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1. Introduction.

A statistical procedure is asymptotically robust if its large-sample properties hold

under conditions more general than the conditions under which the procedure is derived.

The justification of such procedures is often based directly or indirectly on a central limit

theorem. In this paper Lindeberg-type conditions are utilized to establish asymptotic

normality of sample regression and autoregression coefficients. '.' .

The classic -central limit theorem for independent identically distributed scalar random

variables x 1 x2 .... qtates that @/ , - N(O, a2 ) as n --+ oc if £x 0 0 a (x a 2 :

here I, = -7= 1 x/n is the mean of the first n observations. The requirement that the

variables be identically distributed can be dropped. For Exi = 0 and £x? - a,

n

7n xi -- ) N (O, 1),

where -- "

(1.2)=7

if for any given s > 0

(1.3 Lx i I~ i > 7 --- 0

7ni=1

as n -+ oc. Here I(.) is the indicator function. If or2/7 2 0 as n oc, then (1.1) implies

(1.3); in this sense the Lindeberg (1922) condition (1.3) is minimal.

The condition of independence can be weakened to a condition of martingale differ-

ences. A very general theorem, which we shall use. has been given by Dvoretzky (1972).

For justification of later theorems we state this result in terms of a triangular array of ran-

dom variables (and include a normalization in the definition of the random variables).

Theorem (Dvoretzky). Let xn1 .... ,x,, be a set of random variables and .TO C

.T, 1 C ... C .Yn be a set of or-fields, n = 1,2,..., such that xnj is .T,-measurable.

(1.4) $(xnjJ7n,j_i) = 0 a.s..

2 =2(1.5) -'XJn-)= Unj a.s.,



(1.6) 2 P )2
io

as n -+ 0, where o.2 is constant, and for any given e > 0

n

(1.7) n > 0.
f=l

Then

1:XjI N(O, or2 .

j=1

Dvoretzky actually showed that this result holds if F,,,J.j_ is replaced by 3,,j-], the

a-field generated by Ei= xni. Generalizations have been given in Section 3.2 of Hall and

Heyde (1980) and Section 9.5 of Chow and Teicher (1988). Further references can be found

in these books.

In this paper we consider the estimation of the matrix of regression coefficients B in

the model

(1.9) yt = Bz + vt, t = 1,2,....

where the unobservable vector disturbances v, are martingale differences; that is, the

conditional expected value of vt given earlier observed yt's and zt's is 0. The conditional

second-order moments of the vt's are finite, but not necessarily the same for all t. However,

the Vt's satisfy a kind of Lindeberg condition. The "independent" variables zi are assumed

to have a sample covariance matrix that converges to a limit in probability, and the zj's

satisfy a kind of asymptotic negligibility condition. It is shown that the least squares

estimator of B has an asymptotic distribution that is the same as in the case that the

vt's are independent and normal with mean 0 and constant covariance matrix. Thus the

disturbances do not need to be homoscedastic nor do they need to be independent. The

relaxed conditions are particularly important when the observed Zt's and yt's constitute a

time series.

In the autoregressive model, which is extensively used in time series analysis,

(1.10) xt =Bx,-i + vt, t= 1,2,...

2



the vector zt is replaced by xt- 1 . The conditions on the vt's imply the desired conditions

on the Xt-l"s.

In Section 4 the mixed model is considered; the right-hand side may contain both

lagged "dependent" variables and independent variables.

If the disturbances in the regression model are normal, independent, and homoscedas-

tic. and the independent variables are nonstochastic, the estimator of B has a normal

distribution with expected value B and covariances determined by the common covariance

matrix of the disturbances: it follows that the asymptotic distribution is normal. The re-

striction of homoscedasticity was relaxed by Anderson (1971) in Theorems 2.6.1 and 2.6.2

under a Lindeberg-type condition on the disturbances and the condition that the sample

covariance matrix of the independent variables have a nonsingular limit.

In the autoregression model the least squares estimator of B is nonlinear in the dis-

turbances. Mann and Wald (1943) showed that the asymptotic distribution of the estima-

tor of B is normal under the condition that the disturbances are independently identically

distributed and possess moments of all orders. Anderson (1959) showed that in this case

only the second-order moments need to be finite.

There are many recent results in this area. Lai and Robbins (1981) proved a theorem

for a scalar dependent variable with independent identically distributed disturbances. Lai

and Wei (1982) proved a similar theorem under the conditions that the moments of the

disturbances of some order greater than 2 are bounded and that the variances of the

disturbances converge to a constant a.s. Our approach follows these papers, but the

conditions have been relaxed. Chan and Wei (1987) have used a Lindeberg condition for

a special case of the autoregressive process; see also Lai and Siegmund (1983).

2. Robustness in Regression.

We consider the regression model in which the observed vector-valued dependent

variable yj is generated by

(2.1) yj =Bz+vt, t=1,2,...

where z1 is an observed vector-valued independent variable and {vt } is a sequence of

(unobservable) martingale differences satisfying a Lindeberg-type condition.

3



Theorem 1. Let {zt,vt), t = 1,2,..., be a sequence of pairs of random vectors, and

let {.Ft} be an increasing sequence of a-fields such that zt is Ft-I-measurable and vt is

.Fi-mneasurable. Let the matrix D, be .F0-measurable such that.

n

(2.2) D 1 E ztz'(D'n)-I p-) C,
t=l

a constant matrix, as n -+ 0c, and

(2.3) max z(D,D,,) z-t P 0.
t=.n

Suppose further that S(vtI.FTi-) = 0 a.s., £(vtv,'I.Ft_) =E a.s.,

(2.4) E[t 0 D - 1 'ztz,(D,'] z 0 C.

where Z is a constant positive semidefinite matrix, and

(2.5) sup 'F[vtvI(v'vt > a - ) 0
t=1 ,2,...

as a -o c. Then

(2.6) vec (Dn1 ztv) t - N(0, .E 0 C).

Proof. The conclusion holds if

n n

(2.7) tr D- 1  ztv'B = n vBDZ'zt

t=1

ACN(0, tr ZBCB')

for every B. Let u,t = BD-lzt, t = 1,...,n. Then

n

(2.8) EUnU, -- P- BCB' =D,

t=1

say. We want to show that
Ti

(2.9) utvt -- N(O, tr ED).
t=l

4



Condition (2.3) implies

(2.10) max u"tunt...............ntn-*0

Let

(2.11) Wt = untl(Iju t11 < 1), t = 1..... n, n = 1,2 .....

Then flw,,afl < 1 and

(2.12) Pr {wt = ut, 1,...,n} 1

as n - c,.

Now we shall verify that rnt = Wntvt satisfy the conditions of Dvoretzky's theorem.

We have

(2.13) C(w''vtj7 1i)=w$ 1 (vtl. 1 )=0 a.s..

n n(2 .1 4 ) _ [ , , , , ) 1 1 , = W, , , . ,, t x

t 1 f=1

by (2.4). The third condition for {wt} to satisfy is

n= (( .,.)2 t[,,. .)2 > 6] o.t~ I P 0V6
(2.15) A4(8) ZW , 2[ , 2 >6jI,_ -n 0 >0:

t=1

that is, given 6 > 0. 5 > 0, and y > 0, there exists n(e, -y) such that for n > n (e,

(2.16) Pr{A,(6) < E} > 1 -

We have

( . ) At(6 I n t")nt {2 t >,7 t--1

t=1

5



Given -* > 0 and -* > 0 there exists nl(-*. )*) such that for n > n*(e*,O)

(2.1S) Pr {I!w,112 < t = 1. n} > I -

Hence

(2.19) Pr {4n(0) Wttt > ).' t _1 } _ 1>-
t=1

Since

(2.20) W1 ntllntC V Vt V t > . -'-

f=1

n
< FXnfn SU V V iV

t=l 5

say. That is.

(2.21) Pr {A,(b) < B, ~

if n > n1 (**) Let

(2.22) C(d)= sup ' [vvl(vv, > d)lSF-,].
s=1,2....

Condition (2.5) is that given f > 0, 1 > 0 there exists a d(F.,) such that for d > d(c,)

(2.23) Pr {C(d) < c} > 1 -.

Condition (2.2) implies that given a > 0, § > 0 there exists n(a. 5) such " -

n

(2.24) Pr{Zrf,_._ c~~nt Cnf <_ tr D + a) _1 -#

1=l

Hence

(2.25) Pr B, < }F 1-' -

6



if rr D - a ) ( -. > (. ). and ii > h(a.). Then (2.16) holds if + +, + < y.

tr D-.-u :- K ,'/d(l ( j. ).nd, a > max . * ). i (a. , I . The theorem follows

from the t heo- . ini the introduction [Dvoretzky (1972)]. [See. also. Corollary 3.1 of Hall

and Heyd , t 1950 or Theorem 2. Section 9.3. of Chow and Teicher (1988).] 1

Theorem 2. Let {vt } be a sequence of random vectors and let {.Ft } be an increasing

sequenlce of r -fields such that vt is -Ft -measurable. (vt.Fe1 ) - 0 a.s.. $(vtvlFt) - X,

t" ' . ._61  - -1 21 p_ 2 .

t-=t

•~i1 , ._ t . i7

ilt
t=lI

2.2S - vtv -) Z.

Proof. If vt i. -calar. the proof follows froin Theorem 2.23 of Hall and Heyde (1980)

as indicated by Chan and \ci ( 19S7 . The theorem is then verified by taking arbitrary

linear combinations of t't. I

Theorem 3. For i observations on the model (2.1) define

2.29) B,, = yz E ztz t

t=1

TIT

2.30 Z:n- i (t,- S,,t(t ,- B.z,)'

,= I

1-( 1B,, - BB - B)'.



If the conditions of Theorem 1 hold with C nonsingular, then

(2 ',i) vec [(i3,- B)Dn] N(O. C - 1 G Z).

If, further. (2.26) holds, then

(2.32) P X

Proof. The proof of (2.31) is a straightforward application of Theorem 1. The second

term on the right-hand side of (2.30) is

(2.33) 1(b, - B)D [[D-1 - B)D f 1 0
- n n ztz,(D') n

7

t=1

by (2.2) and (2.31).

The purpose of condition (2.3) is to assure asymptotic negligibility of ztv'. What

alternative conditions imply (2.3)?

Lemma 1. Let {zt} be a sequence of random vectors, and let {.Ft} be an increasing

seq'-ence of a-fields such that zt is .Ft-measurable. Let Dn be FY0-measurable such that

D1 -- 0 a.s., D)D 1 - I a.s.. and

n

(2.34) D-1IE ztz , Cn zt(D n) - -C a. s.

t=1

Then

(2.35) max zt(DD, ) zt -- 0 a.s.
t=1 ...,n

Proof. From k2.34) we have

n+1 t

(2.36) D4- I ztz'(Dn+l)- - Dn' Z z~mnl

t=1 t=1

+ 
- 1 + D -

1 1
= - Z +I' nn+l1 ztz(D n,+)-

t=1

n+1
S(D'Dn+)D-+ ztzt(D"+l ) 1 (D- 1 Dn±)'

-40 a.s.

8



That is. IID7'z,,+ 1 1
2 --4 0 a.s. This implies (2.35) by the proof of Lemma 2.6.1 in Anderson

(1971). I

A special case of {zt} is that of zt nonstochastic: then (2.34) (which is the same as (2.2)

when {zt} is nonstochastic) implies (2.35) with the limits nonstochastic. In particular,

if D, is diagonal and the j-th diagonal element of D, is the square root of the sum

of squares of the j-th elements of the zt's., then D-F' 1 zIz'(D')-l is the correlation

matrix of z ..... z,. Tile theorem in this case is a relaxation of Theorems 2.6.1 and 2.6.2

of Anderson (1971).

Theorem 4. Let {zt} be a sequence of random vectors, and let {7t} be an increasing

sequence of a-fields such that zt is Fe7-measurable and

n
(2.37) 1 £ {;(D,D,,)-'ztI [zt(Dn,,)-lzt > 6] J.7",_, } P 0.

tl1

Then (2.3) holds.

Proof. We use Lemma 3.5 of Dvoretzky (1972): If {."t} is an increasing sequence of

a-fields and At .Ft. then for every 7 > 0

(2.38) P r { UA, Jo} 7± +Pr{ P(AtFt1) > rI.Fo}

For every E > 0. il > 0

(2.39) Pr{max z'(DnD')-lzt >Cl-Fo} Pr{ U[z(DnD')-lzt > eh'Fo}

-< + Pr { Pr (z;(D, D')-' z I> 6e.Ft-1) > 11[ro
1=1

< r+ Pr -ZC[(DnD13'.ztI zDa~t > >lf

ov a f-5rm of Tchebycheff's inequality. By (2.37) the right-hand side of (2.39) converges to

0. S",ce ri is arbitrary. (2.3) holds. I

,, , = a ! | |9



Corollary 1. Let {zt. vt }, t = 1,2 .. , be a sequence of pairs of random vectors, and

let {F-'t} be an increasing sequence of a-fields such that zt is .Fjj-measurable and vt is

.t-measurable. Let D, be .F0-measurable such that (2.2) and (2.37) hold. Suppose that

$'(vtlFt- 1 ) = 0 a.s.. $(vtv't.iF ) = Et a.s., and (2.4) and (2.5) hold. Then (2.6) holds.

The condition (2.4) determines the limiting covariance matrix of D- 1 
En ztv.I

Lemma 2. Let {zt. vt} be a sequence of random vectors, and let {f.} be an increasing

sequence of 7-fields such that zt is F.t-1-measurable and v, is Ft-measurable such that

'(vtIFt--) = 0 a.s., ES(VtVtl.F't_l) = .'t a.s., and Xt --+ Z a.s., where X is a constant

matrix. Suppose D, is .r 0-measurable such that (2.2) holds. Then (2.4) and (2.26) hold.

If. further. (2.3) and (2.5) hold. then (2.6) holds.

The homoscedastic case. Z = Z, is included and also the case of .rt nonstochastic.

An important case of {zt} is that in which Dn = v'n I; then Da-]'=ztz'(D,)- =

(1/ii)Z_ =ztz't: that is. this matrix is simply the sample covariance matrix for known

mean 0.

Corollary 2. Let {zt, vt } be a sequence of pairs of random vectors and let {Ft } be an

increasing sequence of a-fields such that z, is Fj -,-measurable and vt is Ft-measurable.

Suppose
n

(2.40) - ztz t - M.
12 t=I

a constant matrix.

(2.41) -max zZt 0.

1( vt 1-t_ )= 0 a.s.. E(vtv'i.t_j) = L't a.s.,

t=t

and (2.3) holds. Then

(2.43) 1' -e A:)I
t=

(2.43vec Zt A

10



if. further, A is nonsingular, then

(2.44) 0 -,ec( b, - B) - A l(. X );

and if, further, (2.26) holds, then (2.32) holds.

Condition (2.40) is equivalently (1/n) En I vec ztz' - vec M; (2.26) is equivalently

(1/n)vec Z, -L
p vec X; and (2.42) is equivalently

vec -t(vec ztz' - - Zvec 1vc P--a 0.
(2.45) tz n~ ne z~l z

t=1 t=1 _

The condition (2.45) is that vec -t and vec ztz' are asymptotically uncorrelated over t.

Even if the X2 t's are nonstochastic and the z, are exogenous this condition is needed to

obtain X 2 AT as the covariance matrix of (1//-n) vec E- 1 ztvt.

3. Robustness in Autoregression.

We now consider the autoregressive model.

(3.1) xt = B 1t-i +vt., t = 1,2

The form of (3.1) is (2.1) with zt replaced by Xt- 1 . We shall show that the least squares

estimator of B based on a 0 ,... , X,, has the asymptotic normal distribution of the least

squares estimator in the regression case. In order to show the analogies to (2.2) and (2.3)

we prove the following lemmas.

Lemma 3. If the characteristic roots of B are less than 1 in absolute value and if

maxt=l...nvvt/n v* 0, then for X, X2,... generated by (3.1)

(3.2) max ' P 0.
t= I__. n

Proof. Since o'xoo/n - 0 and the roots of B are less than 1 in absolute value,

x0(B')t - 1 Bt - xo/n o 0 and we need only consider

f-2

(3.3) Xt_ 1 = BSvI1..s.

s= 0

11



Then

1-2

(3.4) X= t v'X (Bv')-Bv
r,s,-O

1-2

< v'--l (B')rBssvt----1I
r,s O

t-2

< 3 Ar+ qrPsP (JIIVI-r- 112 + lvt-_sj12),
r.s=O

where A\ is the largest absolute value of the characteristic roots of B and q is a suitable

constant. (See Lemma 7 in the appendix.) Then

(3.5) max IIx*_ 112 <q max ivt, -2 p- 2

fl 1=1fl 1\s=O

Since the sum in (3.5) is bounded as n - oc, (3.2) follows. U

Lemma 4. Let x1, X2,.., be generated by (3.1) with and $xo x = Lo. Let {.'t} be an

increasing sequence of a-fields such that xt and vt are Y.t-measurable. Suppose the charac-

teristic roots of B are less than 1 in absolute value, £(vt I.Ft-1) 0 a.s., ,.(vtvtj.Ft_i) X,

a.s.. (2.26) holds with Z constant, and (2.27) holds. Define

(3.6) F = E BSL(B') .
s=0

Then (2.28) holds,

in
(3.7) n- tXt- 1 P+0

t=1

n

(3.8) n 1-I-- F.
t=ot

Proof. From (3.1) we have

1-2

(3.9) Xf-= Z BSv-.-. + B'-lx°.

1=0

12



For some 9 > 0 define x~o = xro.

(3.10) Vni = V1l {try: Z., n(1 +0) tr X

t-2

(3.11) =nt- E B-v,,t-i.-, + B'-'Xn0 *

8=O

Then

(3.12) Pr {Vnt =t 1,t pn 2f1

(3.13) Pr I{xnti =Xt. 1 ,t = ,. n} I~*1

(3.14) Pr f Vntlt- tX'n1 t = 1 1. "

By construction cc, Ii 1
2  n(1 +9)tr Z~ anid EjjXn,l-112 < oc. Then

(3.15) tr S (± 1: Vnt(...-I 2n,s-lVns)

1
-7 E~ tr E5 n~ -lnsln

-~tr Xn n, t-'Xn,sg-lVn's Vnt

n2 E XI , -~n8 (VrzsVntI.Fznax(s,t)-1)

Since maxt=l1.n IV t 12/f -n- 0 by Theorem 4, we have maXt=l . n -F(IjVnl1I 2 IC,1)/n -p-

0 by (3.6). Now consider for 2 < t < n -1

in

(3.16) n E gcn~t1 iX n~t

t=1

n t-2 t-2

t= ( r x)(v 8=0 ,1 .8 -1

n n

t=2 s=O 1

n-2 1 n~ Bn o(

= Bsa E~3 l + EB-1Z B

8=0 t~s+2fl

13



The trace of the first term on the right-hand side of (3.6) is not greater than (1 + 6) tr F.

Hence. (3.5) -* 0, and (3.7) is proved.

From (2.28) and (3.1) we have

(3.17) 3l vtv' =l (xtx' - tx_1 B' - Bxt4. 1 + Bxt-lx.-,B')
t=1 t=1

From (3.7) and (3.1) we have

(3.18) i y. = i Z( '~- '- x - 1:(tx-, - Bxt-lx'_)n I: " =~t- n

t=1 t=1
p

- 0.

If we add to (3.17) the result of multiplying (3.18) on the right by B' and the transpose

of that product, we obtain

1I n 1 n

(3.19) -ZVIV, + -Zt~B +i-~ tv
n I n Evtx',-B' + -BXX-v

t=l t=i t=1

lZ - B 1 =' B
n n

t=1 t=1

Furthermore, Lemma 3 implies

1 n 1 1 0~

(3.20) xt,- Y =tl~- -XX -4O 0
Sn n n n 0

t=1 t=1

Then (3.19) is equivalent to

I n 
n 

P

(3.21) 1 xjI'B i X
1=l 1t=1

which implies

n 1 n1

(3.22) F = plimn7 ,¢ 1 Z xt = piM7 1n0- E - 1
t=1 

t=1

14



See Problem 27 of Chapter 5 of Anderson (1971). Then (3.4) follows.

Theorem 5. Let xj, xg.... be generated by (3.1), where v 1 v 2 .... is a sequence of

random vectors and $-xox0 = Xo. Let {Ft} be an increasing sequence of a-fields such that

xt and vt are 'Ft-measurable. Suppose that the characteristic roots of B are less than 1 in

absolute value. £(vti.Ft I) = 0 a.s. S(vtvIl.7t-.) = .t a.s., (2.26) holds with .X constant,

and (2.5) holds. Furthermore. suppose

n .. P

(3.23) -(2t. Vt-l-rVt-l--s) * 6rs(Z X Z),
t=max( rs)+2

where 6,, = 1 and 6 r, = 0 for r € s. Then

(3.24) -vecE xt_,vI _" N(0 Z 3 F).

Proof. In Corollary 2 we take zt = xt-. We want to verify (2.40). (2.41). and (2.42);

(2.5) is assumed. Since (2.5) implies (2.27), Lemma 4 includes (3.8), which is equivalent

to (2.40).

We have

n(3 .2 5 ) En' j j ' _

t=1

n t B'vt-,- + B- 1 xo) B'vt-.,- + Bf-1xo

7 t= l \i= 0 \3= 0

If we define vo = = "- = 0, we can write

1-2 c

(3.26) E B'vt-,- + B t-lx° = E B 8 vS-i + B'-lxo
,3=-0 3=0

k or

-= ZBSvt-s,-1 +  Bsvt-,-1 + Bt-'x .

s=O s=k+l

For t > p + 1

(3.27) IB '-  xoll <_ 2A2('-)q(t - 1)P1 jxo112 .

15



Hence
n 

P 0

(3.28)-1 1 [ rt G B'-' x o 0.
t=1

(See Lemma 8 in the Appendix.)

Consider the positive semidefinite matrix

(3.29) 1 ,st @ BrviriVB s

?2 =1 r,s=k+l

We shall show that with arbitrarily high probability the trace of (3.28) is arbitrarily small

if k is large enough. That will follow by showing the same property of

(3.30) 1 : ,nt B v.,t-_1V _ ,_i_(B,)'
(0 t=3 r,s=k+l

where Ent C(vntv'1 .t_i). The expected value of the trace of the second matrix in

(3.30) is

00

(3.31) C 1 tr Vn,,_r-1V',,_qj(B)

r,s=k+l

c

vn ,S _s-i(B )-B Vn,t-r-1

s=k+l

< 1: A'2 q*s2  v:,t-s-V,,--I
szk+l

= q* A\sS2PSC[Vf,,_s1VntslI(Vn,1slVn-sil _ a)I- t-s-2 ]

s=k+

+ £[ 1n,tvsl n,t-i---(Vn,t-s-i- > a)I..Ft,-s2]}

<q* 1:2 A: a+ E sup E [V,,VntI(vntv,,, > a)j.F,-i]•

s=k+l t 1,2,....

Since Z--=k+l A2
ss

2
p converges, the second part of the right-hand side of (3.31) can be

made arbitrarily small by taking a large enough; the first term can be made arbitrarily

small by making k sufficiently large. Thus (3.31) is arbitrarily small, and by Tchebycheff's

inequality the second matrix in (3.30) is arbitrarily small with arbitrarily high probability.

16



Now

(3.32) - B Vt-r-1-t'_r-)(B) " Z B (B') 8 .

t=l r, s=O I 3=0

If the right-hand side of (3.26) is written as at + bt + ct, we have shown above that

n

(3.33) 1:X, 0bt -2-40
t=l

and that

in

(3.34) tr - ('t S Ctc')
t=l

can be made to converge in probability as n - oc to an arbitrarily small quantity. It

follows from the Cauchy-Schwarz inequality that

(3.35) 1 Z ( ' 0 atc',) - 4 0,

n

(3.36) - Z (' 1 0C btc') ')0

and tha

t=l

n

(3.36) _1 (ZI 0 btct) ) O,
t=1

and that

(337) _1 r (S (F tabt)

t=l

can be madc to converge in probability to an arbitrarily small quantity. Hence.,

(3.38)1 Ft 0 _t- l] P ) E & -F.

t=1

Hence, by Corollary 2 (3.24) follows. 3

The least squares estimator of B is

(3.39) B E t-

17



and the estimator of X is

(3.40) 2= E(± - B,t_, )(xt- B x,_'

€=1
n n

nEv- Bn-B)n 1 t1x- h )

f=l t=1

Corollary 3. Suppose the conditions of Theorem 5 hold and F is nonsingular. Then

(3.41) Vrvec(3, - B) A N(0. F

and (2.32) holds.

The conditions (3.23) in autoregression replace condition (2.4) in regression: they

imply (3.38) which is the analog of (2.4). The limit (3.38) is that vec Zt and vec xjix 1 _1

are asymptotically uncorrelated. The condition holds identically in B; the conditions

(3.23) are independent of B.

Corollary 4. Under the conditions of Theorem 5 with (2.26) and (3.23) replaced by

X-t - Z a.s., (3.24) holds. If F is nonsingular, (3.41) and (2.32) hold.

Proof. The condition Xt -+ X a.s., where X is constant, implies (2.26) and (3.23).

I

A higher order autoregressive process can be reduced to the first-order process. Sup-

pose X 1 , X.2... satisfy

(3.42) Xf = BIXt 1 + ... + BPXIp + Vt = 1,2.

Define

Xt Vt
X t -1 0

(3.43) X, vf

s1



-iB2 B3 ..Bp 2 0 0 ..0-
1 0 0 ... 0 0 0 0 .,..

(3.44) B 0 1 0 ... 0 0 0 0 ... 0

0 0 0 .-. 0 L 0 0 0 ..

where F(VtI7Ft-) 0 a.s., S(VV/.tFte-) = S2t a.s., and {.Ft} is an increasing o-field such

that Xt and Vt are Ft-measurable. Then {xt} satisfies (3.1).

Theorem 6. Let

X0

(3.45) E . ' ' '

X-P+1

and let X1. X2..... be generated by (3.42). Let {Trt) be an increasing sequence of a-fields

such that Xt and V are Fi-measurable. Suppose the roots of

(3.46) IAPI - Ap-B 1 -.-- B BP 0

are less than 1 in absolute value, $(VI.Ft-) = 0 a.s., C(V I'I.t_i) = ( t a.s..
in

(3.47) E o *

72

t=1

which is nonsingular and constant, and (2.5) holds with vt replaced by Vt. Define

n

(3.48) (l n b 2 ..... . x' x ' - Xf- - -

t=l
En=I Xt-I X' En 1. ,tlnX-xl

t --1 t= l X t- 2 E n --1

Et=1 Xt-2XI-i Et=, X1-2Xf-2 ... Et=l X(-2Xt-p

x

LE,"_ -P ,_x 1_ E=1 x tx_ .. t= xx_

n

(3.49) hn, = E(Xt_ - 1nXt-1 .... nmXf-p)(X1- 11nXt-1 .... 1pnXt_p)'.

1=1

Then

(3.50) n -

19



Xt-i ]

- Xt- 2 Z

(3.51) 8= L= s0

XtP

say, where

-7 0 ... 0-
0 0 ... 0

(3.52)

and

(3.53) V7vec(Bin - B 1 ..... pn - BP) L N(O. FI 1"A).

Lemma 5. If Q? is nonsingular. F is nonsingular.

Proof. The proof is a vector generalization of the proof of Lemma 5.5.5 of Anderson

(1971). 1

4. Robustness in Mixed Regression and Autoregression

Now we consider the model

(4.1) x, = Bxt-i + Azt + v, t = 1,2,.1...

This model is analogous to the regression model (2.1) with zt replaced by (x_, z' The

least squares estimator of (B, A) is

n y X- 1 -1  En Xt...Zt I -

(4.2) (B3 , a = E XtZ , [xz n I E n ,ZtZ
t=l ,=1 E1=1 Z, ,_ t,=, i z

and the estimator of Z is

(4.3) ±n= E (XI - XI- Z1)(Xt --- B nXI - Aanzt)'.

t=1

20



Theorem 7. Let '-7xxo = Xo: let xi~x.2 .... be generated by (4.1), and let z., z 2 ....

bc i sequcnce of randol varialbles (possibly degenerate). Let {.t } be a sequence of increas-

in,.: 7 field.- such that V, i F1 -measurable and zt is FtY- -measurable. Suppose the charac-

teristic roots of B are less than 1 in absolute value, $(vt I.Ft-1 ) = 0 a.s., $(vtv'ITuj )  ,t

a.s.. and (2.5). (2.26). and (2.41) hold. Suppose

(4-4 ~ Lh~ AMh M=A1, h h =0. 1.2.

1 --

1 Z ' Ph

E zt+-,vh 0, h 1,2....

t=1

Det-in-

DCI

4.6) L E B',AAL(,l).

Then

(4.7) - x t-lZ, --- L.

t=1

(4.S) . S ) Ztxtt_ -+ Q.
f=l

where Q is the unique solution to

(4.9) Q - BQB' = Z + BLA' + AL'B' + AM 0 A'.

Furthermore. if (2.42) and (3.23) hold and

(4.10) - f ( t :: vtl ,--t) -p  0. s = 1 , ..

1=l

then

(4.11) /vec(B,, - B.1,, - A) w .X)0 1L' M

21



and (2.32) holds under the further assumption that the inverse matrix in (4.11) exists.

Proof. Because the roots of B are less than 1 in absolute value, the sum in (4.6)

converges (by use of the Cauchy-Schwarz inequality). From (4.1) we obtain

t-2 t-2

(4.12) X t-, = E Bvt - l - , + Bt-lxo + E B Azt- 8
s=O 8=0

k OC

Y, B~vt-,-, + E B vt-] -, + B '- ' xo

s=O s0 k+ 1

k OC

8=9= s k+lI

where v'0 =.. 0 and z0  z- ... 0. Then

I l 'II 
n k

(4.13) - z V- B'(vjl.- + Azjp 8 )z

t--- t=1 s=0

1 - A, [
+ Bt xoz + '7 B(vt--, + Azt-l_ )z

t= s=k+l

We calculate by use of Lemma 7

1-v -i , 11 + l tI

(4.14) - B - -- 1
t=1 s=k+l t=1 s=k+l

- q** AS ) S3P-1 _ 3 (IIvj 112 + IIz 1!2).
n

s=k+1 =

Since E' 0 , onverges and Z,=1 IztII2/n p tr M 0 . we can choose k, sufficiently

large to make the right-hand side of (4.14) arbitrarily small with arbitrarily high proba-

bility. Similarly the other two terms in the second sum in (4.13) can be made small. Then

I k 
k

(4.15) - B (t-_- + AZt-l-)z; p E BSAM-k"
77 = 8=O

That leads to (4.7).

From (4.1) we have

-- = n Xt t' -tx-x -A t

(4.16) VgV t t

t=22

99



x ~ ~B' ±'B '~1 ' z ~B'xtxt_ 1  '+ B xtlx ', ,B ' + .,AztxtIB

- a;zA' + Bxt_,z;A' + Aztz.A' ]

p )Z

(4.17)ix E Z ,4 Z{txl, - -xZtjij.
t=1 t=l

in 
720

(4.1$ ~ >vit n E3 [xtzf - Bx1 .1 z', - Aztzj ', 0
t=1 t=l

If (4.17) P 0. then from (4.16), (4.17). and (4.18) we obtain

(4.19) E Z xtx - Bxt 1 xtlB')

t=1

- 1-(xt2x, - Bxt'tB') + Ba,7 'oB' - Bx0x'oB'
t=1

p- X + BLA' + AL'B' + AM/A'.

If (1/n)x',,X - 0. then (4.8) follows from (4.19). Thus

(4.20 -- n- E zt ., L '
t=1 ,M

Now we consider

in

(4.21) -

1=1

( 4.2 1 B"(AI) zt- (zvCsl

L2 tr,s=O \/t-- 8

If the sums in (4.21) on r,s run from k + 1 to oc, the trace converges to an arbitrarily

small quantity by taking k sufficiently large. Then

(4.22) t C B(A,I) zt ) ,3 v' ( (B')-]

t=l r,s=O us

kp r, 8 ' ,, :]U'
E~-~ B[ A M, -rA + 6r,,-Z(B).
r,2=0

23



Thus

(4.23k -E(z, I? x1_7xtI) Z V B±MAB' + )]

f1 tr.s=O s=0

= -Q.

By similar means we can complete the proof of

(4.24) 1 f t (-1)(x, ,)--(- L )

Theorem 1 can then be applied with zt in Theorem 1 replaced by (x'_,z')' to obtain

(4.11), and (2.33) follows.

To apply Theorem 1 we also need

1

(4.25) -max Ilxt_l12 P 0.

To prove this we need only consider

t-2

(4.26) _= B'(v,__ + AZz__).

s=0

Then

t-2 2

(4.27) . •LIX = Z Bs(vt 1 . 8 + AZti...
3=O

t-2 2 1-2 2

< 2 EZBsvt-- +2 : BAzt-l-s

s=2 8=0

By (3.4) the first term on the right-hand side of (4.27) is less than or equal to

tf-2 f-2

(4.28) 4 E \r+sqrP-1Sp-'IjVfj_,jj2 < 4 E Ar+sqrP-lsP-l max IIvt 112.
rs=O r,s-O

Since IIAzt-_,i1I2 < const IlZt_,_iII 2, we obtain

(4.29) IIX *t-i11 2  < 4 Er+ rP-1sp-l q max .... + q .max l 2)

r. 9=0

24



which implies (4.25) and 11X,1
2/n P ) 0.

Now we want to show that
n

(4.30) 1 S ' 0.
1=1

From (4.12) we have

n n 1 -2

(4.31) - 1tlt  t _v t

n 1

+ ±5Bt-x~ ± ± 5 B-zt-,-v,.
t=l t=l 3=0

It was shown in Section 3 that the first two terms on the right-hand side of (4.31) converge

to 0 in probability as n - oc.

Define vt by (3.10) and zt by

(4.32) znt = ztI(lz,II2 < n).

Then

(4.33) Pr 1 BAzt-,.lv E 11 BAZnts i
f =l 3=0 t=l 8=0

Consider

1 n,- 1 t--3

(4.34) $-tr B$,Az.,_8lvnt B /ZJt-r-lVnt

1= l S=0 I =1 8=0

t=l s=O r=O

1 n t-2 1'(B)BIV~tljt 
Y7 1n2--' E : 1 B S zn'--I n

t=l =0

< max Ilzn, 112 n-1tr Al'(B')'B 8 AL,(vnVnljY,_)

S=0

-0

because IIZ"I1 2 /n P 0 and IIzI112 is bounded and Et P_, ) and IIVfl 2 is bounded.

* This proves (4.20) and the theorem. 3
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Lemma 6. If assumptions of Theorem 7 hold and if Z and M 0 are positive definite,

then (4.24) is positive definite.

Proof.

(4.35) (c' d') = plim (c't + d'zt)2

) (C) ft=1

= (CVt-I1)2 + (c'Bxt- 1 + c'Azt-I + d'zt )2
n oc t= 1

+2c'vt-l(X4t_ 2 B'c + zt-zA'c + ztd)

= c'Lc + plim jZ(c'Bxtj + c'AztI + d'zt)2

t=1

> c'Xc

by (4.3) and (4.30). If the left-hand side of (4.35) is 0, then c = 0 because X is positive

definite. In that case the left-hand side of (4.35) is d'Mod = 0; since M 0 is positive

definite, d = 0. 3

A special case of the mixed model is zt = 1. Then (4.1) is

(4.36) xt= Bx- 1 + y + vt,

where -y = A or

(4.37) xt - = B(xt - ) + vt,

where -y = (I - B)p. In this case (2.41), (4.4) and (4.5) are automatically satisfied, and

condition (4.10) reduces to

1 n1

(4.38) E(±ZG ,0vt- s)- 0. S = 0,1, ...

t=1

The matrix L is

c

(4.39) L =Z B "-y = (I- B)-y,

8=0

26



and the matrix Q is

(4.40) Q = F + (I - B)-'y-y(I- B')-1.

In this case

(4.41)

3n X(X
1 

- Xf1 Y / t

f=l t= 1 =1 ) (t=- = t=l

and An (I - !), which is approximately (1/n)Z' 1 xj. The limiting covariance

mat- x of v'5 [(1/n) t- 1 Xt t-] is

(4.42) (I - B)-F + r(I - B)-1 - r.

The condition (4.5) suggests a kind of lack of correlation between Zt+h and v, which

is plausible if {zt} and {vt} are independent; that is, if the zt's are exogenous.
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Appendix

Lemma 7. Let the largest absolute value of the characteristic roots of B of order p

be A < 1. Then for any vectors u and v

(A.1) Iu'(B')rBvI <_ Ar+qrP- P-l(l,,UI 2 + IVII2)

for a suitable constant q.

Proof. There exists a matrix P such that B = P-1HP, where

0 H0 ... 0

(A.2) H 0= . . 0

0 0 ... HK<

the Pk X Pk matrix Hk A kI + Lk, Ak is a characteristic root of B, and(0 00.0  0)
10 0 ... 00

(A.3) Lk 0 1 0 ... 0 0

0 0 ... 1 ]
Then

(A.4) U'(B')rBv = u'P'(H')r(PP')-lI HPv.

Let

- Gil G 12  G1K 1IG21  G22  "" .. ,

(A .5 ) (P P )- = G = . . .

k Gz~l Gi%72 .. • K • -h

For s Pk -1 we have

(A.6) H -= I + \8() ±. (Pk ) ( )L k

= As [I + \ ()Lk + +\(Pk

28



(A.7) (IHi)rGkt Ht' A'A' [GO + k~ ()LG f UT ~ ~Lt + - .

+ <rATS r) ()L )Pk -GktLp'-]Ak I Pk -I )Pt8-1)(L

AkAQkt(r,s).

Let Pu =x, Pv = y and

QI, 1(r.s) Q12(r, s) ... Q1 K(r, s)

Q 2 1(r,s) Q 2 2(r,s) ... Q2 K(r,s)
(A.S) Q(r, s) =I

QKI(r, s) QhR-2 (r, s) "" Qhh'(r, s) -

(qj(r, s)).

The element qij(r. s) is a polynomial in r and s of degree at most p-1 with fixed coefficients.

Then

p
(A.9) IX '\I+ Q (r, s)y I A'+ s L I qij(r, s)I Ix i IIyj I

i,j=1

A,.+s~ ~ qij (r, s)l Iz f

- 2
i,j=l

_ pA r+s max lqij(r, s)j (XII 2 + I1Y112)_

2

Let

p-1
(A. 10) qij~rs W rg qrS h .

g,h=O

Then

p-1
Amax qij(r,s)l max E lq 

i rP- l sP- '
(A.11) i, axl ..... ,s) - i~~ ..... h

g,h=O

and IIxi12 < IIull
2 times the maximum characteristic root of PP' and similarly for ll[l2 .

4 The lemma follows.
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Lemma 8. (3.28).

Proof. The left-hand side of (3.2S) is positive semidefinite. Its trace is

(A.12) n tr ,t tr xo(B')t-lBt-lxo < - tr q*
t=1 t=l

We can take to large enough so that for t > to and arbitrary c > 0, 6 > 0

(A.13) pr\2 t-2tp-2q* 1Xo112 < 6} > 1 - 6.

Then the right-hand side of (A.12) is with probability greater than 1 - 6 not greater than

no1t\t2~p2~joj 1 n

(A.14) - Ztr + E n- tr Zt P e tr XI

t=1 t=no

as -* v . I

Comments on Condition (2.5)

A key assumption is

(A.15) sup E[v'vI(v'vt > a)1Ttj] P ) 0
t=1,2..

as a -* c; that is. given E > 0, 6 > 0 there exists a0 such that for a > ao

(A. 16) Pr fsup F[vtvtI(v'vt > a)j.Ft.1 ] <} E 1-6

Let I-t(a) = (vvjvI(v~vt > a)t.ti]. TLC above evcnt for fixed a is

(A. 17) nov-rt(a) :5 E1,

1=1

which is measurable. The random variable

(A.18) X, (a) = max Vt(a)

has the property

(A.19) Xn+1 (a) = max [Xn(a), v"+I(a)].

Note that for given a X,(a) is nondecreasing in n. The event (A.17) is

(A.20) {I'MnXn(a) <!,e} f {X.(a) e~}

Note that since Xn(a) can be defined by (A.19), it is a one-dimensional variable; that is,

the condition is a weak condition. not a strong condition. It is a condition on the cdf's of

X, (a).
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