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1. Introduction

The literature on the asymptotic theory of the solutions of Volterra difference equations is
extensive, and application of this theory is rapidly increasing to various fields. For the basic
theory of difference equations, we choose to refer to the books by Agarwal [1], Elaydi [2], and
Kelley and Peterson [3]. Recent contribution to the asymptotic theory of difference equations
is given in the papers by Kolmanovskii et al. [4], Medina [5], Medina and Gil [6], and Song
and Baker [7]; see [8–19] for related results.

The results obtained in this paper are motivated by the results of two papers by
Applelby et al. [20], and Philos and Purnaras [21].

This paper studies the asymptotic constancy of the solution of the system of
nonconvolution Volterra difference equation

z(n + 1) =
n∑

i=0

H(n, i)z(i) + h(n), n ∈ Z
+, (1.1)
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with the initial condition

z(0) = z0, (1.2)

where z0 ∈ R
d, (H(n, i))0≤i≤n and (h(n))n≥0 are sequences with elements in R

d×d and R
d,

respectively.
Under appropriate assumptions, it is proved that the solution converges to a finite limit

which obeys a limit formula. Our paper develops further the recent work [20]. The distinction
between the works is explained as follows. For large enough n, in fact n ≥ 2m + 2, the sum in
(1.1) can be split into three terms

m∑

i=0

H(n, i)z(i) +
n−m−1∑

i=m+1

H(n, i)z(i) +
m∑

j=0

H(n, n − j)z(n − j), (1.3)

since

n∑

i=n−m
H(n, i)z(i) =

m∑

j=0

H(n, n − j)z(n − j). (1.4)

In [20, Theorem 3.1] themiddle sum in (1.3) contributed nothing to the limit limn→∞z(n),
since it was assumed that

lim
m→∞

(
lim sup

n→∞

n−m∑

i=m

∣∣H(n, i)
∣∣
)

= O. (1.5)

In our case, we split the sum in (1.1) only into two terms, and the condition (1.5) is not
assumed. In fact, we show an example in Section 4, where (1.5) does not hold and hence in [20,
Theorem 3.1] is not applicable. At the same time our main theorem gives a limit formula. It is
also interesting to note that our proof is simpler than it was applied in [20].

Once our main result for, the general equation, (1.1) has been proven, we may use it for
the scalar convolution Volterra difference equation with infinite delay,

Δx(n) = Ax(n) +
n∑

j=−∞
K(n − j)x(j) + g(n), n ∈ Z

+, (1.6)

with the initial condition,

x(n) = ϕ(n), n ∈ Z
−, (1.7)

where A ∈ R, and (K(n))n≥0, (g(n))n≥0 and (ϕ(n))n≤0 are real sequences.
Here, Δ denotes the forward difference operator to be defined as usual, that is, Δx(n) :=

x(n + 1) − x(n), n ∈ Z
+.

If we look for a solution x(n) = λn0 , n ∈ Z
+(λ0 ∈ R \ {0}) of the homogeneous equation

associated with (1.6), we see that λ0 is a root of the characteristic equation

λ0 = 1 +A +
∞∑

i=0

K(i)λ−i0 . (1.8)
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We immediately observe that λ0 ∈ R is a simple root if

∣∣λ0
∣∣−1

∞∑

i=1

i
∣∣K(i)

∣∣∣∣λ0
∣∣−i < 1. (1.9)

In the paper [21] (see also [22]), it is shown that if λ0 > 0 satisfies (1.8) and (1.9), and
the initial sequence (ϕ(n))n≤0 is suitable, then for the solution x of (1.6) and (1.7) the sequence
z(n) := λ−n0 x(n), n ∈ Z

+ is bounded. Furthermore, some extra conditions guarantee that the
limit z(∞) := limn→∞z(n) is finite and satisfies a limit formula.

In our paper, we improve considerably the result in [21]. First, we give explicit necessary
and sufficient conditions for the existence of a λ0 ∈ R\{0} for which (1.8) and (1.9) are satisfied.
Second, we prove the existence of the limit z(∞) and give a limit formula for z(∞) under the
condition only λ0 /= 0. These two statements are formulated in our second main theorem stated
in Section 3. The proof of the existence of z(∞) is based on our first main result.

The article is organized as follows. In Section 2, we briefly explain some notation and
definitions which are used to state and to prove our results. In Section 3, we state our twomain
results, whose proofs are relegated to Section 5.

Our theory is illustrated by examples in Section 4, including an interesting nonconvolu-
tion equation. This example shows the significance of the middle sum in (1.3), since only this
term contributes to the limit of the solution of (1.1) in this case.

2. Mathematical preliminaries

In this section, we briefly explain some notation and well-knownmathematical facts which are
used in this paper.

Let Z be the set of integers, Z+ := {n ∈ Z | n ≥ 0} and Z
− := {n ∈ Z | n ≤ 0}. Rd stands

for the set of all d-dimensional column vectors with real components and R
d×d is the space

of all d by d real matrices. The zero matrix in R
d×d is denoted by O, and the identity matrix

by I. Let E be the matrix in R
d×d whose elements are all 1. The absolute value of the vector

x = (x1, . . . , xd)
T ∈ R

d and the matrix A = (Aij)1≤i,j≤d ∈ R
d×d is defined by |x| := (|x1|, . . . , |xd|)T

and |A| := (|Aij |)1≤i,j≤d, respectively. The vector x and the matrix A is nonnegative if xi ≥ 0 and
Aij ≥ 0, 1 ≤ i, j ≤ d, respectively. In this case, we write x ≥ 0 and A ≥ O. Rd can be endowed
with any norms, but they are equivalent. A vector norm is denoted by ‖·‖ and the norm of
a matrix in R

d×d induced by this vector norm is also denoted by ‖·‖. The spectral radius of
the matrix A ∈ R

d×d is given by ρ(A) := limn→∞‖An‖1/n, which is independent of the norm
employed to calculate it.

A partial ordering is defined on R
d(Rd×d) by letting x ≤ y(A ≤ B) if and only if y − x ≥

0(B − A ≥ O). The partial ordering enables us to define the sup, inf, lim sup, lim inf, and so
forth for the sequences of vectors and matrices, which can also be determined componentwise
and elementwise, respectively. It is known that ρ(A) ≤ ρ(|A|) for A ∈ R

d×d, and ρ(A) ≤ ρ(B) if
A,B ∈ R

d×d and O ≤ A ≤ B.

3. The main results

First, consider the nonconvolutional linear Volterra difference equation

z(n + 1) =
n∑

i=0

H(n, i)z(i) + h(n), n ∈ Z
+, (3.1)
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with initial condition

z(0) = z0. (3.2)

Here, we assume

(H1) z0 ∈ R
d, H := (H(n, i))0≤i≤n and h := (h(n))n≥0 are sequences with elements in R

d×d

and R
d, respectively;

(H2) for any fixed i ≥ 0 the limit H∞(i) := limn→∞H(n, i) is finite and
∑∞

i=0|H∞(i)| < ∞;

(H3) the matrix

V := lim
N→∞

(
lim
n→∞

n∑

j=N

H(n, j)

)
(3.3)

is finite;

(H4) the matrix

W := lim
N→∞

(
lim sup

n→∞

n∑

j=N

∣∣H(n, j)
∣∣
)

(3.4)

is finite and ρ(W) < 1;

(H5) the limit h(∞) := limn→∞h(n) is finite.

By a solution of (3.1), we mean a sequence z := (z(n))n≥0 in R
d satisfying (3.1) for any

n ∈ Z
+. It is clear that (3.1) with initial condition (3.2) has a unique solution.
Now, we are in a position to state our first main result.

Theorem 3.1. Assume (H1)–(H5) are satisfied. Then for any z0 ∈ R
d the unique solution z :=

(z(n))n≥0 of (3.1) and (3.2) has a finite limit at∞ and it satisfies

lim
n→∞

z(n) = (I − V )−1
( ∞∑

i=0

H∞(i)z(i) + h(∞)

)
. (3.5)

Under conditions (H3) and (H4)

|V | = lim
N→∞

(
lim
n→∞

∣∣∣∣∣

n∑

j=N

H(n, j)

∣∣∣∣∣

)
≤ W, (3.6)

and hence ρ(W) < 1 yields ρ(V ) < 1, thus I − V is invertible. On the other hand under our
conditions the unique solution z := (z(n))n≥0 of (3.1) and (3.2) is a bounded sequence, therefore∑∞

i=0H∞(i)z(i) is finite, and (3.5) makes sense.
The second main result is dealing with the scalar Volterra difference equation

Δx(n) = Ax(n) +
n∑

j=−∞
K(n − j)x(j) + g(n), n ∈ Z

+, (3.7)
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with the initial condition

x(n) = ϕ(n), n ∈ Z
−, (3.8)

where A ∈ R, K : Z+→R, g : Z+→R, and ϕ : Z−→R are given.
By a solution of the Volterra difference equation (3.7) we mean a sequence x : Z→R

satisfies (3.7) for any n ∈ Z
+.

In what follows, by S we will denote the set of all initial sequence ϕ : Z−→R such that
for each n ∈ Z

+

−1∑

j=−∞
K(n − j)ϕ(j) (3.9)

exists.
It can be easily seen that for any initial sequence ϕ ∈ S, (3.7) has exactly one solution

satisfying (3.8). This unique solution is denoted by x(ϕ) : Z→R and it is called the solution of
the initial value problem (3.7), (3.8).

The asymptotic representation of the solutions of (3.7) is given under the next condition.
(A) There exists a λ0 ∈ R \ {0} for which

λ0 = 1 +A +
∞∑

i=0

K(i)λ−i0 , (3.10)

∣∣λ0
∣∣−1

∞∑

i=1

i
∣∣K(i)

∣∣∣∣λ0
∣∣−i < 1. (3.11)

From the theory of the infinite series, one can easily see that condition (A) yields

r := lim sup
n→∞

∣∣K(n)
∣∣1/n (3.12)

is finite. Moreover, the mapping G : [r,∞)→[0,∞], defined by

G(μ) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∞∑

i=1

i
∣∣K(i)

∣∣μ−(i+1) ifμ > r,

∞∑

i=1

i
∣∣K(i)

∣∣r−(i+1) ifμ = r > 0,

∞ ifμ = r = 0,

(3.13)

is real valued on (r,∞). It is also clear (see Section 5) that if there is an n0 ≥ 1 such that
K(n0)/= 0, and if G(r) ≥ 1 then the equation

G(μ) = 1 (3.14)

has a unique solution, say μ1.
Now we formulate the following more explicit condition:
(B) either K(n) = 0, n ≥ 1, and

1 +A +K(0)/= 0, (3.15)
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or there is an n0 ≥ 1 with K(n0)/= 0, and

(i) r defined in (3.12) is finite,

(ii) if G(r) ≥ 1, then the constant A satisfies either

A > μ1 − 1 −
∞∑

i=0

K(i)μ−i
1 (3.16)

or

A < −μ1 − 1 −
∞∑

i=0

(−1)iK(i)μ−i
1 , (3.17)

(iii) if G(r) < 1, then the constant A satisfies either

A ≥ r − 1 −
∞∑

i=0

K(i)r−i (3.18)

or

A ≤ −r − 1 −
∞∑

i=0

(−1)iK(i)r−i. (3.19)

Remark 3.2. Let K : Z+→R be a sequence such that K(n0)/= 0 for some n0 ≥ 1. It will be proved
in Lemma 5.7 that there is at most one λ0 ∈ C \ {0} satisfying (3.10) and (3.11). It is an easy
consequence of this statement that if λ0 ∈ C \ {0} satisfies (3.10) and (3.11), and λ1 ∈ C \ {0, λ0}
is a solution of (3.10), then |λ1| < |λ0|, thus λ0 is the leading root of (3.10). Really, from the
condition |λ1| ≥ |λ0|we have

∞∑

i=1

i
∣∣K(i)

∣∣∣∣λ1
∣∣−(i+1) ≤

∞∑

i=1

i
∣∣K(i)

∣∣∣∣λ0
∣∣−(i+1) < 1, (3.20)

that is (3.11) holds for λ1 instead of λ0, and this contradicts the uniqueness of λ0.

Now, we are ready to state our second result which will be proved in Section 5. This
result shows that the implicit condition (A) and the explicit condition (B) are equivalent and
the solutions of (3.7) can be asymptotically characterized by λn0 as n→∞.

Theorem 3.3. Let A ∈ R, K : Z+→R, g : Z+→R, and ϕ ∈ S be given. Then
(α) Condition (A) holds if and only if condition (B) is satisfied.
(β) If condition (A) or equivalently condition (B) holds, moreover

∞∑

i=0

λ−i0

( −1∑

j=−∞
K(i − j)ϕ(j) + g(i)

)
(3.21)

is finite, then for the solution x(ϕ) of (3.7), (3.8) the limit c[ϕ] := limn→∞λ−n0 x(ϕ)(n) is finite and it
obeys

c[ϕ] =

(
λ0 −

∞∑

i=1

iK(i)λ−i0

)−1( ∞∑

i=0

λ−i0

( −1∑

j=−∞
K(i − j)ϕ(j) + g(i)

)
+ λ0ϕ(0)

)
. (3.22)
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4. Examples and the discussion of the results

In this section, we illustrate our results by examples and the interested reader could also find
some discussions.

Example 4.1. Our Theorem 3.1 is given for system of equations, however the next example
shows that this result is also new even in scalar case.

Let us consider the scalar nonconvolution Volterra difference equation

z(n + 1) =
n∑

j=1

(n − j)α−1jβ−1

nα+β−1 z(j) + h(n), n ≥ 1, (4.1)

with the initial condition

z(1) = z1, (4.2)

where (a1)α, β > 1 and real, and (h(n))n≥1 is a real sequence such that its limit h(∞) :=
limn→∞h(n) is finite.

Now, let the values z0, h(0) and the sequenceH := (H(n, i))0≤i≤n be defined by

z0 : = 0, h(0) := z1,

H(n, i) : =

⎧
⎪⎨

⎪⎩

(n − i)α−1iβ−1

nα+β−1 , 1 ≤ i ≤ n,

0, 0 = i ≤ n.

(4.3)

Then, it can be easily seen that problem (4.1), (4.2) is equivalent to problem (3.1), (3.2).
We find thatH∞(i) := limn→∞H(n, i) = 0 for any fixed i ≥ 0.
It is known that

lim
n→∞

n∑

j=1

H(n, j) = lim
n→∞

n∑

j=1

(n − j)α−1jβ−1

nα+β−1 = B(α, β), (4.4)

where B(α, β) is the well-known Beta function at (α, β) defined by

B(α, β) :=
∫1

0
tα−1(1 − t)β−1dt < 1. (4.5)

Using the nonnegativity of H(n, i), 0 ≤ i ≤ n, and Lemma 5.2 we have that

O ≤ V = W = lim
N→∞

(
lim
n→∞

n∑

j=N

H(n, j)

)
= lim

n→∞

n∑

j=0

H(n, j) = B(α, β) < 1. (4.6)

Now, one can easily see that for the sequences h := (h(n))n≥0 and H := (H(n, i))0≤i≤n all
of the conditions of Theorem 3.1 are satisfied. Thus, by Theorem 3.1 we get that the solution
z := (z(n))n≥1 of the initial value problem (4.1), (4.2) satisfies

lim
n→∞

z(n) =
h(∞)

1 − B(α, β)
. (4.7)

On the other hand, we know (see [23]) that

lim
N→∞

(
lim
n→∞

n−N∑

j=N

H(n, j)

)
= lim

N→∞

(
lim
n→∞

n−N∑

j=N

(n − j)α−1jβ−1

nα+β−1

)
= B(α, β)/= 0, (4.8)

and hence in [20, Theorem 3.1] is not applicable.
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Example 4.2. Let m ≥ 1 and 0 < τ1 < · · · < τm be given integers, and assume K(i)/= 0 if i ∈
{τ1, . . . , τm} and K(i) = 0 if i ∈ Z

+ \ {τ1, . . . , τm}. Then,

n∑

i=−∞
K(n − i)x(i) =

∞∑

i=0

K(i)x(n − i) =
m∑

k=1

K(τk)x(n − τk), n ∈ Z
+. (4.9)

Thus, (3.7) reduces to the delay difference equation

Δx(n) = Ax(n) +
m∑

k=1

K(τk)x(n − τk) + g(n), n ∈ Z
+, (4.10)

and for any sequence ϕ : Z−→R, ϕ ∈ S holds.
Since K(n) = 0 for any large enough n, r := limn→∞|K(n)|1/n = 0, moreover the function

G : [0,∞)→[0,∞] defined in (3.13) satisfies

G(μ) =

⎧
⎪⎨

⎪⎩

m∑

k=1

τk
∣∣K(τk)

∣∣μ−(τk+1), ifμ > 0,

∞, ifμ = 0.
(4.11)

Let μ1 > 0 be the unique value satisfying

G(μ1) =
m∑

k=1

τk
∣∣K(τk)

∣∣μ−(τk+1)
1 = 1. (4.12)

Now, statement(α) of Theorem 3.3 is applicable and so the next statement is valid.

Proposition 4.3. For an A ∈ R there is a λ0 ∈ R \ {0} such that

λ0 = A + 1 +
m∑

k=1

K
(
τk
)
λ−τk0 ,

∣∣λ0
∣∣−1

m∑

k=1

τk
∣∣K

(
τk
)∣∣∣∣λ0

∣∣−τk < 1
(4.13)

hold if and only if either

A > μ1 − 1 −
m∑

k=1

K
(
τk
)
μ−τk
1 (4.14)

or

A < −μ1 − 1 −
m∑

k=1

(−1)τkK(τk)μ
−τk
1 (4.15)

is satisfied.
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Now, let m = 1, τ1 := l ∈ {1, . . .} and K(l)/= 0. Then μ1 = (l|K(l)|)1/(l+1), moreover (4.14)
and (4.15) reduce to

A >
(
l
∣∣K(l)

∣∣)1/(l+1) − 1 −K(l)
(
l
∣∣K(l)

∣∣)−l/(l+1),

A < −(l∣∣K(l)
∣∣)1/(l+1) − 1 − (−1)lK(l)

(
l
∣∣K(l)

∣∣)−l/(l+1).
(4.16)

If especially l = 1 and K(1) ≥ 0, then μ1 =
√
K(1), moreover (4.14) and (4.15) are equivalent to

the condition

A/=
√
K(1) − 1 −

√
K(1) = −

√
K(1) − 1 +

√
K(1) = −1. (4.17)

Example 4.4. Let q ∈ R \ {0} and K(i) := qi, i ∈ Z
+. Then, (3.7) has the following form:

Δx(n) = Ax(n) +
n∑

j=−∞
qn−jx(j) + g(n), n ∈ Z

+. (4.18)

It is clear that r := limn→∞|qn|1/n = |q|, and the function G defined in (3.13) is given by

G(μ) =

⎧
⎪⎨

⎪⎩

|q|
(
μ − |q|)2

, ifμ > |q|,

∞, ifμ = |q|,
(4.19)

moreover μ1 = |q| +
√
|q| is the unique positive root of G(μ) = 1.

Thus statement (α) in Theorem 3.3 is applicable and as a corollary of it we obtain the
following.

Proposition 4.5. There is a λ0 ∈ R \ {0} such that (3.10) and (3.11) hold with the sequenceK(i) = qi,
i ∈ Z

+, if and only if either

A > |q| +
√
|q| − 1 −

|q| +
√
|q|

|q| +
√
|q| − q

(4.20)

or

A < −
(
|q| +

√
|q|

)
− 1 −

|q| +
√
|q|

|q| +
√
|q| + q

. (4.21)

Example 4.6. Let c ∈ (1,∞) \ Z+ and let K(i) := ( c
i ), i ∈ Z

+. Here ( c
i ) is the extended binomial

coefficient, that is
(
c
i

)
:=

c(c − 1) · · · (c − (i − 1)
)

i!
, i ∈ Z

+. (4.22)

In this case, r = limn→∞( c
n )

1/n = 1 and by using the well-known properties of the
binomial series, we find

G(μ) =
∞∑

i=1

i

(
c
i

)
μ−(i+1) =

1
μ2

c

(
1 +

1
μ

)c−1
, ifμ ≥ 1. (4.23)

Thus, G(r) = G(1) = c2c−1 > 1, therefore by statement (α) of Theorem 3.3 we get the following.
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Proposition 4.7. There is a λ0 ∈ R \ {0} such that (3.10) and (3.11) hold with the sequence K(i) =
( c
i ), i ∈ Z

+, if and only if either

A > μ1 − 1 −
(
1 +

1
μ1

)c

(4.24)

or

A < −μ1 − 1 −
(
1 − 1

μ1

)c

, (4.25)

where μ1 is the unique positive solution of the equation

1
μ2

c

(
1 +

1
μ

)c−1
= 1. (4.26)

Example 4.8. Let α > 3 andK(i) := 1/2iα, i ≥ 1, andK(0) := 0. Then, (3.7) reduces to the special
form

Δx(n) = Ax(n) +
n−1∑

j=−∞

1
2(n − j)α

x(j) + g(n), n ∈ Z
+. (4.27)

It is not difficult to see that r = (1/2nα)1/n = 1,

G(μ) =
∞∑

i=1

1
2iα−1

μ−(i+1), μ ≥ 1, (4.28)

and G(1) < 1. From statement (α) of Theorem 3.3 we have the following.

Proposition 4.9. There is a λ0 ∈ R \ {0} such that (3.10) and (3.11) hold with the sequence K(i) =
1/2iα, i ≥ 1, if and only if either

A >
∞∑

i=1

1
2iα

=
1
2
ς(α) (4.29)

or

A < −2 −
∞∑

i=1

(−1)i
2iα

= −2 −
(

1
2α−1

− 1
) ∞∑

i=1

1
2iα

= −2 −
(

1
2α−1

− 1
)
ς(α), (4.30)

where ς is the well-known Riemann function.

5. Proofs of the main theorems

5.1. Proof of Theorem 3.1

To prove Theorem 3.1 we need the next result from [20].
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Theorem A. Let us consider the initial value problem (3.1), (3.2). Suppose that there are M,N ∈
Z
+, M < N such that

ρ

(
sup
n≥N

n∑

i=M

∣∣H(n, i)
∣∣
)

< 1, (5.1)

sup
n≥M

M∑

i=0

∣∣H(n, i)
∣∣ < ∞. (5.2)

Assume also that supn≥0|h(n)| < ∞. Then, there is a nonnegative matrix K ∈ R
d×d, independent of h

and z0, such that the solution z of (3.1), (3.2) satisfies

∣∣z(n)
∣∣ ≤ K

(
sup
m≥0

∣∣h(m)
∣∣ +

∣∣z0
∣∣
)
, n ≥ 0. (5.3)

Now, we prove some lemmas.

Lemma 5.1. The hypotheses of Theorem 3.1 imply that the hypotheses of Theorem A are satisfied, and
hence the solution z := (z(n))n≥0 of (3.1), (3.2) is bounded.

Proof. Let ε > 0 be such that ρ(W + εE) < 1. This can be satisfied because ρ(W) < 1. Then, there
is anM0 ≥ 0 for which

lim sup
n→∞

n∑

j=M0

∣∣H(n, j)
∣∣ < W + εE, (5.4)

and hence for anM ≥ M0, we have

n∑

j=M0

∣∣H(n, j)
∣∣ < W + εE, n ≥ M + 1. (5.5)

Thus,

n∑

j=M

∣∣H(n, j)
∣∣ ≤

n∑

j=M0

∣∣H(n, j)
∣∣ < W + εE, n ≥ M + 1, (5.6)

therefore,

sup
n≥M+1

n∑

j=M

∣∣H(n, j)
∣∣ ≤ W + εE. (5.7)

But the matrices are nonnegative in the above inequality, thus

ρ

(
sup

n≥M+1

n∑

j=M

∣∣H(n, j)
∣∣
)

≤ ρ(W + εE) < 1, (5.8)
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and this shows (5.1). Since condition (H2) holds, we get

lim
n→∞

M∑

j=0

∣∣H(n, j)
∣∣ =

M∑

j=0

∣∣H∞(j)
∣∣, (5.9)

therefore,

sup
n≥M

M∑

j=0

∣∣H(n, j)
∣∣ < ∞, (5.10)

thus (5.2) is satisfied.

In the next lemma we give an equivalent form of (H3).

Lemma 5.2. Let H := (H(n, i))0≤i≤n be a sequence of real d by d matrices which satisfies (H2). Then,
there exists a real d by d matrix V such that

lim
N→∞

(
lim sup

n→∞

∣∣∣∣∣

n∑

j=N

H(n, j) − V

∣∣∣∣∣

)
= O (5.11)

if and only if

lim
N→∞

(
lim
n→∞

n∑

j=N

H(n, j)

)
(5.12)

is finite. In both cases

V = lim
N→∞

(
lim
n→∞

n∑

j=N

H(n, j)

)
= lim

n→∞

n∑

j=0

H(n, j) −
∞∑

j=0

H∞(j). (5.13)

If H satisfies (H4) too, and (5.11) holds, then ρ(V ) < 1.

Proof. First we show that

lim
N→∞

(
lim
n→∞

n∑

j=N

H(n, j)

)
(5.14)

is finite if and only if

lim
n→∞

n∑

j=0

H(n, j) (5.15)

is finite, and in both cases

lim
N→∞

(
lim
n→∞

n∑

j=N

H(n, j)

)
= lim

n→∞

n∑

j=0

H(n, j) −
∞∑

j=0

H∞(j). (5.16)
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These come from (H2), since

n∑

j=0

H(n, j) =
N∑

j=0

H(n, j) +
n∑

j=N+1

H(n, j), n ≥ N + 1, N ≥ 0. (5.17)

Suppose V is a real d by d matrix. Then, by (H2) for every N ≥ 0

lim sup
n→∞

∣∣∣∣∣

n∑

j=N+1

H(n, j) − V

∣∣∣∣∣

= max

(
lim sup

n→∞

n∑

j=0

H(n, j) −
N∑

j=0

H∞(j) − V,−lim inf
n→∞

n∑

j=0

H(n, j) +
N∑

j=0

H∞(j) + V

)
,

(5.18)

and hence

lim sup
N→∞

(
lim sup

n→∞

∣∣∣∣∣

n∑

j=N+1

H(n, j) − V

∣∣∣∣∣

)

= max

(
lim sup

n→∞

n∑

j=0

H(n, j) −
∞∑

j=0

H∞(j) − V,−lim inf
n→∞

n∑

j=0

H(n, j) +
∞∑

j=0

H∞(j) + V

)
.

(5.19)

Now, suppose that (5.11) holds. Then by (5.19), either

V = lim sup
n→∞

n∑

j=0

H(n, j) −
∞∑

j=0

H∞(j),

−lim inf
n→∞

n∑

j=0

H(n, j) +
∞∑

j=0

H∞(j) + V ≤ O,

(5.20)

or

V = lim inf
n→∞

n∑

j=0

H(n, j) −
∞∑

j=0

H∞(j),

lim sup
n→∞

n∑

j=0

H(n, j) −
∞∑

j=0

H∞(j) − V ≤ O.

(5.21)

Both of the previous cases implies that

lim sup
n→∞

n∑

j=0

H(n, j) ≤ lim inf
n→∞

n∑

j=0

H(n, j) (5.22)

which shows that

lim
n→∞

n∑

j=0

H(n, j) (5.23)
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is finite and

V = lim
n→∞

n∑

j=0

H(n, j) −
∞∑

j=0

H∞(j). (5.24)

As we have seen, this is equivalent with (5.12). If (5.12) is true or equivalently

lim
n→∞

n∑

j=0

H(n, j) (5.25)

is finite, then by (5.19)

V := lim
n→∞

n∑

j=0

H(n, j) −
∞∑

j=0

H∞(j) (5.26)

satisfies (5.11). ρ(V ) < 1 follows from (H4). The proof is now complete.

Lemma 5.3. The hypotheses of Theorem 3.1 imply that

cz := (I − V )−1
( ∞∑

j=0

H∞(j)z(j) + h(∞)

)
(5.27)

is the only vector satisfying the equation

cz =
∞∑

j=0

H∞(j)z(j) + Vcz + h(∞). (5.28)

Proof. Since ρ(V ) ≤ ρ(W) < 1 the matrix I −V is invertible, which shows the uniqueness part of
the lemma. On the other hand, by Lemma 5.1 we have that z is a bounded sequence, and hence∑∞

j=0H∞(z)z(j) is finite. Thus, cz is well defined and satisfies (5.28). The proof is complete.

Lemma 5.4. The vector defined by (5.27) satisfies the relation

cz =
N∑

j=0

H(n, j)z(j) +
n∑

j=N+1

H(n, j)cz + h(n) + g(n,N) (5.29)

for any n > N ≥ 0, where the sequence g(n,N) ∈ R
d, n > N, satisfies

lim
N→∞

(
lim
n→∞

g(n,N)

)
= 0. (5.30)

Proof. Let n > N ≥ 0 be arbitrarily fixed and

g(n,N) : =
N∑

j=0

(
H∞(j)−H(n, j)

)
z(j)+

∞∑

j=N+1

H∞(j)z(j)+

(
V −

n∑

j=N+1

H(n, j)

)
cz+h(∞)−h(n).

(5.31)
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But under the hypotheses of Theorem 3.1 we find

lim sup
n→∞

∣∣g(n,N)
∣∣ ≤

N∑

j=0

lim
n→∞

∣∣H∞(j) −H(n, j)
∣∣∣∣z(j)

∣∣ +
∞∑

j=N+1

∣∣H∞(j)
∣∣∣∣z(j)

∣∣

+ lim sup
n→∞

∣∣∣∣∣V −
n∑

j=N+1

H(n, j)

∣∣∣∣∣
∣∣cz

∣∣ + lim
n→∞

∣∣h(∞) − h(n)
∣∣

=
∞∑

j=N+1

∣∣H∞(j)
∣∣∣∣z(j)

∣∣ + lim sup
n→∞

∣∣∣∣∣V −
n∑

j=N+1

H(n, j)

∣∣∣∣∣
∣∣cz

∣∣, N ≥ 0.

(5.32)

Now, by Lemma 5.2

lim sup
N→∞

(
lim sup

n→∞

∣∣g(n,N)
∣∣
)

≤ lim
N→∞

∞∑

j=N+1

∣∣H∞(j)
∣∣∣∣z(j)

∣∣+ lim
N→∞

(
lim sup

n→∞

∣∣∣∣∣V −
n∑

j=N+1

H(n, j)

∣∣∣∣∣
∣∣cz

∣∣
)

=0,

(5.33)

and hence (5.30) holds. On the other hand, it can be easily seen that by the above definition of
g(n,N) the relation (5.29) also holds. The proof is complete.

Now, we prove Theorem 3.1.

Proof. Let n > N ≥ 0 be arbitrarily fixed. Then, (3.1) can be written in the form

z(n + 1) =
N∑

i=0

H(n, i)z(i) +
n∑

i=N+1

H(n, i)z(i) + h(n). (5.34)

Subtracting (5.29) from the above equation, we get

z(n + 1) − cz =
n∑

i=N+1

H(n, i)
(
z(i) − cz

) − g(n,N), n > N ≥ 0. (5.35)

On the other hand, by Lemma 5.1, z := (z(n))n≥0 is bounded and hence

η := lim sup
n→∞

∣∣z(n) − cz
∣∣ (5.36)

is finite. Let ε > 0 be arbitrarily fixed and e := (1, . . . , 1)T . Then there is an N0 ≥ 0 such that
∣∣z(n) − cz

∣∣ ≤ η + εe, n ≥ N0. (5.37)

Thus, (5.35) yields

∣∣z(n + 1) − cz
∣∣ ≤

n∑

i=N+1

∣∣H(n, i)
∣∣(η + εe) +

∣∣g(n,N)
∣∣, n > N ≥ N0. (5.38)

From this it follows:

η = lim sup
n→∞

∣∣z(n) − cz
∣∣ ≤ lim sup

n→∞

n∑

i=N+1

∣∣H(n, i)
∣∣(η + εe) + lim sup

n→∞

∣∣g(n,N)
∣∣, N ≥ N0. (5.39)
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Thus,

η ≤ lim
N→∞

(
lim sup

n→∞

n∑

i=N+1

∣∣H(n, i)
∣∣
)
(η + εe) + lim

N→∞

(
lim sup

n→∞

∣∣g(n,N)
∣∣
)
, (5.40)

and hence Lemma 5.4 implies that

η ≤ W(η + εe). (5.41)

SinceW is a nonnegative matrix with ρ(W) < 1, we have that (I −W)−1 ≥ O. Thus,

η ≤ (I −W)−1Wεe −→ 0, ε −→ 0+, (5.42)

and hence the proof of Theorem 3.1 is complete.

5.2. Proof of Theorem 3.3

Theorem 3.3 will be proved after some preparatory lemmas.
In the next lemma, we show that (3.7) can be transformed into an equation of the form

(3.1) by using the transformation

z(n) = λ−n0 x(ϕ)(n), n ∈ Z
+. (5.43)

Lemma 5.5. Under the conditions of Theorem 3.3, the sequence z : Z+→R defined by (5.43) satisfies
(3.1), where the sequencesH : {(n, i) | 0 ≤ i ≤ n}→R and h : Z+→R are defined by

H(n, i) := −λ−10
∞∑

j=n−i+1
K(j)λ−j0 , 0 ≤ i ≤ n, (5.44)

h(n) := λ−10
n∑

i=0

λ−i0

( −1∑

j=−∞
K(i − j)ϕ(j) + g(i)

)
+ ϕ(0), n ∈ Z

+. (5.45)

Proof. Let z := (z(n))n≥0 be defined by (5.43). Then,

x(ϕ)(n) = λn0z(n), n ∈ Z
+. (5.46)

Thus,

Δx(ϕ)(n) = λn+10 z(n + 1) − λn0z(n) = λn+10

(
z(n + 1) − z(n)

)
+
(
λn+10 − λn0

)
z(n), n ∈ Z

+. (5.47)

On the other hand, from (3.7) it follows:

Δx(ϕ)(n) = Ax(ϕ)(n) +
n∑

j=0

K(n − j)x(ϕ)(j) +
−1∑

j=−∞
K(n − j)ϕ(j) + g(n), n ∈ Z

+. (5.48)
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Thus,

Δz(n) = λ
−(n+1)
0 Δx(ϕ)(n) +

(
λ−10 − 1

)
z(n)

= λ
−(n+1)
0 Ax(ϕ)(n) +

(
λ−10 − 1

)
z(n) + λ

−(n+1)
0

n∑

j=0

K(n − j)x(ϕ)(j)

+ λ
−(n+1)
0

−1∑

j=−∞
K(n − j)ϕ(j) + λ

−(n+1)
0 g(n), n ∈ Z

+,

(5.49)

and hence

Δz(n) =
(
λ−10 A + λ−10 − 1

)
z(n) + λ

−(n+1)
0

n∑

j=0

K(n − j)λj0z(j)

+ λ
−(n+1)
0

−1∑

j=−∞
K(n − j)ϕ(j) + λ

−(n+1)
0 g(n), n ∈ Z

+.

(5.50)

But

n∑

i=0

Δz(i) = z(n + 1) − z(0) = z(n + 1) − ϕ(0), n ∈ Z
+. (5.51)

Therefore,

z(n + 1) =
(
λ−10 A + λ−10 − 1

) n∑

i=0

z(i) +
n∑

i=0

i∑

j=0

λ
−(i+1)
0 K(i − j)λj0z(j) + h(n), n ∈ Z

+, (5.52)

where h : Z+→R is defined in (5.45). By interchanging the order of the summation we get

n∑

i=0

i∑

j=0

λ
−(i+1)
0 K(i − j)λj0z(j) =

n∑

j=0

n∑

i=j

λ
−(i+1)
0 K(i − j)λj0z(j) = λ−10

n∑

j=0

n−j∑

i=0

λ−i0 K(i)z(j)

= λ−10
n∑

i=0

n−i∑

j=0

λ
−j
0 K(j)z(i), n ∈ Z

+.

(5.53)

This and (5.52) yield

z(n + 1) =
n∑

i=0

(
λ−10 A + λ−10 − 1 + λ−10

n−i∑

j=0

λ
−j
0 K(j)

)
z(i) + h(n), n ∈ Z

+. (5.54)

By using the definition λ0, we have

λ−10

(
A + 1 − λ0 +

n−i∑

j=0

λ
−j
0 K(j)

)
= −λ−10

∞∑

j=n−i+1
λ
−j
0 K(j), 0 ≤ i ≤ n, (5.55)
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and hence

z(n + 1) =

(
− λ−10

n∑

i=0

∞∑

j=n−i+1
λ
−j
0 K(j)

)
z(i) + h(n), n ∈ Z

+. (5.56)

But by using the definition ofH(n, i) in (5.44) the proof of the lemma is complete.

In the next lemma, we collect some properties of the function G defined in (3.13).

Lemma 5.6. Let K : Z+→R be a sequence such that K(n0)/= 0 for some n0 ≥ 1 and

r := lim sup
n→∞

∣∣K(n)
∣∣1/n < ∞. (5.57)

Then, the function G defined in (3.13) has the following properties.

(a) The series of functions

∞∑

i=1

i
∣∣K(i)

∣∣μ−(i+1), μ > 0 (5.58)

is convergent on (r,∞) and it is divergent on (0, r).

(b) limμ→∞G(μ) = 0

(c) limμ→r+G(μ) = G(r)

(d) G is strictly decreasing.

(e) If G(r) ≥ 1, then the equation G(μ) = 1 has a unique solution.

Proof. (a) The root test can be applied. (b) The series of functions (5.58) is uniformly convergent
on [a,∞) for every a > r, and this, together with limμ→∞μ−(i+1) = 0 (i ≥ 1), implies the result.
(c) If G(r) is finite, then the series of functions (5.58) is uniformly convergent on [r,∞), hence
G is continuous on [r,∞). Suppose now that G(r) = ∞ and r > 0. Let c > 0 be fixed and let
i0 ∈ Z

+ such that

i0∑

i=1

i
∣∣K(i)

∣∣r−(i+1) > c. (5.59)

Since

lim
μ→r+

i0∑

i=1

i
∣∣K(i)

∣∣μ−(i+1) =
i0∑

i=1

i
∣∣K(i)

∣∣r−(i+1) > c, (5.60)

there is a δ > 0 such that

G(μ) ≥
i0∑

i=1

i
∣∣K(i)

∣∣μ−(i+1) > c, (5.61)

whenever μ ∈ (r, r + δ), and this shows limμ→r+G(μ) = ∞. Finally, we consider the case r =
0. Then, limμ→r+G(μ) = ∞ follows from the condition K(n0)/= 0. (d) The series of functions
(5.58) can be differentiated term-by-term within (r,∞), and therefore G′(μ) < 0, μ ∈ (r,∞).
Together with (c) this gives the claim. (e) We have only to apply (d), (c), and (b). The proof is
complete.
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We are now in a position to prove Theorem 3.3.

Proof. (a) Let K(n0) = 0 for all n ≥ 1. Then, it is easy to see that there is a λ0 ∈ R \ {0} such
that (3.10) holds if and only if (3.15) is true, and in this case (3.11) is also satisfied. Suppose
K(n0)/= 0 for some n ≥ 1. Let r be finite. By the root test, the series

∞∑

i=0

K(i)μ−i,
∞∑

i=0

(−1)iK(i)μ−i, μ > 0 (5.62)

are convergent for all μ > r. Moreover, it can be easily verified that the series

∞∑

i=0

K(i)r−i,
∞∑

i=0

(−1)iK(i)r−i (5.63)

are absolutely convergent, whenever G(r) is finite. Define the functions Fi : D→R (i = 1, 2) by

F1(μ) := μ − 1 −A −
∞∑

i=0

K(i)μ−i,

F2(μ) := μ + 1 +A +
∞∑

i=0

(−1)iK(i)μ−i,

(5.64)

where D := [r,∞) if G(r) is finite and D := (r,∞), otherwise. The series of functions in (5.64)
are uniformly convergent on [a,∞) for every a ∈ D, hence F1 and F2 are continuous. Further,

F ′
1(μ) = 1 +

∞∑

i=1

iK(i)μ−(i+1) ≥ 1 −
∞∑

i=1

i
∣∣K(i)

∣∣μ−(i+1) = 1 −G(μ), μ > r,

F ′
2(μ) = 1 −

∞∑

i=1

(−1)iiK(i)μ−(i+1) ≥ 1 −
∞∑

i=1

i
∣∣K(i)

∣∣μ−(i+1) = 1 −G(μ), μ > r.

(5.65)

Let μ2 := μ1 if G(r) ≥ 1, and let μ2 := r if G(r) < 1. It now follows from the previous inequalities
and Lemma 5.6(d) that

F ′
i(μ) > 0, μ > μ2, i = 1, 2, (5.66)

and hence Fi (i = 1, 2) is strictly increasing on [μ2,∞). It is immediate that limμ→∞Fi(μ) = ∞ (i =
1, 2). If (3.10) is hold for some λ0 ∈ R \ {0}, then the convergence of the series

∑∞
i=0K(i)λ−i0

implies r < ∞. Suppose r < ∞. It is simple to see that there is a λ0 ∈ R \ {0} satisfying (3.10)
if and only if either F1(λ0) = 0 (in case λ0 > 0) or F2(−λ0) = 0 (in case λ0 < 0). Moreover, the
existence of a λ0 ∈ R \ {0} satisfying (3.11) is equivalent to either |λ0| > μ1 (in case G(r) ≥ 1)
or |λ0| ≥ r (in case G(r) < 1). Now, the result follows from the properties of the functions
Fi(i = 1, 2). The proof of (a) is complete. (b) In virtue of Lemma 5.5 the proof of the theorem
will be complete if we show that the sequences H and h satisfy the conditions (H2)–(H5) in
Section 3. Since the series

∑∞
i=0K(i)λ−i0 is convergent,

H∞(i) := lim
n→∞

H(n, i) = lim
n→∞

(
− λ−10

∞∑

j=n−i+1
λ
−j
0 K(j)

)
= 0, i ∈ Z

+, (5.67)
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and hence
∑∞

i=0|H∞(i)| = 0. Thus (H2) holds. Now, let n ≥ N ≥ 0 and consider
∑n

i=N |H(n, i)|.
In fact

n∑

i=N

∣∣H(n, i)
∣∣ =

n∑

i=N

∣∣λ0
∣∣−1

∣∣∣∣∣

∞∑

j=n−i+1
λ
−j
0 K(j)

∣∣∣∣∣

≤
n∑

i=N

∣∣λ0
∣∣−1

∞∑

j=n−i+1

∣∣λ0
∣∣−j |K(j)|

=
n−N+1∑

l=1

∣∣λ0
∣∣−1

∞∑

j=l

∣∣λ0
∣∣−j∣∣K(j)

∣∣.

(5.68)

Thus,

lim sup
n→∞

n∑

i=N

∣∣H(n, i)
∣∣ ≤ ∣∣λ0

∣∣−1
∞∑

l=1

∞∑

j=l

∣∣λ0
∣∣−j∣∣K(j)

∣∣

=
∣∣λ0

∣∣−1
∞∑

j=0

j∑

l=1

∣∣λ0
∣∣−j∣∣K(j)

∣∣

=
∣∣λ0

∣∣−1
∞∑

j=1

j
∣∣λ0

∣∣−j∣∣K(j)
∣∣ < 1.

(5.69)

Thus,

W := lim
N→∞

(
lim sup

n→∞

n∑

i=N

∣∣H(n, i)
∣∣
)

(5.70)

is finite and ρ(W) < 1. In a similar way, one can easily prove that

V = λ−10 lim
N→∞

(
lim
n→∞

n∑

i=N

H(n, i)

)
= λ−10

∞∑

j=1

jλ
−j
0 K(j) (5.71)

is also finite. It is also clear that

h(∞) = lim
n→∞

h(n) (5.72)

is finite. Thus, by Theorem 3.1 we get that the limit

c[ϕ] = lim
n→∞

z(n) = lim
n→∞

λ−n0 x(ϕ)(n) (5.73)

is finite and satisfies the required relation (3.22). The proof is now complete.

Lemma 5.7. Let K : Z+→R be a sequence such that K(n0)/= 0 for some n0 ≥ 1. Then, there is at most
one λ0 ∈ C \ {0} satisfying (3.10) and (3.11).
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Proof. Suppose on the contrary that there exist two different numbers from C \ {0}, denoted by
λ0 and λ1, such that (3.10) and (3.11) hold. Then,

λj = 1 +A +
∞∑

i=0

K(i)
(

1
λj

)i

, j = 0, 1, (5.74)

∞∑

i=1

i
∣∣K(i)

∣∣∣∣λj
∣∣−(i+1) < 1, j = 0, 1. (5.75)

It follows from (5.74), the mean value inequality and (5.75) that

∣∣λ0 − λ1
∣∣ ≤

∞∑

i=1

i
∣∣K(i)

∣∣
(
max

(
1
|λ0| ,

1
|λ1|

))i−1∣∣∣∣
1∣∣λ0
∣∣ −

1∣∣λ1
∣∣

∣∣∣∣

=
(
max

(
1∣∣λ0
∣∣ ,

1∣∣λ1
∣∣

))−2 ∞∑

i=1

i
∣∣K(i)

∣∣
(
max

(
1∣∣λ0
∣∣ ,

1∣∣λ1
∣∣

))i+1∣∣∣∣
1∣∣λ0
∣∣ −

1∣∣λ1
∣∣

∣∣∣∣

<

(
max

(
1∣∣λ0
∣∣ ,

1∣∣λ1
∣∣

))−2∣∣∣∣
1∣∣λ0
∣∣ −

1∣∣λ1
∣∣

∣∣∣∣ ≤
∣∣∣∣λ0

∣∣ − ∣∣λ1
∣∣∣∣,

(5.76)

and this is a contradiction.
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