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Abstract. A first-order asymptotic representation is developed for low- and intermediate-degneees in stars for which

the lower boundary of the resonant acoustic cavity is not located close to the star’s centre. To this end, a fourth-order system of
differential equations in the radial parts of the divergence and the radial component of the Lagrangian displacement is adopted.
The lower boundary of the resonant acoustic cavity is considered to be a turning point for one dettemtial equations. As

in a previous asymptotic study of low-degrpenodes with high radial orders, asymptotic expansion procedures applying to
self-adjoint second-order fiérential equations with a large parameter are used by extension of these methods. The main result
is that, in contrast with the usual first-order asymptotic theory for low-degne®des of high radial orders, the present first-

order asymptotic representation leads to small frequency separ&@jgrdifferent from zero. The validity of the asymptotic
representation is tested fprmodes of the equilibrium sphere with uniform mass density, since the modes of this model are
determined by means of exact analytical solutions.
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1. Introduction physical point of view, the region away from the boundary

ints can be assimilated with the resonant acoustic cavity,

acoustic waves which propagate to-and-fro in a resonant c rlere acoustic waves are propagatin_g, and th_e two boundary
\S/ers can be assimilated with the regions outside the acoustic

ity msuje the star. The resonant cavrgy is bounded a,bove Xvity, where the acoustic waves are attenuated or evanescent.
the rapid decrease of the sound velocity near the star’s surfac is procedure, the lower boundary of the acoustic cavity is

and below by the increase of the sound velocity with dep citly assumed to be located close to the star’s centre (for a

The radial distance of the lower boundary from the star's cef\. .- = .o ark see Lopes & Turck-Gizé 1994, Sect. 2.2.2)
tre decreases with the frequency of fhrenode and increases he assumptic,)n is justified for Iow-degrqaemo’des of very

with the degree of the spherical harmonic to which the mo aerge radial orders but is highly questionable for low-degree

belongs. . . :
-modes of less large radial orders and for intermediate-degree
For low-degree and higher-ordpermodes, Tassoul devel- p-modez sslarg aroraers rinter I ¢

oped a second-order asymptotic theory, first with the use of the

Cowling approximation (Tassoul 1980), and afterwards Witrt1—t_ In this paple? ourfeilm IS t% (_jetvelopdg Ilrs(;-order z(ajsymp-
out the use of this approximation (Tassoul 1990). olc representation ot low- and intermediate-degramodes

Smeyers et al. (1996) reconsidered the second—oraoerrWh'Ch the lower boundary of the resonant acoustic cavity is

asymptotic theory by using asymptotic expansion procedurne% located close to the star’s centre. We again start from the

which apply to singular perturbation problems (Kevorkian éourth—ordersystem of elierential equations in the radial parts

Cole 1981, 1996) and derived an asymptotic representatPfr{[he divergence and the radial component of the Lagrangian

similar to that developed by Tassoul, apart from a small di isplacement, which stems from Pe_kerls (1938) and was re-
ference which does nofffact the results. In their procedureadOpted by Tassoul .(1990.)' Wwe con5|derthe Io_wer boundary of
Smeyers et al. divided the star into three regions: the regi he resonant acoustic cavity to be a turning point for one of the

away from the boundary points at = 0 andr = R, and irerentia equations. ) ) o

the two boundary layers near the boundary points. In the first [N the resonant acoustic cavity, we distinguish between
region, asymptotic solutions for the functions considered df€ region away from the boundaries of the cavity and the
constructed that are oscillatory, while in the boundary Iayet?go small regions near these boundaries. Outside the resonant

non-oscillatory asymptotic solutions are constructed. FronP§OUStiC cavity, we distinguish between the small region near
the transition point and the region away from that point, which

e-mail:Paul .. Smeyers@ster.kuleuven.ac.be extends to the star’s centre. In each region, we apply an

In stars,p-modes are thought to originate from interferences
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adequate asymptotic expansion procedure for the constructk}rer) _11 29 (1 dg N 1)

of the asymptotic solution. 3 4r2 " 2 \gadr v

.Th|s flrst.-ord.er asymptotic representation ylelds_asymp- 1 d(p c2) 2 1dp 1 (p 02)
totic approximations for the small frequency separatibps +— el E Bt @)
that are diferent from zero, in contrast with what the first-order pct dr \r pd) pc dr

asymptotic representation for low-degneenodes of high ra- K4f(r) _ 2¢g (1 dg 1). ®)
0 gdr r

dial orders does. We illustrate our asymptotic representation 2

C2
p-modes with results for the equilibrium sphere with uniform . . .
mass density as was already done by Tassoul (1990), since fhif1ese equations,/&* is considered to be a large parameter.

is the only equilibrium model for which eigenfrequencies angduation (1) difers from Eq. (2) in Smeyers et al. (1996) by the
small frequency separations can be determined with great (gRlacement of the cdiécient of the large parameter;’(r), by
curacy even for higher-degree modes. the coéﬁci_entcp(r), and _by the associated c_hange of the f_unc-
The plan of the paper is as follows. In Sect. 2, we preséiftn Ks(r) into the functionK;(r). The equation has a turning
the basic equations. In Sect. 3, we construct the asymptotic BgiNt Or a transition point at the zero of the Gogenty(r) of
lution in the region in the resonant acoustic cavity that is aw3je large parameter, whose radial coordinats determined
from the boundaries. The asymptotic solutions in the small f2 the equation
gions near the lower boundary of the resonant acoustic cavity (€ +1/2)c(r)
are constructed in Sects. 4 and 5. In Sect. 6, we constructthe ———
asymptotic solution in the region outside the acoustic cavity
that is away from the lower boundary of the cavity and exteniée consider the turning point to be locatatsidethe bound-
to the star’s centre. In Sect. 7, the asymptotic solution valid &y layer near = 0.
the boundary layer near= Ris constructed and the eigenfre- The adoption of the parametet{ 1/2)? in Definition (4)
guency equation is derived. In Sect. 8, we apply the asymptaticthe functione(r), and not that of the parameté + 1), is
representation to low- and intermediate-degrerodes in the dictated by the requirement of constructing first-order asymp-
equilibrium sphere with uniform mass density. totic solutions for the function(r) that have the right behavior
asr — 0. That ¢ + 1/2)? is the correct choice of the param-
) ) eter was emphasized earlier by Roxburgh & Vorontsov (1996)
2. Basic equations relative to the finiteness of theecondorder terms in asymp-

Consider a spherically symmetric and static star with mdss totic expansions in terms of Airy functions that apply to solar
and radiusR that is subject to an oscillation mogeof a low acoustic oscillations of low and intermediate degree (see the

or an intermediate degree As usual, we introduce a Systemcomments of these authors below their Eq. (15)). The authors

of spherical coordinates 6, ¢ defined in an inertial frame of 2dded the comment:
reference whose origin coincides with the star's mass centre.

Using conventional notations, we write the fourth-order sys- ment of (¢ + 1) by (¢ + 1/2)? improves the accuracy of

:Ethemdqf governing é‘fﬁre”‘g’." lequatlons '? tfhtﬁ r?_dlal par.ts OJ. JWKB formulae for the potentials of the ty e +1)/r?
e divergence and the radial component of the Lagrangian 'S'(Kemble 1937; Langer 1937).

placement, respectively(r) andé&(r), in the form

€)

Itis well known that in quantum mechanics the replace-

In their second-order treatment, Roxburgh & \orontsov

2
de %90(0 + K3(r) + &2 K1(r)]a adopted an approach used by Vorontsov (1991), which con-
&

— + Kz(r)z—(: +

dr? sists in developing a composite description rather than a purely
= —Ka(r) 3 1) asymptotic one: they derived the eigenfrequency equation by
= 4 B . . . s .
dr matching asymptotic solutions that are valid in the solar inte-
d?¢ 4de (c+1)-2 rior, with “exact” non-asymptotic solutions that are valid near
a2 T radr r2 the surface. The solutions in the deep interior were constructed
d¢ [2 L c4r) as asymptotic solutions of a single second-ordéietential
“a ' [F - () Kl(r)} @, ) equation for a variable related to the Eulerian perturbation
of the pressure. In this equation, the dominaffiéeets of the
where Eulerian perturbation of the gravitational potential and its first
1 derivative were taken into consideration.
£= —, (3)
lor]
1 (€ +1/2) 3. The asymptotic solution in the region
o) = () o2rz @) in the resonant acoustic cavity away
N2 from its boundaries
Ki(r) = ¢(¢ + 1) —, (5)
r In the region in the acoustic cavity away from the turning
2 2 d(p Cz) 1dp point atr = r; and from the star's boundary at = R, we

Ka(r) = T + ﬁ a 5 ar’ (6) proceed as in Smeyers et al. (1996): we use, by extension,
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a two-variable expansion procedure described by Kevorkianafad is positive. By the introduction of the coordinate
Cole (1981, 1996) that applies to self-adjoint second-order dif- s
ferential equations with a large parameter. We adopt the f&st™ @’ (17)

variable . :
where the functio(¢) — 0 ase — 0, and expansions of the

=1 [ e 10 form

| | | | aO(re) =g () ag () + i () o (9)
and consider the radial coordinatas the slow variable. By in-

troducing asymptotic expansions for the functiafig andé(r) LR (18)
of the form E0(r; ) = Vg)(g) é:(()t) () + v(lt)(s) fgt) (s)
aO(r;e) = a(()o)(‘r, r)+ ea(lo)(‘r, r) + &2 a(zo)(‘r, r) +.o.
+ 0(&?), Eq. (1) takes the form
(0) (0) ( ) (0) 2 +(0) (11) v 2 (1) ®
EOre) =&y (nr) + &€ (n 1) + &2, 7(T,1) (t)() 1 ey .\ 1 K dayy
£ Koy —O
+0(s), Ho 52() ds? T 5 ' ds
and, mutatis mutandis, solving the equations of the lowest or-+&§) oS ag) +. . +ﬂ(1t)(g) L.]+...
ders ing as in Smeyers et al. (1996), one derives the first-order €
asymptotic solutions O(g (t)
@y %y (19)
(0) . . o 6le) T ds
a®)(r; &) = h(r) (A} cosr + Bj sint),
(12) Within the terms containing the functiqr’(e), the term in-
£O(r; 6) = Cyrit + Dy 4D, volving the second derivative?d’) /ds? is of the same order
in £ as the term involving the produga{s*ag), when
where
N 8(e) = €23, (20)
h(r) = ["40) r Vp(r) ()] (13)

If the functionu{)(e) is of a smaller order i than the prod-
andAy, By, C;, Dj are undetermined constants. The first-ordefct £2/2 v{)(s), the dominant equation in the small region near
asymptotic solution for©(r; £) is oscillatory in the fast vari- the turning-point is

able 7, while the first-order asymptotic solution fgf)(r;s) ®

depends only on the slow variabl@nd is non-oscillatory. The d g toasa®=0 (21)

oscillatory solution fo(r) does not appear before the secondds? 0 ’

order asymptotic approximation. Its general solution can be expressed in terms of Airy func-
tions as

4. The asymptotic solution in the region a9 () = Agi Al (_%1/3 s*) + By Bi (—<pt1/3 s*), (22)

near the turning point located on the inside

of the acoustic cavity whereAq; andBy; are undetermined constants. Hence, the first-

order asymptotic solution far®(r; ) takes the form
In the small region near the turning point located on the insidg, = . ¢ ; 1/3 & . 13

of the acoustic cavity, we again follow a procedure describ&d () = #o () Ao Ai (—¢¢% ) + BoiBi (-4 s)] . (23)
by Kevorkian & Cole (1981, 1996). In order to consider th@at the transition point at = r, the solution and its first deriva-
behavior of Eq. (1) near the turning point, we introduce th®e take the values

coordinate 3273
O (.- 2y = O
s=r—r, (14) a (1 &) = py () r(2/3) (AO,t + V3 BO,’() )
) da(O(r; €)
and the Taylor expansions abaut 0 of the form —a (24)
153
® 1/6 (2
o(r) = c+ 15+ O(L), ¢r) = grs+0(), - “_225? 3 27(r /3) V3 (Aoy — V3Boy).
Ki(r) =Kyt +0(9),  Ko(r) =Kzt + O(9), (15)

By the same transformations, Eg. (2) takes the form
K3() = K+ O(9.  Ka(r) = Kag +O(9),

() 0]
R & 1 4 &
where the cofficienty; is determined as 0 gM3 ds2 g8 4+e283s dst T
®
2(1 ¢ ® ) 1 deg
Qotzg(r—t—a) (16) +Vl (8)[]—/10 (8) m@"‘ g+ ... (25)
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If one sets
(@) = 1 (@),
the dominant equation is

d2§(t)
ds2

Its solution can be written as
1) [\ C * D
&y (s) = Cot S" + Doy,

whereCy; andDg; are undetermined constants.

(26)

(27)

(28)

The uniformly valid first-order asymptotic solution can then be
expressed as

at(r;8) = &7Y° [AotAil (—i®s") + Bot Bi (—¢° s')]

1 4 2
+— ry h(r
msot Vi et h(r)

X [(Aot + Boy) cost + (Aot — Boy) sint]

1 12 bd
= inl = £ /2, O
\/7—2.%1/12 a [Ao,t Sm(s 3 \/cpts?’ + 4)
12 T
-z /2 . 2.
+Bo,tcos(g 3 Vo s2 + 4)} (35)

In order to match the first-order asymptotic solutions With regard to the radial component of the Lagrangian dis-
for a9(r; &) and©)(r; €), we consider the first-order solutionplacement, one observes that Solution (12)46Xr; ) and
for a(r; &) for large values o§ and the first-order solution for Solution (28) forg‘t) (s") cannot be matched. We therefore set

O)(r; &) for s — 0. One has that

1)) °

\/7—2_ ¢1/12 51/4

X | Aot sm(1 N )

lim aO(r;¢) =
S—o00

12 T
-z /2
+BO,’[ COS( 3 Ve 53 + )}

and, by the use of Taylor Series (15) absut 0 and the Taylor

series

p(r) = pt + O(s),
that

1
o4 1, \pr 2 st

lim O(r; &) =
s—0

By imposing that

lim aO(r; &) = lim a9(r; ¢),

S—o0 s—0

one derives the matching conditions

Ho (€) = &0

and

1
A= \/Z_wtl/Grt\/P_t(‘»tz(Ao,t+Bo,t),
By=— / re Vot & (Aot — Boy) -
0 \/—

One constructs a first-order asymptotic solution for th
function a(r) that is uniformly valid from the transition point
atr = ry to a distance diiciently large from the boundary
point atr = R, by adding the first-order asymptotic solutions (t)(g) 316 1(2/3) 1/3
for O(r; &) anda°)(r; €) and subtracting their common part. =

x | Ay cos(; 3 \/9553/2) + B}, sin(:—; % \/9553/2)}.

(29)

(30)

(31)

(32)

(33)

(34)

C;=0, D;=0, Co=0 Do =0. (36)

5. The asymptotic solution in the region

near the turning point located on the outside

of the acoustic cavity
In the small region near the turning point that is located on the
outside of the acoustic cavity, we introduce the coordinates

S

-y _ 7
S=-S=n-r, §= e (37)
and asymptotic expansions of the form
a(ti)(r; g) = ﬂgi)(g) a(()ti) (Sk) +,u(1t')(8) () (gk)
+...,
(38)
£9(r;¢) = v“"(s) &’ () @& (s)
+...
After substitution into Eq. (1), one is led to set
Si(e) = ° (39)
and derives the dominant equation
Ra (t) ©
qu -t S oy’ = 0. (40)
A general solution of it is given by
a7 () = Aoy Ai (¢° s') + Boy Bi (9% ) . (41)

whereAg, andByy, are undetermined constants. The first-order
asymptotic solution for8)(r; &) then takes the form
a9(r; ) = 1§ (e) [Aoy A (¢ §7) + Boy Bi (¢ ° §')] . (42)

At the turning point at = r¢, the solution and its first derivative
take the values

oV (1 e) = g (e )F(2 ) < (Pou + V3Boy),

(—d“m(“e)) (43)

dr

(Aox — V3Boy).

g2/3 2
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On the grounds of the continuity of the first asymptotic savhere

lutionsa®(r; &) anda®(r; £) and of their first derivatives at the 1 1
1 1 - _ /4
turning point arr = ry, it follows that hi(r) = {[—<p(r)] r yp(r) cz(r)} ’ (54)

®)N _ -1/6 B B andAyc and By are undetermined constants.
Ho (e) =& Aoy =hor Boy = Bor (44) The first-order asymptotic solution fef)(r; £) then takes
Hence, the first-order asymptotic solution fgl)(r; ) can be the form
written as

@O (r; ) = 10 (&) hi(r) [Aoc exp(ti) + Boc exp(-)].  (55)

aW(r:g) = 71/6 [Ao A.( 1/35‘1 ) + BOtB'( l/35‘1 )] (43) It can be verified thati(r) —» —oo asr — 0. To this end, we
define the functior (r’) as

6. The asymptotic solution in the region outside , ~ .,
the acoustic cavity that is away from the turning F(r)= f V=g () dr+C, (56)
point

where C is an undetermined constant. According to
In the region outside the acoustic cavity that is away from t@efinition (46), the fast variable(r) can then be expressed as
turning point atr = r, we again use a two-variable expansion

procedure. We still consider the radial coordinages the slow 7i(f) = - [F(f) F(r]. (57)

variable but now adopt
For small values of, one has

mn=%ﬁxﬁaﬂm/ @) £ 12,

nr, (58)
as the fast variable. It may be noted thafr) < 0 and so that
dr/dr > 0. After transformation of Egs. (1) and (2) and sub- 1 1
stitution of asymptotic expansions of the form 7i(r) = (é’ + )Inr - =F(ry. (59)
aO(r;e) = 1) (e) Henceyi(r) — —co asr — 0.

Furthermore, one observes that, in asymptotic Solu-

X [ag) (i, 1) + Sag) (T, 1) + 0(82)]’ (47) tion (55),

&0(r;e) = 1) (e)
[ () (7i,r) + sf(') (7i,r) + 0(82)] ,

one has, at the lowest orderssn Since the function f¢(r)]¥4 behaves ag~'/?, the func-
tion hi(r) behaves also asY/2. Hence, the particular solu-

exp(r;) = exp

(f + 1) In r] ri+lz, (60)

&a 8) Mg 48 tion hi(r) exp(r;) tends to zero ag, as is required by the study
ar? e (48) of the behavior of the eigenfunctions near the singular point
azg(l) atr = 0. It may be noted that this behavior results from the
> =0, (49) replacement of the factar(¢ + 1) by the factor { + 1/2)% in
o] Definition (4) of the functiorp(r).
5209 0 1 Similarly, one verifies that the particular solution
B2 T BT hi(r) exp(-7;) behaves ag~ Y asr — 0. Since this
! 2 () a0 0 particular solution is not admissible, we set
0“« 164
x|25 82|+(K2+%%(;—f)6—2+K4%}-(50) Boc = 0. (61)
) o For the matching of the first-order asymptotic solutions
A general solution of Eq. (48) is given by for ®)(r; £) anda®(r; &), we consider the first-order solution
O/ o A ' ' ' for U)(r; €) for large values o§ and the first-order solution for
ag (7i: 1) = Aoi(r) exp(ri) + Boi(r) exp(=ri). (1) a0(r; ) for s — 0. By passing on to the first asymptotic ap-
The admissible solution of Eq. (49) is proximations of the Airy functions for large arguments, one has
£9(r) = Doy(r 52) Jim o®(rig) = —
() = Doir)- ©2) Jm oi0) =

In this solution, we have dropped a tef@g;(r) 7; for the rea- 12
son that the term is inconsistent, since it can be relabel Ao €X (__ < 3/2 ) 2B (_ < 3/2)}
' -2 ) © + ex © 62
asCy;(r)/e, and its order ir¢ is changed. %{ Lexp €3 Vs o &P 2 (62)
By removal of the resonant terms in the right-hand membS
of the inhomogeneous Eg. (50), one obtains

1 S
Poi(r) = Pochi(r),  Boi(r) = Bochi(r), (53) ﬂ“)=—;L£ Ve (s, (63)

h the other hand, from Definition (46), it follows that
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so that, for small values of,

12
() =-= 2 Ve s'% (64)
€3
and
0]
o Hy' (&) 12
| M) oy — 0 =< 3/2|
lim o®(r; 2) LR \/,D_tCIZSMAQC eXp( -3 Vis7).(65)
By imposing that
lim o®(r; &) = lim aO(r; &), (66)
§—00 5—0
one derives the matching conditions
i 2 \rm
ﬂg)(s) =&, Aot = 1/67\/_2 Agc, Bor=0. (67)
oIt \/,O—tCt
From Relations (34), it then follows that
Ao = V2A.,  By= V2Aqg, (68)

so that the constant&; and By in the first-order asymptotic

solution fora©(r; &) are equal to each other.

The first-order asymptotic solution that is uniformly vali

P. Smeyers: Asymptotic representation of low- and intermediate-dpgneeles in stars

the condition of hydrostatic equilibrium leads to a power series
for the pressure of the form

P(r) = PsZ%*? (72)

P
1+ Eiz+ O(zz)].

Power series of the following form are then derived én),
o(r), andh(r):

c(r) = cs 22

c
1+ éz+ O(zz)],

from the central point at = 0 to the turning pointat = rycan  w®)r; &) = v¥(e) wd (rs) + v &) wl (z5) + ...

be expressed as
aO(r; €) = Ag, [s‘l/ oA (¢ S)

1
‘5 or® re i & hi(r) exp(ti)

1 12
BN P eXp(—; 3 Vs 2)} (69)

7. The asymptotic solutionnear r=R
and the eigenfrequency equation

or) = ps 2t |1+ % z+ o(f)} : (73)
h(r) = hgz (327211 4 :—i zZ+ 0(22)} )
We introduce the boundary-layer coordinate
w1 [ ez (74)
and boundary-layer expansions of the form
905 ) = 1) i (7) + 1) ¥ (79 + ... } 75)

As in Smeyers et al. (1996), the dominant boundary-layer
equation fon® (r5) is

dZU(S) 1 2 _ 1 4
o [;_(Me+D"-1/4 o =0, (76)
dr? 72
The equation has the admissible solution
o (rs) = Aos e Inia (19), (77)

whereJ, .1 (7s) is the Bessel function of the first kind of order
Ne + 1, andAgs an undetermined constant.
For the matching of the first-order asymptotic solution for

We treat the small region near= R as a boundary layer. Forthe functions®(r; &) with the first-order asymptotic solution
the construction of the boundary-layer solutions, we pass 8 the functiona(r; £)/h(r), one must consider the asymp-

from the functionsx(r) and&(r) to functionsu(r) andw(r) by
means of the transformation

a(r) = h(r) o(r), }

(70)
£(r) = h(r) ¢ () w(r),

R
which corresponds formally to the transformation given by = }f Ve (1) dr’,
&

totic form of the Bessel functiod, .1 (7s) for large arguments.
Taking into account that

Egs. (39) in Smeyers et al. (1996). One readily obtains the re- r

sulting equations from Egs. (40) and (41) in the same paper

replacing the functiom(r) by ¢~Y/2(r) and the functiorks(r)
by K3 (r).

We assume that the mass dengity), can be expanded in

a power series about= Ras

p(r) = psZ* (71)

1+'Z—iz+0(22)],

1/2
wherez = R - r, andn, is a constant. Furthermore, we assumég = —Ao,s(;) Cosy,

7s(r) = TR — 7(r) (78)
with
(79)
e performs the matching by setting
ue) =1 (80)
and
1/2

Ap = Ao,s(— siny,

# (81)

that, in the surface layers, the mass inside the sphere with ra-
diusr, m(r), is almost equal to the star’s total mabk, so that wherey = tr — (2ne + 1) 7/4.
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The first-order asymptotic solution that is uniformly valideading-order approximation, the latter eigenfrequency equa-
fromr = Rto a distance diiciently large from the turning tion reduces to
point atr = r is then given by

RI 1 (e+1/2)2)"°
o59(r; £) = Aosh(r) T2 Jn 11 (7). (82) '“'ﬁ [cz(r) Tz | dr=ren (68)
From Equalities (81), it follows that in accordance with the comments given by the authors in their
. Sect. 4 @i is neglected an® is set equal to zero). The value
Aos(siny + cosy) = 0. (83)  of aoy results from the matching of the solution constructed

in the solar outer layers by means of the method of the phase
functions, and the solution constructed in the solar interior.
From the comparison, it follows that eigenfrequency Egs. (85)

The constanfs can be diferent from zero only if

siny + cosy = 0. (84) and (88) agree, apart from theigrence due to the dissimilar-
This trigonometric equation leads to the eigenfrequency eqdfé(-Of the assumptions that are adopted with regard to the outer
tion layers.
RI1 (e+1/22]Y2 n
IUIf [02(r) S = r/2 ) ] dr = (n + Ee)ﬂ (85) 8. Application to the equilibrium sphere
re

with uniform mass density

wheren takes the values,2,3,... and is the radial order of . . .
. . I In order to examine the improvementin accuracy of the present
the p-mode considered. In the Cowling classification, the order . L . ) .
. —asymptotic description in comparison with the standard first-
of a p-mode corresponds to the number of nodes of the eigen:-

function£(r) betweerr = 0 andr = R or, equivalently, to the ordgr asymptotic dESCI’IptIO!’l for low-degrpemodes of high
. : . radial orders (Tassoul 1990; Smeyers et al. 1996), we have ap-
number of nodes plus 1 of the eigenfunctigm) in the same

interval. The degreéto which thep-mode considered belongs,p“ed eigenfrequency Eq. (85) to a variety pimodes of the

has an fiect on the eigenfrequency through the position of theequnlbrlum sphere with uniform mass density. In this equilib-

turning point and the factor(+ 1/2)2, which appears in the rium mo_del, the Q|str|but|ons of_the mass density, the pressure,
: : and the isentropic sound velocity are given by
integrand in the left-hand member.

The integral in eigenfrequency Eq. (85) is equal to the time
needed for an acoustic wave to propagate in the radial dirgc= ——,
tion from the turning point to the star’s surface with the local ﬂ3G M2

velocity of propagation P(r) = (1-53). (89)
c(r) 58gF|§/|4 > 1z
O T e ®6) 4= [ oR (17" )] ’
1= =)
o2r2 wherex = r/R. In the expression for the isentropic sound

L , _ velocity, we have adopted the valu¢35for the generalized
which is everywhere larger than the local isentropic sound ve

. X ‘Isentropic cofiicientI’; = (8InP/dlnp)s. Consequently, for
locity, except at the star’s surface. The velocity of propagati _mode associated with a degréand an eigenfrequency,
is infinitely large at the turning point and decreases as the radj distance of the turning point from the centre is given by
distance increases.

For a pair ofp-modes of a degregéand radial orden and
of the degre# + 2 and the radial ordar— 1, which have nearly I't =

the same eigenfrequency, the approximate relation holds
1/2 . .. .
fR 1 (e+1/2p dr assumption that, near= R, the mass inside the sphere with
r( | G3(r) o212 N 2 87 radiusr, m(r), is nearly equal to the total madsl, does not
R 212 Ne’ (87) hold, but the pressure distribution is given in that region by an
1 (£+5/2) n-1+— . :
20 - o22 d expression of the form of Taylor Series (72).
r ¢ For eachp-mode considered, we have determined the ex-

The dfect of the reduction of the radial orderby one ap- act eige“ffequeﬂCyTexacr. by means of the eigenfrequency
pears to be approximately compensated by a move of the tU@guation
ing point to a somewhat larger radial distance from the centre G M\L2 U212
and by an increase of the local velocity of propagation of the, .. = _) {D{,’k + [Dik + (6 + 1)] } , (91)
acoustic wave, both phenomena being related to the increase of R® ’
the degre€ by two. wherek =n -1, and
Eigenfrequency Eq. (85) can be compared with eigenfre-
quency Eq. (48) in Roxburgh & Vorontsov (1996). In the®, = -2+ T'1[k(2k+ 5+ 2¢) + 3+ 2¢£]/2. (92)

1

-1/2
6072 } . (90)

"B+ 127

In the equilibrium sphere with uniform mass density, the

1(€+2)
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(Sauvenier-Gfiin 1951; Ledoux & Walraven 1958, Sect. 76)7_-

We have also determined the first asymptotic approximation ] |modep_250f | =2
6_'
(2n+€+ne+%)g
= 93 ]
o] fR dr ®3) 5 ] modep_24 of | = 4
0 C(r) 4_'

given by the asymptotic theory that applies to low-degree]
p-modes of high radial orders. Furthermore, we have start8d
from this asymptotic approximation in order to solve eigenfre- ]
quency Eqg. (85) numerically by means of the Newton-Raphsén
method and to determine the asymptotic approximati@fmp ]

The eigenfrequencigsexacs 01, andoasymp are presented 14

in Table 1 for thep-modes of the radial orders = 5, ] c() \

10,15, 20, 25, 30, 35, 40 belonging to the lowest degres 1, ¢ 02 0z 06 08 1

2,3,4. They are all expressed in the u(@ M/R3)1/2. In the X

same table, the relative radial_distance of the turning pointfrqﬂb_ 1. Variation of the velocity of propagation as defined by Eq. (86)
the centrey;/R, and the relative errors of the asymptotic apy, the modep,s belonging tof = 2 and the modep,4 belonging to

proximationsor and oasymp Of the eigenfrequencies are alsg = 4, and variation of the isentropic sound velocity, as functions of
presented. the relative radial distance= r/R. The velocities are expressed in the
For ¢ = 1, the radial orders considered are limited tanit (G M/R)Y>.
n = 5,10,15, 20, 25, since fom > 25 the relative error of the
asymptotic eigenfrequenaysympappears to increase slightly.
We ascribe this increase to the fact that, pemodes of radial
ordersn larger than 25, the turning point is situated so cloggmodes of high radial orders are seen to increase, as can be
to the star's centre that it is located in the boundary layer ne&pected, while the relative errors of the eigenfrequencies re-
r = 0. Under this circumstance, the asymptotic theory for lovgulting from Eq. (85) decrease slightly. The ratios of the rela-
degreep-modes of high radial orders should be applied rathéye errors are approximately 1.46 for the modes belonging to
than the asymptotic theory developed above. ¢ =1, approximately 2.29 for the modes belonging'te 2,
In the last but three and two columns of Table 1, the eRpproximately 3.55 for the modes belonging’te 3, and ap-
act values and the asymptotic approximations of the small figoximately 5.22 for the modes belonging/te: 4.
quency separatior3, ; are given for theo-modes belonging to From the last three columns of Table 1, it appears that, for
¢ =1 and thep-modes belonging t6 = 2. The small frequency ¢ = 1 and¢ = 2, the asymptotic approximations of the small

separations are determined as frequency separationfn ), are somewhat smaller than the
1 exact values(Dy),,, SO that the relative errors are negative.

Dn¢ = 2713 (one — one1.42) 5 (94) Already from the radial ordem = 15 on, the absolute value of
+

the relative error of the asymptotic approximation of the small
where the eigenfrequencies are still expressed in tftequency separatioD, is smaller than 1%.

unit (G M/RS)M. In the last column of Table 1, the relative In order to throw light on the origin of the small frequency
errors of the asymptotic approximations of the small frequensgparation®,,;,, we have represented the variation of the ve-
separations,Dn ), With respect to the exact valud®(),,, locity of propagation as given by Eq. (86), for the maglg
are presented. of £ = 2, with eigenfrequencyasymp = 47.8714, and for the
Table 1 shows that, for the low-degr@emodes consid- modep,4 of £ = 4, with eigenfrequencyasymp= 47.7493. For
ered, both first-order asymptotic approximations of the eigetfie first mode, the turning point is locatedrgfR = 0.04762,
frequency are somewhat larger than the exact eigenfrequefmythe second mode, af/R = 0.08571. The variations of the
and that the asymptotic eigenfrequencies determined by meagiscities of propagation as well as the variation of the isen-
of Eq. (85) have values closer to those of the exact eigenfiepic sound velocity are represented in Fig. 1. For bpth
quencies. Consequently, the relative errors of the asymptatiodes, the velocity of propagation sharply decreases close to
eigenfrequencies determined by means of Eq. (85) are systéme-turning point and tends rapidly towards the isentropic sound
atically smaller than those of the eigenfrequencies determingdocity, so that the velocities of propagation are nearly iden-
by means of the asymptotic theory for low-degpemodes of tical from x ~ 0.28 tox = 1. The figure illustrates that the in-
high radial orders. For the various low degrees, the relative erease in the degrédy two mainly induces a move of the turn-
rors of the eigenfrequencies determined by means of Eq. (8%) point to a somewhat larger distance from the centre. From
are already smaller than 0.53%ras 10. Forn = 40, they are this, we infer that, apart from theftrence in the radial orders
of the order of 0.035%. of the modes, the region situated in the vicinity of the two turn-
As the degreéincreases, the relative errors of the eigenfréag points contributes significantly to the formation of the small
guencies resulting from the asymptotic theory for low-degréequency separatio®,s,. This conclusion agrees with an
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Table 1.Exact eigenfrequencies,ac, and first-order asymptotic approximatiang andoasympand their relative errors for low-degrgemodes
of the equilibrium sphere with uniform mass density. For the degfeed and¢ = 2, exact small frequency separatiddg,, and first-order
asymptotic approximations and their relative errors are also given.

14 N Oexact r/R oT rel. err. Oasymp  Tel.err.  (Dne)ey  (Dng),s  rel.err.
% % %

1 5 10.2153 0.1329 10.4980 2.767 10.4083 1.890 0.08220 0.08167 -0.64
10 19.4766 0.07013 19.6267 0.7707 19.5789 0.5252 0.04288 0.04280 -0.20
15 28.6531 0.04773 28.7554 0.3570 28.7228 0.2432 0.02911 0.02909 -0.096
20 37.8065 0.03620 37.8841 0.2053 37.8594 0.1398 0.02206 0.02204 -0.055

25 46.9503 0.02915 47.0129 0.1332 46.9929 0.09068 0.01776 0.01775 —-0.030

2 5 11.0023 0.2031 11.4109 3.714 11.1803 1.619 0.07675 0.07636 —0.51
10 20.3146 0.1116 20.5396 1.108 20.4124 0.4817 0.04119 0.04111 -0.18
15 29.5128 0.07710 29.6683 0.5268 29.5804 0.2290 0.02829 0.02827 —-0.089
20 38.6782 0.05890 38.7970 0.3072 38.7298 0.1335 0.02157 0.02156 -0.053

25 47.8296 0.04766 47.9257 0.2010 47.8714 0.08733 0.01744 0.01743 -0.035
30 56.9737 0.04002 57.0544 0.1417 57.0088 0.06157 0.01463 0.01463 -0.024
35 66.1135 0.03450 66.1831 0.1053 66.1438 0.04573 0.01261 0.01261 -0.018
40 75.2507 0.03031 75.3119 0.08127 75.2773 0.03530 0.01108 0.01108 —0.013

3 5 11.7369 0.2627 12.3238 5.001 11.9024 1.410
10 21.1193 0.1496 21.4525 1.577 21.2132 0.4444
15 30.3482 0.1047 30.5812 0.7677 30.4138 0.2162
20 39.5307 0.08056 39.7099 0.4533 39.5811 0.1277

25 48.6930 0.06548 48.8386 0.2991 48.7340 0.08421
30 57.8447 0.05515 57.9673 0.2120 57.8792 0.05970
35 66.9901 0.04764 67.0960 0.1581 67.0199 0.04453
40 76.1315 0.04193 76.2247 0.1225 76.1577 0.03448

4 5 12.4283 0.3138 13.2366 6.504 12.5831 1.245
10 21.8946 0.1844 22.3653 2.150 21.9848 0.4120
15 31.1612 0.1307 31.4940 1.068 31.2250 0.2047
20 40.3652 0.1012 40.6228 0.6382 40.4145 0.1223

25 49.5413 0.08264 49.7515 0.4242 49.5816 0.08129
30 58.7027 0.06981 58.8802 0.3023 58.7367 0.05794
35 67.8553 0.06043 68.0089 0.2264 67.8847 0.04338
40 77.0022 0.05327 77.1376 0.1758 77.0281 0.03370

earlier conclusion of van Hoolst & Smeyers (1991) with reganecreases as the radial ordeof the p-mode increases, and
to small frequency separations in a polytropic model. that, for p-modes of a given radial order, the relative error

L decreases as the degfdacreases.
We have also used Eq. (85) for the determination of asymp- g

totic eigenfrequencies gf-modes belonging to intermediate By way of illustration, we have constructed the first-order
degrees. The results for themodes of radial orders = asymptotic solution for the eigenfunctie/r) of the p-mode of
10, 20, 30, 40 belonging to the degreés= 10, 20,50 are pre- degre€ = 10 and radial ordem = 10. The asymptotic solution
sented in Table 2. The eigenfrequencies are again expresse8 fisplayed in Fig. 2, fronx = 0 to x = 0.9931, as a func-
the unit(G M/RS)l/Z. In the various cases considered, the reﬁi-on of Fhe r_elative radie_ll dista_mo_e:_r/R. In the asymptotic
ative error of the asymptotic eigenfrequentyisymp: With re- approximation, the turning point is situatedxet 0.3443.

spect to the exact eigenfrequengyyac;, is smaller than 0.3%. We first constructed the part of the asymptotic solution in
One observes that, for a given degr&ethe relative error the region extending from = 1 to x = 0.8521 by means of
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Table 2. Exact eigenfrequencieseyac;, and first-order asymptotic ap- 1
proximationso asymp and their relative errors, for intermediate-degree 0.1
p-modes in the equilibrium sphere with uniform mass density. 1a

0.05 1

4 N Cexact r/R Tasymp  rel.err.
%

10 10 26.0671 0.3451 26.1406 0.2820 0] \//\\//\\//\v

20 45.0487 0.2081 45.0925 0.09717 ]
30 63.6084 0.1490 63.6396 0.04908 _0.05 4
40 82.0326 0.1161 82.0569 0.02959 ]

20 10 31.8289 0.5068 31.8852 0.1768 —Ol-
20 519245 0.3391 51.9615 0.07127 ]
30 71.0358 0.2548 71.0634 0.03880 A T T T T

40 89.7926 0.2040 89.8146 0.02448 0.2 04 X 06 08 1

50 10 44.8769 0.7165 44.9073 0.06785 Fig. 2. The first-order asymptotic solution for the eigenfunctign) of
20 685313 05582 685565 0.03680 the p—mod_e of dggreé =10and rqdlal ordem.z 10in the egunlbrlum
sphere with uniform mass density. The eigenfunction is represented
30 89.7013 04571 80.7218 0.02284 from the relative radial distance = 0 to the relative radial distance
40 109.831 0.3870 109.848 0.01570 x = 0.9931. The vertical line ax = 0.3443 indicates the position of
the turning point in the first-order asymptotic approximation.

the uniformly valid solutionvSY)(r; &) given by Eq. (82). The

choice of the point ax = 0.8521 as a fitting point with the in- g Concluding remarks

ternal solution is motivated by the fact that, at this podg(t;) is

nearly equal tagr/2. We set the asymptotic solution equal to YWe have developed a first-order asymptotic representation of

atx = 1 by imposing that higher-orderp-modes of stars for which the lower boundary
of the resonant acoustic cavity does not lie very close to the
5\¥?(3\"? 1(2) star's centre. Thesp-modes are lower-degrggmodes asso-
Aos = (5) (5) 32 ciated with lower eigenfrequencies as well as intermediate-

degreep-modes.
The asymptotic solution is seen to vary largely in the boundary For our purpose, we started from the fourth-order system of
layer nearx = 1. differential equations in the radial parts of the divergence and
Next, we constructed the part of the asymptotic solutidhe radial component of the Lagrangian displacement, which
that starts outwards from the turning point. To this end, weas used earlier by Tassoul (1990) and Smeyers et al. (1996)
used the uniformly valid solutioa®™(r; &) given by Eq. (35). for the construction of an asymptotic representation of low-
The factorgt, which is introduced as a cfigient in the sec- degree p-modes with high radial orders. Our procedure
ond Taylor Expansion (15), turned out to be equal.8¥2. We differs from the procedure adopted in the foregoing investiga-
fixed the constam; in terms of the constamiys by eliminat- tions mainly by the fact that the lower boundary of the resonant
ing the constandy, between the first Eq. (34), in whidp; = 0, acoustic cavity is no longer considered to be located near the
and the first Eq. (81). It resulted thag; = —0.04416. The first- star’s centre but to give rise to a turning pointin Eq. (1) outside
order asymptotic approximation for the eigenfunctign) dis- the central boundary layer. The position of the turning point is
plays nine nodes between the turning poinkat x and the determined by the zero of the functigir), in which the pa-
boundary point ak = 1, as is expected for pmode of radial rameter((¢ + 1) is replaced by the factor ¢ 1/2). By this
ordern = 10 in the usual Cowling classification. change, the asymptotic solution for the radial part of the di-
Finally, we constructed the part of the asymptotic solutiorergence of the Lagrangian displacemertt), behaves as’
in the region that extends from the turning pointxat x to asr — 0, as is required by the general analysis of the behav-
the central point ak = 0. To this end, we used the uniformlyior of the eigenfunctions near the singular point a 0. The
valid first-order asymptotic solution™')(r; £) determined by change is also made in accordance with an earlier remark of
Eqg. (69). This part of the asymptotic solution displays no nodRoxburgh & Vorontsov (1996).
and decreases exponentially towards the central point, where itWe have constructed the leading-order asymptotic approx-
becomes zero. imation without making any approximation in the fourth-order
The first-order asymptotic eigenfunction is so close tystem of diferential equations, in particular with regard to the
the exact analytical eigenfunction, which is determined byEulerian perturbation of the gravitational potential.
polynomial of degree 9 (Sauvenier-Ga 1951; Ledoux & The main result is that, in contrast with the first-order
Walraven 1958, Sect. 76), that the two eigenfunctions canr@stymptotic theory for low-degrep-modes of high radial or-
be distinguished in Fig. 2. ders, the first-order asymptotic representation developed here
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leads to small frequency separatiddg, different from zero. oasympis smaller than 0.07% from the-mode of radial order
Hence, the inclusion of a turning point in the governing Eqgs. () = 10 on, for which the turning point is situated RtR =
and (2) at the lower boundary of the acoustic resonant cavityli§ 165.
of primary importance for the determination of the small fre-
guency separations.
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