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Abstract

Consider an aggregate arrival process AN obtained by multiplexing N On-Off processes with
exponential Off periods of rate λ and subexponential On periods τ on. As N goes to infinity, with
λN → Λ, AN approaches an M/G/∞ type process. Both for finite and infinite N , we obtain the
asymptotic characterization of the arrival process activity period.

Using these results we investigate a fluid queue with the limiting M/G/∞ arrival process A∞
t and

capacity c. When On periods are regularly varying (with non-integer exponent), we derive a precise
asymptotic behavior of the queue length random variable QP

t observed at the beginning of the arrival
process activity periods

P[QP
t > x] ∼ Λ

r + ρ− c

c− ρ

∫ ∞

x/(r+ρ−c)
P[τ on > u]du x → ∞,

where ρ = EA∞
t < c; r (c ≤ r) is the rate at which the fluid is arriving during an On period. The

asymptotic (time average) queue distribution lower bound is obtained under more general assumptions
on On periods than regular variation.

In addition, we analyze a queueing system in which one On-Off process, whose On period belongs
to a subclass of subexponential distributions, is multiplexed with independent exponential processes
with aggregate expected rate Eet. This system is shown to be asymptotically equivalent to the same
queueing system with the exponential arrival processes being replaced by their total mean value Eet.

Keywords: Non-Cramér type conditions; Subexponential distributions; Long-tailed distributions;
Long-range dependency; Network multiplexer; Fluid flow queue; M/G/∞ queue.
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1. Introduction

The problem of multiplexing On-Off sources arises frequently as the basic model of con-
tention in multimedia communication systems, as well as in some storage systems. More
specifically, in modern multimedia communication networks, such as ATM, various calls are
simultaneously established among the different source-destination pairs. These calls are usu-
ally discretized (packetized). An individual call/source can be either active (in which case
it transmits a packet) or silent (no transmission). Therefore, each source can be viewed as
an On-Off process. Along their routes, sources that are simultaneously active share common
network resources: bandwidth, buffer space, computational power, etc. The fundamental
building blocks for sharing bandwidth and buffer space are network multiplexers (MUX).
Sharing of common network resources may lead to Quality Of Service (QOS) degradation
for individual flows. Therefore, it is important to have computationally efficient algorithms
for evaluating QOS measures under all possible traffic loads. A first step towards a satisfac-
tory solution to this problem is understanding network MUX units in isolation. The most
fundamental mathematical model of a network MUX is an infinite buffer queue loaded with
(multiplexed) On-Off arrival processes (sources); the main QOS parameter (performance
measure) for this queueing system is the buffer occupancy probability distribution.

The problem of multiplexing dates back to [RUB73, COH74]. In [COH74], Cohen ob-
tained a complete Laplace transform solution to this problem! (More recently, he revisited
this problem in [COH94].) However, inverting the Laplace transform is usually a very te-
dious process. Hence, investigating computationally tractable exact and approximate solu-
tion techniques are needed. For Markovian (fluid) On-Off processes a thorough investigation
of this problem was done in [AMS82]. Many other results for multiplexing Markovian On-
Off processes followed. These led to the Equivalent Bandwidth theory for Markovian, or,
in general, exponentially bounded arrival processes; extensive references can be found for
example in [EHL95, GLW94, DUC95].

Recently statistical analysis has increasingly shown that the traffic streams in modern
broad-band networks exhibit long-tailed (subexponential) characteristics. For the case of
Ethernet traffic such results were examined in [LTW93]. These statistical results have
stimulated research in queueing analysis under the heavy-tailed (non Cramér) assump-
tions. Queueing analysis with self-similar long-range dependent arrival processes appears
in [NOR94, DUC95, LTG95, PAM96, RYL96, RES96]. Recently, long-tailed characteristics
of the scene length distribution of MPEG video streams were explored in [JLS95b, HEL96,
JLS96, JLA96h].

Parallel to the modeling approach through self-similar long-range dependent processes, a
more analytically tractable approach using fluid renewal type models in which renewal times
are long-tailed has been explored in [ANA95, HRS96]. Queueing results in these two papers
rely on the classical result by Pakes [PAK75] on the subexponential (long-tailed) asymptotics
of the waiting time distribution in a GI/GI/1 queue or in earlier work of Cohen [COH73]
which considered a regularly varying GI/GI/1 queue.

The result of Pakes has been generalized to a Markov modulated setting [AHK94, JLA95g].
In [AHK94] the subexponential asymptotics of a Markov modulated M/G/1 queue was in-
vestigated. Work in [JLA95g] further generalized these results to Markov modulated G/G/1
queues. In the same paper it was shown that a subexponential GI/GI/1 queue is invariant
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under Markov modulation. In other words, a subexponential Markov modulated G/G/1
queue has the same asymptotics as the corresponding GI/GI/1 queue. These results made
possible the analysis of a subexponential semi-Markov fluid queue ([JLA95g]). Further gen-
eralizations of the result in [JLA95g] to arrival processes with a more complex dependency
structure were investigated in [ASC97]. Asymptotic expansion refinements of Pakes’ result
can be found in [WIT92, ACW94].

The analysis of a fluid queue in which more than one long-tailed process is multiplexed
appears to be a very difficult problem. This is due to the fact that the renewal structure of an
aggregate arrival process may be very complex, although the appearance of each individual
process may be truly innocuous (like an On-Off process). The complex autocorrelation
structure of the aggregate process obtained by multiplexing long-tailed On-Off processes
has been examined in [HRS96]. General bounds for multiplexing long-tailed fluid processes
have been derived in [CHW95]. In [BOX96] a limiting case of an infinite number of On-
Off processes with regularly varying On distribution has been investigated. In the same
paper (see also [BOX97]) a case of two processes, one of which had regularly varying On
periods and the other had exponential On periods, has been solved. Similar scenario with
intermediately regularly varying On periods has been examined in [RSS97]. The literature
does not explicitly give precise asymptotic results for the case of multiplexing two or more
long-tailed processes.

From a mathematical point of view the new results in this paper were achieved through
the combination of the Theory of Subexponential Distributions, Renewal Theory, Karamata’s
Theory and the utilization of sample path arguments. From an engineering standpoint this
paper advances two important results. The first result intuitively states that when a process
with subexponential characteristics (e.g., MPEG video) is multiplexed with a process that
has exponential characteristics (e.g., voice), the contribution to the large buffer asymptotics
of the exponential processes is reflected only through their mean values. This result suggests
that, under appropriate conditions, for admission control of both VBR video and voice
streams, the voice streams need to be characterized only by their mean values. The second
result is an accurate approximation with low computational complexity of the large buffer
probabilities of finitely many subexponential On-Off processes. Besides accuracy, it is of
special importance for engineering the MUX that this approximation has basically negligible
computational complexity. To the best of our knowledge, this is the only result in literature
of comparable computational complexity that is both proven theoretically and demonstrated
experimentally as a good approximation for the buffer overflow probabilities with multiplexed
long-tailed arrival streams.

The rest of the paper is organized as follows. Section 2 contains necessary definitions and
examples of long-tailed and subexponential distributions. In Section 3 we examine the ag-
gregate arrival process obtained by multiplexing N independent and identically distributed
On-Off processes. For this process we derive the asymptotic relation between the distribu-
tion of its activity period and the distribution of On periods of individual processes. For the
case when On periods are regularly varying (with noninteger exponent) using Karamata’s
theory we obtain a precise asymptotic behavior of the server overflow distribution during
the arrival process activity period. Using these asymptotic relations, in Section 4, we obtain
several results for the fluid queue asymptotics of multiplexed long-tailed processes. In the
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same section, based on queueing theoretic results, we suggest a computationally efficient
approximation for multiplexing a finite number of subexponential On-Off processes. Accu-
racy of the approximation is tested using extensive simulation experiments. The paper is
concluded in Section 5.

2. Long-Tailed and Subexponential Distributions

This section contains necessary definitions of long-tailed and subexponential distributions.
For convenience, we give some basic results on these distributions in Appendix A.

Definition 1 A distribution function F on [0,∞) is called long-tailed (F ∈ L) if

lim
x→∞

1− F (x− y)

1− F (x)
= 1, ∀y ∈ R. (2.1)

Definition 2 A distribution function F on [0,∞) is called subexponential (F ∈ S) if

lim
x→∞

1− F ∗2(x)

1− F (x)
= 2, (2.2)

where F ∗2 denotes the 2-nd convolution of F with itself, i.e., F ∗2(x) =
∫

[0,∞)
F (x− y)F (dy).

The class of subexponential distributions was first introduced by Chistyakov [CHI64].
The definition is motivated by the simplification of the asymptotic analysis of convolution
tails. One of the best known examples of distribution functions in S (and L) are functions
of Regular Variation R−α (in particular Pareto family); F ∈ R−α if it is given by

F (x) = 1−
l(x)

xα
α ≥ 0,

where l(x) : R+ → R+ is a function of slow variation, i.e., limx→∞ l(δx)/l(x) = 1, δ > 1.
These functions were invented by Karamata [KAR30] (the main reference book is [BGT87]).
The other examples include lognormal and someWeibull distributions (see [KLU88, JLA95g]).

3. Analysis of the Aggregate Arrival Process

This section consists of two parts. The first part is contained in Section 3.1, where we
asymptotically relate the tail of the activity period distribution of an aggregate arrival pro-
cess, obtained by multiplexing independent and identically distributed On-Off processes, and
the tail of the On period distribution of the individual On-Off processes. The main results
are given in Theorem 3 and Theorem 5. In the second part, Section 3.2, using Karamata’s
theory we derive the asymptotic behavior of the distribution of the queue increment dur-
ing the arrival process activity period. In Section 4, these results will be used to obtain
asymptotic queueing results.

More formally, consider two independent sequences of i.i.d. random variables {τ offn , n ≥

0}, {τ onn , n ≥ 0}, τ off0 = τ on0 = 0. Define a point process T off
n

def
=
∑n

i=0(τ
off
i + τ oni ), n ≥ 0;
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this process will be interpreted as representing the beginnings of Off periods in an On-Off
process. Further, define an On-Off process at with rate r, as

at = r if T off
n − τ onn ≤ t < T off

n , n ≥ 1,

and at = 0, otherwise. For the rest of the paper, unless otherwise specified, we will assume
that τ offn is exponentially distributed with parameter λ, i.e., P[τ offn > t] = e−λt, t ≥ 0. Also,
τ onn is assumed to have a finite mean. Steady state probabilities of this process are given
as π0 = limt→∞ P[at = 0] = 1/(1 + λEτ on) = 1 − π1, where π1 = limt→∞ P[at = r]. Let
AN =

∑N
1 ai, be an aggregate arrival process obtained by multiplexing N independent and

identically distributed On-Off processes ai, 1 ≤ i ≤ N .

3.1 Asymptotic Behavior of the Aggregate Process Activity Period

The central idea of this section is to relate the rate of convergence of P[at = 0] to its steady
state and the tail of its On period (Section 3.1.1). Then, the rate of convergence for the
aggregate process is easily computable from P[AN

t = 0] = (P[at = 0])N ; from here one can
refer back and relate P[AN

t = 0] to the tail of its activity period distribution (Sections 3.1.2
and 3.1.3).

3.1.1 Single On-Off Process: Convergence to Steady State

Let us now investigate the speed of convergence of P[at = 0] to its steady state. For that

reason we define a transient function Ftr(t)
def
= P[at = 1]/π1; notice that Ftr(0) = 0 and

limt→∞ Ftr(t) = 1. Therefore, if Ftr(t) is monotonic, it will represent a proper probability
distribution function, in which case we call it the transient probability measure. To simplify
the notation, throughout the rest of the paper, for any distribution F we define its tail

function as F̄ (x)
def
= 1−F (x); in addition, if F has a finite mean m

def
=
∫∞

0
F̄ (x)dx, we denote

its integrated tail distribution as F1(x)
def
= m−1

∫ x

0
F̄ (u)du. In the following theorem we use a

class of subexponential distributions named Sd. For all practical purposes F ∈ Sd is virtually
the same as F ∈ S. A precise definition of Sd is given in Definition 5 (A) (henceforth, symbol
(A) will be used as a shortcut for Appendix A).

Theorem 1 Let F be a distribution of τ on with Eτ on < ∞ and let τ off be exponentially
distributed with parameter λ. Then, the Laplace-Stieltjes transform of the transient function
is given as

F̃tr(s) = s

∫ ∞

0

e−stFtr(t)dt =
(1 + λEτ on)F1(s)

1 + λEτ onF1(s)
. (3.1)

If F1 ∈ S and λEτ on < 1, then

F̄tr(t) ∼
1

1 + λEτ on
F̄1(t) as t → ∞. (3.2)
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If F ∈ Sd and λEτ on < 1, then (3.2) holds, and the density function ftr(t)
def
= dFtr(t)/dt

satisfies

ftr(t) ∼
1

1 + λEτ on
F̄ (t)

Eτ on
as t → ∞. (3.3)

Proof: Equation (3.1) follows directly from equation (2.1.3) in [COH74], and the observation
that F̃1(s) = (1 − F̃ (s))/(sEτ on). The asymptotic relation in (3.2) is a direct consequence
of Theorem 14 (A), and the fact that for all λEτ on < 1 equation (3.1) implies

F̄tr(t) = (1 + λEτ on)
∞
∑

n=1

(−λEτ on)n−1F ∗n
1 (t). (3.4)

Similarly, equation (3.3) follows by differentiation of the equation above and Theorem 15 (A).
This finishes the proof of the theorem. 3

For the remainder of this paper, it is of special interest to find sufficient conditions under
which the transient function Ftr(t) is a proper distribution function (i.e., monotonic). One
set of sufficient conditions, for the case when Off periods are large, is given in the following
theorem (this is typically satisfied when there are a large number of processes with a small
average arrival rate).

Theorem 2 Let F be a distribution of τ on with Eτ on < ∞ and let τ off be exponentially
distributed with parameter λ. For any fixed F ∈ Sd, there exists a λ0 > 0, such that for all
λ < λ0, Ftr(t) ≡ F λ

tr(t) is a probability distribution function, i.e., ftr(t) ≥ 0, t ≥ 0.

Proof: Differentiation of (3.4) gives

ftr(t) = (1 + λEτ on)
∞
∑

n=1

(−λEτ on)n−1f⊗n(t)

= (1 + λEτ on)

(

f(t)− λEτ on
∞
∑

n=2

(−λEτ on)n−2f⊗n(t)

)

≥ (1 + λEτ on)

(

f(t)− λEτ on
∞
∑

n=2

(λEτ on)n−2f⊗n(t)

)

,

where f(t) = F̄ (t)/Eτ on. Now, by applying Lemma 7 (i) (A), for ǫ > 0,

Eτ on
∞
∑

n=2

(λEτ on)n−2f⊗n(t) ≤
Eτ onCǫ(1 + ǫ)2f(t)

1− (1 + ǫ)λEτ on
def
=

C ′
ǫf(t)

1− (1 + ǫ)λEτ on
,

for some Cǫ, C
′
ǫ > 0, and all λ < 1/(Eτ on(1 + ǫ)). Therefore,

ftr(t) ≥ (1 + λEτ on)f(t)

(

1−
λC ′

ǫ

1− (1 + ǫ)λEτ on

)

≥ 0,

for all λ ≤ 1/(Eτ on(1 + ǫ) + C ′
ǫ). This concludes the proof of the theorem. 3
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3.1.2 Finite number of processes

In this section we consider an aggregate process AN
t that is obtained by multiplexing N

independent On-Off processes, i.e., AN
t =

∑N
i=1 a

i
t, where ait are independent and identically

distributed On-Off processes. Note that the indicator process 1(AN
t = 0) is an On-Off process

with exponentially distributed Off periods with parameter Nλ. Let {IN,off
n , IN,on

n , n ≥ 1} be
the lengths of the n-th Off and On periods in the indicator process 1(AN

t = 0), respectively.
In the following theorem we characterize asymptotically the tail of the distribution function
of IN,on

n . Observe that the steady state probability of the aggregate process being in state 0
is given by Π0 = πN

0 .

Theorem 3 Assume that λ < λ0, where λ0 is the same as in Theorem 2 (or that P[at = 0]
is monotonic, and λEτ on < 1). If F ∈ Sd, then

∫ ∞

t

P[IN,on > u]du ∼ (1 + λEτ on)N−1

∫ ∞

t

P[τ on > u]du as t → ∞, (3.5)

and

P[IN,on > t] ∼ (1 + λEτ on)N−1
P[τ on > t] as t → ∞. (3.6)

Proof: From the definition of Ftr(t) and Theorem 1 it follows that

P[ait = 0] = π0(1 + π1F̄1(t) + o(F̄1(t))), 1 ≤ i ≤ N,

where π0 = 1 − π1 = 1/(1 + λEτ on), and F1 is the integrated tail distribution of F . This
implies that

P[At = 0] = P[ait = 0]N = πN
0 (1 +Nπ1F̄1(t) + o(F̄1(t))) as t → ∞.

Therefore, the transient function Ftr,N(t) satisfies the following asymptotics

F̄tr,N(t)
def
= 1−

P[AN
t = 1]

1− πN
0

=
P[AN

t = 0]− πN
0

1− πN
0

∼
πN
0 Nπ1

1− πN
0

F̄1(t) as t → ∞.
(3.7)

By Theorem 2, for all λ < λ0, Ftr(t) is a distribution function, implying that P[ait = 0] and
P[AN

t = 0] are monotonic, which further implies that Ftr,N (t) is a probability distribution
function. Here, let FN,1 be the integrated tail distribution of IN,on and F̃N,1 be its Laplace-
Stieltjes transform. Then, similarly as in (3.1), we obtain

F̃tr,N(s) =
(1 +NλEIN,on)F̃N,1(s)

1 +NλEIN,onF̃N,1(s)
.

After simple algebra, it follows that

F̃N,1(s) =
πN
0 F̃tr,N(s)

1− (1− πN
0 )F̃tr,N(s)

,
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or, in the time domain

F̄N,1(t) = πN
0

∞
∑

n=1

(1− πN
0 )n−1F ∗n

tr,N (t). (3.8)

Now, F ∈ Sd implies F1 ∈ S (Theorem 1.1, [KLU89]), which by (3.7), and Lemma 5 (ii) (A),
yields Ftr,N ∈ S. Hence, by Theorem 14 (A) and (3.8) it follows that

F̄N,1(t) ∼ π−N
0 F̄tr,N(t) ∼

Nπ1

1− πN
0

F̄1(t) as t → ∞, (3.9)

where the second asymptotic relation follows from (3.7). By replacing EIN,on = (1/πN
0 −

1)/(Nλ) in (3.9) we obtain

∫ ∞

t

P[IN,on > u]du ∼ (1 + λEτ on)N−1

∫ ∞

t

P[τ on > u]du as t → ∞,

which proves (3.5).
In order to prove (3.6) we first determine the asymptotic behavior of ftr,N

ftr,N(t)
def
=

d

dt

P[AN
t = 1]

1− πN
0

=
d

dt

1− P[at = 0]N

1− πN
0

=
d

dt

1− (1− π1Ftr(t))
N

1− πN
0

=
N

1− πN
0

(1− π1Ftr(t))
N−1π1ftr(t)

∼
πN
0 Nπ1

1− πN
0

F̄ (t)

Eτ on
as t → ∞, (3.10)

where the last asymptotic relation follows from (3.3). Next, by taking a derivative in (3.8)
we obtain

F̄N (t) = EIN,onπN
0

∞
∑

n=1

(1− πN
0 )n−1ftr,N

⊗n(t), (3.11)

where FN(t) is the distribution function of IN,on. Finally, by applying Theorem 15 (A) we
get

F̄N(t) ∼ EIN,onπ−N
0 ftr,N(t) as t → ∞,

which together with (3.10) yields (3.6). 3
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3.1.3 Infinite number of On-Off processes

In this subsection we analyze the limiting case of an infinite number of On-Off sources. First,
we show that the aggregate process AN

t converges in distribution to an M/G/∞ process A∞
t

which we define as follows. Let Tn, n ≥ 0, T0 = 0, be a Poisson process with rate Λ. Define
A∞

t =
∑∞

n=1 r1(Tn ≤ t < Tn + τ onn ), r > 0. Then the following theorem holds.

Theorem 4 If Eτ onn < ∞, and λN → Λ as N → ∞, then

AN
t

d
⇒ A∞

t as N → ∞, (3.12)

where
d
⇒ symbolizes convergence in distribution.

Proof: It is enough to prove that the beginnings of the On periods in the process AN
t converge

to a Poisson process with rate Λ. This follows from a classical result on multiplexing a large
number of renewal processes [COS54, CIN72]. 3

Lemma 1 The transient probability of the arrival process A∞
t being silent is given by

P[A∞
t = 0] = e−Λ

∫ t

0
P[τon>u]du. (3.13)

Furthermore, if Eτ on < ∞, then limt→∞ P[A∞
t = 0] = e−ΛEτon.

Proof: Follows from Theorem 2.2 in [COH74]. 3

Remark: Observe that A∞
t represents the number of customers in service in an M/G/∞

queue in which the customer service requirement has the same distribution as τ on and the
arrival rate is Λ. (For recent asymptotic results on M/G/∞ processes see [PAM97].)

Note that Theorem 3 implies that

lim
N→∞

λN→Λ

lim
t→∞

P[IN,on > t]

P[τ on > t]
= eΛτ

on

. (3.14)

However, this does not necessarily imply that we can interchange the limit and derive the
asymptotics of the activity period I∞,on in the A∞

t process. The following result gives
the asymptotic characterization of I∞,on and indeed shows that the limits in (3.14) can be
interchanged.

Theorem 5 The asymptotics of the distribution of I∞,on and its integrated tail are related
as follows:

(i) If F1 ∈ S, then

∫ ∞

t

P[I∞,on > u]du ∼ eΛEτ
on

∫ ∞

t

P[τ on > u]du as t → ∞.

(ii) If in addition F ∈ Sd, then

P[I∞,on > t] ∼ eΛEτ
on

P[τ on > t] as t → ∞.
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Remark: For the case of τ on being regularly varying P[τ on > t] = l(t)/tα, 1 < α < 2, this
result was obtained in [BOX96] where Karamata’s Tauberian/Abelian theorems were used
to asymptotically relate I∞,on and τ on.
Proof: Similarly as before, we define a transient probability distribution function

Ftr,∞(t)
def
=

P[A∞
t > 0]

1− e−ΛEτon
.

Observe that this is a proper probability distribution function, i.e., it is monotonically in-
creasing from Ftr,∞(0) = 0 to limt→∞ Ftr,∞(t) = 1. Next, by using Lemma 1 we derive

F̄tr,∞(t) = 1−
1− e−Λ

∫ t

0
P[τon>u]du

1− e−ΛEτon

=
e−Λ

∫ t

0
P[τon>u]du

(

1− e−Λ
∫
∞

t
P[τon>u]du

)

1− e−ΛEτon

∼
Λe−ΛEτon

1− e−ΛEτon

∫ ∞

t

P[τ on > u]du (3.15)

as t → ∞. Now, the Laplace transform of Ftr,∞ for any s ∈ R
+ is given by

F̃tr,∞(s) =

∫ ∞

0

e−stdFtr,∞(t)

= s

∫ ∞

0

e−stFtr,∞(t)dt

=
s

1− e−ΛEτon
E

∫ ∞

0

e−st1(A∞
t > 0)dt

=
s

1− e−ΛEτon
E

∞
∑

n=0

∫

∑n+1

i=0
(I∞,on

i +I∞,off
i )

I∞,off
n+1

+
∑n

i=0
(I∞,on

i +I∞,off
i )

e−stdt

=
s

1− e−ΛEτon
E

∞
∑

n=0

e−s(I∞,off
n+1

+
∑n

i=0
(I∞,on

i +I∞,off
i )) (1− e−sI∞,on

n+1 )

s

=
Λ

1− e−ΛEτon

(1− Ee−sI∞,on

)

s+ Λ− ΛEe−sI∞,on .

By solving the last equation in Ee−sI∞,on

and putting γ = 1− e−ΛEτon(< 1), we obtain

Ee−sI∞,on

= 1−
sΛ−1γF̃tr,∞(s)

1− γF̃tr,∞(s)
,

or equivalently
1− Ee−sI∞,on

s
=

Λ−1γF̃tr,∞(s)

1− γF̃tr,∞(s)
.
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Observing that 1−Ee−sI∞,on

s
is the Laplace-Stieltjes transform of

∫ t

0
P[I∞,on > u]du we arrive

at

∫ t

0

P[I∞,on > u]du = Λ−1
∞
∑

n=1

γn (Ftr,,∞)∗n (t), (3.16)

which in combination with (3.15) and the same arguments as in the proof of Theorem 3
yields the conclusion (i) of this theorem.

The proof of (ii) can be obtained in a similar manner by first deriving the asymptotic
behavior of ftr(t) and combining it with the derivative of (3.16); we omit the details. 3

3.2 Total Server Overflow During the Activity Period

Let Bn, n ≥ 1, be a sequence of random variables representing the total amount of fluid that
is brought to the system during the nth activity period, i.e., Bn =

∫ ten
tbn

A∞
t dt, where tbn, t

e
n,

represent the beginning and end of the nth activity period, respectively. Further, define

Dc,n
def
= Bn − cIonn , 0 < c ≤ r; note that Dn ≡ Dc,n is a non-negative random variable. If we

imagine that A∞
t represents the rate at which the fluid is arriving to a fluid queue, and that

c is the constant rate at which the queue drains, then Dn represents the queue increment
during the nth activity period. In order to derive the queueing asymptotics, we first have to
understand the asymptotic behavior of Dn. Unfortunately, this is a much more difficult task
than the investigation of the asymptotic behavior of the activity period that we have done
so far. For that reason we are forced to work under much more restrictive assumptions with
distribution functions of regular variation. The method of proof for the following result will
be through Karamata’s Tauberian/Abelian theorems.

Theorem 6 Consider an M/G/∞ arrival process with On periods being regularly varying
P[τ on > x] = l(x)/xα, α > 1, where α is noninteger. If 0 < c ≤ r, then

P[Dc,n > x] ∼ eΛEτ
on

P

[

τ on >
x

r + rΛEτ on − c

]

as x → ∞. (3.17)

Proof: Given in Appendix B. 3

Next, consider a stationary version of the arrival process A∞,s
t =

∑

−∞<n<∞ r1(Tn ≤ t <
Tn + τ onn ), where Tn is a stationary Poisson process with rate Λ. Given that at time t = 0,
the arrival process is active (At > 0), denote with Dc(0) the total queue increment since the

beginning of the last activity period until time zero, i.e., Dc(0) =
∫ 0

tb
0

(A∞
t − c)dt, 0 < c ≤ r,

where tb0 represents the beginning of the activity period that is still active at t = 0.
Now, by Theorem 4.3, pp. 64, [ASM87], it follows that the process {Tn + τ onn ,−∞ <

n < ∞} is also a stationary Poisson process with the same rate Λ. Therefore, the process

A∞,s
t is reversible. This implies that Dc(0) is equal in distribution to

∫ te
0

0
(A∞

t − c)dt, where te0
represents end of the activity period that is active at t = 0. For simplicity reasons, we will
refer to both of these variables with Dc(0).
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Conjecture 1 Consider an M/G/∞ arrival process with On periods being regularly varying
P[τ on > x] = l(x)/xα, α > 1, where α is noninteger. If 0 < c ≤ r, then

P[Dc(0) > x] ∼
ΛeΛEτ

on

eΛEτon − 1

∫ ∞

x/(r+rΛEτon−c)

P [τ on > u] du as x → ∞. (3.18)

Heuristics: We believe that the proof of this theorem can be done in the same spirit as the
proof of Theorem 6. Unfortunately, this seems to be very technical and for that reason we
do not attempt to provide a rigorous proof. Instead we give the following heuristics. From
Theorem 6 it follows that

P[Dc > x] ∼ P[Ion(r + rΛEτ on − c) > x] as x → ∞. (3.19)

Based on this, one can expect that

P[Dc(0) > x] ∼ P[Ion(0)(r + rΛEτ on − c) > x] as x → ∞,

where Ion(0) is the residual activity time at time zero, which satisfies

P[Ion(0) > x] = 1/EIon
∫ ∞

x

P[Ion > u]du

∼ 1/EIoneΛEτ
∫ ∞

x

P[τ on > u]du as x → ∞, (3.20)

where (3.20) follows from Theorem 5. Finally, (3.18) follows by combining (3.20), (3.19),
and EIon = (eΛEτ

on

− 1)/Λ. 3

4. Queueing Analysis

We begin this section with a classical result on subexponential asymptotics of a GI/GI/1
queue. The result was obtained by Pakes 1975 (see also Veraverbeke for the random walk
approach to this problem). For extensions of this result to Markov-modulated M/G/1 queues
see [AHK94], and to Markov-modulated G/G/1 queues (equivalently random walks) see
[JLA95g]. Further exstension of these results to more general arrival processes was obtained
in [ASC97].

Let Xn, n ≥ 0, be a sequence of i.i.d. random variables that are driving a queueing
process (Lindley’s recursion)

Qn+1 = (Qn +Xn)
+, n ≥ 0, (4.1)

where q+ = max(0, q). According to the classical result of Loynes’ [LOY62] under the
stability condition EXn < 0 this recursion admits a unique stationary solution, and for
all initial conditions P[Qn ≤ x] converges to the stationary distribution P[Q ≤ x]. For
the rest of this paper we will assume that all queueing systems under consideration are in
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their stationary regimes. Let G and G1 represent the distribution and its integrated tail
distribution for Xn, respectively.

Theorem 7 (Pakes) If G ∈ L, G1 ∈ S (or G ∈ Sd), and EXn < 0, then

P[Qn > x] ∼
1

−EXn

∫ ∞

x

P[Xn > u]du as t → ∞.

4.1 Fluid Queue: Preliminaries

The physical interpretation for a fluid queue is that at any moment of time t, fluid is arriving
to the system with rate at and is leaving the system with rate ct. We term at and ct to be
the arrival and the service process, respectively. Then, the evolution of the amount of fluid
Qt (also called queue length) evolves according to

dQt = (at − ct)dt if Qt > 0, or at > ct, (4.2)

and dQt = 0, otherwise. It is not very difficult to see that, starting from Q0 = 0, the solution
Qt, t ≥ 0, to (4.2) is given by

Qt = sup
0≤u≤t

∫ t

u

(av − cv)dv. (4.3)

And if at and ct are stationary, Qt is equal in distribution to

P[Qt ≤ x] = P[ sup
0≤u≤t

Wu ≤ x],

where Wt
def
=
∫ 0

−t
(au − cu)du, t ≥ 0. Now, whenever the stability condition Eat < Ect is

satisfied (by Birkhoff’s Strong Law of Large Numbers), P[Qt ≤ x] converges to a proper
probability distribution, i.e.,

P[Q ≤ x]
def
= lim

t→∞
P[Qt ≤ x] = P[ sup

0≤u<∞

Wu ≤ x].

Further, when the difference process xt
def
= at− ct is driven by a stationary and ergodic point

process {Tn,−∞ < n < ∞}, i.e.,

xt = xTn
, t ∈ [Tn, Tn+1),

then the fluid queue process evolves as

Qt = (QTn− + (t− Tn)xTn
)+, t ∈ [Tn, Tn+1), (4.4)

where q+ = max(q, 0). From the recursion above, it is clear that the process Qt is essentially
the same as the G/G/1 workload process. Hence, by the fundamental stability theorem of
Loynes (see Chapter 2 in [BAB94]) there exists a unique stationary process {Qs

t ,−∞ < t <
∞} (P[Qs

t ≤ x] = P[Q ≤ x]) that satisfies (4.4) (or equivalently (4.2)). In the rest of the
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paper, whenever we refer to Qt, we will actually mean Qs
t . (The existence and uniqueness

of this stationary solution will be important for establishing the relation between the Palm
queue probabilities and the time average probabilities P[Qt ≤ x].)

4.2 Fluid Queue with a Single On-Off Process

Consider a fluid queue with capacity c and an On-Off arrival process with On arrival rate r.
In this subsection we assume that Off periods are also general (not necessarily exponential).
(A general storage model in a two state random environment was investigated in [KEW92].)
Then, if we observe the queue at the beginning of On periods, the queue length QP

n evolves
as follows (P stands for Palm probability [BAB94]).

QP
n+1 = (QP

n + (r − c)τ onn − cτ offn )+, n ≥ 0. (4.5)

Before we present our result let us state the following well known lemma on long-tailed
distributions.

Lemma 2 Let X and Y be two independent random variables distributed as F and G,
respectively. If X ∈ L, EX,EY < ∞, P[Y ≥ 0] = 1, then

(i) F̄ (t) = o(F̄1(t)) as t → ∞.

(ii) P[X − Y > t] ∼ P[X > t] = F̄ (t) as t → ∞.

Proof: Follows easily from the definition of L. 3

Recall that F and F1 denote the distribution and the integrated tail distribution of τ on.

Theorem 8 If r > c, (r − c)Eτon < cEτoff , F ∈ L, and F1 ∈ S (or F ∈ Sd), then

P[QP
n > x] ∼

r − c

cEτoff − (r − c)Eτon

∫ ∞

x/(r−c)

P[τ on > u]du as x → ∞. (4.6)

Proof: If we define Xn = (r−c)τ onn −cτ offn , then the theorem can be reduced to Theorem 7.
To finish that, by Lemma 2 (ii), P[Xn > x] ∼ P[τ onn (r − c) > x] as x → ∞; also, since
long-tailed and subexponential distributions are closed under the tail equivalence (Lemma 5
(ii) (A)), it follows that Xn is long-tailed, with its integrated tail distribution being subex-
ponential. Therefore, Theorem 7 applies. Finally, by using P[Xn > x] ∼ P[τ onn (r − c) > x]
in Theorem 7 we obtain (4.6). This finishes the proof. 3

4.2.1 Time Averages

Here, we will compute queue time averages based on the queue Palm probabilities computed
in Theorem 8. For this we need a stationary version ast of the On-Off arrival process at.
Let T on

n ,−∞ < n < ∞, be a stationary point process that represents the beginnings of the
On-Off periods, with a convention that T on

0 < 0 ≤ T on
1 . Then, according to [RES96], the

random variable T on
0 can be represented as −T on

0 = B(τ off(0) + τ on0 ) + (1 − B)τ on(0), where the

random variables B, τ on(0), τ
off
(0) are independent of {τ onn , τ offn , n ≤ −1}, τ off0 , B is a Bernoulli
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random variable with P[B = 0] = 1 − P[B = 1] = Eτ on/(Eτ on + Eτ off ), and τ on(0), τ
off
(0) , are

distributed as integrated tail distributions of τ on, τ off , respectively. Furthermore, the net
increment of the load that comes to the queue in the interval [T0, 0] is given by the following
equation

∫ 0

T on
0

(ast − c)dt = B[(r − c)τ on0 − cτ off(0) ] + (1− B)(r − c)τ on(0) (4.7)

Theorem 9 If r > c, (r − c)Eτon < cEτoff , F ∈ L and F1 ∈ S (or F ∈ Sd), then

P[Qt > x] ∼ P[QP
n > x] +

1

Eτ off + Eτ on

∫ ∞

x/(r−c)

P[τ on > u]du (4.8)

∼ K

∫ ∞

x/(r−c)

P[τ on > u]du as x → ∞, (4.9)

where

K =
r − c

cEτoff − (r − c)Eτon
+

1

Eτ off + Eτ on
. (4.10)

Remarks: (i) This theorem improves on known results in [RES96, CHW95] that were
obtained under the assumption of τ on being regularly varying; (ii) The following proof can
be carried out to establish the relationship between the Palm and time averages in much
more general settings like semi-Markov fluid queues.
Proof: Let {Qt,−∞ < t < ∞} be a unique stationary solution to (4.5). Then, by using
equation (4.7), and the independence of B of QT0

, τ off(0) , τ
on
(0), τ

off
0 , we obtain

P[Q0 > x] = P[Q0 > x,B = 1] + P[Q0 > x,B = 0]

= P[QT0
+ τ on0 (r − c)− cτ off(0) > x,B = 1] + P[QT0

+ (r − c)τ on(0) > x,B = 0]

=
Eτ off

Eτ on + Eτ off
P[QT0

+ τ on0 (r − c)− cτ off(0) > x] (4.11)

+
Eτ on

Eτ on + Eτ off
P[QT0

+ (r − c)τ on(0) > x].

(Note that QP
0 ≡ QT0

.) Since QT0
and τ on(0) are independent, subexponential, and have

asymptotically proportional (equivalent) tails, by applying Lemma 5 (ii) (A) it follows that

P[QT0
+ (r − c)τ on(0) > x] ∼ P[QT0

> x] + P[(r − c)τ on(0) > x] as x → ∞.
(4.12)

The independence of τ on0 and τ off(0) , and τ on0 ∈ L, by Lemma 2 (ii) gives P[τ on0 (r − c) −

cτ off(0) > x] ∼ P[τ on0 (r − c) > x] = o(P[QT0
> x]) as x → ∞. Subsequently, by applying

Lemma 5 (i) (A)

P[QT0
+ τ on0 (r − c)− cτ off(0) > x] ∼ P[QT0

> x] as x → ∞. (4.13)
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Finally, by replacing asymptotic relations (4.12), (4.13), in (4.11), we obtain (4.8); combina-
tion of (4.6) and (4.8) gives (4.9). This completes the proof. 3

4.3 Multiplexing a Long-Tailed Process with Exponential Processes

In this section we consider multiplexing one long-tailed On-Off process with exponential
processes (see Definition 4 below) in a fluid queue. The important conclusion to be drawn
is that this queueing system is asymptotically interchangeable with a queueing system in
which the On-Off process is arriving alone and the exponential processes are replaced by
their mean values. To reach this conclusion we need the following definition.

Definition 3 A distribution function F is intermediate regular varying F ∈ IR if

lim
δ↓1

lim inf
t→∞

F̄ (δt)

F̄ (t)
= 1.

Remark: For recent results on distributions of intermediate regular variation we refer the
reader to [CLI94]. Some basic properties of IR are: IR ⊂ S; R ⊂ IR. Also, it is not
very difficult to see that IR ⊂ Sd. Therefore, all of the results that we have obtained
up to now apply for IR. In addition, directly from the definition it can be shown that
F ∈ IR,

∫∞

0
F̄ (t)dt < ∞, ⇒ F1 ∈ IR.

Under the general large deviation Gärtner-Ellis conditions (see [WES95]) on the arrival
process, it can be proved that the queue length distribution is exponentially bounded. To
avoid stating Gärtner-Ellis conditions, we will define an arrival process et to be exponential, if
whenever this process is fed into a constant server fluid queue, the queue length distribution
is exponentially bounded.

Definition 4 We say that a stationary and ergodic arrival process et is exponential if for
any server capacity c > Eet there exists K ≡ K(c) and δ ≡ δ(c) > 0 such that

P[supt≥0

∫ 0

−t
(eu − c)du > x] ≤ Ke−δx.

Remark: The main examples when the conditions of this definition are satisfied (i.e.
Gartnër-Ellis conditions hold) are finite state space Markov chains or processes. Also, in
terms of the On-Off processes the conditions will hold whenever the distribution of On pe-
riods is exponentially bounded and Off periods have a finite mean.

Recall that F and F1 represent the distribution and the integrated tail distribution of an
On period, respectively.

Theorem 10 Consider a single server queue with a capacity c and two independent arrival
streams et and at. Assume that et is an exponential process (as in Definition 4) and at is
an On-Off process with rate r, F ∈ IR, and generally distributed Off periods with a finite

mean. If E(et+at) < c, r > c′
def
= c−Eet, then the queue asymptotics of this queueing system

is equal to the queue asymptotics in which only the On-Off process arrives and the server
capacity is replaced by c′, i.e., it is given by equation (4.9) in which c is replaced by c′.
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Remarks: (i) In Boxma (1996) [BOX96, BOX97], a precise asymptotics of the embeded
queue distribution was obtained for multiplexing On-Off sources one of which had regularly
varying On periods while the others had exponentially distributed On periods. A similar
setting with intermediately varying On periods was investigated in [RSS97]. However, in both
papers the equivalence relation of the original system to the system in which the exponential
process is replaced by its mean has not been observed. (ii) The assumption of et being

exponential can be weakened to P[supt≥0

∫ 0

−t
(eu − c)du > x] = o(F1(x)), for all c > Eet,

without any changes in the proof.
Proof: Upper bound. For any ǫ > 0, we can make the following decomposition

Wt =

∫ 0

−t

(eu + au − c)du =

∫ 0

−t

(eu − Ee0 − ǫ)du+

∫ 0

−t

(au − (c− Ee0 − ǫ))du

def
= W e

t +W s
t .

Call cǫ
def
= c−Ee0−ǫ. Observe that for all sufficiently small ǫ > 0, such that E(et+at)+ǫ < c

and c − Eet − ǫ > 0, P[supt≥0W
s
t ≤ x] represents the queue length distribution in a stable

On-Off queue with arrival process at, and service capacity cǫ. By using Theorem 9 this
implies that P[supt≥0 W

s
t ≤ x] ∈ IR. Further,

P[Qt > x] = P[sup
t≥0

(W e
t +W s

t ) > x]

≤ P[sup
t≥0

W e
t + sup

t≥0
W s

t > x]

∼ P[sup
t≥0

W s
t > x] as x → ∞, (4.14)

where (4.14) follows from Lemma 5 (i) (A), since supt≥0 W
e
t and supt≥0W

s
t are two indepen-

dent random variables, with P[supt≥0W
e
t > x] = o(P[supt≥0 W

s
t > x]) as x → ∞. Now,

lim
x→∞

P[supt≥0 W
s
t > x]

∫∞

x/(r−cǫ)
P[τ on > u]du

= Kǫ, (4.15)

where Kǫ is given by equation (4.10) in Theorem 9, with cǫ in place of c. Subsequently, this
leads to

lim sup
x→∞

P[Qt > x]
∫∞

x/(r−c′)
P[τ on > u]du

≤ Kǫ lim sup
x→∞

∫∞

x/(r−cǫ)
P[τ on > u]du

∫∞

x/(r−c′)
P[τ on > u]du

. (4.16)

Finally, if we pass ǫ → 0 in (4.16), we obtain

lim sup
x→∞

P[Qt > x]
∫∞

x/(r−c′)
P[τ on > u]du

≤ K ′, (4.17)

where K ′, similarly as Kǫ, is given by equation (4.10) in Theorem 9, with c′ in place of c.
This concludes the upper bound proof.
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Lower bound. For the lower bound we consider a different decomposition of Wt, i.e., we
redefine W e

t and W s
t as follows (ǫ > 0)

Wt =

∫ 0

−t

(eu + au − c)du = −

∫ 0

−t

(Ee0 − ǫ− eu)du+

∫ 0

−t

(au − (c− Ee0 + ǫ))du

def
= −W e

t +W s
t .

Also, redefine cǫ
def
= c−Ee0+ ǫ. Similarly, as in the upper bound case, for ǫ < Ee0+Ea0 − c,

P[supt≥0W
s
t ≤ x] represents a queue length distribution in a stable On-Off queue with arrival

process at, and service capacity cǫ. Hence, P[supt≥0 W
s
t ≤ x] ∈ IR. Further,

P[Qt > x] = P[sup
t≥0

(−W e
t +W s

t ) > x]

≥ P[inf
t≥0

−W e
t + sup

t≥0
W s

t > x] (4.18)

= P[− sup
t≥0

W e
t + sup

t≥0
W s

t > x]

∼ P[sup
t≥0

W s
t > x] as x → ∞, (4.19)

where in (4.18) we use that for any two functions f, g : R → R, sup(f + g) ≥ inf f + sup g;
asymptotics in (4.19) follows from the independence of at and et, P[supt≥0 W

s
t ≤ x] ∈ L,

P[supt≥0W
e
t < ∞] = 1, and Lemma 2 (ii). Subsequently, (4.19) leads to

lim inf
x→∞

P[Qt > x]
∫∞

x/(r−c′)
P[τ on > u]du

≥ Kǫ lim inf
x→∞

∫∞

x/(r−cǫ)
P[τ on > u]du

∫∞

x/(r−c′)
P[τ on > u]du

, (4.20)

where again Kǫ is computed from Theorem 9 with cǫ in place of c. Consequently, using the
same arguments as in (4.17) we arrive at

lim inf
x→∞

P[Qt > x]
∫∞

x/(r−c′)
P[τ on > u]du

≥ K ′, (4.21)

which together with (4.17) concludes the proof. 3

4.4 Subexponential M/G/∞ Arrival Process

In the next theorem we obtain a tight lower bound for the fluid queue asymptotics with
M/G/∞ arrivals. For this fluid queue we denote its queue content process as Q∞

t .

4.4.1 Lower Bound

Theorem 11 Let ρ
def
= EA∞,s

t = ΛrEτ on < c. If r + ρ > c, and τ on ∈ IR, then

lim inf
x→∞

P[Q∞
t > x]

∫∞

x/(r+ρ−c)
P[τ on > u]du

≥
Λr

c− ρ
.
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Proof: Let A∞,y = {A∞,y
t , t ≥ 0}, A

∞,y
= {A

∞,y

t , t ≥ 0}, y > 0, be two independent
M/G/∞ type processes with Poisson arrival rate, and On distributions, respectively given
as Λy = P[τ on ≤ y]Λ, Λ

y
= P[τ on > y]Λ, Fy(x) = P[τ on ≤ x]/P[τ on ≤ y], 0 ≤ x ≤ y,

Fy(x) = P[y < τ on ≤ x]/P[τ on > y], x > y; all three processes are assumed to have the same
parameter r. Now, we claim that

A∞ d
= A∞,y + A

∞,y
, (4.22)

where
d
= stands for equality in distribution. Observe that, for a fixed parameter r, any

M/G/∞ process is uniquely defined with Possion arrival times {Tn}, and the lengths of On
periods {τ onn }; likewise, the pair {Tn}, {τ

on
n } uniquely defines a compound Poisson process

(see [CIN75], pp. 90), that is a piecewise constant process with Poisson jump times {Tn},
and jump sizes {τ onn }. Hence, proving (4.22) is equivalent to

Z
d
= Zy + Z

y
, (4.23)

where Z,Zy, Z
y
, are the compound Poisson processes corresponding to A∞, A∞,y, A

∞,y
, re-

spectively. Since Z,Zy, Z
y
, are processes with stationary independent increments, (4.23) is

equivalent to

Zt
d
= Zy

t + Z
y

t , t ≥ 0. (4.24)

Evidently (4.24) is implied by

Ee−s(Zy
t+Z

y

t ) = Ee−sZy
tEe−sZ

y

t

= exp

(

−tΛy

∫ ∞

0

(1− e−su)dFy(u)

)

exp

(

−tΛ
y
∫ ∞

0

(1− e−su)dFy(u)

)

(4.25)

= exp

(

−tΛ

∫ y

0

(1− e−su)dF (u)

)

exp

(

−tΛ

∫ ∞

y

(1− e−su)dF (u)

)

= exp

(

−tΛ

∫ ∞

0

(1− e−su)dF (u)

)

= Ee−sZt ; (4.26)

equalities (4.25), (4.26), are well known expressions for compound Poisson processes (see
[CIN75], pp. 94). This proves (4.22).

Note that process A∞,y
t has bounded On periods, and in conclusion, it is an exponential

process (i.e., it satisfies Definition 4). Also, A
∞,y

t ≥ r1(A
∞,y

t > 0). Therefore, P[Q∞
t > x] is

stochastically larger than a queueing process Q∞

t
obtained by feeding A∞,y

t + r1(A
∞,y

t > 0)

into it. Let Qay

t be a queueing process with a subexponential On-Off arrival process ayt
def
=

r1(A
∞,y

t > 0), and a server capacity cy = c − EA∞,y
t = c − rP[τ on ≤ y]ΛEτ on. Here, by

Theorem 10, we obtain

P[Q∞
t > x] ≥ P[Q∞

t
> x] ∼ P[Qay

t > x] as x → ∞. (4.27)
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In addition, ayt has Off period Ioff,y exponentially distributed with parameter Λ
y
, On period

Ion,y with mean EIon,y = 1
Λ
y (eΛ

y
Eτon,y

− 1) = 1
Λ
y (eΛEτ

on1(τon>y) − 1), and asymptotics (by
Theorem 5)

P[Ion,y > t] ∼ eΛ
y
Eτon,y

P[τ on,y > t] as t → ∞ (4.28)

=
eΛEτ

on1(τon>y)

P[τ on > y]
P[τ on > t].

Hence, Theorem 9 and (4.28) lead to

P[Qay

t > x] ∼ Ky

∫ ∞

x/(r−cy)

P[τ on > u]du as x → ∞, (4.29)

where

Ky
def
=

(

r − cy
cyEIoff,y − (r − cy)EIon,y

+
1

EIoff,y + EIon,y

)

eΛEτ
on1(τon>y)

P[τ on > y]
.

Combining (4.27) and (4.29) produces

lim inf
x→∞

P[Q∞
t > x]

∫∞

x/(r−c′)
P[τ on > u]du

≥ Ky lim inf
x→∞

∫∞

x/(r−cy)
P[τ on > u]du

∫∞

x/(r−c′)
P[τ on > u]du

, (4.30)

where c′
def
= c− ρ. Here, observe that Ky →

Λr
c′

as y → ∞, and, by assumption F ∈ IR,

lim
y→∞

lim inf
x→∞

∫∞

x/(r−cy)
P[τ on > u]du

∫∞

x/(r−c′)
P[τ on > u]du

= 1.

Finally, if we take the limit with respect to y in (4.30), we obtain the statement of the
theorem. 3

4.4.2 Precise Queue Asymptotics

Let QP,∞
n be the queue size observed at the beginning of the nth activity period of the

M/G/∞ arrival process.

Theorem 12 Let ρ = EAs,∞
t = ΛrEτ on < c. If c ≤ r, and τ on is regularly varying with

noninteger exponent α > 1, then

lim
x→∞

P[QP,∞
t > x]

∫∞

x/(ρ+r−c)
P[τ on > u]du

= Λ

(

r

c− ρ
− 1

)

.

Proof: Proof follows directly from Theorem 7 and Theorem 6, by taking Xn
def
= Dc,n −

cIoffn , observing that (by Lemma 2) P[Xn > x] ∼ P[Dc,n > x] as x → ∞, and EXn =
eΛEτ

on

(ΛrEτ on − c)/Λ. 3
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Theorem 13 Let ρ = EAs,∞
t = ΛrEτ on < c. If Conjecture 1 holds, c ≤ r, and τ on is

regularly varying with noninteger exponent α > 1, then

lim
x→∞

P[Q∞
t > x]

∫∞

x/(ρ+r−c)
P[τ on > u]du

= Λ
r

c− ρ
.

Proof: This theorem follows from Theorem 13, Conjecture 1, and exactly the same argu-
ments as in the proof of Theorem 9. We omit the details. 3

Remark: The asymptotic result in this theorem is the same as the lower bound obtained
in Theorem 11.

4.5 Finite Number of Subexponential On-Off Processes

For the finite number of long-tailed On-Off processes we can easily obtain the upper bound
given by Theorem 18, Appendix C. Similarly, utilization of AN

t ≥ r1(AN
t > 0), Theorem

3, and Theorem 9, can easily produce a lower bound. Unfortunately, these bounds are
very weak. For that reason, we resort back to Theorems 11, 12, and 13, and suggest an
approximation for the finite number of processes.

4.5.1 M/G/∞ Approximation: Simulation Results

Based on Theorems 11, 12, and 13, we suggest that the queueing probabilities obtained by
multiplexing N long-tailed On-Off processes ait, 1 ≤ i ≤ N , are approximated as

P[QN
t > x] ≈

ΛNr

cN

∫ ∞

x/(r−cN )

P[τ on > u]du, (4.31)

where cN
def
= c−NEait, and ΛN

def
= NEait/(rEτ

on). We term this approximation an M/G/∞
approximation. This approximation is to be used when the queue is stable and r + (N −
1)Eait > c is satisfied.

For simulation purposes we consider a discrete time “fluid” queue. Correspondingly, we
replace exponential Off periods, with geometrically distributed random variables P[τ off =
t] = p(1 − p)t−1, t = 1, 2, 3, . . . . For On periods we consider the Pareto family P[τ on ≥ t] =
1/tα, t = 1, 2, . . . , α > 0. Here, for the discrete Pareto case we use

P[QN
t = x] ≈

ΛNr

cN
(r − cN )

α−1x−α, (4.32)

where cN , and ΛN are as defined earlier.
The efficacy of the approximation (4.32) is tested in the following simulation experiments.

For all experiments we fixed p = 0.05. In each experiment, the number of simulated On-Off
intervals was at least 108, or equivalently, the length of the simulated aggregated process was
≈ 2× 109. This was necessary to ensure the desired precision of the simulation outcomes.

Experiment 1 Choose α = 2, r = 1, c = 1. This gives Eτ on = 1.645, and Eait = 0.0759.
Then, for N = 8, 10, 12, processes, the approximations are given by β/x2, β = 0.573,
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1.46, 5.73, respectively. Comparisons between the simulation results and these approxima-
tions are given in Figure 1.

buffer size x

Lo
g(

10
,P

r[
Q

=
x]

)
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-6
-5

-4
-3

-2
-1

0

Figure 1: Illustration for Example 1.

Experiment 2 Choose α = 2.5, r = 1, c = 1. This gives Eτ on = 1.341, and Eait = 0.0628.
Then, for N = 10, 12, 14, processes, the approximations are given by β/x2.5, β = 0.63,
1.50, 4.51, respectively. Excellent agreement between the simulation results and these ap-
proximations is displayed in Figure 2.

Experiment 3 Choose α = 3, r = 2, c = 3. This gives Eτ on = 1.202, and Eait = 0.113.
Then, for N = 20, 25, processes, the approximations are given by β/x3, β = 4.14, 48.04,
respectively. Again, the desirable closeness between the simulation results and the approxi-
mations is represented in Figure 3. It is interesting to observe that in this case the peak rate
of each individual process is smaller than the capacity of the server.

Notice that in the last experiment (3), for the case of N = 20 processes, the probabilities
are very small (≈ 10−8). Hence, in order to achieve reasonable simulation accuracy, we had
to choose a very large number (109) of simulated On-Off intervals. This means that the
aggregate process was approximately 2×1010 samples long. The simulation of this case took
77 hours!!! on a modern (200 MIPS) IBM workstation. On the other hand, it is needless to
say that the evaluation of (4.32), or (4.31), only takes a negligible amount of time!
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Figure 2: Illustration for Example 2.

5. Conclusion

In this paper we established a precise asymptotic characterization of the activity period of
an arrival process obtained by multiplexing On-Off processes with exponential Off periods
and subexponential On periods. This characterization was done both for a finite number of
processes as well as for the limiting M/G/∞ case.

For a simple subexponential On-Off fluid flow queue we obtained a precise asymptotic
relation between the Palm queue distribution and the time average queue distribution. Fur-
thermore, exponential processes, when multiplexed with a subexponential On-Off process,
were shown to contribute to the large buffer asymptotics only through their mean value.

In the limiting M/G/∞ case (e.g., large number of subexponential On-Off processes)
with regularly varying On periods (with noninteger exponents) we obtained a precise queue
asymptotics observed at the beginning of the arrival process activity periods. The asymp-
totic (time average) queue lower bound was derived under more general assumptions of
intermediately varying On periods.

Based on these asymptotic results, a computationally efficient approximation was sug-
gested for the large buffer probabilities of finitely many subexponential On-Off processes.
The accuracy of this approximation was verified using extensive simulation experiments.

The results in this paper bring us closer to understanding the subexponential queueing
asymptotics of multiplexed long-tailed processes. The precision and low computational com-
plexity of the M/G/∞ approximation has a practical impact on improving the efficacy of
ATM admission controllers.
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Figure 3: Illustration for Example 3.
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6. Appendix

A: Basic Results on Subexponential and Long-Tailed Distributions

In what follows we will state a few important results from the literature on subexponential
distributions. The general relation between S and L is the following.

Lemma 3 (Athreya and Ney, [ATN72]) S ⊂ L.

Lemma 4 If F ∈ L then (1− F (x))eαx → ∞ as x → ∞, for all α > 0.

Note: Lemma 4 clearly shows that for long-tailed distributions Cramér type conditions
are not satisfied.

The proof of the following result can be found in Embrechts, Goldie and Veraverbeke
[EGV79].

Lemma 5 Let F ∈ S. Then,

(i) If G is a probability distribution such that Ḡ(x) = o(F̄ (x)) as x → ∞, then F ∗G(x) ∼
F̄ (x) as x → ∞.

(ii) If limx→∞ Ḡ(x)/F̄ (x) = c ∈ (0,∞), where G is a distribution function on [0,∞), then
G ∈ S, and F ∗G(x) ∼ F̄ (x) + Ḡ(x) as x → ∞.

The next result is due to Athreya and Ney (see [ATN72], pp. 147-150).

Lemma 6 If F ∈ S, then

(i) F ∗n(x)/F̄ (x) → n as x → ∞, for all n ∈ N.

(ii) For each ǫ > 0 there exists a constant Cǫ(< ∞) such that F ∗n(x) ≤ Cǫ(1+ ǫ)nF̄ (x) for
all x and n.

This lemma directly gives the asymptotics of a renewal measure with the following
Pollazcek-Khintchine representation

G(x)
def
=

∞
∑

n=0

γnF ∗n(x). (6.1)

Using dominated convergence and the previous lemma it is easy to prove the following
very useful theorem.

Theorem 14 If F ∈ S, and −1 < γ < 1, then

lim
x→∞

Ḡ(x)

F̄ (x)
=

γ

(1− γ)2
.
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Proof: Follows easily from Lemma 6 and dominated convergence (see [AHK94]).
Sometimes when F is absolutely continuous, i.e., F has a density function f , it is of

interest to calculate the density g of G. If we take a derivative in (6.1) with respect to x we
obtain

g(x)
def
=

∞
∑

n=0

γnf⊗n(x), (6.2)

where f⊗n(x) is the density of F n∗; f⊗2(x) =
∫ x

0
f(x−u)f(u)du, and f⊗(n+1)(x) =

∫ x

0
f⊗n(x−

u)f(u)du. The investigation of the asymptotics of g requires the investigation of the asymp-
totics of f⊗n(x). This has motivated the introduction of subexponential density functions in
[KLU89].

Definition 5 A function f : R+ → R+ such that f(x) > 0 on [A,∞) for some A ∈ R+

belongs to the class Sd if f is long-tailed, and

lim
x→∞

f⊗2(x)

f(x)
= 2d.

Then, equivalent results to Lemma 6, and Theorem 14 (in its most general form) were
obtained in Theorem 3.2, [KLU89]. For convenience we state here simplified versions of these
results.

Lemma 7 Let f ∈ Sd, and
∫∞

0
f(x)dx = 1. Then, both (i) and (ii) of Lemma 6 are true

with F̄ replaced by f and F ∗n(x) replaced by f⊗n.

Theorem 15 If f ∈ Sd, with
∫∞

0
f(x)dx = 1, and −1 < γ < 1, then

g(x) ∼
γ

(1− γ)2
f(x) as x → ∞.

An extensive treatment of subexponential distributions (and further references) can be
found in [CLI86, KLU88]. For a recent survey of the application of subexponential distribu-
tions in queueing theory the reader is referred to [ASM96].

B: Proof of Theorem 6

As we have already mentioned the proof of this result is based on Karamata’s Taube-
rian/Abelian theorem for distribution functions of regular variation. This theorem relates
the tail behavior of a distribution function to the asymptotic behavior of its Laplace trans-
form at the origin. For convenience we state the following result due to Bingham and Doney
[BID74] ([BGT87], pp. 333).

Let F be a distribution function on [0,∞), and let F̃ (s) be its Laplace-Stieltjes transform.
Denote bymn = EXn =

∫

[0,∞)
xndF (x), n = 0, 1, . . . . Whenmn < ∞, F̃ (s) may be expanded
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in a Taylor series as far as the sn term:

F̃ (s) =

n
∑

k=0

mk(−s)k/k! + o(sn) as s ↓ 0.

To compare the tail behavior of F with the behavior of F̃ at the origin, one needs to
eliminate the Taylor polynomial

∑n
k=0mk(−s)k/k!. This may be done by subtraction or

repeated differentiation, i.e., let

fn(s)
def
= (−1)n+1

{

F̃ (s)−
n
∑

k=0

mk(−s)k/k!

}

gn(s)
def
= dnfn(s)/ds

n = mn − (−1)nF̃ (n)(s), n ≥ 0,

where F̃ (n)(s) denotes the nth derivative of F̃ (s); in general for any function G we will use
G(n) to denote its nth derivative.

Theorem 16 Let l be a slowly varying function, n ∈ N0, and α = n + β, 0 < β < 1
(α-noninteger). Then, the following are equivalent

fn(s) ∼ sαl(1/s) as s ↓ 0, (6.3)

gn(s) ∼
Γ(α+ 1)

Γ(β + 1)
sβl(1/s) as s ↓ 0, (6.4)

(−1)n+1F̃ (n+1)(s) ∼
Γ(α+ 1)

Γ(β)
sβ−1l(1/s) as s ↓ 0, (6.5)

1− F (x) ∼
(−1)n

Γ(1− α)
x−αl(x) as x → ∞, (6.6)

where Γ stands for the gamma function.

Now, in order to determine the tail behavior of Dc,n, we will investigate asymptotics of
its LS transform at the origin. Note that without loss of generality we can set r = 1, since
Dc,r = rDc/r,1; Dc,r stands for Dc where the arrival process has parameter r. To simplify the
notation we use D ≡ Dc, τ ≡ τ on. Slight modification of Theorem 2.10, [COH74], reads as
follows.

Theorem 17 Let 0 ≤ c ≤ 1 (r = 1), Eτ < ∞. Then, for s > 0,

c− ΛEτF̃1(s)

c− ΛEDD̃1(s)
= 1− Λ

∫ ∞

0

E
{

e−s(τ−ct)1(τ ≥ t)
}

e−f(s,t)dt, (6.7)

where

f(s, t) = Λ{t(1− F̃ (s)) + E[τ exp(−sτ)] − E[(τ − t) exp(−sτ)1(τ ≥ t)]},
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F̃ (s) = Ee−sτ , and F̃1(s) = (1−Ee−sτ)/(sEτ), D̃1(s) = (1−Ee−sD)/(sED), are the LS trans-
forms of the integrated tail distributions of F and D, respectively; ED = (Eτ−c/Λ)eΛEτ+c/Λ.

Proof of Theorem 6: Let r = 1. In order to simplify the usage of Theorem 16, without loss
of generality we assume that 1−F (x) ∼ (−1)nx−αl(x)/Γ(1−α), α = n+β, n ∈ N, 0 < β < 1.
Let us denote the integral in (6.7) as

φ(s) =

∫ ∞

0

g(s, t)e−f(s,t)dt,

where g(s, t)
def
= E

{

e−s(τ−ct)1(τ ≥ t)
}

. Next, we want to find the nth derivative of φ(s) and
compare it with the nth derivative of the left-hand side of (6.7) as s ↓ 0. The main technical
difficulty in doing this is to prove the following two lemmas.

Lemma 8 For any ρ > ǫ > 0, there exist s0 > 0, t0 > 0, such that for all 0 < s < s0, t > t0,
0 ≤ k ≤ n,

(1− ǫ)ρktke−s(ρ+ǫ)t−ρ ≤ (−1)k
∂k

∂sk
e−f(s,t) ≤ (1 + ǫ)ρktke−s(ρ−ǫ)t−ρ. (6.8)

Proof: Given at the end of this section. 3

Lemma 8 is crucial in proving the following result which directly leads to the proof of
Theorem 6. Unfortunately, the proof of this lemma is very technical and, due to the space
limitations, we do not present it here.

Lemma 9 As s ↓ 0

φ(n)(s) ∼
dn

dsn

∫ ∞

0

E
{

e−s(τ−ct)1(τ ≥ t)
}

e−ρst−ρdt, (6.9)

where ρ = ΛEτ .

Proof: Given at the end of this section. 3

At this point we are ready to finish the proof of Theorem 6. By using Lemma 9 we derive

lim
s↓0

s1−β(l(1/s))−1φ(n)(s) = lim
s↓0

s1−β(l(1/s))−1e−ρ dn

dsn
Ee−sτ

∫ τ

0

e−(ρ−c)stdt

= lim
s↓0

s1−β(l(1/s))−1e−ρ dn

dsn
Ee−sτ e

−(ρ−c)sτ − 1

−s(ρ− c)

= lim
s↓0

s1−β(l(1/s))−1e−ρ dn

dsn
E
e−sτ − e−(ρ+1−c)sτ

s(ρ− c)

=
e−ρ

Eτ

ρ− c
lim
s↓0

s1−β(l(1/s))−1 dn

dsn

[

E
1− e−(ρ+1−c)sτ

sEτ
− E

1− e−sτ

sEτ

]

=
e−ρ

Eτ

ρ− c
lim
s↓0

s1−β(l(1/s))−1

×
dn

dsn

[

(ρ+ 1− c)F̃1(s(ρ+ 1− c))− F̃1(s)
]

; (6.10)
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recall that F̃1(s) is the LS transform of the integrated tail distribution of τ . From the
assumption on F it follows that

1−F1(x) ∼ (−1)nx−(α−1)l(x)/(Γ(1−α)(α−1)Eτ) = (−1)n−1x−(α−1)l(x)/(Γ(2−α)Eτ) x → ∞.

Consequently, by Theorem 16, equation (6.5),

F̃
(n)
1 (s) ∼ (−1)n

Γ(α)

Γ(β)Eτ
sβ−1l(1/s), as s ↓ ∞. (6.11)

The latter result, when replaced in (6.10), produces

− Λ lim
s↓0

s1−β(l(1/s))−1φ(n)(s) =
Λe−ρ

ρ− c
×

(−1)nΓ(α)

Γ(β)
[1− (ρ+ 1− c)α] ,

(6.12)

which represents the result of taking the operator lims↓0 s
1−β(l(1/s))−1dn/dsn on the right

hand side of (6.7). To finish the proof we have to compute the result of applying the same
operator on the left-hand side of (6.7). Let us start with the derivative

dn

dsn
c− ΛEτF̃1(s)

c− ΛEDD̃1(s)
=

−ΛEτF̃
(n)
1 (s)

c− ΛEDD̃1(s)
+

(c− ΛEτF̃1(s))ΛEDD̃
(n)
1 (s)

(c− ΛEDD̃1(s))2
+Rn−1(s),

(6.13)

where Rn−1(s) is a rational function that contains only the first n− 1 derivatives of D̃1(s),

and F̃1(s). Note that, |F̃
(k)
1 (s)| ≤ |F̃

(k)
1 (0)| < ∞, for 0 ≤ k ≤ n− 1, s ≥ 0. Furthermore, by

induction and by taking successive derivatives in (6.7), it is easy to show that |D̃
(k)
1 (s)| ≤

|D̃
(k)
1 (0)| < ∞, for 0 ≤ k ≤ n− 1, s ≥ 0. Therefore,

lim
s↓0

|Rn−1(s)| < ∞. (6.14)

Combining (6.11) and ED = (Eτ − c/Λ)eρ + c/Λ we obtain

−ΛEτF̃
(n)
1 (s)

c− ΛEDD̃1(s)
∼

Λe−ρ

ρ− c
×

(−1)nΓ(α)

Γ(β)
sβ−1l(1/s) s → 0. (6.15)

Finally, ED = (Eτ − c/Λ)eρ + c/Λ, (6.12), (6.13), (6.14), and (6.15), yield

lim
s↓0

s1−βl(1/s)D̃
(n)
1 (s) =

(c− ΛED)2

(c− ρ)ΛED
×

−Λe−ρ

ρ− c
×

(−1)nΓ(α)

Γ(β)
(ρ+ 1− c)α

= eρ(ρ+ 1− c)α
(−1)nΓ(α)

Γ(β)ED
, (6.16)

which is, by Theorem 16, equivalent to

∫ ∞

x

P[D > u]du ∼ eρ(ρ+ 1− c)α(−1)n−1x−(α−1)l(x)/Γ(2− α) as x → ∞;
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finally, by Monotone Density Theorem ([BGT87]), pp. 39)

P[D > x] ∼ eρ(ρ+1−c)α(−1)nx−αl(x)/Γ(1−α) ∼ eρ(ρ+1−c)αP[τ > x] ∼ eρP[τ(ρ+1−c) > x]

as x → ∞; this finishes the proof of Theorem 6 for the case r = 1. For r 6= 1, Dc,r = rDc/r,1;
thus

P[Dc,r > x] = P[rDc/r,1 > x] ∼ eρ(r + ρ− c)αP[τ > x] as x → ∞,

where ρ = rΛEτ . This completes the proof of Theorem 6. 3

Proof of Lemma 8 : Let us start with the case k = 0. Since E[(τ − t) exp(−sτ)1(τ ≥ t)]
≤ E[(τ − t)1(τ ≥ t)] → 0, as t → ∞, and (1− F̃ (s))/s → Eτ , E[τ exp(−sτ)] → Eτ as s → 0,
it follows that for any ǫ > 0, ǫ < ρ, there exist s0 > 0, t0 > 0, such that for all 0 < s < s0,
t > t0

(1− ǫ)e−s(ρ+ǫ)t−ρ ≤ e−f(s,t) ≤ (1 + ǫ)e−s(ρ−ǫ)t−ρ. (6.17)

For 1 ≤ k ≤ n let us first show that for any ρ > ǫ > 0,

(1− ǫ)ρktk ≤ (−1)kef(s,t)
∂k

∂sk
e−f(s,t) ≤ (1 + ǫ)ρktk, (6.18)

for all sufficiently small s and all sufficiently large t. To show this, notice that for all
1 ≤ k ≤ (n− 1), and all s > 0,

∣

∣

∣

∣

∂k

∂sk
f(s, t) + ΛtF̃ (k)(s)

∣

∣

∣

∣

≤ ΛE[τk+1] + ΛtE[τk1(τ ≥ t)]. (6.19)

For k = n
∣

∣

∣

∣

∂n

∂sn
f(s, t) + ΛtF̃ (n)(s)

∣

∣

∣

∣

≤ ΛE[τn+11(τ < t)] + ΛtE[τn1(τ ≥ t)] = o(t),
(6.20)

as t → ∞. Hence, since |F̃ (k)(s)| ≤ Eτk < ∞, s ≥ 0, 0 ≤ k ≤ n, (6.19) and (6.20) imply that

∣

∣

∣

∣

∂k

∂sk
f(s, t)

∣

∣

∣

∣

= O(t), (6.21)

uniformly for all 1 ≤ k ≤ n, and all s > 0. Furthermore, for k = 1, for any ǫ > 0, ǫ < ρ,

(1− ǫ)ρt ≤
∂

∂s
f(s, t) ≤ (1 + ǫ)ρt, (6.22)

for all sufficiently small s and all sufficiently large t. Using (6.21), after some straightforward
algebra, which we skip here, we arrive at

∣

∣

∣

∣

∣

(−1)kef(s,t)
∂k

∂sk
e−f(s,t) −

(

∂

∂s
f(s, t)

)k
∣

∣

∣

∣

∣

= O(tk−1), (6.23)
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uniformly in s > 0. Subsequently, combination of (6.22) and (6.23) yields (6.18) (with
possibly two different ǫ in (6.22) and (6.18)). Finally, (6.17) and (6.18), give (6.8), for
1 ≤ k ≤ n. This finishes the proof of Lemma 8. 3

Proof of Lemma 9: Now, the nth derivative of φ(s) is given by

dn

dsn
φ(s) =

n
∑

k=0

(

n
k

)
∫ ∞

0

∂n−k

∂sn−k
g(s, t)

∂k

∂sk
e−f(s,t)dt (6.24)

def
=

n
∑

k=0

(

n
k

)

(−1)nIk(s); (6.25)

since the interchange of the differentiation and integration in (6.24) is granted by dominated
convergence.

Hence, the asymptotic behavior of φ(n)(s) at the origin will follow if we derive the asymp-
totic behavior of Ik(s), 0 ≤ k ≤ n, at the origin. Note that Ik(s) can be written as

Ik(s) =

∫ ∞

0

E
{

(τ − ct)n−ke−s(τ−ct)1(τ ≥ t)
}

(−1)k
∂k

∂sk
e−f(s,t)dt (6.26)

=

∫ t0

0

+

∫ ∞

t0

,

for some t0 > 0. Now, for any ǫ > 0, we can choose t0, s0, according to Lemma 8, such that
for all 0 < s < s0, and a sufficiently large constant Ct0 < ∞,

Ik(s) ≤ Ct0 + (1 + ǫ)ρk
∫ ∞

0

E
{

(τ − ct)n−ke−s(τ−ct)1(τ ≥ t)
}

tke−s(ρ−ǫ)t−ρdt

= Ct0 + (1 + ǫ)ρke−ρ
n−k
∑

j=0

(

n− k
j

)

(−c)jE

∫ τ

0

τn−k−jtk+je−s(τ+(ρ−ǫ−c)t)dt

def
= Ct0 + (1 + ǫ)ρke−ρ

n−k
∑

j=0

(

n− k
j

)

(−c)jIǫkj(s). (6.27)
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Here, let δǫ = ρ− ǫ− c and p = k + j, then

Iǫkj(s) = Eτn−pe−sτ

∫ τ

0

tpe−sδǫtdt

=

(

−1

δǫ

)p

Eτn−pe−sτ ∂p

∂sp

∫ τ

0

e−sδǫtdt

=

(

−1

δǫ

)p

Eτn−pe−sτ ∂p

∂sp
e−sδǫτ − 1

−sδǫ

=
−1

δp+1
ǫ

E

{

τn−pe−sτp!s−p−1

[

p
∑

q=0

(τδǫs)
q

q!
e−τδǫs − 1

]}

=
−1

δp+1
ǫ

p!s−p−1

{

p
∑

q=0

(δǫs)
q

q!
Eτn−p+qe−τ(1+δǫ)s − Eτn−pe−τs

}

def
=

−1

δp+1
ǫ

p!s−p−1h(s). (6.28)

Careful examination of h shows that

lim
s↓0

h(k)(s) = 0, for 0 ≤ k ≤ p. (6.29)

Also, it is easy to see that the (p+ 1)st derivative of h has the following form

h(p+1)(s) =

p
∑

q=0

cq(ǫ)s
q
Eτn+1+qe−τ(1+δǫ)s − (−1)p+1

Eτn+1e−sτ , (6.30)

for some constants cq(ǫ), 0 ≤ q ≤ p. Note that, by Theorem 16, all sqEτn+1+qe−τ(1+δǫ)s, 0 ≤
q ≤ p, and Eτn+1e−sτ , are asymptotically proportional to l(1/s)sβ−1 as s ↓ 0. Therefore, in
conjuction with (6.29), we obtain that h(s) ∼ Ch(ǫ)s

p+βl(1/s), as s ↓ 0, for some constant
Ch(ǫ) continuous in ǫ. Hence,

lim
s↓0

s1−β(l(1/s))−1Iǫkj(s) = Ckj(δǫ), (6.31)

for some constant Ckj(δǫ). By observing that Ckj(δǫ) is continuous in δǫ, we obtain

lim
ǫ→0

lim
s↓0

s1−β(l(1/s))−1Iǫkj(s) = lim
ǫ→0

Ckj(δǫ)

= lim
s↓0

s1−β(l(1/s))−1I0kj(s). (6.32)

Now, by taking the limits with respect to ǫ, and s, in (6.27), and utilizing (6.32) to interchange
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the limits, we arrive at

lim sup
s↓0

s1−β(l(1/s))−1Ik(s) ≤ ρke−ρ
n−k
∑

j=0

(

n− k
j

)

(−c)j lim
ǫ→0

lim
s↓0

s1−β(l(1/s))−1Iǫkj(s)

= lim
s↓0

s1−β(l(1/s))−1

∫ ∞

0

E
{

(τ − ct)n−ke−s(τ−ct)1(τ ≥ t)
}

tkρke−sρt−ρdt.

By repeating the same arguments one can prove the lower bound, which results in

lim
s↓0

s1−β(l(1/s))−1Ik(s) (6.33)

= lim
s↓0

s1−β(l(1/s))−1

∫ ∞

0

E
{

(τ − ct)n−ke−s(τ−ct)1(τ ≥ t)
}

tkρke−sρt−ρdt.

Finally, by applying (6.33) in (6.24) we obtain

lim
s↓0

s1−β(l(1/s))−1φ(n)(s) =
n
∑

k=0

(

n
k

)

(−1)n lim
s↓0

s1−β(l(1/s))−1Ik(s)

= lim
s↓0

s1−β(l(1/s))−1

n
∑

k=0

(

n
k

)

(−1)n

×

∫ ∞

0

E
{

(τ − ct)n−ke−s(τ−ct)1(τ ≥ t)
}

tkρke−sρt−ρdt

= lim
s↓0

s1−β(l(1/s))−1e−ρ dn

dsn

∫ ∞

0

E
{

e−s(τ−ct)1(τ ≥ t)
}

e−ρstdt

which finishes the proof of Lemma 9. 3

C: Finite Number of Subexponential On-Off Processes: Upper

Bound

For a finite number of long-tailed On-Off processes we can obtain the following general upper
bound.

Theorem 18 Let F ∈ L, and F1 ∈ S. If r > c/N , then

lim
x→∞

P[QN > x]
∫∞

x/(r−cN )
P[τ on > u]du

≤ NKN , (6.34)

where cN = c/N , and KN is given by Theorem 9, equation (4.10), with cN in place of c.
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Proof: Similarly, as in the proof of Theorem 10, we have the decomposition

Wt =

∫ 0

−t

(AN
u − c)du =

N
∑

i=1

∫ 0

−t

(aiu − c/N)du

def
=

N
∑

i=1

wi
t.

Hence,

P[QN
t > x] = P[sup

t≥0

N
∑

i=1

wi
t > x]

≤ P[

N
∑

i=1

sup
t≥0

wi
t > x]

∼ NP[sup
t≥0

w1
t > x] as x → ∞ (6.35)

= NKN , (6.36)

where (6.35) follows from Lemma 6 (i), since supt≥0w
i
t, 1 ≤ i ≤ N , are i.i.d. subexponential

(by Theorem 9) random variables; (6.36) follows also from Theorem 9. This proves (6.34).
3
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