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20, Abstract,

A statistical procedure is asymptotically robust if its large-sample properties hold
under conditions more general than the conditions under which the procedure is derived.
The justification of such properties is often based directly or indirectly on a central limit
theorem. In this paper a form of the Lindeberg condition appropriate for martingale dif-
ferences is used to obtain consistency and asymptotic normality of statistics for regression
and autoregression. The regression model is ¥, = Bz,+v;. The unobserved error sequence
{v.} is a sequence of martingale differences with conditional covariance matrices {3} and
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1. Introduction.

A statistical procedure is asymptotically robust if its large-sample properties hold
under conditions more general than the conditions under which the procedure is derived.
The justification of such procedures is often based directly or indirectly on a central limit
theoremy. In this paper Lindeberg-type conditions are utilized to establish asymptotic

R

normality of sample regression and autoregression coefficients. .+ -~ .. '°

The classic central limit theorem for independent identically distributed scalar random
variables z1.z3.... states that \/n I, £, N(0,0%) asn — oo if £, = 0 and €1? = 0%
here ¥, = Y__, 7;/n is the mean of the first n observations. The requirement that the

variables be identically distributed can be dropped. For £z; = 0 and £2? = ¢?

1

1 o« ‘
(11) _in _E_)AY(O’]-)’
Tn < R
1=1 -
B . /
where -
/ Pl A p——
n /
(1.2) 223 o,
=1

if for any given ¢ > 0

n
Z Er?I(z? > er?) — 0

=1

(1.3)

\‘
SR R

as n — oo. Here I(-) is the indicator function. If 02 /72 — 0 as n — oo, then (1.1) implies
(1.3); in this sense the Lindeberg (1922) condition (1.3) is minimal.

The condition of independence can be weakened to a condition of martingale differ-
ences. A very general theorem. which we shall use. has been given by Dvoretzky (1972).
For justification of later theorems we state this result in terms of a triangular array of ran-

dom variables (and include a normalization in the definition of the random variables).

Theorem (Dvoretzky). Let T,1.....Znn be a set of random variables and Fpo C
Fna1 C -+ C Fnn be a set of o-fields, n = 1,2,..., such that z,; is F,;—measurable.
(1.4) E(xn;|Fnj-1) =0 as.
(1.5) E(Iiﬂf’ndhl) = 03,]- a.s..
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(1.6) S 02, 2 o2

2

as n — 0, where 0° is constant, and for any given ¢ > 0

(1.7) Y (2212, > )| Fajo] 0.
t=1
Then
(1.8) Y 2a; =5 N(0,02).
Jj=1

Dvoretzky actually showed that this result holds if F, ;_; is replaced by B, j_;, the
o-field generated by Z:ll Zni. Generalizations have been given in Section 3.2 of Hall and
Heyde (1980) and Section 9.5 of Chow and Teicher (1988). Further references can be found
in these books.

In this paper we consider the estimation of the matrix of regression coefficients B in

the model
(19) yt:th+vt~, t:1,2, )

where the unobservable vector disturbances v; are martingale differences; that is, the
conditional expected value of v, given earlier observed y,’s and 2z,’s is 0. The conditional
second-order moments of the v,’s are finite, but not necessarily the same for all t. However,
the v,’s satisfy a kind of Lindeberg condition. The “independent” variables z, are assumed
to have a sample covariance matrix that converges to a limit in probability, and the 2,’s
satisfy a kind of asymptotic negligibility condition. It is shown that the least squares
estimator of B has an asymptotic distribution that is the same as in the case that the
v,’s are independent and normal with mean 0 and constant covariance matrix. Thus the
disturbances do not need to be homoscedastic nor do they need to be independent. The
relaxed conditions are particularly important when the observed z’s and y,’s constitute a
time senies.

In the autoregressive model, which is extensively used in time series analysis,

(110) Ty = th_l + v, t= 1,2,...,

2




the vector z; is replaced by x,_,. The conditions on the v;’s imply the desired conditions
on the & _;’s.

In Section 4 the mixed model is considered; the right-hand side may contain both
lagged “dependent™ variables and independent variables.

If the disturbances in the regression model are normal, independent, and homoscedas-
tic. and the independent variables are nonstochastic, the estimator of B has a normal
distribution with expected value B and covariances determined by the common covariance
matrix of the disturbances: it follows that tlic asymptotic distribution is normal. The re-
striction of homoscedasticity was relaxed by Anderson (1971) in Theorems 2.6.1 and 2.6.2
under a Lindeberg-type condition on the disturbances and the condition that the sample
covariance matrix of the independent variables have a nonsingular limit.

In the autoregression model the least squares estimator of B is nonlinear in the dis-
turbances. Mann and Wald (1943) showed that the asymptotic distribution of the estima-
tor of B is normal under the condition that the disturbances are independently identically
distributed and possess moments of all orders. Anderson (1959) showed that in this case
only the second-order moments need to be finite.

There are many recent results in this area. Lai and Robbins (1981) proved a theorem
for a scalar dependent variable with independent identically distributed disturbances. Lai
and Wei (1982) proved a similar theorem under the conditions that the moments of the
disturbances of some order greater than 2 are bounded and that the variances of the
disturbances converge to a constant a.s. QOur approach follows these papers, but the
conditions have been relaxed. Chan and Wei (1987) have used a Lindeberg condition for

a special case of the autoregressive process; see also Lai and Siegmund (1983).

2. Robustness in Regression.
We consider the regression model in which the observed vector-valued dependent
variable y, is generated by
(2.1) yo =Bz, +v,, t=12,...,
where z; is an observed vector-valued independent variable and {v,} is a sequence of

(unobservable) martingale differences satisfving a Lindeberg-type condition.

3




Theorem 1. Let {z,.v,}. t =1,2,..., be a sequence of pairs of random vectors, and
let {F;} be an increasing sequence of o-fields such that z; is F;_;-measurable and v, is

Fi—measurable. Let the matrix D, be Fy-measurable such that

,\
o
i

p—

n
-1 ! 1\—1 p
D, E zz(D,) —C,
t=1
a constant matrix. as n — oo, and

(2.3) max z)(D,D) 'z, = 0.

Suppose further that E(v¢|Fi—1) = 0 a.s., E(vvy|Fey) = Ty ass.,

(2.4) Zn: (2@ D;'zzy(D)" '] 2 P eC,
t=1

where X is a constant positive semidefinite matrix, and

(2.5) sup € [viw I(vive > a)|Fymy] 0

t=1,2,...

as ¢ — oc. Then

(2.6) vec (D;l Zz,v;) N N0, X ®C).

t=1
Proof. The conclusion holds if
(2.7) tr D! Z zv;B = Z vyBD; 'z,
t=1 t=1
£, N(0,tr ZBCB')
for every B. Let u,y = BD;'z;,t =1,...,n. Then
(2.8) zn':un,u'n, 2, BCB' =D,
t=1
say. We want to show that
(2.9) z": ul v £, N0, tr ¥D).
t=1

4




Condition (2.3) implies

(2.10) t_r_rllaxnu'n,unt 2,0
Let
(2.11) Wot = Unel(lun <1), t=1..... n,n=12.....

Then |jwy]] €1 and
(2.12) Pr{wn =un. t=1,...,n} —1

as n — .
Now we shall verify that r,, = w},,v, satisfy the conditions of Dvoretzky’s theorem.

We have

(2.13) E(Wp 01| Fio1) = WnE(ve|Fi1) =0 ass.,
(2.14) Z E{(wiwe)*|Fioa] = Zw;,ztw,,t 2t D
t=1 t=1

by (2.4). The third condition for {wn,} to satisfy is

(2.15) ZS W V)2 I [(WhyUne)? > 8]|Fimr ) -5 0 V6 > 0;

that is, given § > 0. ¢ > 0, and ¥ > 0, there exists n(e,v) such that for n > n (¢,7v)
(2.16) Pr{An(6) <e} >1-—4

We have

(2.17) Z“’"*"’"'“ {(u%_u Y ! Ku:i:u”‘y 7 Mé—lﬁ} If"l}

< Zw;,wntf {v;v,I [vivt > ———”3] l}', 1}
Wnt

t=1
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Given =* > 0 and 7* > 0 there exists n*(=*.4*) such that for n > n*(e*.q*)
(2.18) Pr{|w.® < t=1
Hence

(2.19) Pr {A,,(é) < Zw'n,wn,f[v;v,l<v;v, > %) ‘f,-l] } >1—19%
t=1 -

Since
n é
(2.20) Zw'n,w",f {’U:‘U;I (’U;‘Ug > :) ’}-1_1}
t=1 -
- é
< Za::,,:cn,sup £ {v;vsl (v'svs > j> ’f,,#,}
t=1 s -

o (L)

say. That is.

(2.22) C(d) = sup E[v;vsl(v'svs > d')lfs_l].
8=1.2....

Condition (2.5) is that given € > 0, § > 0 there exists a d(¢, %) such that for d > d(e.5)

(2.23) Pr{C(d)<e}>1-

2l

Condition (2.2) implies that given a > 0, 5 > 0 there exists ii(a. 7) such that

n
(2.24) Pr{Zz',,,:c,,,StrD%—a}?_l—-ﬁ.
t=1

Hence




Hotr D+ ale <=00/z" > dte.5). and n > n(a. 7). Then (2.16) holds if 7* + 35 + 3 < 5.

(tr D — ave < 2027 < ¢&/dve.?). and n > max [n'(f‘.*,-').n(a.—j)]. The theorem follows

from the theor- .1 the introduction [Dvoretzky (1972)]. [See. also. Corollary 3.1 of Hall

and Heyd. (1930) or Theorem 2. Section 9.5. of Chow and Teicher (1988).] [ ]

Theorem 2. Let {r;} be a sequence of random vectors and let {F;} be an increasing

sequence of o fields such that v, is Fy -measurable. £(v(|F—1) = 0 a.s.. Elvv | Froy) = X

a.s..
1 n
(2.26) —§ h LN 33
n
t=1
constant. anel
1 n
S o= ro : P
i2.27) - Elved v > ns)ff,_l] — 0.
T
t=1
Then
I
I 1 [
(12.2%) - E vv, — 3.
n

t=1

Proof. If v ix scalar. the proof follows from Theorem 2.23 of Hall and Hevde (1980)
as indicated by Chan and Wei (1987). The theorem is then verified by taking arbitrary

linear combinations of vy. |

Theorem 3. For n observations on the model (2.1) define

n n -1
(2.29) B, = Zy,z; <Z z,z;) .

t=1 =1

; 1 <& . .
i2.30) E,,:;Z(y,—an:)(yz—Ban)'
=1
Ly _Lip B)Zn: (B, — BY
= — vy, — — n - - n — .
n IR ot

t=1 t=1




If the conditions of Theorem 1 hold with C nonsingular, then
(2°1) vec [(B, — B)D,] -5 N(0.C™' g %).
If, further. (2.26) holds. then

(2.32) LN 5}

Proof. The proof of (2.31) is a straightforward application of Theorem 1. The second

term on the right-hand side of (2.30) is

(2.33) 18, - B)D: (D' z2izy(D,) '] [(B. ~ B)D;') 20

n
by (2.2) and (2.31). ]
The purpose of condition (2.3) is to assure asymptotic negligibility of z,v;. What

alternative conditions imply (2.3)7?

Lemma 1. Let {z;} be a sequence of random vectors, and let {F;} be an increasing
seqrence of o-fields such that z, is F;-measurable. Let D, be Fy—measurable such that

D;' - 0as.D,D;} -2 Ias.and

(2.34) D! Zztz;(D;)—l — C as.
=1

Then

(2.33) ,fnax 2(D,D! ) 'z, -0 as

Proof. From (2.34) we have

n+1 n
-1 ' -1 -1 [} -1
(2.36) D, Z z12((Dpnyy)  — D, Z z12, D,
t=1 t=1
n+1
1 \— —1
=D, zﬂ+]zn+l(D n+1 E ;ztz n+1

n+1
— (D' D) D;+1Zztzr(Dn+1 )" (Dpg1Dnsr)
t=1
-0 a.s.




That is. | D; ' 2,417 — 0a.s. Thisimplies (2.33) by the proof of Lemma 2.6.1 in Anderson

(1971). |

A special case of {z,} is that of 2, nonstochastic; then (2.34) (which is the same as (2.2)
when {z;} is nonstochastic) implies (2.35) with the limits nonstochastic. In particular,
if D, is diagonal and the j-th diagonal element of D, is the square root of the sum
of squares of the j-th elements of the 2,'s, then D;'3"7_ 2z,2{(D,)”" is the correlation
matrix of zy.....2,. The theorem in this case is a relaxation of Theorems 2.6.1 and 2.6.2

of Anderson (1971).

Theorem 4. Let {z,} be a sequence of random vectors, and let {F;} be an increasing

sequence of o-flelds such that z; is F;-measurable and
(2.37) Z {zi(DaD}) 2 [2i(DD!)  2¢ > €] | Feoa ) 2 0.
Then (2.3) holds.

Proof. We use Lemma 3.5 of Dvoretzky (1972): If {F,} is an increasing sequence of

o-flelds and A; € F;. then for every n > 0

(2.38) Pr { UA"]:O} <n+Pr {ZP(At‘ft—l) > ﬂlfo} :

t=1 t=1

Foreverv = >0.7>0

(2.39) Pr{ max 2 (D D, 1z, >6(.7-0} = {U (D, D))~ 1z, >6].7-'0]}
t=1

<77+Pr{ZPr 2(D,D.)” z,>s|.7-'t1 >r;|f0}

t=1
n

<n+Pr {% ZS[z;(DnD;)‘]z,I[z;(DnDL)—lzf > Elft—l] > 77|f0}

1=1

by a {orm of Tchebycheff's inequality. By (2.37) the right-hand side of (2.39) converges to

0. Siice 1 is arbitrary. (2.3) holds. ]




Corollary 1. Let {z,.v,},t = 1.2,..., be a sequence of pairs of random vectors, and
let {F:} be an increasing sequence of o—fields such that z, is F;_;-measurable and v, is
Fi-measurable. Let D, be Fy-measurable such that (2.2) and (2.37) hold. Suppose that

E(vgFioy1) =0 as.. E(vevy|Fi—1) = Xy a.s.. and (2.4) and (2.5) hold. Then (2.6) holds.
The condition (2.4) determines the limiting covariance matrix of D;'>"7_, zv;.

Lemma 2. Let {z.v,} be a sequence of random vectors. and let {F} be an increasing
sequence of 7-fields such that z; is F;_;—measurable and v, is Fy-measurable such that
E(ve|Fioy) = 0 as., E(vivy|Fi-1) = Xy as,, and ¥y — X a.s., where X' is a constant
matrix. Suppose D, is Fp—-measurable such that (2.2) holds. Then (2.4) and (2.26) hold.
If. further. (2.3) and (2.5) hold. then (2.6) holds.

The homoscedastic case. Xy = X, is included and also the case of X'y nonstochastic.

An important case of {z,} is that in which D,, = v/n I; then D;lZ?zlz,z:(D:,)—l =
(1/n)5° _,2¢z;: that is. this matrix is simply the sample covariance matrix for known

mean 0.

Corollary 2. Let {z;.v,} be a sequence of pairs of random vectors and let {F;} be an
increasing sequence of o-fields such that z, is F;_j-measurable and v, is F;~measurable.

Suppose
1 n
p
2.40 — 2,2 — M.
(2.40) - Z 1%
t=1
a constant matrix.

1
(2.41) ~ max 2lz =0,
n t=1 n

(2.42)
and (2.5) holds. Then

1 " , ]
(2.43) 7_;7—\1?(‘ <Z z,v,) LA (0.X = M)
=1

10




r._t

if. further, M is nonsingular, then
(2.44) Vn vee(B, — B) -5 N(0O.M™' g X

and if, further. (2.26) holds, then (2.32) holds.

Condition (2.40) is equivalently (1/n) S5, vec z.z} - vec M (2.26) is equivalently
(1/n)vec Xy -2 vec X; and (2.42) is equivalently

n n

!
1 O 1 1
o4z - . . ne = . il . ' p
(2.45) - ;=1\ec i(vec zzy) - E vec X, (n E vec z,z,) — 0.

t=1 i=1
The condition (2.45) is that vec X, and vec z,2z; are asymptotically uncorrelated over t.
Even if the ¥;’s are nonstochastic and the 2, are exogenous this condition is needed to

obtain ¥ @ M as the covariance matrix of (1/y/n)vec >.7_, z¢v;.

3. Robustness in Autoregression.

We now consider the autoregressive model.
(31) :c,:B:c,_l-}-vt, t=1,2, .

The form of (3.1) is (2.1) with 2, replaced by ®;—;. We shall show that the least squares
estimator of B based on @g,...,x, has the asymptotic normal distribution of the least
squares estimator in the regression case. In order to show the analogies to (2.2) and (2.3)

we prove the following lemmas.

Lemma 3. If the characteristic roots of B are less than 1 in absolute value and if

maxe=1, . ..n VyVt/n 2,0, then for &, x,,... generated by (3.1)

yrees

Proof. Since zho/n —— 0 and the roots of B are less than 1 in absolute value,

z)(B')""'B'"'zy/n 2> 0 and we need only consider

t~2
(3.3) zi_y=> B’vii,.

8=0

. 11




Then
-2
(3.4) il zi_ = Z V_r_1(B') B'vi—s—1
r,8=0
t—-2
< Y vy (B By
r,8s=0
t—2
< > NP T (loge e 1P 4 o aaa|?),
r.e=0

where A is the largest absolute value of the characteristic roots of B and ¢ is a suitable

constant. (See Lemma 7 in the appendix.) Then

1 ,)q n—2 2
= it _ * 2 < 22 . 2 s .p—1 .
(3.5) ~ max [lei_ | < max v (ZO s )
Since the sum in (3.3) is bounded as n — oo, (3.2) follows. |

Lemma 4. Let 2, 4, ... be generated by (3.1) with and zgzy = Xg. Let {F} bean
increasing sequence of o—fields such that &, and v, are F;—-measurable. Suppose the charac-
teristic roots of B are less than 1 in absolute value, £(v|F;—1) = 0 a.s., E(v, vy Fe—1) = X,

a.s., (2.26) holds with X constant, and (2.27) holds. Define

(3.6) r=> B'X(B').

8=0

Then (2.28) holds,

1 n
(3.7) ~ Z viz)_, 20,
t=1
1 n
(3.8) = Y @z, ST
t=1

Proof. From (3.1) we have

N

f_.
(3.9) LTi_1 = Bvi_ 1, + Bt—lzo-
t

il
o

12




For some 8 > 0 define &0 = Xo.
t

(3.10) Ve = 01 trZEs <n(l4+8)tr ,|.
s=1
-2
(3.11) Toim1 =9 BUpicios+ Bz,
s=0
Then
(3.12) Pr{ve =v.t=1,...,n} = L.
(3.13) Pr{e, -1 =21, t = 1,...,n} 51,
(3.14) Pr{vn @)y = 0i&i_,t =1,...,7} 21

By construction Eljva|? < n(1+6)tr X and E||n,t-1]|* < oc. Then

. 1 1 ¢
(3.15) tr £ (;;vmw'n,t_l) (;Zmn,s_lv:”)

s=1

n
— _1_5 t ! !
- 7?2 T vntmn,t—lwn.s—lvns

s,t=1
n

— Lt g ’ s
- n? T mn,t—lm"ys—lvn,svnt

s,t=1

1 n
! I
S n—2£ z mn,t_lmn,s-—lg (vnsvntlfmax(.s,t)—l)
8,t=1

1 <, ,
= € Tha1@ng-1€ (Ve Feor).
t=1

Since max¢=1...n» ||ve]l?/n -2, 0 by Theorem 4, we have max¢=1,...,n E(|vadl*|Fi=1)/n SN

0 by (3.6). Now consider for2<t<n-1

1 n
(3.16) —¢ > -1
t=1

n -2 t—2 '
1 -
= ;5[30236 + E ( E Br'vn,t—r—l + B'_lzo> ( E stn,t-—s—l + B! 13130) }

t=2 r=0 8=0

1 1= i e
=23 Y B€vnicec1th ooy (B + =) BT Eo(B)T
n t=2 8=0 n t=1
n—2 n n
1 1
=Y B> Y Evnimem1vp-ea(B) =S BT E(B)

n n
8=0 t=s8+2 t=1

13




The trace of the first term on the right-hand side of (3.6) is not greater than (1 4 8)tr I
Hence. (3.3) — 0, and (3.7) is proved.

From (2.28) and (3.1) we have

1 ¢ 1 o
(3.17) - Z vy = - Z (z¢zy, — z¢xy_, B' — Bz,z|,_, + Bx,_z,_,B’)
t=1 t=1

LA 5

From (3.7) and (3.1) we have

n

1 1
(3.18) n ;vtx’t—l =n l(ztm’t—l — Bz 1zp_)

=
2,0

If we add to (3.17) the result of multiplying (3.18) on the right by B’ and the transpose

of that product, we obtain

(3.19) - Zv,v{ + - Z vwz;_B' + ;B Z:ct_lv;
t=1 t=1 t=1
1« 1
= = Z:ct:c', - B- Zz,_lm't_lB'
n t=1 n t=1
RN >3

Furthermore, Lemma 3 implies
1 o 1 1 1
(3.20) ; th:c't - ; Z:c,_la:,_l = ;:c,,:c'n — ;:00136 —L) 0
t=1 Ct=1

Then (3.19) is equivalent to

1o 1o
(3.21) —Z:ctcc't—B—Z:ct:c’tB' 2,y
n t=1 n t=1
which implies
1< 1 ¢
(3.22) r= plirnn_,oo;— Z:c,:c', = plimn_,oo; Zz,_lm',_l.
t=1 L t=1
14




See Problem 27 of Chapter 5 of Anderson (1971). Then (3.4) follows. [ ]

Theorem 5. Let &).2,.... be generated by (3.1), where v;,v,,... is a sequence of
random vectors and fxgxy, = Xy. Let {F;} be an increasing sequence of o-fields such that
x; and v, are F;—measurable. Suppose that the characteristic roots of B are less than 1 1in
absolute value. £(v¢|F;_;) = 0 a.s. E(vivy|Fim1) = Xy as., (2.26) holds with X' constant,
and (2.5) holds. Furthermore. suppose

n

1
(3.23) m Z( ) (B vi1orth__y) o 6,5(Z 5 T),
t=max(r.s)+2

where 64, = 1 and é,, = 0 for r # 5. Then

1 - c
.2 — v _10, NO. XY eT).
(3.24) \/ﬁ\ec (;w, 1v,> — N( &)

Proof. In Corollary 2 we take z, = x,_;. We want to verify (2.40). (2.41). and (2.42);
(2.5) is assumed. Since (2.5) implies (2.27), Lemma 4 includes (3.8), which is equivalent
to (2.40).

We have

1
(3.25) =) (B & @1i)

n t—2 t—2 !
1 . - -
= - 208 ( E B'vi_,-1 + B! 130) ( E Bvi_,_; + B! l‘”o)
8$=0

=0

If we define vy = v_; = --- = 0, we can write
t—2 oc
(3.26) Z Bvsi_y_; + Bf—lw() = Z Blv,_4_, + B'_lico
3=0 $=0
k oc
= Zstt—a—l + E Bvi_s_;1 + B zg.
s=0 s=k+1
Fort>p+1
(3.27) B ol < 22217 Vg(t — 1)P 7 fiao|*.

15




Hence

n

Z [21 & Bt—lwg:l:,o(B’)t—l] -Lb 0.

t=1

(3.28)

3|

(See Lemma 8 in the Appendix.)

Consider the positive semidefinite matrix

1 n X0
(3.29) ;Z 2@ Y. Bur1v_, (B
t=1 r.es=k+1

We shall show that with arbitrarily high probability the trace of (3.28) is arbitrarily small

if k is large enough. That will follow by showing the same property of

1 n oo
(3.30) ;Z 2 ® z B v 1—r—1v,_,_1(B')°],
=1

r.s=k+1

where X = E(vnev) | Fi—1). The expected value of the trace of the second matrix in
(3.30) is

o0

(3.31) £ > tr B’ ro1¥p oy (B)°
r,s=k+1

oC
1 !
=& Z Vpt—s—1(B') B Un t—r—1
s=k+1

oo
28 *x 2 !
< E A q s pgvn,t—a—-lvn,t‘S—l
s=k+1

o
=q Z ’\28521)“:{g[v;,t—s—]v":t—s—ll(v;,t-—s-lvn,f“s—l < a)lft—s—Z]
s=k+41

+ 8[v:z,t—-s—lvn,t—-’—lI(v:z,t—a—lv",t—‘s—l > a)lft—s—z]}
(e *]
<q" Z AZe 2P {a+ £ sup E[vnwnel(vyVne > a)lf,_l]}.
t=1,2,..
s=k+1 e

Since Yoo 4, AZ*s?P converges, the second part of the right-hand side of (3.31) can be
made arbitrarily small by taking a large enough; the first term can be made arbitrarily
small by making k sufficiently large. Thus (3.31) is arbitrarily small, and by Tchebycheff’s

inequality the second matrix in (3.30) is arbitrarily small with arbitrarily high probability.

16




Now

n k k
1 r s 8
(3.32) - )Mo § B'v_,av_, (B -5 T § B*X(B')".

t=1 r,s=0 8=0

If the right-hand side of (3.26) is written as a; + b; + ¢;, we have shown above that

1 n
(3.33) ;ZZ‘,@b,b’t 250
and that
(3.34) tr % > (i@ ec)
t=1

can be made to converge in probability as n — oo to an arbitrarily small quantity. It

follows from the Cauchy-Schwarz inequality that

1 n

(3.35) ;Z(Zt@}atc;) 2,0,
1 n

(3.36) - (Ze b.c;) -0,
1=

and that

(3.37) L En: >, ® ab))

ol -
n t t

t=1

can be madc to converge in probability to an arbitrarily small quantity. Hence,

(3.38) %Z (D @z, > ZT.

t=1

Hence, by Corollary 2 (3.24) follows. |

The least squares estimator of B is

-1
n n
(3.39) B, = Z:c,a:',_l (Z :c,_lm',_l> \
t=1 t=1

17




and the estimator of X is

1 n R R
(3.40) To==3 (@ = Buzi))@ - Buzoy)
n t=1

1 — . 1 — R
== ;v,v; —(Bn — B); ;zt..lzi_l(Bn - B).

Corollary 3. Suppose the conditions of Theorem 5 hold and I' is nonsingular. Then
(3.41) Vavee B, - B) 5 N(O0.T'e X),
and (2.32) holds.

The conditions (3.23) in autoregression replace condition (2.4) in regression; they
imply (3.38) which is the analog of (2.4). The limit (3.38) is that vec X and vec &, 2;_,
are asymptotically uncorrelated. The condition holds identically in B; the conditions

(3.23) are independent of B.

Corollary 4. Under the conditions of Theorem 5 with (2.26) and (3.23) replaced by
XY — X as., (3.24) holds. If I' is nonsingular, (3.41) and (2.32) hold.

Proof. The condition ¥y — X a.s., where X is constant, implies (2.26) and (3.23).

A higher order autoregressive process can be reduced to the first—order prncess. Sup-

pose X1, X,,... satisfy

(342) Xt-:BlXt_.l+"'+BpXt_p+‘/g,t=1,2,... .
Define
X, \ %
X1 0
(343) Ty = . Uy = : s
Xl—p+1 0

18




B, B, By --- B, 2, 0 0 0
I 0 0 - 0 0 00 0
(3.44) B=|0 I 0 - 0| x=[(0 00 0
0 0 0 - 0 0 00 --- 0

where £(V{|Fi—1) = 0 as., E(ViV/|Fi-1) = §2; a.s., and {F} is an increasing o-field such
that X, and V; are F;—measurable. Then {x.} satisfies (3.1).

Theorem 6. Let

(3.43) 3 : [(Xo. X1, X ) =&,
X—p+1

and let X;.X>.... be generated by (3.42). Let {F;} be an increasing sequence of c-fields

such that X, and V; are F;-measurable. Suppose the roots of
(3.46) (NI —X~'By —--—By| =0
are less than 1 in absolute value, £(V;|F;—1) = 0 a.s., E(V, V]| Fi—1) = 2, as.,
(3.47) ! Z [ L)
. n t ’
t=1
which is nonsingular and constant, and (2.5) holds with v, replaced by V;. Define

(3.48)  (Bin.Ban.....Bpa) =) XX, Xi_g,- - X(_})
t=1

T XeaXin, Y XX, oo Y XX 17
y Z?:x Xt—’-’th—l z?=1Xt—2X;—2 E?:l Xt—2X;—p ’
ZI':l X:t—PXt,—l E?=1 X:f—pX:'—z T Z?=1 X:t“PXt’-p
(3.49) 2, = % . (Xt = Bin X1 — = BpnXt=p)( Xt — B1nX¢—1 == Bpn X1—p)'
t=1
Then
(3.50) 2, 5 02,




X
- 1 - Xt—z 7 ! ' P = ) I\s
(3.51) = X X X, ] =Y B'X(B)y=r
t=1 . =0
X,
say, where
2 0 0
0 0 0
(3.52) r=|. . .
0 0 0
and
(3.53) Vavee(Bin ~ Bi..... B,,— B,) 5 N(0.T ' & ).

Lemma 5. If {2 is nonsingular. I' is nonsingular.

Proof. The proof is a vector generalization of the proof of Lemma 5.5.5 of Anderson

(1971). |

4. Robustness in Mixed Regression and Autoregression
Now we consider the model
(41) Q31=B$t_1+AZt+'Uf. t:1.2 .

This model is analogous to the regression model (2.1) with z, replaced by (x;_;.2;)". The

least squares estimator of (B, A4) 1s

B A - ' - AN DIHEE TEST I DU MRE S !
(4.2) (Br,Ay) = Z:c,:c',_l, Z:c,z, g , o , .
\i=1 t=1 Dot=1 FTy_y Dot FtE
and the estimator of X is
-~ 1 o - - - -~ '
(4.3) Y=~ Y (2= Bazio1 — Anzi) (20 — Buioy — Anz) .
t=1

20




Theorem 7. Let fxyzy = Xy: let @y, @y, ... be generated by (4.1). and let 2z, z,.. ..
be a sequence of random variables ( possibly degenerate). Let {F;} be a sequence of increas-
mg o fields such that vy is Fy -measurable and z, 1s Fy_; -measurable. Suppose the charac-
teristic roots of B are less than 1 in absolute value, £(v¢|F;—1) =0 a.s.. E(v,v,|Fioy) = Xy

a.s.. and (2.3). (2.26). and (2.41) hold. Suppose

1 n—h X
(4.4) =Yz S My=M.,. h=0.1.2....,
n =
1 n—h
. p
4.5 ;Z:"H'v; — 0. h=1.2.....
t=1
Define
>x<
(4.6 L=) B AM_ .,
s=0
Then
1 n ;
{(4.7) ;Zz,_lz,a
t=1
(1.8) L i:c z_, 5 Q
' n (m17e-1 )
where @Q is the unique solution to
(4.9) Q-BQB' =X +BLA'+ AL'B' + AM;A’".

Furthermore. if (2.42) and (3.23) hold and

1
(410) Z (21 - 171_1_32;) —p* 0. s=1.2.....

then

: i [ 70\ L\
{4.11) \/ﬁ\'CC(B,,—B.A,,—A)—{—»x\' l.ko) <Q > - 3.




and (2.32) holds under the further assumption that the inverse matrix in (4.11) exists.

Proof. Because the roots of B are less than 1 in absolute value, the sum in (4.6)
converges (by use of the Cauchy-Schwarz inequality). From (4.1) we obtain

t—2 t—2
(4.12) T = B'vy_1_,+ B' 'z, +ZB"Az,_1_s

3=0 $=0

k o
= Zle’t—l—s'*- Z B*v_1-s+ Bz,

3s=0 s=k+1

k oc
+Y B'Az + ) B'Az i

§=0 a=k+1

where v =v_1 = ---=0and 2o = 2_; =---=0. Then

(Vi—1-s + AZ¢—1—s)Z;

o<
t—1 ! '
B " xoz, + S B (vi—1—s + Azi_1_4)2,
s=k+1

+

| =

3
— W

We calculate by use of Lemima 7

1 n o' 1 n oC
(4.14) -—Z Z stt—l—sz: < - Z )\ssp_lq"(llvt—l—sng + “21“2)
n t=1 s=k+1 n t=1 s=k+1
=) 1 n
S Y A= (e 4 =)
s=k+1 t=1

Since 322, A*s?7! converges and Y, |zel|? /n -2, tr My. we can choose k sufficiently
large to make the right-hand side of (4.14) arbitrarily small with arbitrarily high proba-
bility. Similarly the other two terms in the second sum in (4.13) can be made small. Then

k k
1 § s 1 P 1 2 s
(415) ; B (v,_l_,+Azt_1_3)zt — ; B AM_k.

=0 =0
That leads to (4.7).

From (4.1} we have

1 n
(416) ;;’U:U; =

I

n

! ! !
E [a:,a:, ~ Bz x, — Az,
=1
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!
-z2y_,B' + Bxy_ yz;,_B'+ Azz,_|B'

—z2,A' + Bz,_;z,A' + Az,z;A']

N >3
- 1 o 1 <
(4.17) - vz, = - [:c,m',_l Bz, x,_, — Az, ,]
t=1 t=1
1 n 1 n
(4 18) - ’012: = ; [zfz, -~ B:c(_lz, - AZ(Zt} — 0
n

If (4.17) -2 0. then from (4.16), (4.17). and (4.18) we obtain

n

(4.19) 1 Z (:c(:c', - Ba:,_la:',_lB')

n
t=1

1 n
== [Z(a:,:c', - Bzz\B') + Bx,z' B' — Bzoz,B'
t=1

2, Y +BLA' + AL'B' + AM,A'.

If (1/n)x’ x, == 0. then (4.8) follows from (4.19). Thus

1 n
(4.20) -2 (w; 1)(:c',_1,z;) *, (g 1\50)
t=1

{
Now we consider

14

1
(4.21) =) (Bieziaz,,)

n
1 - - r Zt—1-s ! ' A 1\s
- —T_{ ; Et ® Z B (A'I)(vt_]_s>(zt—l—a‘vi—l—s)( I )(B ) } .

t=1
r,3=0
If the sums in (4.21) on r,s run from & + 1 to oc, the trace converges to an arbitrarily

small quantity by taking & sufficiently large. Then

n k ;
1 ~1—r ) , a I\s
(4.22) - t§=1 [Et@ § B"(A.I) (f’:_i_) (z,_l_,,v,_l_,)( I )(B ) }

r.s=0
k
N PN Z BT [AMg—rA, +6r.32](B,)8'

r.e=0

23




Thus

1 - - P = r 1 8 - k] L]
(4.23) ;;(2, SF TINT VR BN 5N ) [Z B"AM,_.A'(B')’ +) _ B*3(B') }

r.s=0 =0

r2Q.

By similar means we can complete the proof of

1< T\, Q I
(424) ; 2 [2( & ( z, )(131_1.2,)} — (L, Mo) .

Theorem 1 can then be applied with 2z, in Theorem 1 replaced by (z;_,,z;) to obtain
(4.11). and (2.33) follows.

To apply Theorem 1 we also need

1
1 9= = . ! 2 p)
(4“-0) n t:r-rlla‘\,n le—lll 0.

To prove this we need only consider

t—2
(4.26) 2y =9 B(viios + Az
8=0
Then
t—2 2
(4.27) wt*f_lz:_] = Bs(,vt—l—s + Az
3=0

2 2
+2

t—2 t—2

8 8
E B’vyy_, E B Az_,_,
8=2 s=0

By (3.4) the first term on the right-hand side of (4.27) is less than or equal to

-2 1—2
(4.28) 4 AP P N ug | < 4 D ATtegrriertt f_nllaxnumlli’.

.....

r.s=0 r,s=0

Since ||Azi—1—,||* < const [|z¢—1_,]||?, we obtain

..........

t—2
429 eeer PS4 T A (g e o+ e max aF).

r.s=0
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*

which implies (4.25) and ||z ,]]>/n == 0.

Now we want to show that
1 n
p
(430) ;Zm,qv; — 0.
=1

From (4.12) we have

] n 1 n t—2
(431) —th_l‘U: = —ZZBs'l’t_s_]U;
n t=1 n t=1 s=0
1 n . ’ 1 n t—2 . ,
+;ZB 230”,-*—;223 Azi_s17,.
t=1 t=1 s=0

It was shown in Section 3 that the first two terms on the right—-hand side of (4.31) converge
to 0 in probability as n — oc.

Define v,y by (3.10) and z,; by

(4.32) Znt = z,I(||zt||2 <n).

Then
1 n t—2 1 n (-2

(433) Pr {"‘ Z Z BSAZt_s_]’U; = — Z Z BSAZn’t_s_l'Unt} — 1.
n t=1 s=0 n t=1 3=0

Consider

(4.34) str<

n [t=2 " ye-2
1
= ﬁg ( BsAzn,t-a—l) <Z BrAzn,t—r—l) E(v:u'vntIft—l)

t=1 =0 r=0
1 n t—2
= _2—5 H BsAzn.l—s—l“25(1):”1)":[}1_1)
n t=1 s=0
1 n-1
< =€ max |[zn|? Y tr A'(B')B* AL(vy 00| Fi-1)
n s=1.., n =
— 0

because ||zn||%/n %, 0 and [|2s]|? is bounded and X, £, X and ||wa¢]|? is bounded.

This proves (4.20) and the theorem. 1




Lemma 6. If assumptions of Theorem 7 hold and if X' and M|, are positive definite,

then (4.24) 1s positive definite.

Proof.

(4.35) (c'.d) (I?’ J\Z,) (;) = plim 1 Z(c':ct_l +d'z,)?
t=1

n—oo N

1< .
= plim — Z [(c’v,_1)2 +(c'Bxyy+c'Azi_y +d'z)?
n—oc 1 =1

+2c'vi (2 Ble + 21 A'c + z;d)]

1 n
=c'XYc+ plim — z:(c'B:cf_l +c'Aziy +d'z)?
n—oo 1 =1

>cXe

by (4.3) and (4.30). If the left-hand side of (4.35) is 0, then ¢ = 0 because X' is positive
definite. In that case the left-hand side of (4.35) is d'Mod = 0; since M, is positive
definite, d = 0. |

A special case of the mixed model is z, = 1. Then (4.1) is
(4.36) s = Bx,_, +v+ vy,
where v = A or
(4.37) z; —p=B(xi(y — pn) + vy,

where v = (I — B)p. In this case (2.41), (4.4) and (4.5) are automatically satisfied, and

condition (4.10) reduces to
(4.38) %Z(E,@m,_l_s)_"_»o. s=0,1,... .
The matrix L is

(4.39) L= B'v=(I-B)'7,




and the matrix Q is
(4.40) Q=I+{I-B)'vy(I-B)"".

In this case

(4.41)

n n

n n n n -1
B _ ' 1 / ! 1 !
n = Ty — Tt Ti-1 Li-1%y — 7 Tt-1 Ty
t=1 t=1 t=1 t=1 t=1 t=1

and fi,, = (I — B,)¥,, which is approximately (1/n) S t—; ¢ The limiting covariance
mat-'x of /n[(1/n) 1, @ — ] is

(4.42) (I-B)Y'r+rI-B)'-Tr.

The condition (4.5) suggests a kind of lack of correlation between z,4; and v, which

is plausible if {2,} and {v,} are independent; that is, if the z,’s are exogenous.
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Appendix

Lemma 7. Let the largest absolute value of the characteristic roots of B of order p

be A < 1. Then for any vectors u and v
(A.1) (W (B') B°v| < A" qr? 1P T ([|uff® + ||vlf?)
for a suitable constant gq.

Proof. There exists a matrix P such that B = P 'HP. where

H 0 - 0
0 H2 0

(A.2) H=| . .
0 0 --- Hyp

the prx X pr matrix Hy = A\ I + Ly, A is a characteristic root of B, and

O 00 ... 00
1 0 0 ... 0O
(A.3) L,=10 10 ... 00
0 0 O 1 0
Then
(A.4) u'(B'Y'B'v=u'P'(H')(PP')"'H°Pv.
Let
Gll G12 GII\
- G G2y -+ Gag
(A.5) (PP =G = : : :
Gpr Gr2 -+ Ggrk
For s > pr — 1 we have
(A.6) Hp = AT+ X! (i)Lk Foee g AT (RRD) (pks_ 1) | A

-1/ —~(pr—1) 8 -1
=/\i[I+/\kl<1>Lk+---+)\k Pk (pk—l)Lik ]»
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(A.7T) (HL) GieHY = ALAS [er + 27! (;) LiGre + 2! (i) GueLe+ - -

+ATTAT ( i )( )(L’ JPE LG LE ‘}
Pk—1/ \Pt-1

= AL AL Qure(r, ).

Let Pu=«, Pv =y and

Qui(r.s) Qia(r.s) -+ Qix(r.s)

(A‘XS) Q(T',S) _ Q?l(.r, 3) QQQ(.T,S) Q2I\'.(7',S)

QI\'I.(rs 3) QI\'Q.(TsS) e QI\'I\:(""S)

= (Qij(r, 3))

The element g;j(r. s) is a polynomial in r and s of degree at most p—1 with fixed coefficients.

Then
p
(A.9) |2’ X Q(r, sy < A guj(r, 8]l ;]
',j—l
< Ar+s Z ‘qu( S)l +y1)
1,7=1
< p/\r+s max IQiJ'(r?S)I (”w”’z + HyH2)
- i,j=1,...,p 2
Let
(A.10) gi;(7, ) Z qft
g.h=0
Then
p—1
A1l ; < | max et
(a11) Jm oot < mx Y et

and [|z||* < ||u||? times the maximum characteristic root of PP’ and similarly for 2.

) The lemma follows. ]




Lemma 8. (3.28).

Proof. The left-hand side of (3.28) is positive semidefinite. Its trace is

1o 1
(A.12) = D tr Zitr z((B')' B e < - D tr DT g2
t=1 t=1
We can take tg large enough so that for t > ¢y and arbitrary € > 0,6 > 0

(A.13) Pr{\22¢2P 2 ¢*lzo]|? < e} > 1 - 6.
Then the right-hand side of (A.12) is with probability greater than 1 — § not greater than
1 no 3 _ . 1 n
(A.14) - D o tr AT || + e tr B e tr X
t=1 t=ng
as n — oo. |

Comments on Condition (2.5)

A key assumption is

(A.13) sup € [vivI(vive > a)|Fe-1] 250
t=1,2,... ’

as a — oc; that 1s. given ¢ > 0, § > 0 there exists ag such that for a > ay

(A.16) Pr{ sup E[v;v,I(v;vt > a)l]-'t_l] < s} >1-4.

t=1,2,...

Let Wy(a) = E[vyvid(vivy > a)|Fi—1]. Thc above event for fixed a is

o<

(A.17) N{We(a) < e},
t=1

which i1s measurable. The random variable

(A.18) X,(a) = max Wy(a)

t=1,...,n

has the property

(A.19) Xn+1(a) = max [Xn(a), Wata(a)].
Note that for given a X, (a) is nondecreasing in n. The event (A.17) is
(A.20) {nlgrxx‘Yn(a) < e} - Ol{Xn(a) <e).

Note that since X (a) can be defined by (A.19), it is a one—dimensional variable; that is,
the condition is a weak condition. not a strong condition. It is a condition on the cdf’s of

X,(a).
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