
ASYMPTOTIC RESULTS FOR STOPPING TIMES 

BASED ON U-STATISTICS 

By 

GAUTE VIK 
\' 

Candidatus Realium 

University of Bergen 

Bergen, Norway 

1978 

Submitted to the Faculty .of the Graduate College 
of the Oklahoma State University 

in partial fulfillment of the requirements 
for the Degree of 

DOCTOR OF PHILOSOPHY 
July, 1984 



T~i;.i~ 

, 9 ~>t D 

V b11fev 

~r-ot-

'' I IOi11'11111ill1'11111I 



ASYMPTOTIC RESULTS FOR STOPPING TIMES 

BASED ON U-STATISTICS 

Thesis Approved: 

ii 1205549 j 



ACKNOWLEDGMENTS 

I would like to express special thanks to my major advisor, Dr. 

Nitis Mukhopadhyay. His professional competence, his comments, ideas, 

structured way of thinking, and interest and concern have been a major 

motivation and help for me to carry out my graduate studies. 

My thanks also go to Dr. Lyle D. Broemeling, Dr. P. Larry Claypool, 

Dr. J. Leroy Folks and Dr. Hassan A. Melouk as members of my advisory 

committee, for their time and effort on my behalf. Special thanks go 

to Dr. J. Leroy Folks for the effort he put into arranging my stay here 

at 0. S. U. 

I also wish to thank the Norwegian Defense Research Establishment 

and the Royal Norwegian Council for Scientific and Industrial Research 

for their financial support. 

Finally, I am most grateful to my wife, Lisbeth, and my two children 

for their patience and support to give me the opportunity to fulfill the 

requirements for a Ph.D. 

iii 



TABLE OF CONTENTS 

Chapter 

I. INTRODUCTION AND PRELIMINARIES 

1.1 Introduction •••• 
1.2 Notation and Prelimin~ry Results 

II. A GENERAL STOPPING TIME AND ITS ASYMPTOTIC PROPERTIES. 

Page 

1 

1 
3 

8 

2.1 Definition of Nv • • • • • • • • • • • • • • • • • • 8 
2.2 Some Important Convergence Results for Nv· 8 
2.3 Asymptotic Distribution of the Stopping 

Time Nv • • • • • • • • • • • • • • • • • 11 

2.4 Rates of Convergences for the Stopping 
Time N" . . . . . . . . . . . . . . . . . . . . . 14 

III. RATES OF CONVERGENCE FOR THE COVERAGE PROBABILITY OF A 
FIXED-WIDTH CONFIDENCE INTERVAL FOR THE MEAN OF A 
U-STATISTIC. • • • • • • ••• 

3.1 
3.2 
3.3 

Introduction. 
A Sequential Procedure. 
A Two-Stage Procedure •• 

IV. SOME PROOFS OF LEMMAS AND THEOREMS • 

4.1 Proof of Lemma 2.4 . 
4.2 Proof of Theorem 2.6 . 
4.3 Proof of Theorem 2.8 
4.4 Proof of Lemma 3.2 . . 
4.5 Proof of Theorem 3.2 . 

v. EXAMPLES . . . . . 
5.1 Bernoulli (p). . . 
5.2 Poisson <a). . 
5.3 Gamma (o,(3). . . 

5.3.1 Estimating o When (3 

5.3.2 Estimating 13-l When 
5.4 Normal (µ ,a2). • . . . . 

VI. CONCLUSIONS ••• 

SELECTED BIBLIOGRAPHY. 

iv 

. . . . . . 
. . . . . 

. . . . . . . 
. . 

. . . . . . . 
. . . . . 

. . . . 
. . . . . . 

is Known. 
0 is Known. . 

. . . . . 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

. . . 

. . . 

. . 

. . . 

. . . 

. . 

. . . 

. . 

. . . 

. 

. 

. 

. 

. 

. 

. 

23 

23 
24 
25 

29 

29 
31 
33 
35 
37 

39 

39 
40 
40 
41 
41 
42 

45 

46 



TABLE 

Table Page 

I. Values of e(.OS,m1) ...•................. 44 

v 



CHAPTER I 

INTRODUCTION AND PRELIMINARIES 

1.1 Introduction 

Let N be a positive integer valued random variable which says when 

to stop sampling when a sequential procedure is considered. This N will 

be referred to as the stopping time and will usually depend on the vari

ability in the population from which we actually sample. Two situations 

may arise: 

(i) No assumptions are made about the distribution from which 

we sample, other than having requirements for finiteness 

of certain moments. 

(ii) The population is known to be a member of a certain family 

of distributions. 

To estimate the variability, different estimators are usually used 

in these two situations. In this study, we will first consider a general 

nonparametric setting which will be useful for situation (ii). Earlier, 

similar approaches, utilizing Sen's (1960) estimator, had been developed 

for situation (i). This will become clear from the papers to which we 

have referred. In order to review the state of the art in the areas of 

sequential nonparametrics, one may also look at the books by Wald (1947), 

Puri and Sen (1971), and Sen (1981). 

The ground work of this study will be a general stopping time N de-

1 



fined in terms of U-statistics. One major interest will be in deriving 

many asymptotic properties which are closely related to the asymptotic 

properties of U-statistics. In the first part of Chapter II we will in

vestigate our proposed stopping time N along the lines of Sproule (1969, 

1974), Ghosh and Mukhopadhyay (1979), and Sen and Ghosh (1981). The 

major finding will be the limiting distribution of the stopping time N, 

where our tools will be a slight generalization of a result in Ghosh and 

Mukhopadhyay (1975). 

2 

Recently, problems related to rates of convergences for randomly 

stopped U-statistics have received much attention. Some basic results 

are due to Landers and Rogge (1976), Ghosh and DasGupta (1980), and Ghosh 

(1980). In the last part of Chapter II we utilize some of these results 

and our new extensions to obtain various new rates of convergence. To do 

this we naturally need to impose conditions of finiteness of some mo

ments. 

Csenki (1980) used the results of Landers and Rogge (1976) for suit

ably normalized randomly stopped means to derive the rate of convergence 

of the coverage probability for Chow and Robbins' (1965) fixed-width se

quential confidence interval procedure. Mukhopadhyay (1981) generalized 

this result by applying the results,of Ghosh and DasGupta (1980) to 

Sproule's (1969, 1974) sequential procedure. In the first part of 

Chapter III we apply the same theorem of Ghosh and DasGupta (1980) to our 

stopping time, and obtain similar results relevant for situation (ii). 

Motivated by the results of Mukhopadhyay (1980, 1982), we then de

fine an alternative two-stage procedure in the second part of Chapter 

III. This procedure to construct a fixed-width confidence interval for 

the mean of a U-statistic is further compared with the purely sequential 
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procedure discussed previously in Chapter III. In a certain sense, the 

purely sequential scheme comes out ahead of the proposed two-stage pro-

cedure. Our Chapter IV is devoted to some of the more technical proofs, 

and Chapter V deals with some examples where we consider sampling from 

Bernoulli (p), Poisson (o), Gamma (o,S) and N(µ,cr 2) populations, respec-

tively. 

1.2 Notation and Preliminary Results 

Let x1 , x2 , ... be a sequence of independent and identically distrib

uted random variables having distribution function F(•), where F(•) be-

longs to a family G of distribution functions. Let ~(X1 , ... ,Xr) be a 

symmetric kernel of degree r. Now for n.::_r, U-statistics are defined as 

follows: 

u 
n 

where I: is the summation over all combinations {a.1 < ••• < a.r} formed 
n,r 

from the integers {1,2, ••• ,n}. Furthermore, we define 

t: = Var { ~ (X1 , ••• , X ) } , c = 1, 2, ••• , r. 
c c c 

As an illustration, we will give two examples on U-statistics. Let 

first G be a class of distribution functions F, for which the expectation 

(8) and the variance (cr2) exist. 

for all FE G. Then 



(n)-1 u = 
n 1 

E 

n,1 
x 
a. 

1. 

1 n 
= - E X. = X 

n . 1 1 
1= 

2 
is a U-statistic, where <!>(Xi)= Xi, <I\ (X1) = x1 , and ~c = Var(<I\ (X1)) = a • 

Next, let G be a class of distributions for which EF!x1 14 . exists. 

Consider <l>(X. ,X.) = 1
2 (X. - X.) 2 • This is a symmetric kernel of degree 2, 

1 J 1 J 
2 

and EF{ <I> (X. ,X.) } = a for all F E G. Now, 
1 J 

= 

E 1 (X - X / 
2 2 al a2 n, 

E 
l<i<j <n 

n 
l (n E x: 

(n-l)n i=l 1 

2 
(X. - X.) 

1 J 

n 

( E x: + 
i=l 1 

1 n - 2 
= - 1 E (X. - X) , 

n- . 1 1 
1= 

X.X.)) 
1 J 

which shows that the familiar sample variance is also a U-statistic. 

2 
Here e = a , with 

where µ = EX2 • 

Now, let us return to the general theory. Hoeffding (1948) proved that 

k L 2 2 
n 2 (Un - 6) ~ N(O,r ~1) as n-+ "", if ~l > 0 and E(<I> ) < 00 • For a similar 

result when the sample size is a random variable, we state the following 

theorem which is due to Sproule (1969, 1974). 

Theorem 1.1: Let {nv} be a nondecreasing sequence of positive integers 

tending to 00 as v-+ 00 , and let. {Nv} be a sequence of proper positive in-

2 
teger valued random variables. Assume that ~l > 0 and E{cj> } < 00 • If 

4 



-1 p 
n N ~ 1 as v-+ 00 , then 

" " 
!.:: L 2 

N~(UN - 6) """'N(O,r 1;1) as v-+ oo. 

" 

Corollary 1.1: Theorem 1.1 still holds when {nv} is a sequence of non

decreasing positive real numbers. 

Proof: 
-1 

Let e: > 0 be given, and let v be big enough such that n < 

• (e: 1) Th min 2,2 . en 

I -1 I . I -1 -1 I 1· -11-1 P{ N (n - 1) - 1 > e:} = P{ N n + n - 1 • 1.,.. n > e:} 

"" . "" " " 
I -i I I -i I e: < P{ N n - 1 > e: 1 - n - -} 

- "" . " 2 

< P{ IN n-1 - 1 I > n} 

- " " 

5 

for some n > O. Now, since N n-l < N [n ]-l < N (n -1)-l, N [n ]-1 ~1, and 

vv-v" "" "" 

the corollary then follows from the theorem. (Here [x] means the largest 

integer smaller than x.) 

In the sequel, we write 

if I;~ 1, 

if ~ .::_ I; < 1 

The following theorem is due to Sen and Ghosh (1981). 

• • • (1.1) 

Theorem 1. 2: Assume E{ I (j> 121;} < oo for some I;_::.~. Then for all n _::. r, there 

exists k ( > O) such that 

where k does not depend on n. 
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Corollary 1.2: Let {en} be a sequence of positive real numbers converg

ing to zero and c ( > O) be an arbitrary constant. Assume E{ I cp 12~} < 00 for 

1 
~ ~2, and let a. ( > O) be given. Then there exists k ( > O) such that for 

2 ~* 
P{IU0.-60.I >CE}< k(nE )-"', 

n n - n 

where k does not depend -2!!. n, and~* is defined in (1.1). 

Proof: We will need the following lemma to prove Corollary 1.2. 

Lemma 1.1: Let a. (>O) and cS (>O} be constants, and let xE (0, 00). For 

any e ( > O) we can find a constant k ( > O) such that I xa. - ea. I > E implies 

that klx- e I> e for all e E (O,o). Herek may depend -2!!. e and o, but not 

on e. 

The lemma is readily proved by the help of the Taylor expansion of 
CL 

x • 

Now, a proof of Corollary 1.2 can be established by using Lemma 1.1 and 

Theorem 1.2. 

The following well-known Lennnas 1.2 and 1.3 are proved in Michel and 

Pfanzagl (1971). Let~(·) be the distribution function of a standard 

normal random variable. For brevity we write only sup instead of 
x 

sup • 
xE(-00,00) 

Lemma 1. 2: Let {Xn} and {Yn} be sequences of random variables. Assume 

that for a sequence {an} of real numbers tending to~' s~plP{Xn2_x}

Hx)I = O(a ), and P{IY -11 >a}= O(a ). Then we have 
n -- n n n -----

suplP{X <xY} - Hx)I = O(a ). 
x n- n n 

Lennna 1.3: Let {X }, {Y} and {a} be as in Lennna 1.2. If 
n n n ---



supjP{X <x} - Hx)I = O(a) and P{IY I> a}= O(a ), then 
x n- n -- n n n 

supjP{X +Y <x} - ~(x)I = O(a ). 
x . n n- n 

The following lemma serves as a tool in proving some of the results 

of section 2. 

Lemma 1.4: Let {Yn} be!!_ sequence of random variables where P{Yn=O}=O 

for every n, and {on} and {e:n} be sequences of real numbers tending to 

zero. If for arbitrary c1 ( > 0) we have P{ jYn - 11 > c1 e:n} = O(on), then 

we ~ conclude that P{ jY~1 -1j > c2e:n} = O(on), where c2 ( > 0) is also 

arbitrary. 

Proof: 
1 

Let n be large enough such that c1 e:n < 2. Then, IY - 1 j < c1 e: 
n n 

implies that 

Thus, for c 2 = 2c1 , 

O(o ) • 
n 

Now, c2 ( > 0) can be chosen arbitrarily since c1 is arbitrary ( > 0). 

Remark 1.1: The Lemma 1.4 is easily generalized to the following: If 

I I · I -1 -1 1 P{ Y - e > c1e: } = O(o ) holds for a constant e 'F 0, then P{ Y - a·· > 
n n n n 

c2e:} = O(o) holds under the conditions of Lemma 1.4. 
n n 

7 



CHAPTER II 

A GENERAL STOPPING TIME AND ITS ASYMP-

TOTIC PROPERTIES 

2.1 Definition of N 
v 

Assume the following: 

{U ,n > r} is a sequence of U-statistics and u >O w.p. n - n-

E{U } = e < 00 and E{</>2} < oo• 

n ' 

a ( > O)' y ( > O)' 8 ( > O) and t ( ~ O) are all constants; 

l· 
' 

{$ ,v = 1,2, ••. } is a sequence of nondecreasing real numbers (> 0) 
\) 

where $ -+ oo as v-+ oo. 
\) 

Now, we define our stopping time as 

N = inf { n > n ; (n + t) 8 > $ (Ua + n -y) } , 
v -o -vn 

... (2.1) 

v = 1, 2, ••• ; n ( ~ r) is an integer and can be thought of as the starting 
0 

sample size. 

2.2 Some Important Convergence Results for N 
\) 

Some of the important convergence results are stated in the next 

four lemmas. The following lemma easily follows from the definition of 

N in (2.1). 
\) 

Lemma 2.1: For the stopping time Nv defined in (2.1), we have 

8 



P{N < 00 } = 1 for v = 1, 2, ••• ; 
v 

Proof: From the definition (2.1) of N, we get 
v 

P{N =oo}= 
v 

lim P{N > n} 
n-+oo v 

1 

< lim P { (( n + t) 0 ijJ - l - n -y) a < U } 
n-+oo v n 

= 0 

1 

9 

since ((n+t) 0ijJ-1 -n-y)a + oo and U ~ e as n+ 00 • 

v n 
This proves the first 

part of the lemma. Next, for the second part of the lemma, v 1 ..::_ v 2 im-

plies that ijJ (Ua + n -y) < ijJ (Ua + n -y). 
v1 n - v2 n 

Now N is one integer> n such 
v2 - o 

o a -y 
that (n + t) > ijJ (U + n ) • 

- v1 n 
N is the infimum of all such integers, 
vl 

which gives N < N w.p. 1. For the last part of the lemma, we will 
vl - v2 

prove the almost sure convergence of N by showing that lim P{Sup N < 
v " -vl-+oo v<v1 

k} = 0 for all k > 0. Utilizing the increasing property of N and the 
v 

definition (2.1), we can conclude the following: 

lim P{Sup 
vl-+oo < "-"1 

N < k} 
v-

= lim P{N < k} 
v -

vl-+oo 1 

[k] 

= I lim P{N = i} 
i=n vl-+oo vl 

0 

< 
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= o. 

The following explains the last step: There exists an integer v'(k) 

such that ljJ > (k + t) 0k y for all v1 > v' (k). Then, (i + t) 0 < ijJ i-y for 
vl vl 

all v1 >v'(k), i=n0 ,~ •• ,k. Since Ui~O w.p. 1, this implies (i+t) 0 < 

ij; (U~+i-y) for all v1 >v'(k), i=n0 , ••• ,k and this gives the last 
vl i 

equality 

Lemma 2.2: For the stopping time Nv defined in (2.1), we have 

UN -+ e ~ 1 as v -+ oo; 
v 

UN -l-+ 8 ~ 1 as v-+oo. 
v 

Proof: Let a subset of the sample space be defined as A= {lim U = e, 
n-+oo n 

Nv is non-decreasing in v, lim N = 00}. Consider an element w E A. For 
v-+oo v 

this w, the following arguments will hold: For all r:: > 0, there exists 

an integer n' (r::) > 0 such that lu - el < r:: for all n > n' (r::). Also there 
n 

exists a v' (r::) > 0 such that P{N < n' (r::)} = 0 for all v > v' (r::). That is, 
v-

luN - el < r:: for all v > v' (r::) which shows that lim UN = e for the fixed w. 
v ~ v 

Since w was chosen arbitrarily in A, lim UN = e for all w EA. Hoeffding 

~ " 
(1961) showed that U -+ e w.p. 1, which together with Lemma 2.1 prove that 

n 

P{A}= 1. This concludes the proof of the first part of the lemma. The 

second part follows by the same type of arguments. 

Lemma 2.3: For the stopping time Nv defined in (2.1), we have 

N /(,,.1/o a/o 
'I' e ) -+ 1 ~ 1 as v -+ oo. 

v v 

Proof: From the stopping time (2.1) we obtain the basic inequality, 
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namely, 

(n + t - 1). 
0 

• .. (2.2) 

Now, dividing all over by ~l/o ea/o and applying Lemmas 2.1 and 2.2, we 
v 

can complete the proof of Lemma 2.3. 

Lemma 2.4: Consider the stopping time Nv defined in (2.1). If 

E{ I cp 12~} < 00 for some ~ > m~l, then ·we have 

A proof of this lemma is given in section 4.1. 

2.3 Asymptotic Distribution of the 

Stopping Time N 
v 

In this section, our main tool will be a slight generalization of a 

result in Ghosh and Mukhopadhyay (1975), stated as our Theorem 2.1. 

Theorem 2.2 and Corollary 2.1 are both used to shO'W that our stopping 

time N satisfies the assumptions of Theorem 2.1. An application of 

" 
Theorem 2.1 then gives us our main result of this section which is stated 

as Theorem 2.3. 

Theorem 2.1: Consider~ sequence {N~} of positive integer valued random 

variables defined bv N* = inf{n > n ; n > b T - t} where n > 1, {b } is a 
.:=.L. v - o - v n o- v 

sequence of positive real numbers tending to infinity as v+ 00 , {Tn; n~n0 } 

is a sequence of statistics such that P{Tn > O} = 1 for all n~n0 , and 

t E (-00 , 00) is a constant. Now, if for all x E (-00,00), 
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*1: 
lim P{N\l 2 (TN* - c) < d x} = <P (x) , and 
~ \) 

*k 
lim P{N\l 2 (TN*-l - c) < d x} = <P (x) 
~ \) 

for some constants c ( > O) and d ( > O), then we have 

~ * 1: lim P{c (N - cb ) < x db 2 } = 
\) \) \) 

<P(x) for all x E (-co,oo). 

* If we use t = 0 in the definition of N , then we end up with the situation 
\) 

as in Ghosh and Mukhopadhyay (1975). The proof for the case t "F O can be 

given along the same lines as in Ghosh and Mukhopadhyay (1975). 

The following theorem is a slightly modified version of a theorem 

stated in Rao (1973), and this can be proved in a similar way. 

Theorem 2.2: Let {Y} be a sequence of positive random variables such 
-- n -- - --

-1 p 
that Yn ~a. Let g(·) be a real valued function defined on (-00 , 00) and 

assume g'(·) exists. Let {T} be a sequence of random variables, and 
-- n --

a ( > O) and c E (-00 , 00 ) be constants. Now if Y (T - c) ~ N(O ,a2) 
---- n n 

as n-+ 00 , 

then we have 

L 2 
Y (g(T )-g(c)) -"7N(O,(crg'(c))) as n-+ 00 , if g'(c)"f0. 

n n 

k 
In Rao (1973) this result is given for Y = n 2 • We have stated and proved 

n 

a version giving the rate of convergence in our Theorem 2.5. 

Corollary 2.1: Let N be as in (2.1) and g(•) be as in Theorem 2.2. -- \) --- -- ------
!.:: 

if N 2 (TN - \) 

L 2 
- c) ~ N(O ,a ) as v-+ 00 , then we have 

\) 

!.:: L 2 
N~(g(TN )-g(c)) ~N(O,(crg'(c))) as v-+oo. 

\) 

Proof: The result follows innnediately, recalling the properties of N 
\) 

Now 



given in Lemma 2.1. 

Theorem 2.3: Assume y >~in the definition of Nv given in (2.1). Then 

we have 

(c/b )~ (N - cb ) ~ N(O,a2), 
\) \) \) 

h ea/o b ,,,1/o d d= 1:'~ .i:,-1 ea/o-1 as v + 00 , w ere c = , = 't' an rs1 CJ.u • 
\) \) 

Proof: Our stopping time (2 .1) can be written as N = inf{n > n ; n > 
\) - 0 -

ijJl/ 0 (Ua. + n -y) l/ 0 - t}, which shows that N is of the form considered in 
v n v 

. a -y 1/0 1/0 
Theorem 2 .1 with T = (U + n ) , b = ijJ • We will show that the 

n n v v 

13 

assumptions in Theorem 2.1 are satisfied by this N. From Corollary 1.1 
v 

l: l: L 
we get {N~(UN - e)/(rE.:{)} -,.N(0,1) as v+ 00 , and thus by Corollary 2.1 we 

v 
obtain 

{N~(U~ - ea)/(rt_:ia.ea-l)} ~ N(0,1) as v+ 00 • Furthermore, 

v 

{N~(Ua. +N-y - ea)/(rt_:~aea-l)} ~ N(0,1) as v+ 00 , since 
v N v 1 

v 

Applying the Corollary 1.1 once more, we now obtain 

{~((U~ + N~Y) 1/ 8 - ea/ o) I (rE.:{ aea-1 o-1 ea (1/ o-1))} ~ N(O ,1)' as 

\) 

k L 
v+ 00 , which actually translates to {N~(TN -c)/d} ~N(0,1) as v+ 00 • 

v 
Now, {(Nv-1)/(iµ~/oea/o)} L 1 as v+oo, and using the same type of argu-

ments, we conclude that 

{(Nv-1)~ (TN _1 -c)/d} ~N(0,1) as v+oo. Then we also get 
\) 

l: L 
{N~(TN _1 - c)/d} ~ N(O,l) as v+oo, since 

v 



k p 
{N/(N -1)} 2 ~lasv-+ 00 • 

v v 

Now, Theorem 2.1 can be applied to conclude the desired result. 

2.4 Rates of Convergences for the 

Stopping Time N 
v 

14 

The structure of this section will be the same as it was in Section 

2.3. We first state a theorem that will serve as our main tool (Theorem 

2.4). This gives the corresponding rate of convergence results for 

Theorem 2.1 and it is a slight generalization of a result of Ghosh (1980). 

Theorem 2.5 gives us the rate of convergence for Theorem 2.2. The next 

four theorems and the corollary give us more insight about N. The main 
v 

purpose of having these results, however, is that they enable us to show 

in the end that our stopping time N satisfies the assumptions of Theorem 
v 

2.4. This in turn gives us Theorem 2.9 which is the main result of this 

section. 

* Theorem 2.4: Let N, b and T be defined as in Theorem 2.1 and let {E} 
--vv--n -- ----v 

-1 
be ~ sequence of positive real numbers such that Ev~ bv • Now, if 

*1 
sup I P{Nv'2 (TN* - c) 2. d x} .;.. ~ (x) I = 
x v 

*k 
sup I P{Nv 2 (TN*-l - c) 2. d x} - ~ (x) I 
x v 

k 
O(E 2), and 

v 

k 
= 0 (E 2), 

v 

for some constants c ( > O) and d ( > 0), then we have 

k: * k: 
sup IP { c 2 (N - cb ) < xdb 2 } - ~ (x) I 

x v v - v 

This slight generalization does not call for any special difficulty in 



the proof, and thus the proof can follow the same lines as in Ghosh 

(1980). We omit any further-details on this. 

In the next theorem we will consider a real-valued function g(•) 

having the following properties: 

(i) g(·) is defined on (a,b), -co~ a< b ~ co, 

(ii) g(.) is continuous, 

(iii) g' (c) 'F O for some c E (a,b), 

(iv) g" (.) exists and is bounded in a neighborhood around c. 

Theorem 2.5: Assume that a function g(•) has all the properties (i) -

(iv) for an interval (a,b) and a constant c E (a,b). Let {Y} be a se-
-- n ---

quence of positive random variables and let {e:n} be~ sequence of de

creasing positive real numbers. Furthermore, let {Tn} be a sequence of 

random variables taking£!!_ values in (a,b). Now, if 

sup IP{Y (T - c) < crx} - q?(x) I = O(e: ) , for some cr > 0, and 
x n n - n 

P{Y (T - c) 2 > ke: } = O(e: ), 
n n n n 

for every k > 0, then we have 

sup IP{Y (g(T ) - g(c)) < xcrg' (c)} - Hx) I = 
n n -x 

Proof: Let R (y,c) be defined through 
n 

O(e: ) • 
n 

g(y)-g(c) = (y-c)(g'(c)+R (y,c)) for y,/:c, and 
n 

R (c,c) = 0. Then, we can write the following: 
n 

Y (g(T )-g(c)) Y (T -c) 

15 

n n n n 
--cr-g"'"',,...(.,...c...,..) ___ = --cr-- + yn (Tn - c)Rn (Tn,c). ••• (2.3) 
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Using Taylor's expansion and the property (iv), one can see that there 

exists o > 0 such that for all y E [ c-o ,c+o], we can write 

for some k > 0 and z lying between y and c. Now, we obtain 

P{ IY (T - c)R (T ,c) I > E } 
n n n n n 

< P{Y (T -c) 2 k > E, IT -cl< o} 
- n n n n 

+P{IY (T -c)R (T ,c)I > E, IT -cl ~o}, 
n n n n n n 

< P{Y (T -c/ > k-l E} + P{IT -cl> 8}. 
- n n n n 

Also, 

P{ IT - c I > o} = P{Y (T - c/ > o IY (T - c) I} 
n n n - n n 

< P{Y (T - c) 2 > ooE: , IY (T - c) I > E a} 
- nn - n nn -n 

+ P { I Y (T - c) I < E a} 
n n n 

= 0 ( E ) + P{ I Y (T - c) I < E a}. 
n n n n 

Again, we have 

P{IY (T -c)I <Ea} 
n n n 

= P{Y (T -c) <Ea} - P{Y (T -c) < -e: a} 
n n n n n n 

< IP{Y (T - c) < E a} - <P(E: ) I 
n n n n 



+ IP{Y (T - c) < -£ cr} - <P(-e ) I + I He ) - 1>(-£ ) I 
n n n n n n 

0(£ ). 
n 

Hence, Theorem 2.5 now follows by an application of Lemma 1.3 and Equa-

tion (2.3). 

Theorem 2.6: Consider the stopping time Nv defined in (2.1) and let 

y~\. Also let :\E (0,\). Now if E{lcpl2t;}< 00 for l;~max{(S-2:\)/8:\, 

1+ (o+y)(l-2:\)/40}, then we have 

P{IN -1 11 c,,,-(\-:\)/o} -- o(,,,-(\-:\)/20), 
n - > "' "' \) \) \) \) 

,,,1/ o o./ o 
for arbitrary c ( > O) and n = "' e . - --v \) 

17 

The proof of this theorem is given in Section 4.2. The following coral-

lary is an immediate consequence of Theorem 2.6 and Lemma 1.4. 

Corollary 2.2: Consider the situation of Theorem 2.6. Then we have, 

I -1 I -(\-;\) / o 
P{ n N - 1 > cljl } = 

\) \) \) 

O(ljl~(\-:\)/20), 

for arbitrary c ( > O). 

The following theorem is due to Ghosh and DasGupta (1980). We state 

this result here for completeness. 

Theorem 2. 7: Let { ev} be a sequence of positive real numbers and , ( > 0) 

{N*} be a constant. Consider a sequence of positive integer valued ran-
v 

dom variables such that 



~ ~ 2, 1 > s > v-2~/ <2~+l), then we have 
\) -----

k 
0 (s 2), and 

\) 
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The next theorem is a slight modification of this result in our con-

text. 

Theorem 2. 8: Let Nv be the stopping time defined in (2 .1) for y ~~· Let 

AE (0,\). Now if E{l¢! 2~} < 00 for ~~max{(5-2A)/8A,1+ (cS+y)(l-2A)/4cS, 

2}, then we have -----

k k 
- Hx) I O(iµ~(\-A) /28)' sup IP{n 2 (UN - 8) 2 xr~{} = 

x \) 
\) 

•.• (2.4) 

!.:: k 
- Hx> I O(iµ~(\-:\)/28), sup IP{N~ (UN - 8) .::_ xr~{} 

x \) 

.•• (2.5) 

k !.:: 
sup IP{ (Nv - 1) 2 (UN _1 - 8) .::_ xr~{} - <P(x) J = O(iµ-(\-:\)/20), ••• (2.6) 

\) 
x \) 

••• (2.7) 

where n = iµl/ 8eal O• 
\) \) 

A proof of this theorem is given in Section 4.3. 

Remark 2.1: * In Theorem 2.7, no formal relationship between Nv and Un is 

really needed. This is also the case for Theorem 2.8. That is, the 

Theorems 2.7 and 2.8 remain true for U not necessarily being the same 
n 

U-statistic as the one occurring in the definition of N 
\) 

ize this fact in Chapter III. 

We will util-
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Now, the results given in this section so far enable us to apply 

Theorem 2.4 for our stopping time in (2.1). So, in the sequel we in fact 

show that under certain conditions, N satisfies the assumptions of 
v 

Theorem 2.4. The final result is given in the following theorem which is 

our main finding in this section. 

3 
Theorem 2. 9: Consider Nv ~ defined in (2 .1) , and assume that y ~ 4. Let 

AE (O,~). If E{l<J>l 2~}<oo for 

t~max{ (5- 2A)/(1+ 2A) , (5 - 2A)/8A, 1+ (o+y) (1- 2A)/4o}, then 

sup IP{c~ (N - cb ) < xdb~} - Hx) I = O(l/Jv-(~-A)/20), 
x v v - v 

where c = ea.I O, b = 1/Jl/ 0 and d = rl1~
2 a.o-1 ea./ o-l. 

v v --

Proof: As in the proof of Theorem 2.3, the stopping time N from (2.1) 
v 

can be defined by 

N = inf{n > n ; n > b T - t} 
v - o - v n 

that 

Let e: = 1/J-(3rA)/o. First we show 
v v 

I ~ a. a. ~ .. a.-1 I 
sup · P{Nv (UN - e ) ~ xr~1 ae } - cl>(x) • • • (2. 8) 
x . v 

From Theorem 2.6, we have 

~ 
P{N < n (1 - n)} = o (e: 2), 

v- v v 

1/oea./o 
where n = 1/J , 0 < n < 1. 

v v 

•.. (2.9) 

Let a= [n (1- n)] + 1, where [x] is the 
v 

largest integer smaller than x. For brevity, we will write k for a gen-

eric positive constant independent of v. Then, we can write 



k 2 
P{N~ (UN - 6) 

\) 

00 

k k 
< r: P{n 2 (U - 6) 2 > kE 2 ' N = n} + P{N < n (1 - n)} 

n \) \) \) - " -
n=a 

00 

P{ I u - e I < r: > 
n 

n=a 

00 

k(n /E ) F,,/ 2 < r: 

" " n=a 

< kE-f,,/2 a-(f,,/2-1) 

" 

1 k- k 
k(E n - ) ~} + 0 (E 2) 

" " 
k -f,, 

n + 0 (E 2) 

" 

20 

= k,1,F,,(1-2A)/4 ,,,-(F,,-2)/20 
'I'" 'I'\) ' 

••• (2.10) 

if F,, > 2. 
k 

This is of order E 2 if F,,~(5-2A)/(1+2A). 
\) 

Theorem 2.5 now gives (2.8). Next, we have 

k y k:2 k:2 a-1 
P{N 2 N- > 1: e } 

v " E" r"'l a 

= P{N < kEl/(l-2y)} 

" " 
k 

= 0 (E 2), 

" 

if {(1-2A)/(4y-2)} < 1, which follows from (2.9) since k l/(1-2y) 
E < 

\) 

n (1- n) for "big enough" v in this case. Lemma 1.3 now implies that 

" 
U~ can be replaced by (U~ +N~y) in equation (2.8). Now, 

" \) 



Note that 

for 8y- 2 ..::_ 1. This follows from 

"big enough" v. Next we have 

P{ !u~ - ea! 
!.. 

> k(E /N ) 4 } 
v v 

v 

00 

!.. 
< t: P{ lua - ea I > k(E /n) 4 } - n v 

n=a 

k: 
= 0 (E 2), 

v 
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(2.9) . kiJJ(l-ZA)/o < n (1-n) for since 
v v 

+ P{N < a} 
v 

if ~ ..::_ (5 - 2>1.) I (l + 2A). This follows from Corollary 1. 2 and the same 

types of arguments used to obtain the bound for (2.10). From Theorem 2.5 

it now follows that 

~ -1 a/o-1 * 
where d = r~1 ao e • Let Nv 

* P{ I (N /n ) - 11 > kE } 
v v v 

< P{ I (N /n ) - 11 > kE - n -l} 
- v v v v 

N - 1. Then 
v 

.•. (2.11) 
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-1 
since for any o > 0, n < oe: for "big enough" v. Thus, (2. 9) also holds 

v v 

* for N. So, (2.6) allows us to use the same kind of arguments which led 
v 

* to (2.11) with N being replaced by N. Finally, Lemma 1.2 applied to 
v v 

this modified (2.11) and utilizing the fact that P{ !N* N-1 -1! > s } = 
v v v 

!.:: 
O(s 2) will show that the last property needed to apply Theorem 2.4 indeed 

v 

holds. This concludes the proof of Theorem 2.9. 

Remark 2.2: The condition y .::_~ is sufficient, but not necessary. It is 

enough for A and y, in addition to having A E (O,~), to satisfy the in-

equality given by y > (3 - 2A)/4. 



CHAPTER III 

RATES OF CONVERGENCE FOR THE COVERAGE PROBABIL-

!TY OF A FIXED-WIDTH CONFIDENCE INTERVAL 

FOR THE MEAN OF AU-STATISTIC 

3.1 Introduction 

Let {V , n > s} be a sequence of U-statistics with a symmetric kernel 
n -

2 
Assume E{ I g I } < 00 and define 

c=l,2, ••• ,s, and n =Var{g (X1 , ••• ,X )}. Also letµ be defined by 
c c c 

Let {U , n > r} be the U-statistics as defined and 
n -

utilized in Sections 1 and 2. Given d ( > 0) and q E (0 ,1), we would like 

to construct a confidence interval I forµ such that the length of I is 
. n n 

2d and P{ µ E I } R:i 1 - q. Here we propose to consider the natural fixed
n 

width confidence interval I = [V - d , V + d] for the parameter µ. Now, 
n n n 

P{ µ E I } = P{-d < V - µ < d} 
n - n -

k k k 
= P { -n 2 d < n 2 (V - µ) < n 2 d} . 

n -

From Hoeffding's (1948) result we know that 

N(O,s2n1 ) if n1 > O. Therefore, for large n, 

1:: 
n 2 (V - µ) is asymptotically 

n 
k k 

P{ µ E In} ~ 2q,(n 2 d/ sn{) - 1. 

If we require this expression to be at least 1 - q, we need to choose n 

~ 1:: 
such that n d/sn{ .::_ a, where a is defined through the equation ~(a) 

23 
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1- ~q. That is, we need 

2 
n > (as/d) n1 • ... (3.1) 

The problem now arises because n1 is not known in many of the usual ap

plications. 

3.2 A Sequential Procedure 

Assume that n1 can be estimated by a U-statistic Un in such a way 

that 
a. 2 

(E{Un}) = k1n1 , k1 ( > 0) being a known constant. Then, motivated 

by (3.1), we propose the following stopping time: 

where n 
0 

(~s) is the starting sample size. 

• . • (3. 2) 

By considering an arbitrary 

positive sequence {d, v=l,2, •.• } tending to zero as v-+ 00 , we recognize 
\) 

this stopping time (3.2) to have the same form as defined in (2.1). All 

our previous results will therefore be potentially applicable for this 

stopping time. We wish to use some of these properties to prove the 

following theorem. 

Theorem 3.1: Consider Nd defined _EY. (3.2) and assume that y.::_~. Let 

;\.E (O,~). Now if E{l¢! 21;}< 00 for i; .:::_ max{(5-2A)/8A,l+ (1+2y)(l-2;\.)/4} 

and E{ I g j 4} < 00 , then we have 

P { µ E IN } = 1 - q + 0 ( d~-A) • 
d 

Proof: The proof will follow along the lines of Csenki's (1980) proof 

of his theorem. From Theorem 2.6, we obtain 
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P{I ••• (3.3) 

where {d } is a sequence of positive real numbers such that d + 0 as 
v v 

v+m. Theorem 2.8 together with our Remark 2.1 now give 

• • • (3. 4) 

From (3.3), we obtain 

and now, Lenuna 1.2 applied to (3.4) then gives 

I -1 I ~-A 
sup P{VN - µ ~ dva x} - <I> (x) = 0 (d ) • 
x \) 

• • • (3. 5) 

Now, from (3.5) we get the following for the coverage probability: 

I P{-d < V - µ < d } -: ( <I> (a) - <I> (.-a)) I 
v - N - v 

" 
= jP{VN - µ ~ dv} - P{VN - µ < -dv} - (Ha) - <I>(-a)) I 

" " 
< jP{VN - µ ~ -d"} - <I>(-a) I+ jP{VN - µ ~ dv} - <I>(a) I 

" " 

Since this is true for any sequence {d } where d + 0 as v + m, the Theorem 
v v 

3.1 is now proved. 

3.3 A Two-Stage Procedure 

Motivated by (3.1), (3.2) and the results of Mukhopadhyay (1980, 

1981) , we propose the following two-stage procedure: For O < n < 2, let 



the starting sample size m be defined by 
0 

m 
0 

= max{[(a/d)n] +1, s}. 

Then we define the two-stage sample size Md by 

26 

as 2 a. 
Md= max{[(dk) U ] +1, m }, •.• (3.6) 

1 mo o 

where [x] is the largest integer smaller than x. If Md=m0 , we do not 

take any more samples in the second stage. However, if Md> m0 , we sample 

the difference Md - m0 in the second stage. We construct the confidence 

interval IM forµ. We now state the following properties for Md. 
d 

Lemma 3.1: Consider the stopping time Md defined in (3.6). Assume that 

2 
E{ I<!> I } < 00 • Then, for n1 > 0, we have 

(a) P{Md < oo} = 1, 

(b) Md -+ 00 ~ 1 ~ d -+ 0, 

(c) 
o 1 

00 for~> max{2,2}, where 

The proof of this lemma will follow along the same lines as for the 

equivalent results in the sequential case. We omit further details. 

Now we will state two interesting results for a special case of the 

stopping time we have in (3.6). As examples of situations where these 

apply, we refer to our examples 5.1, 5.2 and 5.3 in Chapter V. 

Lemma 3.2: Let a.= 1 in the definition (3.6) of the stopping time Md. 

If E{ I<!> 12} < 00 , then we have 



M d2 

(a) E{ 2d2 } = 1 + O(d2), 
as n1 

(b) 
Var{Md} 2 

4 = 1 + O(d -n), 
(as/dk1) Var{Um} 

0 

27 

2 
where k1 is defined~ E{Um} = k 1n1 , and n appears in~ definition of 

m in (3.6). 
o-

0 

This lemma is proved in Section 4.4. 

Now we consider the coverage probability when IM is proposed as the 
d 

confidence interval forµ. In order to do this, we will need the follow-

ing result for Md. 

Theorem 3.2: Consider Md as defined EZ_ (3.6). Assume that E{l~l 2~} < 00 

for ~ ~ (1- 2A)/(2n- 4+ 8A), where A E (.II.,~) for R. = (2- n)/4. Then 

2 
where md = (as/d) n1 and k ( > O) is arbitrary. 

The proof of Theorem 3.2 is given in Section 4.4. 

Finally, our main result for constructing the two-stage confidence 

interval procedure through Md is the following. 

Theorem 3.3: Consider Md as defined by (3.6). Assume that E{l~l 2~} < 00 

for~~ (1-2A)/(2n-4+8A), E{lgl 4} < 00 and AE (R,,~) for R. = (2-n)/4. 

Then we have 

P{µE~} = 1-q+O(d~-A). 
d 

In view of Theorem 3.2, our Theorem 3.3 can be proved similarly as 
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Theorem 3.1. 

Remark 3.1: If we compare this result about the rate of convergence of 

the coverage probability with the corresponding result for the sequential 

procedure (Theorem 3.1), we readily see that for the two-stage procedure, 

A is bounded below by a positive constant. This gives us a slower rate 

of convergence for the two-stage procedure than that for the sequential 

one. In the terminology of Mukhopadhyay (1981), this two-stage procedure 

is only "first-order asymptotically consistent", while the sequential 

procedure is also "second-order asymptotically consistent". Note that 

the rate for the two-stage procedure gets better as n E (0,2) gets larger 

in the definition of m. 
0 

Remark 3.2: Here, we will take the opportunity to correct the require-

ments for Theorem 5 in Mukhopadhyay (1981). In the context of that 

paper, Theorem 5 holds f;or (1- n) I 4 < y < ~. Thus, the sharper rate of 

convergence of the coverage probability is obtained in Mukhopadhyay's 

(1981) Theorem 5, if we choose larger n in [0,1). One may note that this 

observation is completely in agreement with our present Theorem 3.2 and 

Remark 3.1. 



CHAPTER IV 

SOME PROOFS OF LEMMAS AND THEOREMS 

4.1 Proof of Lemma 2.4 

Let k be a generic constant and O < e: < 1 be arbitrary. Define n = 
v 

1/il/o o./o and a--[n (l+e:)] where [x] · h 1 · t 11 h e is t e argest in eger sma er tan 
v v 

x. Now, 

00 

< (1+ e:)m P{N < a} + 
- v-

E 

j=a+l 

(j /n )m P{N = j} 
\) \) 

00 

= (1+ e:)m P{N < a} + n-m 
v- \) 

E .m(P{N > '} - P{N >. +1}) 
J v-J v-J 

j=a+l 

= (1+ e:)m P{N < a} + n-m(l+ a)m P{N > a} 
v- \) v 

00 

+ n-m E 

j=a+l 

Now, we have 

which implies 

00 

E 

2=1 

(m) .1-2 2m.m-1 
2 J 2- J ' 

29 
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00 

< (l+E)m + n-m(a+l)m P{N >a}+ 2mn-m E jm-l P{N >j}. •• (4.1) 

- " " " j=a+2 " 

Next, from the definition of N in (2.1), for j 2:_a, we get 

" 

P{N > j} 

" 

a. 0 -y 
< P{U. > (a /ip ) - a } 
- J " 

< k.-~ 
- J ' 

for "big enough" v. This follows from Corollary 1.2. In the special 

case for j = a, this gives P{N > a} < ka-~, which tends to zero as v-+ 00 • 

" -
Then, 

-m m 
as v -+ 00 , since n ( a + 1) is bounded as v -+ co. Furthermore , 

" 
m -m 

2 n 

00 

E .m-l P{N > J0
} 

" j=a+l J " 

m -m 
< 2 n 

" 

-m 
< kn , 
- " 

00 

E 

j=a+l 

since ~ > m. Equation (4.1) now gives 

lim sup E{ (N /n )m} < (1+ e:)m, 

'\)-+CO " " 

for all e: > 0. Therefore we have 



lim sup E{(N /n )m} < 1. 
\) \) -

Finally, from Fatou's Lemma and our Lemma 2.3 we can conclude that 

lim inf E{(N /n )m} > E{lim inf (N /n )m} = 1. 
\) \) \) \) 

\)-+co \)-+co 

This completes the proof of Lemma 2.4. 

4.2 Proof of Theorem 2.6 

Let k be a generic constant and O < e: < 1 be arbitrary. Then, 

P{j(N/n)-11 >kijJ-(~-A)/o} 
\) \) \) 

1;+;\ 
= P { N < n ( 1 - e:) } + P { n ( 1 - e:) < N < n - kn 2 } 

v- \) \) \) \) \) 
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+ P{N > n + kn~+:\}. 
\) \) \) 

... (4.2) 

We will show that each of these three expressions in (4.2) has the 

specific desired order. From the definition of the stopping time N, we 
\) 

get 

P{N =n} < P{(n+t) 0/ip -n-y > Ua.}. 
v - v n 

Since P{Ua. > O} = 1, we therefore obtain 
n-

P{N = n} = 0 for n < lj!l/ (o+y). 
\) - \) 

Also, for n < n (1- e:) = lj!vl/o ea./o(l- e:), we have 
- \) 

P{N = n} 
\) 

• •• (4.3) 



-~ 
.:::_ kn , 
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for "big enough" v. This follows from Corollary 1.2 under the condition 

that E{lq,1 2~}< 00 for ~~1. Let a 1 = [1/J~/(o+y)]+l and a 2 = [n)l-e:)]. 

Then, we obtain 

a2 

E P{N = n} < 
v -

n=a 
1 

n=a 
1 

for ~ > 1. This expression in (4.4) is of 

(o+y)(l-V,)/48. 
k+>.. 

Next, for n < n - kn 2 

- v v 

P{N = n} 
v 

< P{n> 1/Jl/o Ua/o _ t} 
- - v n 

-~ -~(2>..-1)/0 
< kn 1/J , 
- v 

.•. (4.4) 

d ,,.-(~->..) /28 . f I:' l + 
or er "' 1 .., > v -

= ,,,l/ 0ea/ 0 - k'· (~+>..)I O we have 
"'v "'v ' 

for v "big enough". This follows from Corollary 1.2, given that 

k+>.. 
Then, fo. r a = [ n - kn 2 ] we have 

3 v v ' 

~+>.. 
P{ri (1- e:) < N < n - kn 2 } 

v v- v v 

< 
kifJ-~(2>..-1)/0 

v 

< kifJ(1-20)/o, 
v 

n 
-~ 

.•• (4.5) 

which is easily seen to be of the specific desired order if ~ ~ (5 - 2>..) /8>... 
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~+A 
Finally, let a 4 = [ n + kn ] . Then, we obtain 

" " 

< P { a4o < \jJ ua. + \jJ a -4y} 
- va v 

4 

if A - ~ > -y and v "big enough". The requirement for A and y will always 

hold if y ~~- Now, Corollary 1.2 gives 

P{N > a4} < ka-4~ \jl-2~(A-~)/o < k\jl-20/o' ... (4.6) 

" - " - " 
which has the specific desired order if ~ ~ (1 - 2A) /BL This requirement 

is clearly satisfied if ~ ~ (5 - 2A) /BA,. which was the condition for the 

terms in (4.5) to satisfy the specific desired order. The Theorem 2.6 

now follows by combining (4.2), (4.4), (4.5), and (4.6). 

4.3 Proof of Theorem 2.8 

We will first prove (2.5) for a subsequence {v.} of {1,2, ...• } for 
1 

which 

< •••• 

For brevity, we will use the following notations: · N. = N , 
1 ". 1 

••• (4.7) 

b. = \jll/o and 
1 ". 

1 
_ -(~-A)/o 

E. - \jJ • 
1 ". 

Now, let i be "large enough" such that [b.] > 0. 
1 

Then 

1 

we have 

P{l(N./(ea./o[b.]))-11 > E.} 
1 1 1 



< P{j(Ni/(e010 [b.])) - (N./(e010b.))I > ~e:i} 
- 1 1 1 

+ P{j (N. I (e010b.)) - 1 I > ~e:i} 
1 1 

. !.: 
= P{(N./ni)(b. - [b.])/[bi] > ~e:.} + O(e:~), 

1 1 1 · 1 1 

by Theorem 2.6. Let i be sufficiently large for the following to be 

true: 

(b.-[b.])/[bi] < 1/(b.-1) < 2/b .• 
1 1 1 1 

Then, by the help of Theorem 2.6, we get 

P{(N./n.)(b1 -[b1 ])/[b.] > ~e:1 } 
1 1 · 1 

< P { (N • In . ) - 1 > ~b . e: . - 1 } 
- 1 1 1 1 

which now, combined with the above, gives 

By (4.8) and Theorem 2. 7 we get (2.5) for the sequence {v.}. Next, 
1 

!.: !.: 
P{ I (N .In.) 2 - 1 j > e: ~} 

1 1 1 

34 

••• (4.9) 

and considering the sequence {vi}, (2.4) now follows from our Lemma 1.2. 

Furthermore, since we have 

P{j((N.-1)/n.)-lj > ke:.} < P{l(N./n.)-11 > ke:1.-n-1
1 } 

1 1 1 - 1 1 

~ = O(e:.), 
1 
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the same arguments as used above will be applicable to conclude (2.5) and 

(2.4) when N. is replaced by N. -1. This gives us (2.6) and (2.7) for 
1 1 

the sequence {v. }. Finally we need to prove that equations (2.4) - (2. 7) 
1 

hold for v = 1,2,.... We define 

V = {All sequences {v.} such that (4.7) holds}, 
1 

v = 1, 2 , .•• , and x E ( -oo, oo) • So , we can write ( 2 • 4) as 

!.:: 
sup If (x) - ~(x) I= O(e 2). 
x \) \) 

Also there exists a positive number k1 ( < 00) such that 

!.:: 
sup If (x) - Hx) I 2_ k1 e 2 , 

x "· "· 1 1 

i = 1, 2, .•. , for all { v. } E V. 
1 

••• (4.10) 

[ If this was not the case, we could find a sequence {vi*} E V such that 

(2.4) is violated, and this would contradict what we have just shown.] 

Now, (2.4) follows from (4.10) since vE {v.} for at least one sequence 
1 

{v.} EV, v = 1,2,.... The same arguments hold for (2.5) - (2. 7), and the 
1 

Theorem 2.8 is thus proved. 

4.4 Proof of Lemma 3.2 

Let k be a generic positive constant which is independent of d, and 

2 
let c = (as/k1 ) • From (3. 6) we get 

• • • ( 4 .11) 

where I {x_ 2_ y} 
if -oo < y < x < oo. 



Taking the expectations in (4.11) leads to 

2 -2 · -2 
cd- e _< E(Md) _< cd e + 1 + m P{cd U < m }, 

o m - o 

2 
where E{Um } = e = k1 n1 • Now, 

0 

P{cd-2u < m} 
m o 

0 

< P{e-u > e-kd2- 11 } 
m 

0 

0 
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• • • ( 4 .12) 

where it is assumed that E{jcpj 2~}< 00 for some ~2:_l. In this case, the 

first part of the lemma then follows from (4.12). Next, we have from 

(3.6), 

2 -2 2 2 
Md < max{ (cd U + 1) , m } , 

- m o 
0 

and thus, 

Now, combining (4.12) and (4.14), and utilizing (4.13) we get 

2 -4 
c d Var U 

m 
0 

2 -4 
< c d Var U 

m 
0 

From Hoeffding (1948) we get the variance of U which gives 
m 

0 

• • • ( 4 .14) 

. . • ( 4 .15) 

••• (4.16) 



Observing the coefficients of kin (4.15) and assuming as before that 

~ ~ 1, the dominating term will be the one involving d-2 as d-+ 0. Thus 

(4.16) and (4.15) will lead to the second part of the lemma. 

4.5 Proof of Theorem 3.2 
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Let k be a generic positive constant which is independent of d, and 

2 
let c = (as/k1) • From (3.6) we get the basic inequality 

Then, we have 

-2 a ~+A -2 a 
< P { cd U + 1 > md + kmd2 , cd U > m } 
- m m o 

0 0 

••• (4.17) 

Now, we also have 

= O ( d ~ ( 4 ( A-\) + n) ) , •.• (4.18) 

by Corollary 1.2. For this to have the specific order, we need~~ 

(1-2A)/(2n-4+8A) and A> (2-n)/4. As in (4.13), we can also write 

if ~~(1-2A)/2n. This will always hold if the conditions for (4.18) 

to have the specific order hold. So far we have shown that under the 
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conditions of Theorem 3.2, 

••• (4.19) 

Next, we have 

km~+A} 
< m -

d d 

••. (4.20) 

By comparing with equation (4.18), we see that the same kind of arguments 

that led to (4.19) will also be applicable to obtain the specific order 

in (4.20). This concludes the proof of Theorem 3.2. 



CHAPTER V 

EXAMPLES 

The examples are mostly given for the purely sequential setting. 

The applications of the two-stage procedure will follow similarly. In 

example 5.4, the two-stage procedure is given for the purpose of compar-

ing it to the existing procedure of Graybill and Connell (1964). For 

simplicity, we will write N,M instead of Nd and Md, respectively. 

5.1 Bernoulli (p) 

Let x1 ,x2, ••• be i.i.d. Bernoulli (p) random variables, p E (0,1). 

Having recorded x1 , ••• ,Xn' the usual estimator for pis taken as 

- -1 n 
X = n E X .• 

n i=l l. 
x 

n 
is a U-statistic for which n1 =Varx1 = p(l-p), 

2 -1 n - 2 
where n1 is as defined in Section 3 .1, and Sn = (n - 1) E (X . - X ) 

i=l l. n 
= 

n(n - 1)-l X (1- X ) is a U-statistic estimating n1 for n~ 2. In order 
n n 

to obtain a (1- q) - confidence interval for p having the preassigned 

width 2d, (3.2) suggests the following stopping time: 

s! is based upon the kernel <I> defined by <l>(X1 ,X2) = !a(X1 - x2) 2• Follow

ing the notations of Section 1.3, it is straightforward to show that 

2 3 4 
~l = Var{<j>l (X1)} = J.i(p - Sp + Sp - 4p ) • 

Now, for AE (O,!a), Theorems 2.6 and 2.9 lead to 
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for y'::._1/2, and if y'::._3/4 and t;1 is as given above, then we also have 

I 1: 2 - 2 -1 ~ I 1'->.. 
sup P{(p(l-p)) 2 (N-a p(l-p)d ) ~xad 2t;1}-1>(x) O(d 2 ). 

x 

We estimate p by the confidence interval IN= [~ - d , ~ + d]. Then from 

Theorem 3.1, we obtain 

k-11. 
P{p E IN} = 1 - q + 0 (d 2 ) • 

5.2 Poisson (o) 

Let x1 ,x2 , ••. be i.i.d. Poisson (o) random variables, o E (O,oo). 

Our interest is in estimating o. We propose the interval IN = [~ - d, 

~+ d], where 

Then for any 11. E (O,~), we get (similar to the previous example) for 

y '::._3/4, 

sup 
x 

and for y ?._ 1/2, 

1: >.. 
= 1 - q + 0 (d 2- ) • 

5.3 Gamma (o,S) 

Let x1 ,x2 , ••• be i.i.d. Gamma (o,S) random variables for o E (0, 00) 

and SE (O,oo), that is the probability density function of the X's is 

0-1 
assumed to be proportional to x exp (-Sx) for x > 0. 
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5.3.1 Estimating o When Sis Known 

Define µ = E(X ) = o/S and 
n 

is equivalent to estimatingµ 

I = [SX -d, SX +d]. Estimating o by I 
n n n n 

by I*= [X - (d/S) , X + (d/S)] which is 
n n n 
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really in the context of our Section 3. We then propose IN as an inter-

val for o, where we write 

Now, as we did in the previous examples, we obtain and state, as illus-

trations, the following results for any>. E (O,~): 

sup 
x 

I 2 -2 -1 I 1:->-p {N - a od .::_ xad } - <P(x) = 0 (d 2 ) , 

for y ~3/4, while for y ~1/2 we have 

5.3.2 Estimating S-l When o is Known 

-1- -1-
Define I = [ o X - d , 8 X + d]. 

n n n 
Estimating S-l by I is equivalent 

n 

to estimating µ by I*= [X - 8d , X + od]. 
n n n 

Now we propose IN as a confi-

-1 
dence interval for S , where we write 

In this example, we then readily obtain for any ;\ E (O,~) and y ~3/4, 

sup IP{N - a2s-2d-2o .::_ 2a(doS)-1x} - <P(x) I = O(d~->.), 
x 

while for y ~ 1/2, we have 

1: >. 
= 1 - q + 0 (d 2- ) • 



5.4 
2 

Normal (µ,a) 

2 
N(µ,a) random variables µE (-00,00), 

E (0 ) d h bl f . . 2 h . k a ,oo. We consi er t e pro em o estimating a wenµ is un nown. 

2 -1 n - 2 
For n.:::._2, let us use S = (n -1) E (X. - X ) , which is a U-statistic, 

n i=l i n 

as an estimator for a2• Now, by a result from Hoeffding (1948), we get 

4n1 = ~,!! n Vars!, that is n1 = a 4 /2. We then suggest IN= [S~ - d , S~ + d] 

2 
as a confidence interval for a , where 

Now, for y ~ 3/ 4 and any A E (O ,~), our Theorem 2. 9 gives 

sup 
x 

we have 

I 2 4 -2 2 -1 I ~-A 
P{N-2aad ..::_4aad x}-q>(x) =O(d ),whilefory~l/2 
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Next, let us consider the two-stage procedure defined through (3.6). In 

the context of this example, we get 

m = max{[ (a/d) n] + 1 , 2}, 
0 

2 -2 4 
M = max{ [ 2a d S ] + 1 , m } , 

m o 
0 

for n E (0,2). Now, Lemma 3.1 gives 

as d+O, and for >.. E (\(2 - n), 1/2), Theorem 3.3 gives 

P {a 2 E ~} = 1 - q + 0 ( d~- >..) • 

• • • (5 .1) 



Let us now consider the two-stage procedure leading to the sample size 

M* proposed by Graybill and Connell (1964). This M* is defined by 

where m1 ( .::_ 2) is the starting sample size and 

M1 = [2 + '11"(q""'2/ (m1-l) - 1/ (m1 - 1) 2 s!
1

/4d2 ] + 1. 

. 2 
Then P{cr E \i } .::_ 1- q, and 

1 

* 4 2 E(M) C>:! m1 + 2 + h(q,m1)cr /d, 

* Let us now compare our Mand Graybill and Connell's (1964) M by 

considering 

* e(q,m1) = lim {E(M )/E(M)} 
d-+O 

As an illustration, let q = .05. 

2 = h(q,m1)/2a. 

Now, the following table gives the 
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values of e(.OS,m1) for some values of m1 • The quantity e(.OS,m1) being 

larger than unity will signify the superiority of our two-stage proce-

dure. In the context of our particular problem, the Table I shows that 

the procedure through M* will require more than 3.5 times the sample size 

required by the procedure through our M, over the range of m1 considered 

here. Notice that this remark holds for m1 being as large as 105 • How

ever, the larger average sample size required by the procedure through 

M* is expected to provide us with higher coverage probability than our 

target, namely, (1 - q) as d + 0. 



TABLE I 

VALUES OF e(.05,m1) 

10 
50 

100 
500 

1000 
10000 

100000 

9.05 
4.32 
3.98 
3.73 
3.70 
3.67 
3.67 
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CHAPTER VI 

CONCLUSIONS 

This study considers a general stopping time based on U-statistics. 

The purpose is to develop a general setting that will apply.to many situ-

ations where the family of distributions from which we sample, is known 

apart from some unknown parameters. 

Our interest is in studying asymptotic properties of the stopping 

time N. First, some convergence results are given where the limiting 

normality of standardized N is stated in the main theorem in that section 

(Theorem 2.3). Next, we give the rate of convergence for these results 

under some additional moment conditions (Theorem 2.9). 

These results are then utilized for the problems of estimating the 

mean of a U-statistic by a fixed-width confidence interval of length 2d. 

The convergence rate of the coverage probability to a pre-determined con

~-)._ 
fidence coefficient is shown to be of order O(d ), A E (i,~), where 

i = 0 in the · sequential case (Theorem 3 .1) , and i > 0 for the two-stage 

procedure (Theorem 3.3). Some examples are given where sampling is 

carried out from a Bernoulli (p), Poisson (o), Gamma (o,8), and N(µ,cr 2) 

population. 
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