θ̂0, σ̂0. The integral in (2.4) can usually be evaluated analytically to produce a
simple closed-form expression. Although x and θ will be one-dimensional in this
paper, we note that (2.4) is well-defined for multi-dimensional x and θ. Expres-
sion (6) and Section 4.2 of Charnigo and Sun (2004) consider multi-dimensional
x and θ, respectively.

The LR test. The LR test statistic is Rn := 2ln(α̂, θ̂1, θ̂2, σ̂)− 2ln(1/2, θ̂0, θ̂0,
σ̂0), where

ln(α, θ1, θ2, σ) :=
n∑

i=1

log [(1 − α)fσ(Xi, θ1) + α fσ(Xi, θ2)] (2.5)

is the log likelihood and the estimators α̂, θ̂1, θ̂2, σ̂, and θ̂0, σ̂0 maximize (2.5) for
the unrestricted and restricted models, respectively.

The MLR test. The MLR test statistic (Chen, Chen and Kalbfleisch (2001))
is Mn := 2l∗n(α̂, θ̂1, θ̂2, σ̂) − 2l∗n(1/2, θ̂0, θ̂0, σ̂0), where

l∗n(α, θ1, θ2, σ) :=
n∑

i=1

log [(1 − α)fσ(Xi, θ1) + α fσ(Xi, θ2)] + C log [4α(1 − α)]

(2.6)
is a penalized log likelihood and the estimators α̂, θ̂1, θ̂2, σ̂, and θ̂0, σ̂0 maximize
(2.6) for the unrestricted and restricted models, respectively. The specific value
of C does not affect the development of asymptotic theory; for our simulation
studies we set C := log 10 based on documented success with that choice (Chen,
Chen and Kalbfleisch (2001)).

The EM test. Assuming one set of initial values that includes the initial
value α0 ∈ (0, 0.5] for α, the EM test statistic (Li, Chen and Marriott (2009);
Chen and Li (2009)) is En(α0) := 2l†n(α̂, θ̂1, θ̂2, σ̂)− 2l†n(1/2, θ̂0, θ̂0, σ̂0), where for
(2.3) we have

l†n(α, θ1, θ2, σ) :=
n∑

i=1

log [(1 − α)fσ(Xi, θ1) + α fσ(Xi, θ2)] + log {1 − |1 − 2α|}

−{S2

σ2
+ log(

σ2

S2
)} (2.7)
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with S2 := n−1
∑n

i=1(Xi − X̄)2. The estimators α̂, θ̂1, θ̂2, σ̂ are obtained by ap-
plying K iterations of the EM algorithm to (2.7), while the estimators θ̂0, σ̂0

maximize (2.7) for the restricted model. The specific value of K does not af-
fect the development of asymptotic theory; for our simulation studies we set
K := 1 based on documented success with that choice (Chen and Li (2009)).
If one wishes to consider J sets of initial values that include the initial values
α0;1, . . . , α0;J ∈ (0, 0.5] for α, then the EM test statistic is the maximum of
En(α0;1), . . . , En(α0;J). We assume a single set of initial values when developing
the asymptotic equivalence in Theorem 5.1, but we address the possibility of
multiple sets of initial values after stating Corollary 5.1.

3. Asymptotic Equivalence: D-Test and LR Test

In this section we consider model (2.2) and suppose that θ̂1, θ̂2, α̂, and θ̂0

are maximum likelihood estimators. Our main result is the following.

Theorem 3.1. Suppose that f(x, θ) is regular and that the null hypothesis is
true. Then, under a maximum likelihood estimation framework, as n → ∞,
ndn = C∗(θ̂2)Rn + op(1). Here C∗(θ) is an asymptotic scaling factor defined in
(3.1)−(3.2) below.

The proof of Theorem 3.1, along with the proofs of other results in this
paper, can be found in the Appendix.

To describe C∗(θ), we need to define certain key quantities that have ap-
peared previously, without the names given here, in Chen and Chen (2001).

1. The quasi-derivative of log[f(Xi, θ)] is

Yi(θ) :=


f(Xi,θ)−f(Xi,θ0)
(θ−θ0)f(Xi,θ0) , if θ 6= θ0

∂
∂θ

f(Xi,θ)|θ=θ0
f(Xi,θ0) , if θ = θ0

.

2. The quasi-derivative of Yi(θ) is

Zi(θ) :=

{
Yi(θ)−Yi(θ0)

θ−θ0
, if θ 6= θ0

Y ′
i (θ0), if θ = θ0

.

3. The regression coefficient is h(θ) := E[Yi(θ0)Zi(θ)]/E[Y 2
i (θ0)], where the ex-

pectations are taken with respect to f(x, θ0).
4. The residual from regression of Zi(θ) on Yi(θ0) is Wi(θ) := Zi(θ)−Yi(θ0)h(θ).

The following lemma, stated here rather than in the Appendix because it is
useful in evaluating C∗(θ), shows that these quantities are simple functions of
t(Xi) and the derivatives of b(θ), where t(x) and b(θ) are as defined in (2.2).
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Lemma 3.1. Suppose that f(x, θ) is regular. Then

(i) Yi(θ0) = t(Xi) − b′(θ0);

(ii) Zi(θ0) = (1/2)
[
−b′′(θ0) + {t(Xi) − b′(θ0)}2

]
;

(iii)E[Yi(θ0)2] = b′′(θ0); and,

(iv) h(θ0) = (1/2)b′′′(θ0)/b ′′(θ0).

We now define the asymptotic scaling factor C∗(θ) in Theorem 3.1. Let
gj(x, θ) := ∂j

∂θj f(x, θ) for j = 1, 2, 3, and put

C∗(θ) :=
1

E[Wi(θ)2]

∫ [
−h(θ)g1(x, θ0)+

f(x, θ)−f(x, θ0)−(θ−θ0)g1(x, θ0)
(θ−θ0)2

]2

dx

(3.1)
for θ 6= θ0, and

C∗(θ0) :=
1

E[Wi(θ0)2]

∫ [
−h(θ0)g1(x, θ0) +

g2 (x, θ0)
2

]2

dx=
E

[
Wi(θ0)2f(Xi, θ0)

]
E[Wi(θ0)2]

.

(3.2)
For instance, if f(x, θ) := (2πτ2)−1/2 exp[−(x− θ)2/(2τ2)] for known τ > 0, then
C∗(θ0) = (3/16)π−1/2τ−1.

Theorem 3.1 provides an unanticipated connection between the D-test and
the LR test. In particular, Theorem 3.1 implies that n dn converges in law to
C∗(θ̃) supθ∈Θ{W+(θ)}2 when the null hypothesis is true, where θ̃ := arg supθ∈Θ

{W+(θ)}2 and W is the Gaussian process used to characterize the limiting dis-
tribution of Rn (Dacunha-Castelle and Gassiat (1999); Chen and Chen (2001);
Liu and Shao (2003)). Thus, Theorem 3.1 allows application of random field
theory (Sun (1993)) to the calculation of critical values for the D-test statistic in
model (2.2) with a maximum likelihood estimation framework. However, we do
not pursue random field theory here since an easier option for calculating critical
values is available with a Bayesian estimation framework in Section 4.

4. Asymptotic Equivalence: D-Test and MLR Test

In this section we consider model (2.2) and suppose that θ̂1, θ̂2, and α̂ are
Bayesian maximum a posteriori estimators. The prior distribution is π(α, θ1, θ2)
∝ (4α(1 − α))C for some C > 0. With this prior, maximum a posteriori estima-
tion is equivalent to maximum penalized likelihood estimation with penalty as in
(2.6). Note that θ̂0 is actually a maximum likelihood estimator since α effectively
disappears in the restricted (homogeneous) model.

The main result of this section is another unanticipated connection between
the D-test and an LR-type test.
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Theorem 4.1. Suppose f(x, θ) is regular and the null hypothesis is true. Under
the indicated Bayesian estimation framework, as n → ∞, ndn = C∗(θ0) Mn +
op(1).

Corollary 4.1. Under the conditions of Theorem 4.1, the asymptotic distribu-
tion of ndn C∗(θ0)−1 is 0.5χ2

0 + 0.5χ2
1, an equal-probability mixture of a point

mass at zero and a chi-square distribution on one degree of freedom. Hence, the
asymptotic level α critical value for dn is C∗(θ0)n−1χ2

1,2α.

For some parametric families, C∗(θ0) can be evaluated without knowledge
of θ0. For other parametric families, we can replace C∗(θ0) by C∗(θ̂0) since θ̂0

converges to θ0 when the null hypothesis is true. In any case, computation of
C∗(θ0) or C∗(θ̂0) is no obstacle to using the D-test. Also, we note that the
asymptotic level α critical value does not depend on the size of Θ, as long as Θ
is compact.

Corollary 4.2. Suppose f(x, θ) is regular and the following contiguous local
alternatives hold: α = α0 ∈ (0, 1), θ1 = θ0−n−1/4τ1, and θ2 = θ0+n−1/4τ2, where
τ1 = τ

√
α0/(1 − α0) and τ2 = τ

√
(1 − α0)/α0 for some fixed τ > 0. Then, with

the indicated Bayesian estimation framework, n dn C∗(θ0)−1 converges in law to{(
Z + τ2E[Wi(θ0)2]1/2

)+
}2

, where Z is standard normal and the expectation is
with respect to f(x, θ0).

This second corollary, which follows from the definition of contiguity and
Theorem 2 in Chen, Chen and Kalbfleisch (2001), assures us that the Bayesian-
framework D-test is asymptotically locally most powerful.

5. Asymptotic Equivalence: D-Test and EM Test

In this section we consider model (2.3) and suppose that θ̂1, θ̂2, α̂, and σ̂ are
“approximate” empirical Bayesian maximum a posteriori estimators. The prior
distribution is π(α, θ1, θ2, σ) ∝ {1 − |1 − 2α|} exp

[
−S2/σ2

]
S2/σ2, with S2 :=

n−1
∑n

i=1(Xi − X̄)2. The reason for the “approximate” designation is that we
run only K iterations of the EM algorithm to secure θ̂1, θ̂2, α̂, and σ̂. Thus,
these estimators correspond to those used for the EM test when there is one set
of initial values (Chen and Li (2009)). Note that θ̂0 and σ̂0 are actually maximum
likelihood estimators. Also, unlike for model (2.2), we now take Θ to be the real
line rather than a compact subset. Likewise, we place no restriction on σ except
that it be positive.

The main result of this section is a third unanticipated connection between
the D-test and an LR-type test.



RELATIONSHIPS BETWEEN TESTS FOR HOMOGENEITY 505

Theorem 5.1. Suppose model (2.3) applies and the null hypothesis is true.
Under the indicated empirical Bayesian estimation framework, as n → ∞, ndn =
A∗(α0){En(α0) − 2 log[2α0]} + op(1), where α0 is the initial value for α and

A∗(α) :=
5

32π1/2σ0
for α < 0.5, A∗(0.5) :=

35
256π1/2σ0

. (5.1)

Note that Slutsky’s Theorem permits us to substitute σ̂0 for σ0 without disturbing
the conclusions of Theorem 5.1 or of the following corollary.

Corollary 5.1. Under the conditions of Theorem 5.1, with α0 = 0.5 the asymp-
totic distribution of ndn {256/35}π1/2 σ0 is 0.5χ2

0 + 0.5χ2
1, an equal-probability

mixture of a point mass at zero and a chi-square distribution on one degree of free-
dom, and with α0 < 0.5 the asymptotic distribution of ndn {32/5}π1/2 σ0 is χ2

1,
a chi-square distribution on one degree of freedom. Hence, the asymptotic level α

critical value for dn is {35/256}π−1/2 σ−1
0 n−1χ2

1,2α or {5/32}π−1/2 σ−1
0 n−1χ2

1,α,

according as α0 = 0.5 or α0 < 0.5.

Chen and Li (2009) suggest performing the EM test with J = 3 sets of initial
values that include initial values of α0;1 = 0.5, α0;2 = 0.3, and α0;3 = 0.1 for α.
The reason for this suggestion is that the EM test, if performed with a single set
of initial values, has difficulty detecting heterogeneity for specific alternatives in
which α is far away from α0. This motivates us to ask whether the D-test can
also be performed with multiple sets of initial values and, if so, how.

Let dn(α0;1), . . . , dn(α0;J) denote the D-test statistics corresponding to the
initial values α0;1 = 0.5, α0;2 < 0.5, . . . , α0;J < 0.5. Let

d̃n := max{{256
35

}dn(α0;1), {
32
5
}dn(α0;2), . . . , {

32
5
}dn(α0;J)}. (5.2)

Under the null hypothesis, En(α0;2) through En(α0;J) differ asymptotically only
by additive constants of the form 2 log[2α0;j ] (Chen and Li (2009)). Moreover,
En(α0;2) through En(α0;J) are asymptotically independent of En(α0;1) (Chen
and Li (2009)). Hence, Corollary 5.1 implies that n d̃n π1/2 σ̂0 converges in law
to a random variable with distribution function F1(x){0.5 + 0.5F1(x)}, where
F1(x) denotes the distribution function of a chi-square random variable on one
degree of freedom. So, for example, rejection of the null hypothesis when d̃n >

4.509n−1π−1/2σ̂−1
0 provides a test with asymptotic significance level 0.05.

Before leaving this section, we comment on the discontinuity in asymptotic
behavior as α0 reaches 0.5. This occurs because, as shown in Chen and Li (2009),
the third-order term in the Taylor expansion for 2l†n(α̂, θ̂1, θ̂2, σ̂)−2l†n(1/2, 0, 0, 1)
includes a factor of (1 − 2α̂). When α0 = 0.5, the third-order term disappears
asymptotically and the fourth-order term becomes relevant; when α0 < 0.5,
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the third-order term does not vanish and the fourth-order term does not enter.
Moreover, since Chen and Li (2009) find that α̂−α0 = Op(n−1/4), we conjecture
that ndn = A∗(0.5)En(0.5) + op(1) under the conditions of Theorem 5.1 if the
initial value for α is 0.5 − ξn−1/4, where ξ > 0.

6. Simulation Studies and Data Application

Previous simulation experiments (Charnigo and Sun (2004)) have shown
that the maximum likelihood-framework D-test (Section 3) is competitive with
the MLR test. Now we describe new simulation studies examining the perfor-
mances of the Bayesian-framework D-test (Section 4) and the empirical Bayesian-
framework D-test (Section 5). We also estimate the Type I error rates associated
with the asymptotic level 0.05 critical values of Corollary 4.1 and Corollary 5.1.
This section concludes with application of the empirical Bayesian-framework D-
test to the SLC data set (Roeder (1994)).

6.1. Assessing the Bayesian-framework D-test

First we generated 10, 000 random samples of size n from the standard nor-
mal distribution N(0, 1) for each of various n. From each sample we calculated
dn and Mn to test H0 : N(θ0, 1) against H1 : (1 − α)N(θ1, 1) + αN(θ2, 1). Panel
a of Figure 1 shows the frequencies with which dn and Mn exceeded their asymp-
totic level 0.05 critical values. The estimated Type I error rates were close to
0.05 for both dn and Mn, typically slightly less than 0.05 for Mn, and slightly
greater than 0.05 for dn. For a normal location mixture with known component
standard deviation, we can comfortably invoke Corollary 4.1 when n ≥ 10.

Next we generated 10, 000 random samples of size n from the two-component
mixture 0.5N(0, 1) + 0.5N(1, 1). From each sample we calculated dn and Mn.
Panel b of Figure 1 shows the frequencies with which dn and Mn exceeded their
actual level 0.05 critical values (i.e., their upper 0.05 quantiles under N(0, 1),
as estimated during the simulation for panel a). These steps were repeated
for 0.5N(0, 1) + 0.5N(2, 1), 0.9N(0, 1) + 0.1N(1, 1), 0.9N(0, 1) + 0.1N(2, 1), and
0.95N(0, 1) + 0.05N(2, 1); the corresponding results appear in panels c through
f. In all cases, the power curves of the Bayesian-framework D-test are nearly
indistinguishable from those of the MLR test.

6.2. Assessing the empirical Bayesian-framework D-test

We proceed much as in Section 6.1 except that now we are testing H0 :
N(θ0, σ

2
0) against H1 : (1 − α)N(θ1, σ

2) + αN(θ2, σ
2) and are using the EM

test as the benchmark. Let En(0.5), En(0.3), and En(0.1) denote the EM test
statistics based on initial values of 0.5, 0.3, and 0.1 for α; let dn(0.5), dn(0.3),
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Figure 1. Type I error and power comparisons of MLR test and Bayesian-
framework D-test

Panel a: 10, 000 random samples of size n are generated from N(0, 1) for
each of various n from 10 to 1, 000. For each random sample we test H0 :
N(θ0, 1) against H1 : (1 − α)N(θ1, 1) + αN(θ2, 1). Fractions of MLR test
and Bayesian-framework D-test statistics exceeding their asymptotic level
0.05 critical values are displayed, as a function of n. Panels b through f:
10, 000 random samples of size n are generated from the indicated mixture
distributions for each of various n. Fractions of MLR test and Bayesian-
framework D-test statistics exceeding their actual level 0.05 critical values
are displayed.

and dn(0.1) denote the analogous empirical Bayesian-framework D-test statistics.
Put Ẽn := max{En(0.5), En(0.3)− 2 log[0.6], En(0.1)− 2 log[0.2]}, with reference
distribution function F1(x){0.5+0.5F1(x)}, and let d̃n be as defined in (5.2) with
J := 3, α0;1 := 0.5, α0;2 := 0.3, and α0;3 := 0.1.

Panel a of Figure 2 shows that dn(0.1), En(0.5), En(0.3), and En(0.1) had
estimated Type I error rates close to 0.05, while those of Ẽn were only modestly
above 0.05. The estimated Type I error rates for dn(0.5), dn(0.3), and d̃n were
very slow to approach 0.05, remaining well above 0.05 even when n = 5, 000. For a
normal location mixture with unknown structural parameter and with α0 = 0.1,
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Figure 2. Type I error and power comparisons of EM test and empirical
Bayesian-framework D-test.

Panel a: 10, 000 random samples of size n are generated from N(0, 1) for each
of various n from 10 to 5, 000. For each random sample we test H0 : N(θ0, σ

2
0)

against H1 : (1 − α)N(θ1, σ
2) + αN(θ2, σ

2). Fractions of EM test and em-
pirical Bayesian-framework D-test statistics exceeding their asymptotic level
0.05 critical values are displayed. Panels b through f: 10, 000 random sam-
ples of size n are generated from the indicated mixture distributions for each
of various n. Fractions of EM test and empirical Bayesian-framework D-test
statistics exceeding their actual level 0.05 critical values are displayed.

we can comfortably invoke Corollary 5.1 when n ≥ 70. With α0 ∈ {0.3, 0.5},
we recommend employing actual critical values; these are available from the
corresponding author.

Panels b through f of Figure 2 reveal several interesting phenomena; we
emphasize that actual critical values have been employed to generate all power
curves in these panels. For equal-probability mixtures (panels b and c), dn(0.5)
and En(0.5) appear competitive with each other and better than the other
six tests; in fact, dn(0.1) and En(0.1) are apparently not consistent for equal-
probability mixtures. For “high-low”-probability mixtures (panels d through f),
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dn(0.1) and En(0.1) look to be competitive and better than the other six tests;
now dn(0.5) and En(0.5) are apparently not consistent. Thus, we favor taking
α0 := 0.5 if a near-equal-probability mixture is suspected, and taking α0 := 0.1
if a high-low-probability mixture is suspected. For a user who does not know
what kind of mixture to anticipate, we recommend employing d̃n or Ẽn rather
than dn(0.3) or En(0.3). In this case, d̃n performs slightly better than Ẽn if
the mixture happens to be near-equal-probability, while Ẽn performs somewhat
better than d̃n if the mixture happens to be high-low-probability.

6.3. Application to the SLC data set

To illustrate the empirical Bayesian-framework D-test in a practical setting,
we apply it to the SLC data set (Roeder (1994)). The data set contains red blood
cell sodium-lithium countertransport (SLC) measurements for 190 individuals.
As Roeder (1994) notes, such measurements are of interest since SLC is correlated
with blood pressure and may be a cause of hypertension.

We find that ndn(0.5) {256/35}π1/2 σ̂0 ≈ 0 and En(0.5) ≈ 0. On the other
hand, ndn(0.1) {32/5}π1/2 σ̂0 = n d̃n π1/2 σ̂0 = 35.731 and En(0.1) − 2 log[0.2] =
Ẽn = 27.155. The actual level 0.05 critical values for ndn(0.1) {32/5}π1/2 σ̂0,
n d̃n π1/2 σ̂0, En(0.1) − 2 log[0.2], and Ẽn at n = 190 are 4.359, 9.643, 3.810, and
5.229, respectively. Both the EM test and the empirical Bayesian-framework
D-test suggest heterogeneity in the form of a high-low-probability mixture.

Figure 3 shows the SLC data along with the fitted homogeneous model
N(0.263, 0.0982) and the fitted heterogeneous model 0.887N(0.240, 0.0722) +
0.113N(0.456, 0.0722). The parameter estimates for the latter model are based on
an initial value of 0.1 for α. The former model exhibits clear lack of fit but cannot
be effectively supplanted by a near-equal-probability normal location mixture.

7. Discussion

The three asymptotic equivalences developed herein show that, under a null
hypothesis of homogeneity, the D-test is closely related to three LR-type tests.
Useful by-products of the equivalences found include asymptotic critical values
for the Bayesian-framework D-test that can be obtained from a chi-square table, a
theoretical assurance that the Bayesian-framework D-test is competitive with the
MLR test under contiguous local alternatives, and asymptotic critical values for
the empirical Bayesian-framework D-test that can be obtained from a chi-square
table. The simulations in Section 6.1 suggest that the asymptotic critical values
of Corollary 4.1 can be used with small n, while those in Section 6.2 indicate
that the asymptotic critical values of Corollary 5.1 can be used with moderate n

when α0 is small.
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Figure 3. Histogram of SLC data with fitted models.

The SLC data are shown with the fitted homogeneous model
N(0.263, 0.0982) and the fitted heterogeneous model 0.887N(0.240, 0.0722)+
0.113N(0.456, 0.0722). Parameter estimates for the heterogeneous model
were obtained as indicated in Section 5 with an initial value of 0.1 for α.

Yet, the worth of the D-test does not lie solely in its theoretical properties.
Rather, the D-test has a computational advantage over LR-type tests in applica-
tions involving large or online data that cannot be processed on a single occasion,
either because the data set is too massive or because it arrives in batches that
are processed individually and then discarded.

More explicitly, suppose that a data set is partitioned into batches X1, . . .,
XB. First, we can estimate the mixture parameters using X1. Then, for each
j ∈ {2, . . . , B} we can update the parameter estimates using only Xj and the
most recent of the previous estimates (i.e., we need not recall X1 through Xj−1).
Once the parameter estimates have been updated from XB, we can calculate a
D-test statistic; all we need are the parameter estimates updated from XB. On
the other hand, to calculate an LR-type test statistic would require us to recall
X1 through XB−1. Such a scenario often occurs in Internet traffic applications,
where data come in streams. Of course, an assumption for this updating strategy
is that the estimates so acquired are asymptotically indistinguishable from the
estimates that would have been calculated based on the full data set if it had been
immediately available. Methodology for updating mixture parameter estimates
without recalling previous data batches has already been proposed by Sun et al.
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(2009). Their “partial” EM estimates have computational advantages over “full”
(i.e., the familiar) EM estimates, even if recalling X1 through XB−1 is feasible;
partial EM estimates are also more efficient when later batches of data contain
more mixture components than earlier batches.

The present work begins a new line of research. We have recently studied
finite mixtures of discrete distributions from an L2 perspective (Charnigo and
Sun (2008)). Moreover, Dai and Charnigo (2008) have examined the D-test and
MLR test for contaminated density and regression models. They discovered that,
for contaminated density models with a one-dimensional parameter, the limiting
null distributions of ndn and Mn coincide up to a multiplicative constant. They
also found that ndn and Mn share the limiting null distribution of χ2

2 for a
contaminated beta model, which is exciting because of that model’s applicability
to microarray data analysis.
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