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Abstract. A first-order asymptotic representation is developed for low- and intermediate-degreep-modes in stars for which
the lower boundary of the resonant acoustic cavity is not located close to the star’s centre. To this end, a fourth-order system of
differential equations in the radial parts of the divergence and the radial component of the Lagrangian displacement is adopted.
The lower boundary of the resonant acoustic cavity is considered to be a turning point for one of the differential equations. As
in a previous asymptotic study of low-degreep-modes with high radial orders, asymptotic expansion procedures applying to
self-adjoint second-order differential equations with a large parameter are used by extension of these methods. The main result
is that, in contrast with the usual first-order asymptotic theory for low-degreep-modes of high radial orders, the present first-
order asymptotic representation leads to small frequency separationsDn,` different from zero. The validity of the asymptotic
representation is tested forp-modes of the equilibrium sphere with uniform mass density, since the modes of this model are
determined by means of exact analytical solutions.
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1. Introduction

In stars,p-modes are thought to originate from interferences of
acoustic waves which propagate to-and-fro in a resonant cav-
ity inside the star. The resonant cavity is bounded above by
the rapid decrease of the sound velocity near the star’s surface
and below by the increase of the sound velocity with depth.
The radial distance of the lower boundary from the star’s cen-
tre decreases with the frequency of thep-mode and increases
with the degree of the spherical harmonic to which the mode
belongs.

For low-degree and higher-orderp-modes, Tassoul devel-
oped a second-order asymptotic theory, first with the use of the
Cowling approximation (Tassoul 1980), and afterwards with-
out the use of this approximation (Tassoul 1990).

Smeyers et al. (1996) reconsidered the second-order
asymptotic theory by using asymptotic expansion procedures
which apply to singular perturbation problems (Kevorkian &
Cole 1981, 1996) and derived an asymptotic representation
similar to that developed by Tassoul, apart from a small dif-
ference which does not affect the results. In their procedure,
Smeyers et al. divided the star into three regions: the region
away from the boundary points atr = 0 and r = R, and
the two boundary layers near the boundary points. In the first
region, asymptotic solutions for the functions considered are
constructed that are oscillatory, while in the boundary layers
non-oscillatory asymptotic solutions are constructed. From a
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physical point of view, the region away from the boundary
points can be assimilated with the resonant acoustic cavity,
where acoustic waves are propagating, and the two boundary
layers can be assimilated with the regions outside the acoustic
cavity, where the acoustic waves are attenuated or evanescent.
In this procedure, the lower boundary of the acoustic cavity is
tacitly assumed to be located close to the star’s centre (for a
similar remark, see Lopes & Turck-Chi`eze 1994, Sect. 2.2.2).
The assumption is justified for low-degreep-modes of very
large radial orders but is highly questionable for low-degree
p-modes of less large radial orders and for intermediate-degree
p-modes.

In this paper, our aim is to develop a first-order asymp-
totic representation of low- and intermediate-degreep-modes
for which the lower boundary of the resonant acoustic cavity is
not located close to the star’s centre. We again start from the
fourth-order system of differential equations in the radial parts
of the divergence and the radial component of the Lagrangian
displacement, which stems from Pekeris (1938) and was re-
adopted by Tassoul (1990). We consider the lower boundary of
the resonant acoustic cavity to be a turning point for one of the
differential equations.

In the resonant acoustic cavity, we distinguish between
the region away from the boundaries of the cavity and the
two small regions near these boundaries. Outside the resonant
acoustic cavity, we distinguish between the small region near
the transition point and the region away from that point, which
extends to the star’s centre. In each region, we apply an
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adequate asymptotic expansion procedure for the construction
of the asymptotic solution.

This first-order asymptotic representation yields asymp-
totic approximations for the small frequency separationsDn`

that are different from zero, in contrast with what the first-order
asymptotic representation for low-degreep-modes of high ra-
dial orders does. We illustrate our asymptotic representation of
p-modes with results for the equilibrium sphere with uniform
mass density as was already done by Tassoul (1990), since this
is the only equilibrium model for which eigenfrequencies and
small frequency separations can be determined with great ac-
curacy even for higher-degree modes.

The plan of the paper is as follows. In Sect. 2, we present
the basic equations. In Sect. 3, we construct the asymptotic so-
lution in the region in the resonant acoustic cavity that is away
from the boundaries. The asymptotic solutions in the small re-
gions near the lower boundary of the resonant acoustic cavity
are constructed in Sects. 4 and 5. In Sect. 6, we construct the
asymptotic solution in the region outside the acoustic cavity
that is away from the lower boundary of the cavity and extends
to the star’s centre. In Sect. 7, the asymptotic solution valid in
the boundary layer nearr = R is constructed and the eigenfre-
quency equation is derived. In Sect. 8, we apply the asymptotic
representation to low- and intermediate-degreep-modes in the
equilibrium sphere with uniform mass density.

2. Basic equations

Consider a spherically symmetric and static star with massM
and radiusR that is subject to an oscillation modep of a low
or an intermediate degreè. As usual, we introduce a system
of spherical coordinatesr, θ, φ defined in an inertial frame of
reference whose origin coincides with the star’s mass centre.
Using conventional notations, we write the fourth-order sys-
tem of governing differential equations in the radial parts of
the divergence and the radial component of the Lagrangian dis-
placement, respectivelyα(r) andξ(r), in the form

d2α

dr2
+ K2(r)

dα
dr
+

[
1
ε2
ϕ(r) + K∗3(r) + ε2 K1(r)

]
α

= −K4(r)
dξ
dr
, (1)

d2ξ

dr2
+

4
r

dξ
dr
− `(` + 1)− 2

r2
ξ

=
dξ
dr
+

[
2
r
− ε2 c2(r)

g(r)
K1(r)

]
α, (2)

where

ε =
1
|σ| , (3)

ϕ(r) =
1

c2(r)
− (` + 1/2)2

σ2 r2
, (4)

K1(r) = `(` + 1)
N2

r2
, (5)

K2(r) =
2
r
+

2
ρ c2

d
(
ρ c2

)
dr

− 1
ρ

dρ
dr
, (6)

K∗3(r) =
1
4

1
r2
+

2g
c2

(
1
g

dg
dr
+

1
r

)

+
1
ρ c2

d
(
ρ c2

)
dr

(
2
r
− 1
ρ

dρ
dr

)
+

1
ρ c2

d2
(
ρ c2

)
dr2

, (7)

K4(r) = −2g
c2

(
1
g

dg
dr
− 1

r

)
· (8)

In these equations, 1/ε2 is considered to be a large parameter.
Equation (1) differs from Eq. (2) in Smeyers et al. (1996) by the
replacement of the coefficient of the large parameter,c−2(r), by
the coefficientϕ(r), and by the associated change of the func-
tion K3(r) into the functionK∗3(r). The equation has a turning
point or a transition point at the zero of the coefficientϕ(r) of
the large parameter, whose radial coordinatert is determined
by the equation

rt =
(` + 1/2)c (rt)

σ
· (9)

We consider the turning point to be locatedoutsidethe bound-
ary layer nearr = 0.

The adoption of the parameter (` + 1/2)2 in Definition (4)
of the functionϕ(r), and not that of the parameter`(` + 1), is
dictated by the requirement of constructing first-order asymp-
totic solutions for the functionα(r) that have the right behavior
asr → 0. That (̀ + 1/2)2 is the correct choice of the param-
eter was emphasized earlier by Roxburgh & Vorontsov (1996)
relative to the finiteness of thesecond-order terms in asymp-
totic expansions in terms of Airy functions that apply to solar
acoustic oscillations of low and intermediate degree (see the
comments of these authors below their Eq. (15)). The authors
added the comment:

It is well known that in quantum mechanics the replace-
ment of`(` + 1) by (̀ + 1/2)2 improves the accuracy of
JWKB formulae for the potentials of the type`(`+1)/r2

(Kemble 1937; Langer 1937).

In their second-order treatment, Roxburgh & Vorontsov
adopted an approach used by Vorontsov (1991), which con-
sists in developing a composite description rather than a purely
asymptotic one: they derived the eigenfrequency equation by
matching asymptotic solutions that are valid in the solar inte-
rior, with “exact” non-asymptotic solutions that are valid near
the surface. The solutions in the deep interior were constructed
as asymptotic solutions of a single second-order differential
equation for a variable related to the Eulerian perturbation
of the pressure. In this equation, the dominant effects of the
Eulerian perturbation of the gravitational potential and its first
derivative were taken into consideration.

3. The asymptotic solution in the region
in the resonant acoustic cavity away
from its boundaries

In the region in the acoustic cavity away from the turning
point at r = rt and from the star’s boundary atr = R, we
proceed as in Smeyers et al. (1996): we use, by extension,
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a two-variable expansion procedure described by Kevorkian &
Cole (1981, 1996) that applies to self-adjoint second-order dif-
ferential equations with a large parameter. We adopt the fast
variable

τ(r) =
1
ε

∫ r

r t

√
ϕ (r ′) dr ′ (10)

and consider the radial coordinater as the slow variable. By in-
troducing asymptotic expansions for the functionsα(r) andξ(r)
of the form

α(o)(r; ε) = α(o)
0 (τ, r) + ε α(o)

1 (τ, r) + ε2α(o)
2 (τ, r)

+ O
(
ε3

)
,

ξ(o)(r; ε) = ξ(o)
0 (τ, r) + ε ξ(o)

1 (τ, r) + ε2 ξ(o)
2 (τ, r)

+ O
(
ε3

)
,


(11)

and, mutatis mutandis, solving the equations of the lowest or-
ders inε as in Smeyers et al. (1996), one derives the first-order
asymptotic solutions

α(o)(r; ε) = h(r)
(
A∗0 cosτ + B∗0 sinτ

)
,

ξ(o)(r; ε) = C∗0 r`−1 + D∗0 r−(`+2),


(12)

where

h(r) =
[
ϕ1/4(r) r

√
ρ(r) c2(r)

]−1
, (13)

andA∗0, B∗0, C∗0, D∗0 are undetermined constants. The first-order
asymptotic solution forα(o)(r; ε) is oscillatory in the fast vari-
able τ, while the first-order asymptotic solution forξ(o)(r; ε)
depends only on the slow variabler and is non-oscillatory. The
oscillatory solution forξ(r) does not appear before the second-
order asymptotic approximation.

4. The asymptotic solution in the region
near the turning point located on the inside
of the acoustic cavity

In the small region near the turning point located on the inside
of the acoustic cavity, we again follow a procedure described
by Kevorkian & Cole (1981, 1996). In order to consider the
behavior of Eq. (1) near the turning point, we introduce the
coordinate

s= r − rt, (14)

and the Taylor expansions abouts= 0 of the form

c(r) = ct + c1 s+O
(
s2

)
, ϕ(r) = ϕt s+O

(
s2

)
,

K1(r) = K1,t +O (s) , K2(r) = K2,t +O (s) ,

K∗3(r) = K∗3,t +O (s) , K4(r) = K4,t +O (s) ,


(15)

where the coefficientϕt is determined as

ϕt =
2

c2
t

(
1
rt
− c1

ct

)
(16)

and is positive. By the introduction of the coordinate

s∗ =
s
δ(ε)
, (17)

where the functionδ(ε) → 0 asε → 0, and expansions of the
form

α(t)(r; ε) = µ(t)
0 (ε)α(t)

0 (s∗) + µ(t)
1 (ε)α(t)

1 (s∗)

+ . . . ,

ξ(t)(r; ε) = ν(t)0 (ε) ξ(t)0 (s∗) + ν(t)1 (ε) ξ(t)1 (s∗)

+ . . . ,


(18)

Eq. (1) takes the form

µ(t)
0 (ε)

 1
δ2(ε)

d2α(t)
0

ds∗2
+

1
δ(ε)

K2,t
dα(t)

0

ds∗

+
δ(ε)
ε2
ϕt s∗ α(t)

0 + . . .

 + µ(t)
1 (ε) [. . .] + . . .

+
ν(t)0 (ε)

δ(ε)
K4,t

dξ(t)0

ds∗
+ . . . = 0. (19)

Within the terms containing the functionµ(t)
0 (ε), the term in-

volving the second derivative d2α(t)
0 /ds∗2 is of the same order

in ε as the term involving the productϕt s∗α(t)
0 , when

δ(ε) = ε2/3. (20)

If the functionµ(t)
0 (ε) is of a smaller order inε than the prod-

uct ε2/3 ν(t)0 (ε), the dominant equation in the small region near
the turning-point is

d2α(t)
0

ds∗2
+ ϕt s∗ α(t)

0 = 0. (21)

Its general solution can be expressed in terms of Airy func-
tions as

α(t)
0 (s∗) = A0,t Ai

(
−ϕ1/3

t s∗
)
+ B0,t Bi

(
−ϕ1/3

t s∗
)
, (22)

whereA0,t andB0,t are undetermined constants. Hence, the first-
order asymptotic solution forα(t)(r; ε) takes the form

α(t)(r; ε) = µ(t)
0 (ε)

[
A0,t Ai

(
−ϕ1/3

t s∗
)
+ B0,t Bi

(
−ϕ1/3

t s∗
)]
. (23)

At the transition point atr = rt, the solution and its first deriva-
tive take the values

α(t) (rt; ε) = µ
(t)
0 (ε)

3−2/3

Γ(2/3)

(
A0,t +

√
3 B0,t

)
,(

dα(t)(r; ε)
dr

)
r t

=
µ(t)

0 (ε)

ε2/3
31/6Γ(2/3)

2π
ϕ1/3

t

(
A0,t −

√
3 B0,t

)
.


(24)

By the same transformations, Eq. (2) takes the form

ν(t)0 (ε)

 1
ε4/3

d2ξ(t)0

ds∗2
+

1
ε2/3

4
rt + ε2/3 s∗

dξ(t)0

ds∗
+ . . .


+ν(t)1 (ε) [. . .] = µ(t)

0 (ε)

 1
ε2/3

dα(t)
0

ds∗
+ . . .

 + . . . (25)
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If one sets

ν(t)0 (ε) = µ(t)
0 (ε), (26)

the dominant equation is

d2ξ(t)0

ds∗2
= 0. (27)

Its solution can be written as

ξ(t)0 (s∗) = C0,t s∗ + D0,t, (28)

whereC0,t andD0t are undetermined constants.
In order to match the first-order asymptotic solutions

for α(t)(r; ε) andα(o)(r; ε), we consider the first-order solution
for α(t)(r; ε) for large values ofsand the first-order solution for
α(o)(r; ε) for s→ 0. One has that

lim
s→∞α

(t)(r; ε) =
µ(t)

0 (ε) ε1/6
√
πϕ1/12

t s1/4

×
A0,t sin

(
1
ε

2
3
√
ϕt s3/2 +

π

4

)

+B0,t cos

(
1
ε

2
3
√
ϕt s3/2 +

π

4

) (29)

and, by the use of Taylor Series (15) abouts= 0 and the Taylor
series

ρ(r) = ρt +O(s), (30)

that

lim
s→0
α(o)(r; ε) =

1

ϕ1/4
t rt

√
ρt c2

t s1/4

×
A∗0 cos

(
1
ε

2
3
√
ϕt s3/2

)
+ B∗0 sin

(
1
ε

2
3
√
ϕt s3/2

). (31)

By imposing that

lim
s→∞α

(t)(r; ε) = lim
s→0
α(o)(r; ε), (32)

one derives the matching conditions

µ(t)
0 (ε) = ε−1/6 (33)

and

A∗0 =
1√
2π
ϕ1/6

t rt
√
ρt c2

t
(
A0,t + B0,t

)
,

B∗0 =
1√
2π
ϕ1/6

t rt
√
ρt c2

t
(
A0,t − B0,t

)
.


(34)

One constructs a first-order asymptotic solution for the
functionα(r) that is uniformly valid from the transition point
at r = rt to a distance sufficiently large from the boundary
point at r = R, by adding the first-order asymptotic solutions
for α(t)(r; ε) andα(o)(r; ε) and subtracting their common part.

The uniformly valid first-order asymptotic solution can then be
expressed as

α(t,u)(r; ε) = ε−1/6
[
A0,t Ai

(
−ϕ1/3

t s∗
)
+ B0,t Bi

(
−ϕ1/3

t s∗
)]

+
1√
2π
ϕ1/6

t rt
√
ρt c2

t h(r)

× [(
A0,t + B0,t

)
cosτ +

(
A0,t − B0,t

)
sinτ

]

− 1√
πϕ1/12

t s1/4

A0,t sin

(
1
ε

2
3
√
ϕt s3/2 +

π

4

)

+B0,t cos

(
1
ε

2
3
√
ϕt s3/2 +

π

4

)· (35)

With regard to the radial component of the Lagrangian dis-
placement, one observes that Solution (12) forξ(o)(r; ε) and
Solution (28) forξ(t)0 (s∗) cannot be matched. We therefore set

C∗0 = 0, D∗0 = 0, C0,t = 0, D0,t = 0. (36)

5. The asymptotic solution in the region
near the turning point located on the outside
of the acoustic cavity

In the small region near the turning point that is located on the
outside of the acoustic cavity, we introduce the coordinates

si = −s= rt − r, s∗i =
si

δi(ε)
, (37)

and asymptotic expansions of the form

α(ti )(r; ε) = µ(ti )
0 (ε)α(ti)

0

(
s∗i

)
+ µ(ti )

1 (ε)α(ti)
1

(
s∗i

)
+ . . . ,

ξ(ti )(r; ε) = ν(ti )0 (ε) ξ(ti )0

(
s∗i

)
+ ν(ti )1 (ε) ξ(ti)1

(
s∗i

)
+ . . .


(38)

After substitution into Eq. (1), one is led to set

δi(ε) = ε2/3 (39)

and derives the dominant equation

d2α(ti )
0

ds∗2i

− ϕt s∗i α
(ti )
0 = 0. (40)

A general solution of it is given by

α(ti )
0

(
s∗i

)
= A0,ti Ai

(
ϕ1/3

t s∗i
)
+ B0,ti Bi

(
ϕ1/3

t s∗i
)
, (41)

whereA0,ti andB0,ti are undetermined constants. The first-order
asymptotic solution forα(ti )(r; ε) then takes the form

α(ti )(r; ε) = µ(ti )
0 (ε)

[
A0,ti Ai

(
ϕ1/3

t s∗i
)
+ B0,ti Bi

(
ϕ1/3

t s∗i
)]
. (42)

At the turning point atr = rt, the solution and its first derivative
take the values

α(ti ) (rt; ε) = µ
(ti )
0 (ε)

3−2/3

Γ(2/3)

(
A0,ti +

√
3 B0,ti

)
,

(
dα(ti )(r; ε)

dr

)
r t

=
µ(ti )

0 (ε)

ε2/3
31/6Γ(2/3)

2π
ϕ1/3

t

(
A0,ti −

√
3 B0,ti

)
.



(43)
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On the grounds of the continuity of the first asymptotic so-
lutionsα(t)(r; ε) andα(ti )(r; ε) and of their first derivatives at the
turning point atr = rt, it follows that

µ(ti )
0 (ε) = ε−1/6, A0,ti = A0,t, B0,ti = B0,t. (44)

Hence, the first-order asymptotic solution forα(ti )(r; ε) can be
written as

α(ti )(r; ε) = ε−1/6
[
A0,t Ai

(
ϕ1/3

t s∗i
)
+ B0,t Bi

(
ϕ1/3

t s∗i
)]
. (45)

6. The asymptotic solution in the region outside
the acoustic cavity that is away from the turning
point

In the region outside the acoustic cavity that is away from the
turning point atr = rt, we again use a two-variable expansion
procedure. We still consider the radial coordinater as the slow
variable but now adopt

τi(r) =
1
ε

∫ r

r t

√−ϕ (r ′) dr ′ (46)

as the fast variable. It may be noted thatτi(r) ≤ 0 and
dτi/dr ≥ 0. After transformation of Eqs. (1) and (2) and sub-
stitution of asymptotic expansions of the form

α(i)(r; ε) = µ(i)
0 (ε)

×
[
α(i)

0 (τi , r) + ε α
(i)
1 (τi , r) +O

(
ε2

)]
,

ξ(i)(r; ε) = µ(i)
0 (ε)

×
[
ξ(i)0 (τi , r) + ε ξ

(i)
1 (τi , r) +O

(
ε2

)]
,


(47)

one has, at the lowest orders inε,

∂2α(i)
0

∂τ2i
− α(i)

0 = 0, (48)

∂2ξ(i)0

∂τ2i
= 0, (49)

∂2α(i)
1

∂τ2i
− α(i)

1 = −
1√−ϕ

×
2 ∂

2α(i)
0

∂r ∂τi
+

(
K2 +

1
2

1
ϕ

dϕ
dr

)
∂α(i)

0

∂τi
+ K4

∂ξ(i)0

∂r

 · (50)

A general solution of Eq. (48) is given by

α(i)
0 (τi , r) = A0,i(r) exp(τi) + B0,i(r) exp(−τi). (51)

The admissible solution of Eq. (49) is

ξ(i)0 (r) = D0,i(r). (52)

In this solution, we have dropped a termC0,i(r) τi for the rea-
son that the term is inconsistent, since it can be relabeled
asC′0,i(r)/ε, and its order inε is changed.

By removal of the resonant terms in the right-hand member
of the inhomogeneous Eq. (50), one obtains

A0,i(r) = A0,c hi(r), B0,i(r) = B0,c hi(r), (53)

where

hi(r) =
{[−ϕ(r)]1/4 r

√
ρ(r) c2(r)

}−1
, (54)

andA0,c andB0,c are undetermined constants.
The first-order asymptotic solution forα(i)(r; ε) then takes

the form

α(i)(r; ε) = µ(i)
0 (ε) hi(r)

[
A0,c exp(τi) + B0,c exp(−τi)] . (55)

It can be verified thatτi(r) → −∞ asr → 0. To this end, we
define the functionF (r ′) as

F
(
r ′
)
=

∫ √−ϕ (r ′) dr ′ +C, (56)

where C is an undetermined constant. According to
Definition (46), the fast variableτi(r) can then be expressed as

τi(r) =
1
ε

[F(r) − F (rt)] . (57)

For small values ofr, one has

F(r) ' ` + 1/2
|σ| ln r, (58)

so that

τi(r) '
(
` +

1
2

)
ln r − 1

ε
F (rt) . (59)

Hence,τi(r)→ −∞ asr → 0.
Furthermore, one observes that, in asymptotic Solu-

tion (55),

exp(τi) ' exp

[(
` +

1
2

)
ln r

]
= r`+1/2. (60)

Since the function [−ϕ(r)]1/4 behaves asr−1/2, the func-
tion hi(r) behaves also asr−1/2. Hence, the particular solu-
tion hi(r) exp(τi) tends to zero asr`, as is required by the study
of the behavior of the eigenfunctions near the singular point
at r = 0. It may be noted that this behavior results from the
replacement of the factor̀(` + 1) by the factor (̀ + 1/2)2 in
Definition (4) of the functionϕ(r).

Similarly, one verifies that the particular solution
hi(r) exp(−τi) behaves asr−(`+1) as r → 0. Since this
particular solution is not admissible, we set

B0,c = 0. (61)

For the matching of the first-order asymptotic solutions
for α(ti )(r; ε) andα(i)(r; ε), we consider the first-order solution
for α(i)(r; ε) for large values ofsi and the first-order solution for
α(i)(r; ε) for si → 0. By passing on to the first asymptotic ap-
proximations of the Airy functions for large arguments, one has

lim
si→∞
α(ti )(r; ε) =

1

2
√
πϕ1/12

t s1/4
i

×
A0,t exp

(
−1
ε

2
3
√
ϕt s3/2

i

)
+ 2 B0,t exp

(
1
ε

2
3
√
ϕt s3/2

i

). (62)

On the other hand, from Definition (46), it follows that

τi(r) = −1
ε

∫ si

0

√−ϕ (r ′) ds′i , (63)
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so that, for small values ofsi ,

τi(r) = −1
ε

2
3
√
ϕt s3/2

i , (64)

and

lim
si→0
α(i)(r; ε)=

µ(i)
0 (ε)

ϕ1/4
t rt

√
ρt c2

t s1/4
i

A0,c exp

(
−1
ε

2
3
√
ϕt s3/2

i

)
. (65)

By imposing that

lim
si→∞
α(ti )(r; ε) = lim

si→0
α(i)(r; ε), (66)

one derives the matching conditions

µ(i)
0 (ε) = ε0, A0,t =

2
√
π

ϕ1/6
t rt

√
ρt c2

t

A0,c, B0,t = 0. (67)

From Relations (34), it then follows that

A∗0 =
√

2A0,c, B∗0 =
√

2A0,c, (68)

so that the constantsA∗0 and B∗0 in the first-order asymptotic
solution forα(o)(r; ε) are equal to each other.

The first-order asymptotic solution that is uniformly valid
from the central point atr = 0 to the turning point atr = rt can
be expressed as

α(ti ,u)(r; ε) = A0,t

ε−1/6 Ai
(
ϕ1/3

t s∗i
)

+
1

2
√
π
ϕ1/6

t rt
√
ρt c2

t hi(r) exp(τi)

− 1

2
√
πϕ1/12

t s1/4
i

exp

(
−1
ε

2
3
√
ϕt s3/2

i

). (69)

7. The asymptotic solution near r = R
and the eigenfrequency equation

We treat the small region nearr = R as a boundary layer. For
the construction of the boundary-layer solutions, we pass on
from the functionsα(r) andξ(r) to functionsv(r) andw(r) by
means of the transformation

α(r) = h(r) v(r),

ξ(r) = h(r) ϕ−1/2(r)w(r),

 (70)

which corresponds formally to the transformation given by
Eqs. (39) in Smeyers et al. (1996). One readily obtains the re-
sulting equations from Eqs. (40) and (41) in the same paper by
replacing the functionc(r) by ϕ−1/2(r) and the functionK3(r)
by K∗3(r).

We assume that the mass density,ρ(r), can be expanded in
a power series aboutr = R as

ρ(r) = ρs zne

[
1+
ρ1

ρs
z+O

(
z2

)]
, (71)

wherez= R− r, andne is a constant. Furthermore, we assume
that, in the surface layers, the mass inside the sphere with ra-
diusr, m(r), is almost equal to the star’s total mass,M, so that

the condition of hydrostatic equilibrium leads to a power series
for the pressure of the form

P(r) = Ps zne+1

[
1+

P1

Ps
z+O

(
z2

)]
. (72)

Power series of the following form are then derived forc(r),
ϕ(r), andh(r):

c(r) = cs z1/2

[
1+

c1

cs
z+O

(
z2

)]
,

ϕ(r) = ϕs z−1

[
1+
ϕ1

ϕs
z+O

(
z2

)]
,

h(r) = hs z−(ne+3/2)/2

[
1+

h1

hs
z+O

(
z2

)]
.


(73)

We introduce the boundary-layer coordinate

τs(z) =
1
ε

∫ z

0

√
ϕ (r ′) dz′ (74)

and boundary-layer expansions of the form

v(s)(r; ε) = µ(s)
0 (ε) v(s)

0 (τs) + µ
(s)
1 (ε) v(s)

1 (τs) + . . . ,

w(s)(r; ε) = ν(s)
0 (ε)w(s)

0 (τs) + ν
(s)
1 (ε)w(s)

1 (τs) + . . .

 (75)

As in Smeyers et al. (1996), the dominant boundary-layer
equation forv(s)

0 (τs) is

d2v(s)
0

dτ2s
+

[
1− (ne+ 1)2 − 1/4

τ2s

]
v(s)

0 = 0. (76)

The equation has the admissible solution

v(s)
0 (τs) = A0,sτ

1/2
s Jne+1 (τs) , (77)

whereJne+1 (τs) is the Bessel function of the first kind of order
ne+ 1, andA0,s an undetermined constant.

For the matching of the first-order asymptotic solution for
the functionv(s)(r; ε) with the first-order asymptotic solution
for the functionα(o)(r; ε)/h(r), one must consider the asymp-
totic form of the Bessel functionJne+1 (τs) for large arguments.
Taking into account that

τs(r) = τR − τ(r) (78)

with

τR =
1
ε

∫ R

r t

√
ϕ (r ′) dr ′, (79)

one performs the matching by setting

µ(s)
0 (ε) = 1 (80)

and

A∗0 = A0,s

(
2
π

)1/2

sinγ,

A∗0 = −A0,s

(
2
π

)1/2

cosγ,


(81)

whereγ = τR − (2ne+ 1) π/4.
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The first-order asymptotic solution that is uniformly valid
from r = R to a distance sufficiently large from the turning
point atr = rt is then given by

α(s,u)(r; ε) = A0,s h(r) τ1/2s Jne+1 (τs) . (82)

From Equalities (81), it follows that

A0,s (sinγ + cosγ) = 0. (83)

The constantA0,s can be different from zero only if

sinγ + cosγ = 0. (84)

This trigonometric equation leads to the eigenfrequency equa-
tion

|σ|
∫ R

r t

[
1

c2(r)
− (` + 1/2)2

σ2 r2

]1/2

dr =
(
n+

ne

2

)
π, (85)

wheren takes the values 1, 2, 3, . . . and is the radial order of
thep-mode considered. In the Cowling classification, the order
of a p-mode corresponds to the number of nodes of the eigen-
functionξ(r) betweenr = 0 andr = R or, equivalently, to the
number of nodes plus 1 of the eigenfunctionα(r) in the same
interval. The degreèto which thep-mode considered belongs,
has an effect on the eigenfrequency through the position of the
turning point and the factor (` + 1/2)2, which appears in the
integrand in the left-hand member.

The integral in eigenfrequency Eq. (85) is equal to the time
needed for an acoustic wave to propagate in the radial direc-
tion from the turning point to the star’s surface with the local
velocity of propagation

V(r) =
c(r)[

1− (` + 1/2)2 c2(r)
σ2 r2

]1/2
, (86)

which is everywhere larger than the local isentropic sound ve-
locity, except at the star’s surface. The velocity of propagation
is infinitely large at the turning point and decreases as the radial
distancer increases.

For a pair ofp-modes of a degreèand radial ordern and
of the degreè+2 and the radial ordern−1, which have nearly
the same eigenfrequency, the approximate relation holds

∫ R

r t(`)

[
1

c2(r)
− (` + 1/2)2

σ2 r2

]1/2

dr

∫ R

r t(`+2)

[
1

c2(r)
− (` + 5/2)2

σ2 r2

]1/2

dr

'
n+

ne

2

n− 1+
ne

2

· (87)

The effect of the reduction of the radial ordern by one ap-
pears to be approximately compensated by a move of the turn-
ing point to a somewhat larger radial distance from the centre
and by an increase of the local velocity of propagation of the
acoustic wave, both phenomena being related to the increase of
the degreè by two.

Eigenfrequency Eq. (85) can be compared with eigenfre-
quency Eq. (48) in Roxburgh & Vorontsov (1996). In the

leading-order approximation, the latter eigenfrequency equa-
tion reduces to

|σ|
∫ R

r t

[
1

c2(r)
− (` + 1/2)2

σ2 r2

]1/2

dr = (n+ αout) π, (88)

in accordance with the comments given by the authors in their
Sect. 4 (αint is neglected andB is set equal to zero). The value
of αout results from the matching of the solution constructed
in the solar outer layers by means of the method of the phase
functions, and the solution constructed in the solar interior.
From the comparison, it follows that eigenfrequency Eqs. (85)
and (88) agree, apart from the difference due to the dissimilar-
ity of the assumptions that are adopted with regard to the outer
layers.

8. Application to the equilibrium sphere
with uniform mass density

In order to examine the improvement in accuracy of the present
asymptotic description in comparison with the standard first-
order asymptotic description for low-degreep-modes of high
radial orders (Tassoul 1990; Smeyers et al. 1996), we have ap-
plied eigenfrequency Eq. (85) to a variety ofp-modes of the
equilibrium sphere with uniform mass density. In this equilib-
rium model, the distributions of the mass density, the pressure,
and the isentropic sound velocity are given by

ρ =
3 M

4πR3
,

P(r) =
3G M2

8πR4

(
1− x2

)
,

c(r) =

[
5G M

6R

(
1− x2

)]1/2

,


(89)

wherex = r/R. In the expression for the isentropic sound
velocity, we have adopted the value 5/3 for the generalized
isentropic coefficientΓ1 ≡ (∂ ln P/∂ lnρ)S. Consequently, for
a p-mode associated with a degree` and an eigenfrequencyσ,
the distance of the turning point from the centre is given by

rt =

[
1+

6σ2

5 (̀ + 1/2)2

]−1/2

· (90)

In the equilibrium sphere with uniform mass density, the
assumption that, nearr = R, the mass inside the sphere with
radiusr, m(r), is nearly equal to the total mass,M, does not
hold, but the pressure distribution is given in that region by an
expression of the form of Taylor Series (72).

For eachp-mode considered, we have determined the ex-
act eigenfrequency,σexact, by means of the eigenfrequency
equation

σexact=

(G M
R3

)1/2 {
D`,k +

[
D2
`,k + `(` + 1)

]1/2}1/2
, (91)

wherek = n− 1, and

D`,k = −2+ Γ1 [k (2k+ 5+ 2`) + 3+ 2`]/2. (92)
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(Sauvenier-Goffin 1951; Ledoux & Walraven 1958, Sect. 76).
We have also determined the first asymptotic approximation

|σT| =

(
2n+ ` + ne+

1
2

)
π

2∫ R

0

dr
c(r)

(93)

given by the asymptotic theory that applies to low-degree
p-modes of high radial orders. Furthermore, we have started
from this asymptotic approximation in order to solve eigenfre-
quency Eq. (85) numerically by means of the Newton-Raphson
method and to determine the asymptotic approximationσasymp.

The eigenfrequenciesσexact, σT, andσasymp are presented
in Table 1 for the p-modes of the radial ordersn = 5,
10, 15, 20, 25, 30, 35,40 belonging to the lowest degrees` = 1,

2, 3, 4. They are all expressed in the unit
(
G M/R3

)1/2
. In the

same table, the relative radial distance of the turning point from
the centre,rt/R, and the relative errors of the asymptotic ap-
proximationsσT andσasymp of the eigenfrequencies are also
presented.

For ` = 1, the radial orders considered are limited to
n = 5, 10, 15, 20, 25, since forn > 25 the relative error of the
asymptotic eigenfrequencyσasympappears to increase slightly.
We ascribe this increase to the fact that, forp-modes of radial
ordersn larger than 25, the turning point is situated so close
to the star’s centre that it is located in the boundary layer near
r = 0. Under this circumstance, the asymptotic theory for low-
degreep-modes of high radial orders should be applied rather
than the asymptotic theory developed above.

In the last but three and two columns of Table 1, the ex-
act values and the asymptotic approximations of the small fre-
quency separationsDn,` are given for thep-modes belonging to
` = 1 and thep-modes belonging tò= 2. The small frequency
separations are determined as

Dn,` =
1

2` + 3
(
σn,` − σn−1,`+2

)
, (94)

where the eigenfrequencies are still expressed in the

unit
(
G M/R3

)1/2
. In the last column of Table 1, the relative

errors of the asymptotic approximations of the small frequency
separations,

(
Dn,`

)
as, with respect to the exact values,

(
Dn,`

)
ex,

are presented.
Table 1 shows that, for the low-degreep-modes consid-

ered, both first-order asymptotic approximations of the eigen-
frequency are somewhat larger than the exact eigenfrequency,
and that the asymptotic eigenfrequencies determined by means
of Eq. (85) have values closer to those of the exact eigenfre-
quencies. Consequently, the relative errors of the asymptotic
eigenfrequencies determined by means of Eq. (85) are system-
atically smaller than those of the eigenfrequencies determined
by means of the asymptotic theory for low-degreep-modes of
high radial orders. For the various low degrees, the relative er-
rors of the eigenfrequencies determined by means of Eq. (85)
are already smaller than 0.53% asn = 10. Forn = 40, they are
of the order of 0.035%.

As the degreè increases, the relative errors of the eigenfre-
quencies resulting from the asymptotic theory for low-degree

mode p_24 of l = 4

mode p_25 of l = 2

c(x)

0

1

2

3

4

5

6

7

0.2 0.4 0.6 0.8 1
x

Fig. 1. Variation of the velocity of propagation as defined by Eq. (86)
for the modep25 belonging to` = 2 and the modep24 belonging to
` = 4, and variation of the isentropic sound velocity, as functions of
the relative radial distancex = r/R. The velocities are expressed in the
unit (G M/R)1/2.

p-modes of high radial orders are seen to increase, as can be
expected, while the relative errors of the eigenfrequencies re-
sulting from Eq. (85) decrease slightly. The ratios of the rela-
tive errors are approximately 1.46 for the modes belonging to
` = 1, approximately 2.29 for the modes belonging to` = 2,
approximately 3.55 for the modes belonging to` = 3, and ap-
proximately 5.22 for the modes belonging to` = 4.

From the last three columns of Table 1, it appears that, for
` = 1 and` = 2, the asymptotic approximations of the small
frequency separations,

(
Dn,`

)
as, are somewhat smaller than the

exact values,
(
Dn,`

)
ex, so that the relative errors are negative.

Already from the radial ordern = 15 on, the absolute value of
the relative error of the asymptotic approximation of the small
frequency separationDn,` is smaller than 0.1%.

In order to throw light on the origin of the small frequency
separationsDn,`, we have represented the variation of the ve-
locity of propagation as given by Eq. (86), for the modep25

of ` = 2, with eigenfrequencyσasymp = 47.8714, and for the
modep24 of ` = 4, with eigenfrequencyσasymp= 47.7493. For
the first mode, the turning point is located atrt/R = 0.04762,
for the second mode, atrt/R = 0.08571. The variations of the
velocities of propagation as well as the variation of the isen-
tropic sound velocity are represented in Fig. 1. For bothp-
modes, the velocity of propagation sharply decreases close to
the turning point and tends rapidly towards the isentropic sound
velocity, so that the velocities of propagation are nearly iden-
tical from x ' 0.28 to x = 1. The figure illustrates that the in-
crease in the degree` by two mainly induces a move of the turn-
ing point to a somewhat larger distance from the centre. From
this, we infer that, apart from the difference in the radial orders
of the modes, the region situated in the vicinity of the two turn-
ing points contributes significantly to the formation of the small
frequency separationD25,2. This conclusion agrees with an
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Table 1.Exact eigenfrequenciesσexact, and first-order asymptotic approximationsσT andσasympand their relative errors for low-degreep-modes
of the equilibrium sphere with uniform mass density. For the degrees` = 1 and` = 2, exact small frequency separationsDn,`, and first-order
asymptotic approximations and their relative errors are also given.

` n σexact rt/R σT rel. err. σasymp rel. err.
(
Dn,`

)
ex

(
Dn,`

)
as rel. err.

% % %

1 5 10.2153 0.1329 10.4980 2.767 10.4083 1.890 0.08220 0.08167 –0.64

10 19.4766 0.07013 19.6267 0.7707 19.5789 0.5252 0.04288 0.04280 –0.20

15 28.6531 0.04773 28.7554 0.3570 28.7228 0.2432 0.02911 0.02909 –0.096

20 37.8065 0.03620 37.8841 0.2053 37.8594 0.1398 0.02206 0.02204 –0.055

25 46.9503 0.02915 47.0129 0.1332 46.9929 0.09068 0.01776 0.01775 –0.030

2 5 11.0023 0.2031 11.4109 3.714 11.1803 1.619 0.07675 0.07636 –0.51

10 20.3146 0.1116 20.5396 1.108 20.4124 0.4817 0.04119 0.04111 –0.18

15 29.5128 0.07710 29.6683 0.5268 29.5804 0.2290 0.02829 0.02827 –0.089

20 38.6782 0.05890 38.7970 0.3072 38.7298 0.1335 0.02157 0.02156 –0.053

25 47.8296 0.04766 47.9257 0.2010 47.8714 0.08733 0.01744 0.01743 –0.035

30 56.9737 0.04002 57.0544 0.1417 57.0088 0.06157 0.01463 0.01463 –0.024

35 66.1135 0.03450 66.1831 0.1053 66.1438 0.04573 0.01261 0.01261 –0.018

40 75.2507 0.03031 75.3119 0.08127 75.2773 0.03530 0.01108 0.01108 –0.013

3 5 11.7369 0.2627 12.3238 5.001 11.9024 1.410

10 21.1193 0.1496 21.4525 1.577 21.2132 0.4444

15 30.3482 0.1047 30.5812 0.7677 30.4138 0.2162

20 39.5307 0.08056 39.7099 0.4533 39.5811 0.1277

25 48.6930 0.06548 48.8386 0.2991 48.7340 0.08421

30 57.8447 0.05515 57.9673 0.2120 57.8792 0.05970

35 66.9901 0.04764 67.0960 0.1581 67.0199 0.04453

40 76.1315 0.04193 76.2247 0.1225 76.1577 0.03448

4 5 12.4283 0.3138 13.2366 6.504 12.5831 1.245

10 21.8946 0.1844 22.3653 2.150 21.9848 0.4120

15 31.1612 0.1307 31.4940 1.068 31.2250 0.2047

20 40.3652 0.1012 40.6228 0.6382 40.4145 0.1223

25 49.5413 0.08264 49.7515 0.4242 49.5816 0.08129

30 58.7027 0.06981 58.8802 0.3023 58.7367 0.05794

35 67.8553 0.06043 68.0089 0.2264 67.8847 0.04338

40 77.0022 0.05327 77.1376 0.1758 77.0281 0.03370

earlier conclusion of van Hoolst & Smeyers (1991) with regard
to small frequency separations in a polytropic model.

We have also used Eq. (85) for the determination of asymp-
totic eigenfrequencies ofp-modes belonging to intermediate
degrees. The results for thep-modes of radial ordersn =
10, 20, 30, 40 belonging to the degrees` = 10, 20, 50 are pre-
sented in Table 2. The eigenfrequencies are again expressed in

the unit
(
G M/R3

)1/2
. In the various cases considered, the rel-

ative error of the asymptotic eigenfrequency,σasympt, with re-
spect to the exact eigenfrequency,σexact, is smaller than 0.3%.
One observes that, for a given degree`, the relative error

decreases as the radial ordern of the p-mode increases, and
that, for p-modes of a given radial ordern, the relative error
decreases as the degree` increases.

By way of illustration, we have constructed the first-order
asymptotic solution for the eigenfunctionα(r) of thep-mode of
degreè = 10 and radial ordern = 10. The asymptotic solution
is displayed in Fig. 2, fromx = 0 to x = 0.9931, as a func-
tion of the relative radial distancex = r/R. In the asymptotic
approximation, the turning point is situated atx = 0.3443.

We first constructed the part of the asymptotic solution in
the region extending fromx = 1 to x = 0.8521 by means of
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Table 2.Exact eigenfrequenciesσexact, and first-order asymptotic ap-
proximationsσasymp and their relative errors, for intermediate-degree
p-modes in the equilibrium sphere with uniform mass density.

` n σexact rt/R σasymp rel. err.

%

10 10 26.0671 0.3451 26.1406 0.2820

20 45.0487 0.2081 45.0925 0.09717

30 63.6084 0.1490 63.6396 0.04908

40 82.0326 0.1161 82.0569 0.02959

20 10 31.8289 0.5068 31.8852 0.1768

20 51.9245 0.3391 51.9615 0.07127

30 71.0358 0.2548 71.0634 0.03880

40 89.7926 0.2040 89.8146 0.02448

50 10 44.8769 0.7165 44.9073 0.06785

20 68.5313 0.5582 68.5565 0.03680

30 89.7013 0.4571 89.7218 0.02284

40 109.831 0.3870 109.848 0.01570

the uniformly valid solutionα(s,u)(r; ε) given by Eq. (82). The
choice of the point atx = 0.8521 as a fitting point with the in-
ternal solution is motivated by the fact that, at this point,τs(r) is
nearly equal toτR/2. We set the asymptotic solution equal to 1
at x = 1 by imposing that

A0,s =

(
5
3

)3/2 (
3
2

)1/2
Γ(2)
σ3/2
·

The asymptotic solution is seen to vary largely in the boundary
layer nearx = 1.

Next, we constructed the part of the asymptotic solution
that starts outwards from the turning point. To this end, we
used the uniformly valid solutionα(t,u)(r; ε) given by Eq. (35).
The factorϕt, which is introduced as a coefficient in the sec-
ond Taylor Expansion (15), turned out to be equal to 8.972. We
fixed the constantA0,t in terms of the constantA0,s by eliminat-
ing the constantA∗0 between the first Eq. (34), in whichB0,t = 0,
and the first Eq. (81). It resulted thatA0,t = −0.04416. The first-
order asymptotic approximation for the eigenfunctionα(r) dis-
plays nine nodes between the turning point atx = xt and the
boundary point atx = 1, as is expected for ap-mode of radial
ordern = 10 in the usual Cowling classification.

Finally, we constructed the part of the asymptotic solution
in the region that extends from the turning point atx = xt to
the central point atx = 0. To this end, we used the uniformly
valid first-order asymptotic solutionα(ti ,u)(r; ε) determined by
Eq. (69). This part of the asymptotic solution displays no node
and decreases exponentially towards the central point, where it
becomes zero.

The first-order asymptotic eigenfunction is so close to
the exact analytical eigenfunction, which is determined by a
polynomial of degree 9 (Sauvenier-Goffin 1951; Ledoux &
Walraven 1958, Sect. 76), that the two eigenfunctions cannot
be distinguished in Fig. 2.

α

–0.1

–0.05

0

0.05

0.1

0.2 0.4 0.6 0.8 1
x

Fig. 2.The first-order asymptotic solution for the eigenfunctionα(r) of
thep-mode of degreè= 10 and radial ordern = 10 in the equilibrium
sphere with uniform mass density. The eigenfunction is represented
from the relative radial distancex = 0 to the relative radial distance
x = 0.9931. The vertical line atx = 0.3443 indicates the position of
the turning point in the first-order asymptotic approximation.

9. Concluding remarks

We have developed a first-order asymptotic representation of
higher-orderp-modes of stars for which the lower boundary
of the resonant acoustic cavity does not lie very close to the
star’s centre. Thesep-modes are lower-degreep-modes asso-
ciated with lower eigenfrequencies as well as intermediate-
degreep-modes.

For our purpose, we started from the fourth-order system of
differential equations in the radial parts of the divergence and
the radial component of the Lagrangian displacement, which
was used earlier by Tassoul (1990) and Smeyers et al. (1996)
for the construction of an asymptotic representation of low-
degree p-modes with high radial orders. Our procedure
differs from the procedure adopted in the foregoing investiga-
tions mainly by the fact that the lower boundary of the resonant
acoustic cavity is no longer considered to be located near the
star’s centre but to give rise to a turning point in Eq. (1) outside
the central boundary layer. The position of the turning point is
determined by the zero of the functionϕ(r), in which the pa-
rameter̀ (` + 1) is replaced by the factor (` + 1/2)2. By this
change, the asymptotic solution for the radial part of the di-
vergence of the Lagrangian displacement,α(r), behaves asr`

asr → 0, as is required by the general analysis of the behav-
ior of the eigenfunctions near the singular point atr = 0. The
change is also made in accordance with an earlier remark of
Roxburgh & Vorontsov (1996).

We have constructed the leading-order asymptotic approx-
imation without making any approximation in the fourth-order
system of differential equations, in particular with regard to the
Eulerian perturbation of the gravitational potential.

The main result is that, in contrast with the first-order
asymptotic theory for low-degreep-modes of high radial or-
ders, the first-order asymptotic representation developed here
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leads to small frequency separationsDn,` different from zero.
Hence, the inclusion of a turning point in the governing Eqs. (1)
and (2) at the lower boundary of the acoustic resonant cavity is
of primary importance for the determination of the small fre-
quency separations.

We have tested the validity of the first-order asymptotic rep-
resentation by applying it top-modes of the equilibrium sphere
with uniform mass density, since, for this model, the eigenfre-
quencies and the eigenfunctions are determined by means of
exact analytical solutions.

From Table 1, it appears that the first-order asymptotic
eigenfrequenciesσasympof p-modes of lower radial orders be-
longing to the degrees̀ = 1, . . . , 4 are better approximations
than are the corresponding eigenfrequenciesσT obtained by
the usual asymptotic representation for low-degreep-modes of
high radial orders. The degree of approximation improves as
the value of̀ increases. From the radial ordern = 15 on, the
first-order asymptotic approximations of the small frequency
separationsDn,1 andDn,2 have relative errors that are smaller
than 0.1% in absolute value.

The results presented in Table 2 and the eigenfunction
displayed in Fig. 2 confirm the validity of the asymptotic rep-
resentation forp-modes of intermediate degrees. For` = 50,
the relative error of the first-order asymptotic eigenfrequency

σasymp is smaller than 0.07% from thep-mode of radial order
n = 10 on, for which the turning point is situated atrt/R =
0.7165.
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