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Abstract We consider fixed-size estimation for a linear function of means from
independent and normally distributed populations having unknown and respective
variances. We construct a fixed-width confidence interval with required accuracy about
the magnitude of the length and the confidence coefficient. We propose a two-stage
estimation methodology having the asymptotic second-order consistency with the
required accuracy. The key is the asymptotic second-order analysis about the risk
function. We give a variety of asymptotic characteristics about the estimation method-
ology, such as asymptotic sample size and asymptotic Fisher-information. With the
help of the asymptotic second-order analysis, we also explore a number of general-
izations and extensions of the two-stage methodology to such as bounded risk point
estimation, multiple comparisons among components between the populations, and
power analysis in equivalence tests to plan the appropriate sample size for a study.
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572 M. Aoshima, K. Yata

1 Introduction

Suppose that there exist k independent and normally distributed populations 7; :
N(ui, al.z), i = 1,...,k, where u;’s and 01.2’5 are both unknown. Let X;1, X;2, ...
be a sequence of independent and identically distributed random variables from each
;. Having recorded X;1, ..., X;,,; for each 7;, let us write Y,-nl. = Z;”zl X;j/n; and
n = (ny, ..., nr). We are interested in estimating the linear function u = Zle bi i,
where b;’s are known and nonzero scalars. Let T, = Zle bi X in,. We want to con-
struct a fixed-width confidence interval such that

Po(ITh —pl <d) 2 1 —« ey

forall @ = (uy, ..., Uk, 012, ...,okz), where d (>0) and @ € (0, 1) are both prespec-

ified. Since
X —1

b20'2
Py(|Ta—pl <d)=G dz(Z#) @)

i=1

with G (-) the cumulative distribution function (c.d.f.) of a chi-square random variable
having one degree of freedom (d.f.), requirement (1) is satisfied if

koo 2\ !
b o
dZ(Z’n—i’) > a, 3)

i=1

where a is the constant such that G(a) = 1 — «. It is easy to see that the sample sizes
n which minimize the sum Zf‘: 1 n; subject to (3) are given as the smallest integer

such that
k

a
ni > —lbiloi 3 Ibjlo; (= Ci, say) “)
j=1

for each m;. However, since o;’s are unknown, the optimal fixed-sample-sizes C;’s
should be estimated by using pilot samples from every 7;. It should be noted from
Dantzig (1940) that any fixed-sample-size design cannot claim requirement (1).

Takada and Aoshima (1997) gave a two-stage estimation methodology in the spirit
of Stein (1945) to satisfy requirement (1) for all the parameters. For the two-sample
problem, see Banerjee (1967), Schwabe (1995) and Takada and Aoshima (1996).
However, it tends to be oversampling especially when the pilot sample is fixed small
compared to the size of C;. Later, Takada (2004) gave a modification of the Takada—
Aoshima procedure so as to make it asymptotically second-order efficient, i.e.,
lim sup,_, o E¢(N; — C;) < oo. Such a modification had been created and explored
for the one-sample problem and the other problems by Mukhopadhyay and Duggan
(1997, 1999), Aoshima and Takada (2000), and Aoshima and Mukhopadhyay (2002)
among others. One may refer to Aoshima (2005) for a review of two-stage estimation
methodologies.
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Asymptotic second-order consistency 573

Here, we summarize a modified two-stage procedure due to Takada (2004): Along
the lines of Mukhopadhyay and Duggan (1997, 1999), we assume that there exists a
known and positive lower bound oj, for o; such that

o >0, 1=1,...,k. 5)

(T1) Having mq (> 4) fixed, define

k
a .
m = max {mo, | —5 min_bilois Zl lbjloj. | +1¢, (6)
]:
where [x] denotes the largest integer less than x. Take a pilot sample X, o Xim

of size m and calculate Si2 = Z;’zl(X,-j — 7,-,,,)2/1) for each m;, where X;,, =
Z’}Ll X;j/m and v = m — 1. Define the total sample size of each ; by

k
u
N; = max {m, d—2|b,-|Si§ bj1S; | +1¢, (7)
j=1

where the design constant u is chosen as

2k — 1
W=a (1 n H—) . ®)
2v
Let N = (Ny, ..., Ny).
(T2) Take an additional sample X;,, 11, ..., X;n; of size N; — m from each r;. By

combining the initial sample and the additional sample, calculate X; y,= N, - ! 27’: 1 Xij
for each_m. Finally, construct the fixed-width confidence interval with Ty =
> biXin,.

Then, it holds as d — 0 that

Po(ITx — il <d) > 1 —a +o(d*) forall 6.

However, the modification in those literatures has as yet been unable to prevent over-
sampling in two-stage estimation methodologies.

In this paper, we make an improvement on the two-stage procedure so as to make
it asymptotically second-order consistent with the required accuracy as d — 0, i.e.,

Po(ITx — |l <d) =1—a +o(d?) forall 6. 9)
With such an improvement, the required sample size is drastically reduced especially
when k is large. The key is the asymptotic second-order analysis about the risk function.

In Sect. 2, we show the asymptotic second-order consistency for such the modified
two-stage procedure along with its asymptotic second-order characteristics. Also, we

@ Springer



574 M. Aoshima, K. Yata

discuss asymptotic Fisher-information in the modified two-stage estimation method-
ology. In Sect. 3, with the help of the asymptotic second-order analysis, we explore a
number of generalizations and extensions of the modified two-stage methodology to
such as bounded risk point estimation, and multiple comparisons among components
between the populations. In Sect. 4, we apply the modified two-stage methodology to
power analysis in equivalence tests to plan the appropriate sample size for a study. In
Sect. 5, we report the findings of simulation studies and compare performance of our
methodology with those of earlier literatures.

2 Asymptotic second-order consistency

Throughout this section, we write that

-1

k
7, = min |b |a,,,Z|b l0jur fi = Ibiloi [ D 1bjlo; Gi=1,...k).

j=1
Theorem 1 Choose u in (7) asu = a(l + v=1$) instead of (8), where

(a—l)zl 28?7 — ke,
235 1bi]Si)?

©>
|I

(10)

with Si2 ’s calculated in (T1). Then, the two-stage procedure (6)—(7) is asymptotically
second-order consistent as d — 0 as stated in (9).

Proof We have from (2) that

I
=

k
Ci
=E |G a(Zﬁﬁ) . (11)
i=1 !

Now, let us define a new function as follows. We write

1

g(ul,...,uk):G(av_l), v:flul_l—i—-n—i—fkuk_ for u; >0, i=1,...,k.

Denoting G’(w), G”(w) for the first and second derivatives of G(w) respectively,

one can verify the following expressions of the partial derivatives of g(uy, ..., ug).
Forall 1 <i # j <k, we have that

28 _ aG'(a/v) fiv 2u;?
ou;
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82
a_‘g_ { G//(a/v)fz —4 _4+2G (a/U)f2 -3 l—4 2G/(a/v)ﬁv_2ui_3},
u;
g =a {aG”(a/v)f,-f~v—4u.—2uf2 + 2G/(a/v)f,~f‘v_3u4_2uf2} .
8ui8u] J l J J i J

From (11), we use the Taylor expansion to claim that

(| | ) N[ Nk
P 1 — MU <d)=E ey —
0 N 018 Cl Ck

k
=1 —oz—i—aG’(a)ZfiEg (Ni _Ci)
i=1

C;

Y]

a 7 /
+5 2 (@G (a)ﬁf/+2G(")ﬁff)Eai< Ci )( € )}

k
+§ > (@G"(a) f} +2G'(a) 7 — 2G'(a) fi) Eg {
—C;

i#]
+Eg(N), (12)
where
, 1 33g Ni — C; -C; —Cy
Eg(R) = - Ey ] ———————
0O 62 0[3ui3u‘aue|"_§( Ci )( Cj )( Ce )
ij.t J J
(13)
with suitable random variables &;’sbetween 1 and N; /C;, i = 1, ..., k,u = (uy, ...,

uy) and & = (&1, ..., &). With the help of Lemmas 5 and 6 in Appendix, we obtain
the following expansion from (12):

Po(|TN — pul < d)

:1—a+aG(a)(—1+ ZﬁB+Zf2 Z,((Z))Zfz) o(w™h,

(14)

where B; = Cfl v and s is a constant such that E¢(§) = s + o(1). Combining the

-2
results that 3°%_,  B; = kz, (z{.‘zl |b; |a,~) +0(d? andaG"(a)/G'(a) = (—a—
1)/2 with (14), we claim assertion (9) as d — 0. O
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576 M. Aoshima, K. Yata

Remark 1 Liuand Wang (2007) gave a three-stage estimation methodology satisfying
requirement (9) when k = 2. In fact, their results are verified under the assumption
(3.1), in the literature, that requires known lower bounds such as (5) tacitly.

Remark 2 From Lemma 2 in Takada (2004), the constant u given by (8) is coincident
with the one originally given by Takada and Aoshima (1997) upto the order O (v™").
For the two-stage procedure (6)—(7) with (8), by putting s = (a + 2k — 1)/2 in (14),
one has as d — 0 that

Py(ITn — )l <d) =1 -«
2 2
aG’(a)(a+2k_3 kt, + (1 —a) X5, bPo;
v (z 1|b|f71

) + o0(d?) forall@.

Note that § < (a + 2k — 1)/2 w.p.1. The use of (10) saves more samples when k is
large.

Theorem 2 The two-stage procedure (6)—(7) with (10) has as d — 0:

() EoNi=Cp) = e ibilor 35y 1bjloy + (@ = 1 f; X5, bl + bio?)
+1A —kfi) +o(l) fori=1,... k
() Eg(Xi, Ni—3*, ) = @2r)~ 1{(2, 1 Ibilon? +a T b2 fo(h.

Proof The results are obtained by Lemma 5 in Appendix straightforwardly. O

Remark 3 Let us consider two cases that the lower bounds o;,’s are misidentified:
(i) ojx is much smaller than the true value of o;; (ii) several o;,’s are larger than the
true values of o0;’s so that it causes m > min;<;<x C;. For case (i), as observed in
Theorem 2, it causes oversampling although requirement (9) is satisfied. For case (ii),
the two-stage procedure (6)—(7) with (10) has as d — 0 that

Po(|Tx — | <d) > 1 —a+ 0(d>) forallé.

Now, we evaluate the Fisher information in the statistic 7 that is calculated in (T2)
with the constant u given by (10). We write the Fisher information in 7y about u as

Fry ().

Theorem 3 The two-stage procedure (6)—(7) with (10) has the Fisher information in
Tnasd — O:

Fry(w) 1 d*(a+1) 3 bjo}
Fre (W) 2at, (35 1biloi)?

+ o(d?), (15)
where C = (Cy, ..., Cy) is defined by (4).

@ Springer



Asymptotic second-order consistency 577

Proof In a way similar to Theorem 2.1 in Mukhopadhyay (2005), we have that

k 32 2
Z bso:

i=1 !

k c. -
#(z5)

Then, one has that Fr,. () = (Z;‘Z] b?6?/Ci)~"! = ad~2. So, we may write that

-1

1

-1
Fry(w) LG
———=F T — . 16
Fre@ (;f N,») 1o
From (16), we use the Taylor expansion to claim that
Frw) _ ( ~Ci ) (Ni - ci)’*’
i E - [)E
T +Zf o +Z<f £) a{ c
Ni —Ci i —Cj :
| () (5 cnew o

i#]
where
1 33v! N; — C; i —C;\(Ne—C
Eg(ﬂi):—ZEo ;| B i [ ¢
6 & du;du jduy =5 Ci c- Co
ij.e J J
with v = Z[ 1 fiu; ~! for uj > 0, i = 1,...,k, suitable random variables &;’s

between 1 andN/C,, i=1,...,k,u = (ul,...,uk) and & = (&1, ..., &). With
the help of Lemmas 5 and 6 in Appendix, we obtain the following expansion from
17):

PN 1+if2 41 Zk:fB +o(w™) (18)
— s — k — i Dj o s
Fre (1) =7 2T

where B; = Cl._lv and s is a constant such that E¢(s) = s + o(1). Combining the
result that Zf:] fiBi = kr,(zgc:l |biloi) 2 + O(d?%) with (18), we claim assertion
(15)asd — 0. O

Remark 4 For simplicity, we let k = 1 (b = 1). Then, C = ac?/d?. Under the
assumption that ]:YN (n) exceeds fYc (w) for every fixed (u, o?), Mukhopadhyay
(2005) proposed to determine the pilot sample size m for Stein (1945) two-stage
estimation methodology as

m = smallest positive integer such that Fy (u)/Fx.(n) <1+e¢
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578 M. Aoshima, K. Yata

for a prespecified quantity & (> 0) which is free from (11, o2). Mukhopadhyay showed
that 75 () = o ’E -2 (N) and suggested that one may determine the pilot sample
size m as

m = smallest positive integer such that E 2(N)/C <14 ¢+ o(m_l).

Let us write that E;2(N)/C = 1 +x/m + o(m™') with the design constant u =
a(l + s/m) + O(m~2) where x is a constant free from m and s = (a + 1)/2 for
Stein’s methodology. If m is completely free from o2, we should choose m in order
0(d) with ¢ € (—1,0) in order to specify quantity ¢ free from o2. Then, we have
that x = s, so that m = s /e which is exactly the one given by (3.7) in Mukhopadhyay
(2005). Now, let us say ¢ = —0.5 and choose m in order O(d_l/z). Let us simply
write m = sd~1/2. Then, we have that ¢ = s/m = d?. When ¢ is specified as
e = 0.1 (0.01), we have that d = 10~2 (10~%), so that C should be very large. It
would cause oversampling in the two-stage estimation methodology.

Remark 5 From (15), we have as d — 0 that
Fry(w)/Fre() < 1+ +o(m™h),
with ¢ = 2at,) " 'a + l)dz. On the other hand, from (18) withs = (a + 2k — 1)/2,

which is coincide with the one for Stein’s (1945) methodology for k = 1, the two-stage
procedure (6)—(7) with (8) has the Fisher information in 7Ty as d — 0:

23k blo? + ke,
k| bilo)?

Fry () d?
=14 a+2k—-3+
Fre (1) 2ar,

)+ow%. (19)
From (19), we have ¢ = (2at,)”!(a + 3k — 1)d?. It should be noted that the & part
(redundancy) becomes small when we utilize (10) instead of (8).

Remark 6 Tf we choose u in (7) as u = a(1 + v—15) with

238 2S? ke,
23K 1bi18i)?

s=1

(20)

instead of (10), the two-stage procedure (6)—(7) has the Fisher information in Ty as
d— 0:
T/ Fre(w) =1+ o(m™").

Then, it holds as d — O:
() Eo(Ni—Ciy=r) " ibiloy S5, 1bjlo; — @ X5_, b20? + kw) f; + bo?)
+14o0(1) fori=1,.... k
(i) Eo(Zf_y Ni = X4, € = )~ [ 1bilon? = XL, 2o} + oD,
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Asymptotic second-order consistency 579

3 Applications
3.1 Bounded risk estimation

Suppose that there exist k independent and normally distributed populations 7; :
Np(p;, %), i =1,...,k, where u;’s € R” and X,;’s are both unknown, but X;’s are
p X p p.d. matrices. Let X;1, X;2, ... be a sequence of independent and identically
distributed random vectors from each ;. Having recorded X;i, ..., X;,, for each
7;, let us write Y,-,,,. = Z;”:l X;j/ni and n = (ny, ..., ng). We are interested in

estimating the linear function p = Zf‘: 1 bim;, where b;’s are known and nonzero

scalars. Let T, = Zle biYini. For a prespecified constant W (> 0), we want to
construct 7', such that

Eg(|Tn—pll>) < W @1
forall@ = (uy, ..., 1y, X1, ..., Xx), where || - || is the Euclidean norm. Since
k
Eg(|1Tn — ml®) = D bjue(E)/ni, (22)

i=1

it is easy to see that the sample sizes n which minimize the sum Zi'(:l n; subject to
(21) are given as the smallest integer such that

k

ni > %|bi|\/tr(zi)Z|bj|\/tr(zj) (= Ci, say) (23)
j=1

for each ;.

When p = 1, Ghosh et al. (1997, Chap. 6) considered a two-stage estimation
methodology to satisfy requirement (21). Later, Aoshima and Takada (2002) con-
sidered the present problem and gave a different two-stage estimation methodology.
Aoshima and Takada showed that their procedure satisfies requirement (21) with fewer
samples than those in Ghosh et al. When applying the asymptotic second-order analy-
sis to the present problem, we make an improvement on the two-stage estimation
methodology to hold the asymptotic second-order consistency as W — 0 as stated in
(28): We assume that there exists a known and positive lower bound o, for (tr():,-))l/ 2

such that
VuE) > oi, i=1,... .k (24)
(T1) Having mq (> 4) fixed, define

I k
m = max 1§ mo, W1212k|b,-|o,,2|bj|oj* +1}. (25)

j=1
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580 M. Aoshima, K. Yata

Take a pilot sample X1, ..., X, of size m and calculate S; = Z;’Ll (Xij — Xim)
(X;; — X)) /v for each 7;, where X, = Z?’:l X;j/m and v = m — 1. Define the
total sample size of each m; by

k
u
N; = max { m, Wu),-mr(s,-);w,/tr(sj) +1¢, (26)

where u is chosen as u = 1 4+ v~!§ with § given by (27). Let N = (N1, ..., Ny).
(T2) Take an additional sample X, 11, ..., X;y, of size N; — m from Each ;.
By combining the initial sample and the additional sample, calculate X;y, =

Nl._1 Z?]’:] X ; for each m;. Finally, estimate p by Txy = Zf-;l biX;n;.

Theorem 4 Let v, = minj<;<k |b;|0oix Z];-:] |bjlojx, Where ojx is given by (24).
Choose u in (26) asu = 1 + v=15, where

>E (5D /(8% (P(Si) + by WIS Xh_y 1bj14/i(8))
2
(S il varcs)
kT,

- i @7
k
2 (Zhe 1 IVir(s))

§:

with S;’s calculated in (T1). Then, the two-stage procedure (25)—(26) is asymptotically
second-order consistent as W — 0, i.e.,

Eg(IITx — pl[>) = W +o(W?) forall 8. (28)

Proof We have from (22) that

k
Eg(ITx — 1l)* = Ey (Zb%tr@i)/fvi)

i=1
k
Ci
=WE — 1,
(25)
i=1
where f; = |bi|/tr(X;)/ le‘-:l [Dj]\/tr(% ). Use the Taylor expansion to claim that

E,,(Zfi%):1—zﬁ.E0(NlC.Cl)+Zf,-E,,[(NZC.CI) ]
i=1 ! i=1 ! i=1 !

+Eqo(N), (29)
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Asymptotic second-order consistency 581

where Eg(N) = — Zle fiEp {Ei_4Ci_3(N,- — Ci)3} with suitable random variables
&’s between 1 and N;/C;, i = 1,..., k. One may apply Lemma 6 in Appendix to
claim that Eg (%) = o(v—1) as W — 0. With the help of Remark 18 in Appendix, we
obtain the following expansion from (29):

k .
(75)
i=1 !

k k
1 3 1 1
= 1+5§fi —2s — B; + A; (f,-i-z) +jz_;fjAj (fj+§) +o(v ),
(30)
where A; = tr(Zl.z)/(tr(Zi))z, B; = vCi_l, and s is a constant such that Ey(5) =
s + o(1). From (30), we obtain (28) straightforwardly. O
Remark 7 The two-stage procedure (25)—(26) with (27) hasas W — 0:
@) Eo(Ni — C) = Q) 3161V (E) X, 1bj1A; /i (T ) + bF Aitr(Z)
+(2 z’;zl DRAR(E ) fi — 3bil Ai/ir(Z0) z’;zl b 1/tr(Z )}
1A —kf) +o(l) fori=1,....k
(ii) Eo(Zle N; — Z{'(:I Ci) =@ty 20 1bilVr(ED)IbjlA /(X))
335, 16j14; ()} + o(D).
Remark 8 Aoshima and Takada (2002) gave a two-stage estimation methodology to
satisfy requirement (21) without assumption (24). In their methodology, the constant

uin (26)is givenbyu =v/(v —2) =1+ 2/v + O (v~2). Then, for the two-stage
procedure (25)—(26) with u = 1 4 2/v, one has from (30) with s = 2 that

k k 2
Tx
Ep(ITx — pl)? = W + ﬁ(zgﬁ(ﬁ +DA; — 4~ kn(g |b,-mr<zi>) )
+o(W?) forall 0.

Note that § < 2 w.p.1. The use of (27) saves more samples when k is large.

3.2 Multiple comparisons among components

Suppose that there exist k independent and normally distributed populations m; :
Np(p;, %), i =1,...,k, where p > 2, and u;’s € R” and X;’s are both unknown,
but X; = (0()rs) (>0) has a spherical structure such that

Oy + Oiyss — 20Gys =287 (1 <r <s<p) (31)

with §; (>0) unknown parameter for each ;. A special case of such the model is
the intraclass correlation model, that is, X; = aiz{(l — pi)Ip + p; J} for some p;,
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582 M. Aoshima, K. Yata

where J denotes a p x p matrix of all I’s. We consider multiple comparisons exper-
iments for correlated components of u = Zf.czl bim;. Letus write p = (&1, ...,§&p).

Similarly to Sect. 3.1, we use T, = Zle biYim as an estimate of u. Let us write
Ty, = (Tn, ..., Tpn). For a prespecified constant d (>0), we define three types of
simultaneous confidence intervals for (&1, ..., §)):

Ro={plé —&€lin—Ton—d, Trn —Tsn+dl, 1 <r <s <p}; (MCA)
Ry ={pl§ —maxé; € [—(Tyn —max Ty, —d)~, +(Tpn — max T, + d)+]’
SFET SFET SFEr

r=1,...,p},
where +x* = max{0, x} and —x~ = min{0, x}; (MCB)

an{ﬂ|5r_$p€[Trn_Tpn_d, Trn_Tpn+d], r=1,...,p—1}
(MCC)

For the details of these multiple comparisons methods, see Aoshima and Kushida
(2005) and its references. For each of them, for d (>0) and o € (0, 1) both specified,
we want to construct R, such that

Po(pe Ry) >1—a forall@ = (py, ..., 0y, X1, ..., Zi) (32)

with X;’s defined by (31).
It is shown for MCA and MCC that

Ep2s2\
Pome Ry) =G, [d*( D> =) |.

n
i=1

where G, (y) for y > 0 is defined by

Gp(y) = p/ (o) —d(x — M} ' de(x) (for MCA), (33)

G,(y) = / [+ ) — D — Y ' dd(x) (for MCC)  (34)

—00

with @ (+) the c.d.f. of a N (0, 1) random variable. It is shown for MCB that

« -1
(30
P S Rl‘l > G d - bl
o (1 ) = p - "
where

Gp(y) :/ [+ M) dow). (35)
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Asymptotic second-order consistency 583

So, the sample sizes n that minimize the sum ZLI n; while satisfying requirement
(32) are given as the smallest integer such that

k
a
ni > d—2|bi|8i E 1bjldj (= Ci, say)
j=1

for each 7r;, where a (> 0) is a constant such that G ,(a) = 1 — a with G ,(-) defined
for each method by (33), (34) or (35), respectively.

When applying the asymptotic second-order analysis to this problem, we make an
improvement on the two-stage estimation methodology to hold the asymptotic second-
order consistency asd — 0 as stated in (40)—(41): We assume that there exists a known
and positive lower bound o, for §; such that

8 >0k, 1=1,...,k. (36)

(T1) Having mq (>4) fixed, define

k
a .
m = max {mo, | — min |bi|a,-*Z|bj|aj* +1¢. (37)
d 1<i<k -1

i

Take a pilot sample X;; = (Xjj1,..., Xjjp), j = 1,...,m, and calculate S?p =
v;] r, > Kijr —X;j.—Xi,+X;)?withv, = (p—1)(m—1) foreach ;. Here,
Xij.=p ' 20 Xijr Xip =m™! > Xijrand X; | = (pm)~' 3P, > Xijr
Note that v, Sizp / 81‘2 is distributed as a chi-square distribution with v, d.f. Define the
total sample size of each m; by

k
u
Ni = max ym, | —51bi1Sip D 1bj1Sjp [ +1 ¢, (38)
j=1

where u is chosen as u = a(l + v;1§) with a given for each method and § given by
(39). Let N = (Ny, ..., Np).

(T2) Take an additional sample X;,11, ..., X;n, of size N; — m from each 7;.
By combining the initial sample and the additional sample, calculate Y,-N,. =

Ni_1 Zjv’:] X;; for each m;. Finally, for each method, construct Ry with the com-

ponents (TN, ..., Tpn) of Tx = Zle biY,'Nl..
The following theorem can be obtained similarly to Theorem 1.

Theorem 5 Let v, = minj<;<k |bi|0i. Zl;=1 |bjloj, Where oix is given by (36).
Choose u in (38) asu = a(l + v;lf) with a given for each method, where
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Gp(@) k
2 ( Gt 1) i1 67SE, +k(p — D

2 (Zfl] Ib,-IS,-p)z

§=1- (39)

with Si2p s calculated in (T1). Then, the two-stage procedure (37)—(38) is asymptotically
second-order consistent as d — 0, i.e.,

Po(m € Ry) = 1 —a +o0(d?) forall § (MCA, MCC); (40)
Py e Ry) > 1 —a+o(d?) forall & (MCB). 1)
Remark 9 The two-stage procedure (37)—(38) with (39) has asd — 0:
() Eo(N; = Cp) = (p — Ve~ {Ibulsi 4, 1185 — 2 (g +1) £
X X B33 4 B2} 1 = kf) Ho(D) fori =1, k,
i) Eo(Soy Ni— 3y €= (= D) (S, bi1si? =2 (aghs + 1)
xSk lb}(s}} +o(),

where fi = |b;[8; (X5_, b1,
Remark 10 The two-stage estimation methodology (37)-(38) was given by Aoshima

and Kushida (2005), but they chose the constant u in (38) as u = a(1 + v;]s) with
s =k —1—aG')(a)/G',(a). For their two-stage procedure, we have as d — 0 that

Py(n € RN)

aG' (a) 1 k(p—1z, Gh(@) (<
>l—a+—2— k24— + Zf+ ; (fo—l)
vp 2 (Zf-‘zl |b,-|8) i=1 G @\ 5

+o(d?) forall 0,
where the equality holds for MCA and MCC. For a nominal value of «, note that

aG;, (a)/Gp(a) < —1. Then, from (39), we have that § < s w.p.1. The use of (39)
saves more samples when £ is large.

4 Testing for equivalence

We consider the problem to test the equivalence of two independent normal populations
i N(ui, ‘712)7 i=1,2,with u;’sand Ul?’s both unknown. We want to design a test of

Ho @ |pl = |u1 — p2| > d against Hg @ |p| <d (42)
which has size @ and power no less than 1 — 8 at || < yd forall@ = (1, u2, 012, 022),
where «, g € (0,1), y € [0, 1), and d > O (the limit of equivalence) are four pre-

scribed constants. Let us write X;,, = z;": | Xij/ni, i = 1,2, similarly to Sect. 1.

If O’iZ’S had been known, we would take a sample from each 7; of size
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3 <
ni = d—zdizﬁj (= Ci, say)
j=1

and test the hypothesis by

2
J— e o;
rejecting Hy <= X1y, — Xop,| < (Z _l)
d

Here, the function R(-) is determined uniquely by the equation
PN, 1) + x| < R(x)) =«

with N (0, 1) a standard normal random variable, and § = &(c, B, y) is the unique
solution of the equation

PN, 1) +yd| < R()) =1—8.

When al.z’s are unknown but common (012 = 022), Liu (2003) proposed k£ (>3)-
stage procedure having the size « + o(n~!) and the minimum power 1 — 8 + o(n™1).
When applying the asymptotic second-order analysis to the present problem, we give
a two-stage estimation methodology to hold the asymptotic second-order consistency,
which has the accuracy of the same degree as in Liu, as stated in (49): We assume that
there exists a known and positive lower bound o;, for o; such that

O; > Ojx, i = 1, 2. (43)

(T1) Having mq (>4) fixed, define

— min a,*ZG]* +14t. (44)

m = max { my,
0 d2 1<i<2

Take a pilot sample X1, ..., X;,, of size m and calculate Si2 = Z?’zl (Xij —Y,-m)2/v
with v = m — 1 for each ;. Define the total sample size of each w; by

2
Ni=max {m. | 25,378, [+1}. (45)
j=1

where u is chosen as u = §2(1 4+ v~'§) with § given by (47).
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(T2) Take an additional sample X, 11, ..., X;y, of size N; — m from each m;. By
combining the initial sample and the additional sample, calculate X; N=N; ! 27;1 Xij
for each 7r;. Then, test the hypothesis by

dR(5)

rejecting Hy <= | X1y, — Xon,| < ﬁT (46)

where A is chosen as A = 1 4+ v~!7 with £ given by (48).

Theorem 6 Let v, = minj<;<2 i, Z?:l Ojx Where oj, is given by (43). Choose u
and X in (45)-(46) as u = 8>(1 + v='§) and » = 1 + v™I7, respectively, with

2
c_ 1 13 — e > S} Tx 47
s=1+ . e 2 NN 2 N2 47
M2 — &2 200751 SH Qi1 Si)
2 @
. &31M2 — €213 izt S (48)

2R(8) (e1m2 — €2m1) (21-2:1 5)2’
where Sl.2 s are calculated in (T1), ¢ (-) is the p.d.f. of N(0, 1), and

g1 = p(R(S) — 8) + ¢(R() + ),

&2 = (R(®) — O)P(R(5) — 8) + (R(S) + )P (R(S) + ).

e3 = (R() — 8)°p(R(8) — 8) + (R(8) + 8)°p(R(S) + 8),

M = ¢(R(G) — y8) + d(R(G) + ),

m = (R() — y8)P(R@) — y8) + (R() + y&)p(R(S) + ),
n3 = (R(8) — ¥ $(R(8) — y8) + (R() + y8) ¢ (R(5) + y5).

Then, the test (46) of (42), with (44)—(45), is asymptotically second-order consistent
asd — 0, i.e.,

size = o + 0(d2) and minimum power =1 —  + 0(d2) forall 0. 49)

Proof From (46), we have the size at || — | = d that

5 N2
Ep | («/XR((S)—(S)(Z]Q%)
i=1 L

s -1/2
C;
—Eg 1 ® | —(¥VAR(©S) +9) (;flﬁ,)
R(8)te;
= (R() = 8) = @ (—R(®) =) + — —

2 2 2
£2 2 €3 2 -1
+o (2s ~2+ 2,-_1: fiBi + 12_1: f; ) — 5 2P+ EpO) +0(v™h),(50)

i=1
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~1
where f; = o; (Z?:l aj) ,i=1,2,and

2

82, N; —C; 1 0° g4
Eo(ﬂta)=ZEaimgu_|u:§< —1)( 2 )]+5Eo[af2 =g * —1>2]

i=1

0”8 N; — C; N; - Cj N¢ — Cy
5 Z Hauau,aw|"€( C; )( C; Cy ’

with
v=fug+ fuy!
for u; > 0, i = 1,2. With suitable random variables &, between 1 and A and §;’s

between 1 and N;/C;, i = 1,2, u = (A, u1,us) and & = (&, &1, &). Similarly, we
have the minimum power at |[;; — 2| = yd that

) N2
Eglo (JXR(S) _ ya) (Zf%)
i=1 !
2 . “12
—Eplo |- (ﬁR(a) n )/8) (Zf,ﬁ’)
i=1 !

R(S
= & (R(8) — ) —  (—R(5) — v6) + %

2 2 2
2 3 ’ _
+Z—v(2s—2+§ fiBi+> ff)—Z—VE 12+ Egp) + 07,
i=1 i=1 i=1
(51)

where Eg()p) is defined by replacing g4 (A, u1, uz) with

gp 0wt u2) = @ (G2RO) = yo10™"2) = & (<G2R®) + y5)u7'2)

in Eg(NRy). Here, in both (50)—(51), s and ¢ are constants such that Eg(5) = s + o(1)
and Eg(f) = t +0(1). One may apply Lemma 6 and Remark 19 in Appendix to claim
that Eg(Me) = o(v™") and Eg(Mp) = o(v~!) as d — 0 in (50)~(51). Note that
®(R()—38) — P(—R() —38) =aand ®(R() — y8) —@®(—R() —yd) =1— 8.
The assertion (49) can be shown straightforwardly. O

Remark 11 When Uiz’s are unknown but common (al = 02) define the total sample
size as Ni = No = max{m, [(u/d?) Z?:l sz] + 1}. Choose
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_ am—eamn
4R(8) (e1m2 — €2m1)

>

~ 1 ez —mes Ty
S = — —+1 —2—2,
4 \e1m —mez 23S

Then, the test (46) of (42) is asymptotically second-order consistent as d — 0 as
stated in (49).

Remark 12 The two-stage procedure (44)—(45) with (47) has asd — 0:
() Eg(Ni — Ci) = Q) Hoi X5 0j + (s — D f; X5 07 + 07}
+3(1=2f) +o(1) fori=12,
) Eo (T2 Ni— 2 ) = e {2 00 4+ s 2y 0] + o),

where s; = (e1m3 — n1€3)/(e1n2 — n1€2). It has the Fisher information in 7y as
d— 0:

Frn(w) 1 s+ 1D 37 of

— + o(d?).
Fre (i) 252&(2;'2:10:')2 o)

Remark 13 Let us consider the case that our goal is to design a one-sided equivalence
test of

Hy:p=py—pr <—d against H,: pu > —d (52)

which has size « and power no less than 1 — 8 at u > —yd for all . So, one wants to
demonstrate that a treatment is no worse than a standard or one treatment is no worse
than another treatment in paired comparison by amount d. If al.z’s had been known,
we would take a sample from each 7; of size

and test the hypothesis by

L = - Zg — 21—
rejecting Hy <= X1, — Xon, > —d (ya—lﬁ)

Za — Z1-8

One may utilize the two-stage procedure for this goal as well. Replace 6> with (24 —
21-8)%/(1 — y)? in (44) and in the choice of u of (45). Choose

21'221 S12 _ Tw
2(21'2:1 Si)? (Ziz:l Si)?
1 - 14 21'221 Slz
Via = 21-p 2(X5_; )2

§=1+@+2 p+za1-p—1 (53)

I =2421-8@a + 21-p)
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Then, the test of (52), given by

rejecting Hy <= Xy, — Xon, > —V/2d ()/Zza —;15)
o — L1-8

with A = 1 + v~!7, is asymptotically second-order consistent as d — 0 as stated in
(49). Then, it holds as d — O:

() EgNi =€) = Cr)~ o 2 0+ G0 — D fi X3y 0F + 07
+a=2f) +o(1) fori=1,2,
(11) E(,‘(Zt 1N Zt 1Cl)—(27*) 1{(21 10'1) +SOZz 10; }+0(1)

where so = za + zlfﬁ + z¢Z1-p- It has the Fisher information in 7y as d — 0:

Fiw _,  A=yPd s+ VYL, 0}

— d>).
Fre () 27, (2o —Zl—ﬂ)z(zl'zzloi)Z o

Remark 14 Let us consider the case that our goal is to design a two-sided test of
Hy:p=p1 —pur2=0 against H; : u #0 54)

which has size o and power 1 — § at || = d for all @, where o, B € (0, 1) andd > 0
are three prescribed constants. If oiz’s had been known, we would take a sample from
each m; of size

n; = ¢ (O{ '3)0, Zal

and test the hypothesis by

dza)
c(a, B)’

where z, is the upper x point of N (0, 1), and c(«, B) (>0) is the unique solution of
the equation

rejecting Hy < |Y1nl _Y2n2| >

PN, 1) +c(e, B)| > zaj2) =1 = B.

One may utilize the two-stage procedure described above for this goal as well after
replacing (8, R(8), y) with (c(a, B), za/2, 0), respectively, in (44)—(45) and (47)—(48).
Then, the test of (54), given by

_ _ d
rejecting Hy < |X1n1 — X2n2’ > ﬁc(ia/;)’

is asymptotically second-order consistent as d — 0 as stated in (49).
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For a one-sided equivalence test of
Hy:pu=mwpuy—pury=0 against H, :u <0 (55)

which has size o and power 1 — 8 at u = —d for all #, we would take a sample from
each mr; of size

Za—2-8) <
n > ("‘T—ﬂ) Uizaj,
j=1

and test the hypothesis by

rejecting Hy <= Xin, — Xon, < —d (ZZ;;/}) )
a - —_—

So, replace 82 with (z4 — z1— ,3)2 in (44) and in the choice of u of (45). Choose § as
in (53) and choose

. S S
t=-21pG@e +21-p)—— ——-

2037, $)?
Then, the test of (55), given by

rejecting Hy <= X1y, — Xan, < —VAd (Z—a)
Za —Z1-B

with A = 1 4+ v~!7, is asymptotically second-order consistent as d — 0 as stated in
(49).

5 Computer simulations

In order to study the performance of our methodology, we take resort to computer
simulations. We shall compare our procedure given in Sect. 2 with the earlier two-
stage procedure or the three-stage procedure. We fix k = 2 and (b, by) = (—1, 1).
Our goal is to construct 95% fixed-width confidence intervals for © = p©; — wo.
In other words, we have @« = 0.05 (that is, ¢ = 3.841) and we set d = 0.5. Let
C = 21'2:1 Ci. Weset (C1, C2) = (40, 60), whereas with C = 100 one easily obtains
from (4) that (o1, 02) = (1.02, 1.53). We consider three cases that m = 10, 20, 30
(mo = 4 which is kept fixed throughout) and for each case (o1, 02.) are chosen as
O1x/01 = 02,/02 = +/m/C1. Table 1 examines the performance of the two-stage
procedure (6)—(7) with (10) in the first block, the earlier two-stage procedure (6)—(7)
with (8) due to Takada (2004) in the second block, and the three-stage procedure due
to Liu and Wang (2007, Sect. 3) with ¢ = 0.5, 0.7, 0.9 according to each set of fixed
(014, 024) in the third block.
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Table 1 Simulated results

u n s(m) a s(p) n—-C E(N-0C)
m =10, (014, 02,) = (0.51,0.77)
Two-stage procedure (6)—(7) with (10)
Cc 100 4.541 116.02 0.403 0.9482 0.00222 16.02 14.98
Cy 40 46.20 0.167 6.20 5.86
Cy 60 69.82 0.279 9.82 9.13
Two-stage procedure of Takada (2004)
C 100 5.302 135.16 0.464 0.9584 0.00200 35.16 31.81
Cy 40 53.83 0.193 13.83 12.58
Cy 60 81.33 0.321 21.33 19.22
Three-stage procedure of Liu and Wang (2007) with ¢ = 0.5
c 100 106.66 0.228 0.9508 0.00216 6.66 5.84
Cy 40 4343 0.101 3.43 3.32
Cy 60 63.23 0.148 3.23 2.52
m =20, (014, 02,) = (0.72, 1.08)
Two-stage procedure (6)—(7) with (10)
C 100 4.152 108.14 0.253 0.9515 0.00215 8.14 7.49
Cy 40 43.11 0.106 3.11 2.98
Cy 60 65.03 0.175 5.03 4.52
Two-stage procedure of Takada (2004)
Cc 100 4.533 117.08 0.274 0.9556 0.00206 17.08 15.90
Cy 40 46.79 0.115 6.79 6.34
Cy 60 70.29 0.189 10.29 9.56
Three-stage procedure of Liu and Wang (2007) with ¢ = 0.7
C 100 104.36 0.179 0.9461 0.00226 4.36 4.17
Cy 40 42.66 0.080 2.66 2.37
Cy 60 61.70 0.116 1.70 1.80
m =30, (014, 024) = (0.88, 1.33)
Two-stage procedure (6)—(7) with (10)
c 100 4.031 105.43 0.196 0.9485 0.00221 543 5.00
Ci 40 42.32 0.081 2.32 2.02
Cy 60 63.11 0.137 3.11 2.98
Two-stage procedure of Takada (2004)
C 100 4.295 111.87 0.210 0.9573 0.00202 11.87 10.60
Cy 40 44.83 0.088 4.83 4.26
Cy 60 67.04 0.145 7.04 6.34
Three-stage procedure of Liu and Wang (2007) with ¢ = 0.9
C 100 105.02 0.161 0.9463 0.00225 5.02 3.25
Ci 40 42.46 0.068 2.46 1.84
Cy 60 62.56 0.107 2.56 1.40
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The findings obtained by averaging the outcomes from 10,000 (= R, say) replica-
tions are summarized in each situation. Under a fixed scenario, suppose that the rth
replication ends with N; = n;, (i = 1, 2) observations and the corresponding fixed-
width confidence interval R,, = { € R : |T,, — n| < d} based on n, = (n1,, na)
forr =1,...,R. Now, n; = R~! Zle n;r which estimates C; with its estimated
standard error s (77;), where s2(7;) = (R2 — R)™' 3% (n;; —7;), i = 1,2. Then,
n (= ny +ny) estimates the total fixed sample size C with its estimated standard error
s(n), computed analogously. In the end of the rth replication, we also check whether
w belongs to the constructed confidence interval R,,, and define p, = 1 (or 0) accord-
ingly as p does (or does not) belong to R,,,, r = 1,...,R. Letp = R1 Zle Drs
which estimates the target coverage probability, having its estimated standard error
s(p) where sz(ﬁ) =R ’7(1 — p). For the two-stage procedure (6)—(7) with (10), the
value of u is given as the average number of the outcomes from 10,000 replications. At
the last column, we gave the approximate value of Eg(N; — C;), which was obtained
from Theorem 2 in Sect. 2, from Theorem 3 in Takada (2004), and from Theorem with
(3.2) in Liu and Wang (2007), respectively for each procedure.

Letus explain, for example, the entries from the first block for the case whenm = 20
in Table 1, and hence (014, 02,+) = (0.72, 1.08). From 10,000 independent simulations,
we observed u = 4.152, ny = 43.11, s(ny) = 0.106, ny = 65.03, s(ny) = 0.175,
and 7 = 108.14, s(n) = 0.253. Also, we had p = 0.9515, s(p) = 0.00215, and
ny—Cy = 311, np — C, = 5.03, n — C = 8.14. At the last column, we had
E(N1—C1) =298, E(Ny—C) =452, E(N—C) =17.49 where N = 21'2:1 N;.
Theorem 2 indicates that one may expect 77; — C; to fall in the vicinity of the value
of E(N; — C;), i = 1,2. One will observe that the values of Ey(N; — C;) are
approximated fairly well by these asymptotic values for small d.

Throughout, the two-stage procedure (6)—(7) with (10) reduces the sample size
required in the two-stage procedure due to Takada (2004). When oy, is specified well,
the performance of the two-stage procedure (6)—(7) with (10) can even compare with
the performance of the three-stage procedure due to Liu and Wang (2007). If the
experimenter considers the cost of each sampling seriously, the two-stage procedure
(6)—(7) with (10) might be the most likely candidate in such a real world.

Appendix

Throughout, we write that
T = |bilo; X5, 1bjloj. Yi = Ibi|Si X5_; Ib;1S;

fori = 1, ..., k.From (4), we write that C; = at; /d*.Letd (>0) gotozero thorougha
sequence such that at, /d? always remains an integer. Then, from (6), we may write that
m=art, /dz. ‘We note that vSi2 /ol.z, i =1,...,k, are independently distributed as a
chi-square distribution with v d.f. Let W;, i = 1, ..., k, denote random variables such
that vW;, i = 1, ..., k, are independently distributed as the chi-square distribution
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with v d.f. Let w; = W; — 1. Then, we have that S? = o?(1 + w;), and E(w;) =
0, Ew>)=2v"", E@? =00 and E@?) =00, t=1,2, ...

Lemma 1 For each i, we have as v — oo that
Eg(IY; —wi[) = 00" (t >2).
Proof We write that

SiSj —Uin

= 0103 { (/T wi = DW/THw; = D+ (T w = D+ (/T w; - D).

By noting that Eg(|(1 + w;)!/2 — 1) = O(v™"/?) (t > 2), we have that Eg(|S;S; —
00|y = O(v™'/?) (t > 2). Hence, it holds that

t

k
Eg(1Yi —wl') = Eg | | D 1billbjI(SiS) —0io))| | = 007 (= 2).
j=1

The proof is completed. O

Remark 15 Asfor (26),let t; = |b;|+/tr(X;) zl;zl |bjl/tr(% ;) and Y; = |b;|+/tr(S;)
21;21 |bjl/tr(S;). Let W;;, i =1,...,k; j=1,..., p, denote random variables
such that vW;;, i =1,...,k; j=1,..., p, are independently distributed as a chi-
square distribution with v d.f. One may write that tr(S;) = tr(zi)‘*‘Z;:] Aij(Wij—1),
where A;;’s are latent roots of X;. Then, we can obtain the same result as in Lemma 1
for (26) as well.

Lemma 2 For the two-stage procedure (6)—(7) with (10), we have as d — 0 that
u
Ep (N,- _ [d—ZY,-] _ 1) = 0(d).
Proof Let I{n,—m) be the indicator function. Then, we have that
u u
o (5[ 2] 1) = 0 [t (- [ 27] )
u 2
< | Py(N; = m)E, ’ (m — [—ZY,-] — 1) } (56)
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Then, it follows that

qu-
Py(N; =m) = Py yel <m
uY; Ci+1 m—(C; +1)
=P\ =<
d+C; C; Ci
(uYi 1 Ty ‘[,')
<P (Eo1- <
aT; C,‘ Ti
uY; A
<P|\|l—-1+C >
art; T

— — 1|+ . (57)
aT;

Now, one can yield that

t l t
Eo[ ] < Ey {(T— (m — 7l + )) ] =00 (t>2).(58)

Here, (58) follows from the result that for any x (>0) and y (>0) such thatx +y =¢
(>2), we have from Lemma 1 that

uvi

sY;

Eg(|Y; — 1" v '8Y: 1Y) < VEp(IY; — 12 Ep (v 15Y;>)

-0 (v7<x/2+y)) —0 (vf(z/2+y/2)) ‘

By combining (58) with (57), we have that

Py(N; =m) = 0(d®). (59)
The result can be obtained in view of (56) and (59). O
Lemma 3 Let g (>0) and h (>0) be constants. For a fixed b (>1), let X}, denote a
chi-square random variable with bv d.f. Then, we have as v — oo that

E(quv —h— [quv - h]) =

1
—+ 001,
7 +0@W ')
Proof LetU = qXp, —h —[qXpy — h]. Then, we have for x € (0, 1) and x; € (0, x)
that
o
PU<x)=> PU<x,i<qXp—h<i+]1)
i=0

oo
=ZP(i <qXpy—h <i+x)
i=0
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o .
h .
22 F%Ci_iﬁ) (60)

where Fp,(-) is the c.d.f. of a chi-square random variable with bv d.f., and Féu(o)

denotes the first derivative of Fj, (). Since m > 4 and b > 1, we have that bv > 3.
Here, there is at most one constant ¢ (= bv — 2) satisfying sup, Fév () = Fév (c), z >
0.If (h +x;)/q < bv —2, there exists integer i, such that (i, +h +x;)/qg < bv—2 <
(ix + 1 4+ h 4+ x;)/q. Then, we have that

F/ (i+h+x,-) (l < l.*),

/iHF’ (z+h+xt>dz> SN
bv =
i a F, (m

ALYz i+ ).

Hence, it follows that

i+h+x v +h+x;
() < [ () (424
h+x; q

i=0
/ F,, ( )dz+suprv(Z) (61)

Similarly, we have that

Fb/v (z+1+h+x,~) (i <iy),

/"+‘F, (Z+h+x,~)dz< g
b - =
i v q Fl;v (i+h+x,~)

: iz i+ 1),

Hence, it follows that

/ F,, (q) dz — sup Fp,(2) < z F,, (%) . (62)
h

+x; i=0

If (h + xi)/q > bv — 2, we can claim both (61) and (62).
Combining (61) and (62) with (60), we have that

h+x; X , X ,
x — xFp, p — 5sup Fp,(2) < P(U <x)<x+ ; sup F,,(z). (63)
z z
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Here, we note that

h+x\ h+x BN h+x;
Fy, ( * x’) _ Fj, (—) <N G Fl,(2) (64)
q q q q -

with h; € (0, h + x;), and by Stirling’s formula that

sup Ff,(z) = Fj,(bv —2) = 0(v""/?) as v — oo. (65)
2

By combining (64) and (65) with (63), we conclude that
PU<x)=x+00""?) as v > o0.

It completes the proof. O

Lemma 4 For the two-stage procedure (6)—(7) with (10), we have as d — 0 that

k k
u u 1
Eg E|bi|si§|bj|sj— d—2|bi|sijz_:,|b,~|sj =5+ 0.

Proof Let Xz, = v > *_ Wi and V; = vW;/ Xy, i = 1, ..., k. Then, Xy, is distrib-
uted as the chi-square distribution with kv d.f., V; is distributed as the beta distribution
with parameters v/2 and (k — 1)v/2, and Xk, and V= V1, ..., Vi) are independent.
We write § as

(a—Db}a?Vi Y5_ b2o?v; ~ Ubl.zal?V,-kr*

§=1+ ;
27? 2Xk0 Z?

where Z; = |bi|oi/V; Z?zl |bjloj/V;. Then, we have that

u

u k
S5 1bilSi D 16j1S; = —-XiwZi = QXiw — H,
j=1

where

2 2 ko 42 2
0— aZ; ll N l(l N (@ = Dbjoi Vi 3 bjo; V/)] ’ _ ab?o?Vikt,
v

T 42y 272 2d2Z;v

Let us define that U = 00X — H — [Q Xk, — H]. From Lemma 3, the conditional
distribution of U, given V = v (H = h, Q = q), is given for x € (0, 1) that

1+h i ~
X — msup F,(z) < Pp(U <x|V=70) <x+ gsupF,:U(z),
Z 4
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Asymptotic second-order consistency 597

where x; € (0, x). We evaluate that 1/Q0 < t./Z; < T*/(bl-ZOiZVi), and H/Q <
kt./(2 Z’;z, bﬁqfv,») <kt,/(2minj<;<x b?0?) (=y). Then, we have that Eg (1/ Q)<
(t*/bl.zaiz)(kv —2)/(v — 2). Here, H/Q is uniformly integrable since |H/Q| < vy,
and 1/0Q is uniformly integrable since |1/Q| < 7./(b?0?V;) with 7,/ (b} V;) being
uniformly integrable. From (65), one can yield that

x(1+H +x;)

o ol =022

] sup F}, () = 0(d).

From the fact that Eg { Py(U < x|V = 0)} = Pyp(U < x), we obtain that
Py(U <x)=x+0() as d — 0. (66)

Hence, U is asymptotically uniform on (0, 1) as d — 0. The proof is completed. O

Remark 16 For s given by (20), (27), (39), (47) and (53), one can write Q and H
similar to Lemma 4. Note that, for nominal values of « and g, it holds that (1173 —
nes3)/(e1my — nigz) > —1 in (47) and G:,/,(a)/G/p(a) < 0 in (39). Then, we can
evaluate that Eg(1/Q) = O(1) and Eg(H/Q) = O(1) for Q and H given by each s.
Hence, the result similar to Lemma 4 is obtained for those cases as well.

Remark 17 When the design constant is defined as a constant, the asymptotic unifor-
mity of P(U < x) was studied by several authors. See Hall (1981) for k¥ = 1 and
Takada (2004) for k > 2.

Lemma 5 The two-stage procedure (6)—(7) with (10) has as d — O:

@) EolC; (N; = Ci)} = @v)7'@2s — 1 + f; + B)) + O(d),
(i) Ep(C72(Ni — C)*} = @)~ (1 +2fi + Xjy f7) + 0@,
(i) Eg{C; ' (Ni = CCT (N — Cp)Y = @)™ (fi + £ + Xy £
+Od) (i # j);

where B; = v/C; and s is a constant such that Eg(5) = s + o(1).
Proof Let us write that

Ni =rCGTi+ (1 +[rCT] —rGT) + (N; — [rGTi] = 1),
where r = u/a = 1 +v-'§and T} = ‘L';IY,'. Here, from Lemma 4, U; = 1 +
[rC;T;] —rC;T; is asymptotically distributed as U (0, 1). Let D; = N; — [rC;T;] — 1.
From Lemma 2, it follows that E{(D; /v)‘} = O(v—3/?) asd — 0, where ¢ (>1) is
fixed. Then, we have that

CT'(Ni = C)) = (T, — 1) +v™'B;U; + €' ;. (67)
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By noting that Eg(5) = s 4+ o(1), we obtain the following results:
EgrTi —1) = 20) 7 Qs — 1+ fi) + 0(d”),

k
EglrTy — 1’} = @) A+ 2fi + D f) + 0@d),

i'=1
k
Eg{(rT; = DTy = Dy = Q@) (fi+ £+ D D+ 0@ (i # j).(68)
i'=1

Let us combine these results with the expectations of (67).
The results are obtained straightforwardly. O

Remark 18 For the two-stage procedure (25)—(26) with (27), we have as W — 0 that

() Eo{C;'(Ni — C)} = Q)71 2s + Bi + Ai(fi — 0.5) — 0.535_, fiA;} +
oW,
(i) Ep{C2(N; — C)*) = @) A1 +2) + X5_, f7A;) + 0(W?),

where A; = tr(Zl.z)/(tr(Z,'))z, B; = v/C;, C; is defined by (23), and s is a constant
such that Eg(5) = s + o(1).

Lemma 6 For the two-stage procedure (6)—(7) with (10), one has as d — 0 that
Eo(M) = o) in (13).

Proof In order to verify this lemma, we have to deal with the terms such as Eg(/;),
Eo(Il'j) and E() (I,'j(), where

83g N; — C; 3 83g N;i —C; : N;j = C;
L =—3|,_ ool =], .
ou; u=§ C; ousdu u=§ Ci Cj

o g | (N,-—C,- (Nj—cj N¢—Cy
T uiou oug =€\ ¢ C; Cy

forall 1 <i < j < £ < k. Note that each third-order partial derivative’s magnitude
can be bounded from above by a finite sum of terms of the type

A%-I_Plsz_PZ . ék—Pk (69)
with A >0, p, >0, r =1, ..., k, which are independent of d. Let A also denote

a generic positive constant, independent of d. Let us write N} = C;” ! (N; — Cy) for
i =1,..., k. Then, we obtain that

|Eg(I)] < AEg(&, "'&, " - & N7 ). (70)
We observe that§; > m/C; = 1./t wp.l foralli =1, ..., k. Also, we observe that

E9(|Ni*|3) = O(v=3/%) since E9(|Nl.*|4) = O(v™2) from the facts that Eg{(rT; —
D3 = 0w™2), E¢{(rT; — D*} = O(v~2) and so on together with (68). Hence,
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from (70), it follows that |Eg(l;)] = O(v—>/?). Similarly, one may use the facts
that E0(|N;|2|N;|) = O(v~3?) and Eo(INFIINYIINGD) = O (v=3/?) to show that
|Eg(I;))] = O(v™/?) and | Eg(I;j¢)] = O(v™/?) for | <i < j < £ < k. Therefore,
we conclude that Eg(N) = O(v_3/2) =o(w™h. O

Remark 19 Second-order partial derivative’s magnitude can be bounded from above
by a finite sum of terms of the type similar to (69). We observe that Eg{(A — 1) N/} <
(Eg ) Eg(INFIP)'/? = 0(v™/%), Eg{(0—1)*} = O(v™?)and &, > min(l, 1+
v~17} in (50)=(51). Note that, for nominal values of  and g, it holds that 7 > —1 in
(48). Hence, we have that

3% 8 N; — C; _1
Eg{ ——— A—D|— = ,
0 [8)\3”1 |u:§ ( ) ( Ci ) O(V )

82801 _
Eq [W ut 1>2] =o(™.
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