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Abstract

Consider a general bivariate Lévy-driven risk model. The surplus process Y , start-
ing with Y0 = x > 0, evolves according to dYt = Yt−dRt − dPt for t > 0, where P
and R are two independent Lévy processes representing, respectively, a loss process
in a world without economic factors and a process describing return on investments
in real terms. Motivated by a conjecture of Paulsen, we study the finite-time and
infinite-time ruin probabilities for the case in which the loss process P has a Lévy
measure of extended regular variation and the stochastic exponential of R fulfills a
moment condition. We obtain a simple and unified asymptotic formula as x → ∞,
which confirms Paulsen’s conjecture.
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time ruin probabilities; Lévy process; Stochastic difference equation; Tail probabilities

Mathematics Subject Classification: Primary 91B30; Secondary 60G51, 91B28

1 Introduction

Consider a bivariate Lévy-driven risk model in which the surplus process, Y , of an insurance

company is modeled by

Yt = x− Pt +

∫ t

0

Ys−dRs, t > 0, (1.1)

∗Corresponding author. Phone: 1-204-474-8710; fax: 1-204-474-7545.

1



with Y0 = x > 0 the initial surplus level, and P and R two independent Lévy processes

representing, respectively, a loss process in a world without economic factors and a process

describing return on investments in real terms. See Paulsen (1998a, 1998b, 2002, 2008) for

detailed explanations.

This model does not mean that the surplus must be completely invested in a risky

asset. An understanding on the stochastic process R is as follows. Consider a financial

market consisting of a risk-free bond with price S0,t and d risky stocks with prices Sk,t for

k = 1, . . . , d. Denote by π0 the proportion of the surplus invested in the bond and by πk

the proportion invested in stock k. Thus, π = (π0, π1, . . . , πd), called a relative investment

portfolio and assumed to be time invariant, satisfies π0 + π1 + · · · + πd = 1. Then the

differential in (1.1) is

dRt =
d∑

k=0

πk
dSk,t
Sk,t−

, t > 0.

In particular, consider the Black–Scholes market with{
dS0,t = rS0,tdt, t > 0,
dSk,t = Sk,t (µkdt+ σkdWk,t) , t > 0,

where Wt = (W1,t, . . .Wd,t) is a d−dimensional Wiener process, r ≥ 0, −∞ < µk <∞ and

σk > 0 for k = 1, . . . , d. Then

dRt = π0rdt+
d∑

k=1

πk (µkdt+ σkdWk,t) , t > 0.

Therefore, the assumption that R is a Lévy process is fulfilled in this particular case.

The solution of (1.1) is given by

Yt = eR̃t
(
x−

∫ t

0

e−R̃sdPs

)
, (1.2)

where R̃, also a Lévy process, is the logarithm of the stochastic exponential (also called

the Doléans-Dade exponential) of R; see, e.g. Protter (2005) for details. For simplicity, we

write

Zt =

∫ t

0

e−R̃sdPs,

so that Yt = eR̃t(x− Zt). The stochastic process Z is usually called the discounted net loss

process. We shall start with (1.2) instead of (1.1), as has been done by many researchers

including Kalashnikov and Norberg (2002) and Klüppelberg and Kostadinova (2008).

We are interested in the asymptotic behavior of the finite-time and infinite-time ruin

probabilities of this bivariate Lévy-driven risk model. As usual, the finite-time ruin proba-

bility is defined as

ψ(x, T ) = P
(

inf
0≤t≤T

Yt < 0

∣∣∣∣Y0 = x

)
, T ≥ 0,
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and the infinite-time ruin probability as

ψ(x,∞) = lim
T→∞

ψ(x, T ) = P
(

inf
0≤t<∞

Yt < 0

∣∣∣∣Y0 = x

)
.

Introduce

Z∗T = sup
0≤t≤T

Zt = sup
0≤t≤T

∫ t

0

e−R̃sdPs, 0 ≤ T ≤ ∞,

where the supremum is taken over 0 ≤ t < ∞ if T = ∞. Noticing that Yt < 0 and Zt > x

are equivalent, we have

ψ(x, T ) = P (Z∗T > x) , 0 < T ≤ ∞. (1.3)

In this paper, we aim at a simple and unified asymptotic expression for ψ(x, T ) with 0 <

T ≤ ∞ as the initial surplus level x becomes large.

2 Main Results

Hereafter, all limit relationships are for x → ∞ unless otherwise stated. For two positive

functions a(·) and b(·), we write a(x) ∼ b(x) if lim a(x)/b(x) = 1, write a(x) . b(x) or

b(x) & a(x) if lim sup a(x)/b(x) ≤ 1 and write a(x) � b(x) if 0 < lim inf a(x)/b(x) ≤
lim sup a(x)/b(x) <∞. For a real number x, we write x+ = x∨ 0 and x− = (−x)∨ 0 as the

positive and negative parts of x, respectively.

For a general Lévy process L, its characteristic exponent, ΨL(u) = − log
(
EeiuL1

)
, has

the following Lévy-Khintchine representation:

ΨL(u) = ilu+
1

2
σ2u2 +

∫ ∞
−∞

(
1− eiux + iux1(|x|<1)

)
ν(dx) (2.1)

with l ∈ R, σ ≥ 0, and Lévy measure ν on R \ {0} satisfying
∫∞
−∞ (x2 ∧ 1) ν(dx) <∞. We

further denote by

ϕL(u) = −ΨL(iu) = logEe−uL1

the Laplace exponent of L. Clearly, logEe−uLt = tϕL(u) for every t ≥ 0.

Now we turn to the loss process P , which we assume to be a Lévy process. When

its Lévy measure satisfies νP (1) = νP ((1,∞)) > 0, introduce ΠP (·) = νP (·)1(1,∞)/νP (1),

which is a proper probability measure on (1,∞). We assume that ΠP is of extended regular

variation (ERV). Formally, a distribution F belongs to the class ERV(−α,−β) for some

0 ≤ α ≤ β <∞ if F (x) = 1− F (x) > 0 holds for all x and the relations

v−β ≤ lim inf
F (vx)

F (x)
≤ lim sup

F (vx)

F (x)
≤ v−α (2.2)

hold for all v ≥ 1. Note that relations (2.2) with α = β define the class R−α of distributions

of regular variation.

Here comes our main result:
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Theorem 2.1 Consider the bivariate Lévy-driven risk process Y given by (1.2), where P

and R̃ are two independent Lévy processes. Assume ΠP ∈ ERV(−α,−β) for some 0 < α ≤
β <∞.

(1) If E
(

e−(β+ε)R̃1

)
< 1 for some ε > 0, then it holds for every T ∈ (0,∞) that

ψ(x, T ) ∼ λ

∫ T

0

P
(
Xe−R̃t > x

)
dt, (2.3)

where λ = νP (1) and X is distributed by ΠP and independent of P and R̃.

(2) Furthermore, if E
(

e−(α−ε)R̃1 ∨ e−(β+ε)R̃1

)
< 1 for some ε ∈ (0, α), then relation (2.3)

also holds for T =∞.

The condition ΠP ∈ ERV(−α,−β) means that insurance claims are heavy tailed. Roughly

speaking, the exponential moment condition in each case means that insurance claims con-

trol the uncertainty of negative returns of investments. When α = β, it is easy to see

that the exponential moment conditions in both cases are equivalent. For this case, the

statement of Theorem 2.1 is simplified to the following:

Corollary 2.1 Let α = β in Theorem 2.1. Then it holds for every T ∈ (0,∞] that

ψ(x, T ) ∼ 1− eϕR̃(α)T

−ϕR̃(α)
νP (x). (2.4)

Relation (2.4) with T =∞ was ever conjectured by Paulsen (2002, Theorem 3.2(b) and

Remark 3.2(b)). Therefore, our work shows that Paulsen’s conjecture is indeed true.

Admittedly, the class ERV is marginally larger than the class R, but it incurs a lot more

technicalities to the study. A self-contained proof targeting Corollary 2.1 only can be much

simpler than the proof of Theorem 2.1 given below. However, we have reasons to believe

that the ruin probabilities for the more general subexponential case will asymptotically

behave in the form of (2.3), rather than (2.4). Therefore, we carry out our research within

the class ERV, hoping that it will offer insights in the subexponential case.

The asymptotic behavior of the ruin probabilities in presence of investments has been

extensively investigated in the literature. Early works focused on a special case in which

P is a compound Poisson process with subexponential jumps and R is a deterministic lin-

ear function (corresponding to a constant rate of compound interest); see Klüppelberg and

Stadtmüller (1998), Asmussen (1998), Kalashnikov and Konstantinides (2000) and Kon-

stantinides et al. (2002). Later on, for the subexponential case Tang (2005) established a

formula for the finite-time ruin probability, which is in line with the formula for the infinite-

time ruin probability. The formulas obtained in these papers are essentially the same as

(2.3) with R̃ replaced by a deterministic linear function.
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It is more interesting to consider that the insurance company makes both risk-free and

risky investments. For a very general case, Kalashnikov and Norberg (2002) proved that

the infinite-time ruin probability necessarily decays to 0 as a power function as the initial

surplus level increases no matter what tail behavior the jumps of P have. Frolova et al.

(2002) obtained an explicit asymptotic formula for the infinite-time ruin probability for the

case in which P is a compound Poisson process with exponential (hence light-tailed) jumps

and R is a Wiener process with drift.

Most of recent research has been done for the case in which P has regularly varying

jumps. For example, Paulsen (2002) showed relation (2.4) with T =∞ for a special case in

which P is a compound Poisson process with regularly varying jumps andR (or, equivalently,

R̃) is a Wiener process with drift. Klüppelberg and Kostadinova (2008) extended this result

to a general Lévy process R̃. Heyde and Wang (2009) obtained similar results to our

relations (2.3) and (2.4) with T <∞ for the case in which P is a compound Poisson process

with heavy-tailed jumps and R̃ is a general Lévy process. Tang et al. (2010) established a

result similar to our relation (2.3) for both T <∞ and T =∞ for the case in which P is a

compound renewal process with regularly varying jumps and R̃ is a general Lévy process.

Albrecher et al. (2012) also investigated the asymptotic behavior of the infinite-time ruin

probability and related quantities for the case in which P is a compound renewal process

having light-tailed or heavy-tailed jumps and R̃ is a Brownian motion with drift. Hult and

Lindskog (2011) considered a more general case in which P is a Lévy process with regularly

varying jumps and R is a semimartingale and they established an asymptotic formula for

the finite-time ruin probability, which holds uniformly for all R with stochastic exponential

eR̃t fulfilling a certain moment condition. See also Asmussen and Albrecher (2010, Sections

VIII.5-6) for a brief review of ruin theory in presence of investments.

We are going to prepare some lemmas in Section 3 and then prove Theorem 2.1 and

Corollary 2.1 in Section 4.

3 Lemmas

In this section we prepare some lemmas for the main result. The first lemma below describes

some well-known properties of distributions of extended regular variation; see Bingham et

al. (1987, Proposition 2.2.3) and Tang and Tsitsiashvili (2003, Lemma 3.5):

Lemma 3.1 Suppose F ∈ ERV(−α,−β) for some 0 < α ≤ β <∞.

(1) For every ε ∈ (0, α) and every b > 1, there is some x0 > 0 such that the inequalities

1

b

(
y−(α−ε) ∧ y−(β+ε)

)
≤ F (xy)

F (x)
≤ b

(
y−(α−ε) ∨ y−(β+ε)

)
hold whenever x > x0 and xy > x0.
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(2) It holds for every ε > 0 that F (x) = o
(
x−(α−ε)

)
and x−(β+ε) = o

(
F (x)

)
.

A feature of the following lemma is that inequality (3.1) holds uniformly for all nonneg-

ative random variables Y independent of X:

Lemma 3.2 Let X be a real-valued random variable whose distribution belongs to the class

ERV(−α,−β) for some 0 < α ≤ β < ∞. Then for every ε ∈ (0, α) and every b > 1, there

is some x0 = x0(ε, b) > 0 such that, for all x > x0 and all nonnegative random variables Y

independent of X,
P(XY > x)

P(X > x)
≤ bE

(
Y α−ε ∨ Y β+ε

)
. (3.1)

Proof. For arbitrarily chosen b′ ∈ (1, b), by Lemma 3.1(1) there is some x′0 > 0 such that,

for all x > x′0,

P (XY > x) ≤ P (XY > x, Y ≤ x/x′0) + P (Y > x/x′0)

≤ b′P(X > x)E
(
Y α−ε ∨ Y β+ε

)
+ (x/x′0)

−(β+ε)EY β+ε.

Then inequality (3.1) follows since x−(β+ε) = o(P(X > x)) by Lemma 3.1(2).

By going along the same lines of the proof of Lemma 4.4.2 of Samorodnitsky and Taqqu

(1994), we obtain the following:

Lemma 3.3 Let (X, Y ) be jointly distributed random variables. If the distribution of X be-

longs to the class ERV(−α,−β) for some 0 ≤ α ≤ β <∞ and P (|Y | > x) = o (P (X > x)),

then P (X + Y > x) ∼ P (X > x).

The tail behavior of randomly weighted sums of heavy-tailed random variables has be-

come a hot topic in applied probability since Resnick and Willekens (1991). A very recent

work on the topic is Olvera-Cravioto (2012). The next lemma summarizes several known

results:

Lemma 3.4 Let {Xk, k ∈ N} be a sequence of independent and identically distributed

(i.i.d.) random variables with common distribution F and let {ωk, k ∈ N} be another se-

quence of nonnegative random variables, non-degenerate at zero and independent of {Xk, k ∈
N}. Assume F ∈ ERV(−α,−β) for some 0 < α ≤ β < ∞ and one of the following two

conditions holds:

(1) in case β ∈ (0, 1), there is some ε ∈ (0, α) such that

∞∑
k=1

E
(
ωα−εk ∨ ωβ+εk

)
<∞;
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(2) in case β ∈ [1,∞), there is some ε ∈ (0, α) such that

∞∑
k=1

(
E
(
ωα−εk ∨ ωβ+εk

)) 1
β+ε

<∞.

Then

P

(
max

1≤n<∞

n∑
k=1

ωkXk > x

)
∼ P

(
∞∑
k=1

ωkX
+
k > x

)
∼

∞∑
k=1

P (ωkXk > x) . (3.2)

Furthermore, the distributions of max1≤n<∞
∑n

k=1 ωkXk and
∑∞

k=1 ωkX
+
k both belong to the

class ERV(−α,−β).

Proof. The second relation in (3.2) is proved by Theorem 3.1(b) of Zhang et al. (2009).

Let us check the extended regular variation of the distribution, denoted by F+
ω , of∑∞

k=1 ωkX
+
k . It is easy to prove that, for each k ∈ N, the relation P (ωkXk > x) � F (x) holds

and the distribution of ωkXk belongs to the class ERV(−α,−β); see Cline and Samorod-

nitsky (1994, Theorem 3.5) for these facts. By Lemma 3.2, for every b > 1 there is some

x0 > 0 such that the inequality

P (ωkXk > x) ≤ bF (x)E
(
ωα−εk ∨ ωβ+εk

)
holds for all k ∈ N and all x > x0. Hence, for arbitrarily given δ > 0, all x > x0 and all

large n,
∞∑
k=n

P (ωkXk > x) ≤ bF (x)
∞∑
k=n

E
(
ωα−εk ∨ ωβ+εk

)
≤ δP (ω1X1 > x) . (3.3)

By the second relation in (3.2), inequalities (3.3) and the fact that each ωkXk follows a

distribution in ERV(−α,−β), it holds for arbitrarily fixed v > 1 and some large n0 that

F̄+
ω (vx)

F̄+
ω (x)

∼
∑∞

k=1 P (ωkXk > vx)∑∞
k=1 P (ωkXk > x)

. (1 + δ)

∑n0

k=1 P (ωkXk > vx)∑n0

k=1 P (ωkXk > x)
. (1 + δ)v−α.

Symmetrically,
F̄+
ω (vx)

F̄+
ω (x)

&
1

1 + δ
v−β.

The arbitrariness of δ implies that F+
ω ∈ ERV(−α,−β).

The extended regular variation of the distribution of max1≤n<∞
∑n

k=1 ωkXk easily follows

from the extended regular variation of F+
ω and the first relation in (3.2).

It remains to verify the first relation in (3.2). Since the inequality
∑∞

k=1 ωkX
+
k ≥

max1≤n<∞
∑n

k=1 ωkXk is obvious, we only need to prove that

P

(
max

1≤n<∞

n∑
k=1

ωkXk > x

)
&

∞∑
k=1

P (ωkXk > x) . (3.4)
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Actually, by Theorem 3.2 of Chen and Yuen (2009), it holds for all n ∈ N that

P

(
n∑
k=1

ωkXk > x

)
∼

n∑
k=1

P (ωkXk > x) . (3.5)

By (3.5) and (3.3), it holds for arbitrarily given δ > 0 and some large n0 that

P

(
max

1≤n<∞

n∑
k=1

ωkXk > x

)
&

n0∑
k=1

P (ωkXk > x) &
1

1 + δ

∞∑
k=1

P (ωkXk > x) .

Then the arbitrariness of δ implies (3.4).

Consider the compound Poisson process

Ct =
Nt∑
k=1

Xk, t ≥ 0, (3.6)

where {Xk, k ∈ N} is a sequence of i.i.d. random variables with generic random variable

X and common distribution F , while {Nt, t ≥ 0} is a Poisson process, independent of

{Xk, k ∈ N}, with intensity λ > 0. The following lemma plays a crucial role in proving

Theorem 2.1:

Lemma 3.5 Let C be a compound Poisson process given by (3.6) and let L be a Lévy process

independent of C. If F ∈ ERV(−α,−β) for some 0 < α ≤ β < ∞ and ϕL(β + ε) < 0 for

some ε ∈ (0, α), then it holds for every T ∈ (0,∞] that

P
(

sup
0≤t≤T

∫ t

0

e−LsdCs > x

)
∼ λ

∫ T

0

P
(
Xe−Lt > x

)
dt.

Furthermore, sup0≤t≤T
∫ t
0

e−LsdCs follows a distribution in ERV(−α,−β).

Proof. Let τk, k ∈ N, be the arrival times of the Poisson process {Nt, t ≥ 0}. Then

sup
0≤t≤T

∫ t

0

e−LsdCs = sup
0≤t≤T

Nt∑
k=1

Xke
−Lτk = max

0≤n<∞

n∑
k=1

Xke
−Lτk1(τk≤T ),

where, by convention, the summation over an empty set of indices produces a value 0. This

enables us to apply Lemma 3.4. By its convexity, ϕL(u) < 0 for all u ∈ (0, β + ε]. Then

it is straightforward to verify the corresponding conditions in order to apply Lemma 3.4.

Therefore,

P
(

sup
0≤t≤T

∫ t

0

e−LsdCs > x

)
∼

∞∑
k=1

P
(
Xke

−Lτk1(τk≤T ) > x
)

= λ

∫ T

0

P
(
Xe−Lt > x

)
dt,

where in the last step we used the fact that
∑∞

k=1 P (τk ∈ dt) = λdt.

The following lemma, which is a natural generalization of Lemma 2 of Grey (1994), does

not require any information on the dependence structure of (A,B) or on the left tail of A:
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Lemma 3.6 Let A, B and Q be three random variables, with Q independent of (A,B). If

each of A and Q follows a distribution in the class ERV(−α,−β) for some 0 < α ≤ β <∞,

and B is nonnegative satisfying EBβ+ε < ∞ for some ε ∈ (0, α), then the distribution of

A+QB belongs to the class ERV(−α,−β) and

P (A+QB > x) ∼ P (A > x) + P (QB > x) . (3.7)

Proof. We only focus on the proof of relation (3.7) since the other conclusion follows

immediately from relation (3.7) and the fact that the distribution of QB belongs to the

class ERV(−α,−β).

Arbitrarily choose an increasing function l(·) : (0,∞) → (0,∞) satisfying l(x) < x/2,

l(x) = o(x) and l(x) → ∞. Moreover, arbitrarily choose constants δ ∈ (0, 1/2) and p ∈
(β/(β + ε), 1). We split the left-hand side of (3.7) as

P (A+QB > x) = P (A > (1 + δ)x)

− P (A > (1 + δ)x,A+QB ≤ x)

+ P ((1− δ)x < A ≤ (1 + δ)x,A+QB > x)

+ P (A < −l(x) or l(x) < A ≤ (1− δ)x,A+QB > x)

+ P (|A| ≤ l(x), A+QB > x)

= I1(x)− I2(x) + I3(x) + I4(x) + I5(x). (3.8)

We estimate the five terms on the right-hand side of (3.8), in turn. Clearly,

(1 + δ)−β P(A > x) . I1(x) . (1 + δ)−α P(A > x).

Noticing that, by Lemma 3.1(2), x−p(β+ε) = o (P(A > x)), we have

I2(x) = P (A > (1 + δ)x,A+QB ≤ x, (B ≤ xp) ∪ (B > xp))

≤ P (A > (1 + δ)x)P
(
Q < −δx1−p

)
+ P (B > xp)

= o (P (A > (1 + δ)x)) +O
(
x−p(β+ε)

)
= o (P (A > x)) .

By the definition of the class ERV(−α,−β),

I3(x) ≤ P ((1− δ)x < A ≤ (1 + δ)x) .
(
(1− δ)−β − (1 + δ)−β

)
P (A > x) .

By conditioning on A and applying Lemma 3.2, it holds for every b > 1 and all large x that

I4(x) ≤ P (|A| > l(x), QB > δx)

≤ b P (Q > δx)E
(
Bα−ε ∨Bβ+ε

)
1(|A|>l(x))

= o (P (Q > x)) .
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As in dealing with I2(x) above, we further split I5(x) into two parts according to (B ≤ xp)

and (B > xp). For the first part, we condition it on (A,B) and apply the uniformity over

|y| ≤ l(x) of the asymptotic relation P (Q > x+ y) ∼ P (Q > x). We have

I5(x) = P (|A| ≤ l(x), A+QB > x, (B ≤ xp) ∪ (B > xp))

= (1 + o(1))P (|A| ≤ l(x), QB > x,B ≤ xp) +O(1)P (B > xp)

= (1 + o(1))P (|A| ≤ l(x), QB > x) + o(1)P (Q > x)

= (1 + o(1)) (P (QB > x)− P (|A| > l(x), QB > x)) + o(1)P (Q > x)

= (1 + o(1))P (QB > x) + o(1)P (Q > x)

∼ P (QB > x) ,

where in the last but one step we used P (|A| > l(x), QB > x) = o(1)P (Q > x), as in the

treatment of I4(x) above, and in the last step we used P (QB > x) � P (Q > x). Simply

plugging these estimates for I1(x), . . . , I5(x) into (3.8) and noticing the arbitrariness of δ,

we obtain (3.7), as desired.

The following lemma partially extends Theorem 1 of Grey (1994):

Lemma 3.7 Let (A,B) be a random pair satisfying E log (|A| ∨ 1) <∞, P(B ≥ 0) = 1 and

−∞ ≤ E logB < 0. Let Q be a random variable independent of (A,B).

(1) Then there is exactly one distribution for Q satisfying the stochastic difference equation

Q
D
= A+QB, (3.9)

where
D
= denotes equality in distribution.

(2) Furthermore, if the distribution of A belongs to the class ERV(−α,−β) for some

0 < α ≤ β <∞ and E
(
Bα−ε ∨Bβ+ε

)
< 1 for some ε ∈ (0, α), then

P(Q > x) ∼
∞∑
i=1

P

(
Ai

i−1∏
j=1

Bj > x

)
, (3.10)

where {(Ak, Bk), k ∈ N} is a sequence of i.i.d. copies of (A,B) and, by convention,

the multiplication over an empty set of indices produces a value 1.

Proof. (1) The existence and uniqueness of the weak solution of (3.9) are justified by

Theorem 1.6(b, c) and Theorem 1.5(i) of Vervaat (1979).

(2) Let {Qk, k ∈ N} be a sequence of random variables defined recursively by

Qk = Ak +Qk−1Bk, k ∈ N, (3.11)
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where Q0 is an arbitrary starting random variable independent of {(Ak, Bk), k ∈ N}. Then

by Theorem 1.5(i) of Vervaat (1979), the sequence {Qk, k ∈ N} weakly converges with a

limit distribution which does not depend on Q0 and coincides with the distribution of Q in

(3.9). See also Goldie (1991) for these statements. To prove relation (3.10), we apply the

method developed by Grey (1994) to establish the following two relations:

P(Q > x) .
∞∑
i=1

P

(
Ai

i−1∏
j=1

Bj > x

)
, P(Q > x) &

∞∑
i=1

P

(
Ai

i−1∏
j=1

Bj > x

)
. (3.12)

Let us prove the first relation in (3.12) now. Introduce a nonnegative random variable

Q′0 independent of (A,B) and satisfying P(Q′0 > x) ∼ c P(A > x) for some constant

c >
(
1− E

(
Bα−ε ∨Bβ+ε

))−1
. By Lemmas 3.6 and 3.2,

P (A+Q′0B > x) .
(
1 + c E

(
Bα−ε ∨Bβ+ε

))
P(A > x).

Since 1 + c E
(
Bα−ε ∨Bβ+ε

)
< c, there is some x0 > 0 such that, for all x > x0,

P(A+Q′0B > x) ≤ P(Q′0 > x).

Construct a starting random variable Q0 which is independent of (A,B) and follows the

distribution of Q′0 conditional on Q′0 > x0, which belongs to the class ERV(−α,−β).

Substituting Q0 to (3.11) and applying Lemma 3.6, the distribution of Q1 belongs to

the class ERV(−α,−β) and

P (Q1 > x) = P (A1 +Q0B1 > x) ∼ P (A1 > x) + P (Q0B1 > x) .

We claim that Q1 is stochastically not greater than Q0, written as Q1 ≤st Q0. Actually, for

x > x0,

P (Q1 > x) = P(A+Q′0B > x |Q′0 > x0 ) ≤ P(A+Q′0B > x)

P(Q′0 > x0)
≤ P(Q′0 > x)

P(Q′0 > x0)
= P(Q0 > x),

while for x ≤ x0, P (Q1 > x) ≤ 1 = P(Q0 > x).

Using (3.11) with k = 2 and Q1 ≤st Q0, one easily infers that Q2 ≤st Q1. Furthermore,

by using Lemma 3.6 twice, the distribution of Q2 belongs to the class ERV(−α,−β) and

P (Q2 > x) ∼ P (A2 > x) + P (Q1B2 > x)

= P (A2 > x) + P (A1B2 +Q0B1B2 > x)

∼ P (A2 > x) + P (A1B2 > x) + P (Q0B1B2 > x) .

Repeating this procedure, we can prove that the sequence {Qk, k ∈ N}, starting with

Q0, is stochastically non-increasing and that, for each k ∈ N, the distribution of Qk belongs

11



to the class ERV(−α,−β) with tail satisfying

P (Qk > x) ∼
k∑
i=1

P

(
Ai

k∏
j=i+1

Bj > x

)
+ P

(
Q0

k∏
j=1

Bj > x

)

=
k∑
i=1

P

(
Ai

i−1∏
j=1

Bj > x

)
+ P

(
Q0

k∏
j=1

Bj > x

)
.

It follows that

P (Q > x) .
k∑
i=1

P

(
Ai

i−1∏
j=1

Bj > x

)
+ P

(
Q0

k∏
j=1

Bj > x

)
.

The last tail probability is negligible as k becomes large because, by Lemma 3.2,

P

(
Q0

k∏
j=1

Bj > x

)
. c

(
E
(
Bα−ε ∨Bβ+ε

))k P (A > x)

and E
(
Bα−ε ∨Bβ+ε

)
< 1. This proves the first relation in (3.12).

We turn to the second relation in (3.12). The fact P(Q > 0) > 0 is explained in the proof

of Theorem 1 of Grey (1994). Construct another starting random variable Q0 independent

of (A,B) with tail

P(Q0 > x) = P(Q > 0)P(A > x)1(x≥0) + P(Q > x)1(x<0).

Clearly, the distribution of Q0 belongs to the class ERV(−α,−β) and Q0 ≤st Q. It is easy

to see that the sequence {Qk, k ∈ N}, starting with this Q0, is stochastically bounded from

above by Q. Similarly as before, applying Lemma 3.6 and relation (3.11) recursively, we

obtain that, for each k ∈ N,

P (Q > x) ≥ P(Qk > x)

∼
k∑
i=1

P

(
Ai

i−1∏
j=1

Bj > x

)
+ P

(
Q0

k∏
j=1

Bj > x

)

≥
∞∑
i=1

P

(
Ai

i−1∏
j=1

Bj > x

)
−

∞∑
i=k+1

P

(
Ai

i−1∏
j=1

Bj > x

)
.

By Lemma 3.2, the last sum above is negligible as k becomes large. This proves the second

relation in (3.12).

Finally, we list several useful martingale inequalities. The proof of the following lemma

is an excise of Doob’s inequality; see also the proof of Lemma 3.2 of Paulsen (2002):

Lemma 3.8 Let L be a Lévy process with Laplace exponent ϕL(·). If ϕL(u) <∞ for some

u > 0, then E
(
sup0≤t≤T e−uLt

)
<∞ for every fixed T ∈ (0,∞).
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For a stochastic process M , denote by [M,M ] and 〈M,M〉 its quadratic variation and

predictable quadratic variation, respectively. The following lemma recalls some well-known

martingale inequalities of which the first one is the Burkholder-Gundy inequality. Their

proofs can be seen, for example, in Liptser and Shiryayev (1989).

Lemma 3.9 For a local martingale M , write M∗
T = sup0≤t≤T |Mt| for 0 ≤ T ≤ ∞.

(1) For every q ∈ (1,∞), there are positive constants cq and c′q such that, uniformly for

all local martingales M with M0 = 0 and all 0 ≤ T ≤ ∞,

c′qE[M,M ]
q/2
T ≤ E (M∗

T )q ≤ cqE[M,M ]
q/2
T .

Moreover, if Mt is continuous, then the inequalities above hold for all 0 < q <∞.

(2) If M is a local square integrable martingale with M0 = 0, then it holds for every

q ∈ (0, 2) that

E (M∗
T )q ≤ 4− q

2− q
E 〈M,M〉q/2T .

4 Proofs of the Main Results

For the process P , the Lévy-Khintchine representation (2.1) for its characteristic exponent

becomes

ΨP (u) = ipu+
1

2
σ2
Pu

2 +

∫
|x|<1

(
1− eiux + iux

)
νP (dx) +

∫
|x|≥1

(
1− eiux

)
νP (dx).

Consequently, its Lévy-Itô decomposition is given by

Pt = pt+ σPWt +Mt + Ct, (4.1)

where W is a standard Wiener process, M is a square integrable martingale with almost

surely countably many jumps of magnitude less than 1, and C is a compound Poisson process

in the form of (3.6) in which the Poisson intensity is λ∗ = νP (R \ (−1, 1)) and F is given by

νP (·)1R\(−1,1)/λ
∗. In particular, W , M and C are three independent Lévy processes. See,

e.g. Kyprianou (2006) for more details.

4.1 Proof of Theorem 2.1(1)

Recall relation (1.3) with T <∞. The basic idea of our proof is that, when considering the

tail behavior of Z∗T , the Wiener process and small jumps of the process P are negligible.

Clearly, by (4.1) it holds that

3∑
j=1

inf
0≤t≤T

Ij,t + sup
0≤t≤T

I4,t ≤ Z∗T ≤
4∑
j=1

sup
0≤t≤T

Ij,t, (4.2)
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where I1,t = p
∫ t
0

e−R̃sds, I2,t = σP
∫ t
0

e−R̃sdWs, I3,t =
∫ t
0

e−R̃sdMs and I4,t =
∫ t
0

e−R̃sdCs. By

Lemma 3.5, the distribution of sup0≤t≤T I4,t belongs to the class ERV(−α,−β) and

P
(

sup
0≤t≤T

I4,t > x

)
∼ λ∗

∫ T

0

P
(
X∗e−R̃t > x

)
dt, (4.3)

where X∗, independent of R̃, follows the distribution F as defined above. Note that the

right-hand side of (4.3) with x > 0 is identical to the right-hand side of (2.3). If

E
(

sup
0≤t≤T

|Ij,t|β+ε
)
<∞, j = 1, 2, 3, (4.4)

then by Lemma 3.1(2) and Lemma 3.3, all terms except sup0≤t≤T I4,t appearing in the upper

and lower bounds for Z∗T in (4.2) are negligible and it follows from (4.3) that

P (Z∗T > x) ∼ P
(

sup
0≤t≤T

I4,t > x

)
∼ λ

∫ T

0

P
(
Xe−R̃t > x

)
dt,

yielding relation (2.3). Therefore, it suffices to prove (4.4).

By Lemma 3.8, we have

E
(

sup
0≤t≤T

e−(β+ε)R̃t
)
<∞. (4.5)

Then relation (4.4) with j = 1 follows trivially from (4.5). Since I2,t is a continuous martin-

gale and [I2,t, I2,t] = σ2
P

∫ t
0

e−2R̃sds, we use Lemma 3.9(1) and relation (4.5) again to obtain

that, for some constant c1 > 0,

E
(

sup
0≤t≤T

|I2,t|β+ε
)
≤ c1E

(∫ T

0

e−2R̃tdt

)(β+ε)/2

≤ c1T
(β+ε)/2E

(
sup

0≤t≤T
e−(β+ε)R̃t

)
<∞.

Similarly, by Lemma 3.9 and relation (4.5), it holds for some constant c2 > 0 that

E
(

sup
0≤t≤T

|I3,t|β+ε
)
≤ c2

(∫
|x|≤1

x2νP (dx)

)(β+ε)/2

E
(

sup
0≤t≤T

e−(β+ε)R̃t
)
<∞.

4.2 Proof of Theorem 2.1(2)

Recall (1.3) with T =∞, that is, ψ(x,∞) = P (Z∗∞ > x). The basic idea of our proof is to

construct two discrete-time processes, fulfilling a certain recursive structure, whose limits

serve as the stochastic upper and lower bounds, respectively, for the ultimate supremum of

the discounted net loss process. This idea is from Grey (1994).

To derive an asymptotic upper bound for Z∗∞, we observe that

Z∗∞ ≤ Z∗1 + e−R̃1 sup
1≤t<∞

∫ t

1

e−(R̃s−R̃1)dPs
d
= Z∗1 + Z∗∞e−R̃1 , (4.6)
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where on the right-hand side Z∗∞ is independent of
(
Z∗1 , R̃1

)
. Consider the stochastic

difference equation

Q∗
d
= Z∗1 +Q∗e−R̃1 , (4.7)

where on the right-hand side Q∗ is independent of
(
Z∗1 , R̃1

)
. By Theorem 2.1(1), the

distribution of Z∗1 belongs to the class ERV(−α,−β) and

P (Z∗1 > x) ∼ λ

∫ 1

0

P
(
Xe−R̃t > x

)
dt. (4.8)

By comparing (4.6) with (4.7) and applying Lemma 3.7, we have

P (Z∗∞ > x) ≤ P (Q∗ > x) ∼
∞∑
i=1

P

(
Ai

i−1∏
j=1

Bj > x

)
, (4.9)

where {(Ak, Bk), k ∈ N} is a sequence of i.i.d. copies of the random pair
(
Z∗1 , e

−R̃1

)
. It

follows from (4.9) and (4.8) that, for arbitrarily fixed δ > 0 and some large x0,

P (Z∗∞ > x)

.
∞∑
i=1

P

(
Ai

i−1∏
j=1

Bj > x,
i−1∏
j=1

Bj ≤
x

x0

)
+
∞∑
i=1

P

(
i−1∏
j=1

Bj >
x

x0

)

≤ (1 + δ)λ
∞∑
i=1

∫ i

i−1
P

(
Xe−(R̃t−R̃i−1)

i−1∏
j=1

Bj > x

)
dt+

(
x

x0

)−(β+ε) ∞∑
i=1

E

(
i−1∏
j=1

Bβ+ε
j

)

= (1 + δ)λ

∫ ∞
0

P
(
Xe−R̃t > x

)
dt+

(x/x0)
−(β+ε)

1− Ee−(β+ε)R̃1
.

Since the last term above is negligible and δ can be arbitrarily small, we obtain

ψ(x,∞) . λ

∫ ∞
0

P
(
Xe−R̃t > x

)
dt.

To derive an asymptotic lower bound, by Theorem 2.1(1) we have, for every T > 0,

P (Z∗∞ > x) ≥ P (Z∗T > x) ∼ λ

(∫ ∞
0

−
∫ ∞
T

)
P
(
Xe−R̃t > x

)
dt. (4.10)

By Lemma 3.2, it holds for every b > 1 and all large x that

∫ ∞
T

P
(
Xe−R̃t > x

)
P(X > x)

dt ≤ b

∫ ∞
T

E
(

e−(α−ε)R̃t ∨ e−(β+ε)R̃t
)

dt

≤ b

∫ ∞
T

(
eϕR̃(α−ε)t + eϕR̃(β+ε)t

)
dt

= b

(
eϕR̃(α−ε)T

−ϕR̃(α− ε)
+

eϕR̃(β+ε)T

−ϕR̃(β + ε)

)
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since ϕR̃(α − ε) < 0 and ϕR̃(β + ε) < 0. This means that, as T becomes large, the second

term on the right-hand side of (4.10) is negligible when compared with P(X > x), hence

with
∫∞
0

P
(
Xe−R̃t > x

)
dt. It follows that

ψ(x,∞) & λ

∫ ∞
0

P
(
Xe−R̃t > x

)
dt.

4.3 Proof of Corollary 2.1

We start with (2.3), which holds for T ∈ (0,∞]. By Lemma 3.2, it holds for every b > 1

and all large x that

P
(
Xe−R̃t > x

)
P (X > x)

≤ bE
(

e−(α−ε)R̃t ∨ e−(α+ε)R̃t
)
≤ b

(
eϕR̃(α−ε)t + eϕR̃(β+ε)t

)
,

the right-hand side of which is integrable with respect to dt over [0,∞). Therefore, by the

dominated convergence theorem,

lim
x→∞

ψ(x, T )

P (X > x)
= λ

∫ T

0

lim
x→∞

P
(
Xe−R̃t > x

)
P (X > x)

dt = λ

∫ T

0

Ee−αR̃tdt = λ
1− eϕR̃(α)T

−ϕR̃(α)
,

where the second step is due to the well-known Breiman’s (1965) theorem.
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